JP2019118887A - Turbid water treatment method - Google Patents

Turbid water treatment method Download PDF

Info

Publication number
JP2019118887A
JP2019118887A JP2018000858A JP2018000858A JP2019118887A JP 2019118887 A JP2019118887 A JP 2019118887A JP 2018000858 A JP2018000858 A JP 2018000858A JP 2018000858 A JP2018000858 A JP 2018000858A JP 2019118887 A JP2019118887 A JP 2019118887A
Authority
JP
Japan
Prior art keywords
chitosan
turbid water
dispersant
flocculant
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018000858A
Other languages
Japanese (ja)
Other versions
JP7053271B2 (en
Inventor
真依子 赤塚
Maiko Akatsuka
真依子 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2018000858A priority Critical patent/JP7053271B2/en
Publication of JP2019118887A publication Critical patent/JP2019118887A/en
Application granted granted Critical
Publication of JP7053271B2 publication Critical patent/JP7053271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for treating turbid water with a wide adaptive concentration range of a chitosan-based flocculant.SOLUTION: There is provided a turbid water treatment method for adding an additive containing an anionic dispersant, a nonionic dispersant, or a zwitterionic dispersant after aggregation treatment with chitosan-based flocculant, and is provided a turbid water treatment method for simultaneously adding the chitosan-based flocculant and the additive containing the anionic dispersant, the nonionic dispersant, or the zwitterionic dispersant.SELECTED DRAWING: Figure 1

Description

本発明は、キトサン系凝集剤と、キトサン系凝集剤の効果を高める補助剤とを用いた濁水処理方法に関する。   The present invention relates to a method for treating turbid water using a chitosan-based flocculant and an auxiliary agent that enhances the effect of the chitosan-based flocculant.

土木工事等において発生した濁水は、所定の排水基準を満たすように濁水処理を行った後に、河川等に排出される。濁水処理では、各種凝集剤を濁水に投入し、SS(浮遊物質)を凝集、沈殿し、清澄水とスラッジとに分離することが一般的である(特許文献1)。
濁水処理に用いる凝集剤として、キトサン系凝集剤が知られている(特許文献2、3、非特許文献1)。キトサンは、主としてカニ殻から精製される天然素材であるため、キトサン系凝集剤は、水産業における廃棄物(カニ殻等)の削減、排水による環境への負荷低減等が期待される環境調和型の材料である。
The turbid water generated in civil engineering work etc. is discharged to a river etc. after performing turbid water treatment so as to satisfy a predetermined drainage standard. In turbid water treatment, it is general to charge various flocculants into turbid water, flocculate and precipitate SS (suspended substance), and separate it into clear water and sludge (Patent Document 1).
Chitosan-based flocculants are known as flocculants used for turbid water treatment (Patent Documents 2 and 3, Non-patent Document 1). Since chitosan is a natural raw material mainly purified from crab shells, chitosan-based flocculants are environmentally friendly in which waste (eg crab shells) in the water industry is expected to be reduced, and environmental impact from drainage is expected to be reduced. It is the material of

キトサン系凝集剤等の高分子系凝集剤は、一般的に添加濃度が濃くなるにつれ、SSの凝集作用から分散作用に変化する。また、キトサン系凝集剤は、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、塩化第二鉄等の無機凝集剤に比べ、適応濃度範囲が狭いという問題がある。
実現場において発生する濁水は、SS濃度が変動するため、SS濃度が低下した際に、キトサン系凝集剤が過剰添加となってしまい、SSが凝集せずに分散してしまう場合がある。そのため、キトサン系凝集剤を用いる場合は、濁水のSS濃度に応じてキトサン系凝集剤の添加量を調整する必要があり、管理作業が煩雑である。また、キトサン系凝集剤が過剰添加となった場合、処理前の濁水や処理後のスラッジ等を投入してSS濃度を高くして過剰量のキトサン系凝集剤を消費する必要がある。しかし、濁水を清澄化するために濁水の元となるものを投入するという作業は、直感的に理解し難いものであるため、現場の作業員は、濁水を清澄化するためにキトサン系凝集剤の追加を行うことが多く、現場でのトラブル発生時の対応に誤りが生じることが多い。
Generally, high-molecular-weight flocculants such as chitosan-based flocculants change from the flocculating action of SS to the dispersing action as the concentration of the agent increases. In addition, chitosan-based flocculants have a problem that the application concentration range is narrower than inorganic flocculants such as polyaluminum chloride (PAC), aluminum sulfate and ferric chloride.
The turbid water generated in the realization site fluctuates in the SS concentration, so when the SS concentration decreases, the chitosan-based flocculant may be excessively added, and the SS may be dispersed without being aggregated. Therefore, when using a chitosan-type coagulant | flocculant, it is necessary to adjust the addition amount of a chitosan-type coagulant | flocculant according to SS density | concentration of turbid water, and management operation | work is complicated. In addition, when the chitosan-based flocculant is excessively added, it is necessary to add suspended water before treatment, sludge after treatment, etc. to increase the SS concentration to consume an excessive amount of chitosan-based flocculant. However, it is difficult to intuitively understand the task of adding the source of the turbid water to clarify the turbid water, so it is difficult for the site worker to clear the turbid water, the chitosan-based flocculant Is often added, and errors often occur in dealing with problems in the field.

特開2011−78893号公報JP, 2011-78893, A 特開平11−60607号公報Japanese Patent Application Laid-Open No. 11-60607 特開2007−119533号公報JP, 2007-119533, A

赤塚真依子、大脇英司、川又睦、大野剛、藤原靖:キトサン凝集剤を用いた濁水処理における無機塩の添加効果、土木学会年次学術講演会講演概要集(CD−ROM)、66th、VII−040、2011年8月5日Akatsuka Mayuko, Owaki Eiji, Kawamata Atsushi, Ohno Go, Fujiwara Atsushi: Effect of Inorganic Salts on Turbid Water Treatment with Chitosan Flocculant, Proceedings of Annual Conference of the Japan Society of Civil Engineers (CD-ROM), 66th, VII- 040, August 5, 2011

本発明は、キトサン系凝集剤の適応濃度範囲が広い濁水処理方法を提供することを課題とする。   An object of the present invention is to provide a method for treating turbid water having a wide adaptive concentration range of a chitosan-based flocculant.

本発明の課題を解決するための手段は、以下のとおりである。
1.キトサン系凝集剤による凝集処理後、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれか1種以上を含む補助剤を添加することを特徴とする濁水処理方法。
2.キトサン系凝集剤と、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかを含む補助剤とを、同時に添加することを特徴とする濁水処理方法。
3.前記キトサン系凝集剤の添加濃度が、0.1ppm以上100ppm以下であることを特徴とする1.または2.に記載の濁水処理方法。
4.前記キトサン系凝集剤100重量部(乾燥重量)に対して、前記補助剤を0.1重量部以上100重量部以下(乾燥重量)添加することを特徴とする1.〜3.のいずれかに記載の濁水処理方法。
5.前記補助剤が、環境調和型材料であることを特徴とする1.〜4.のいずれかに記載の濁水処理方法。
6.キトサン系凝集剤と、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかを含む補助剤を、含むことを特徴とする濁水処理剤。
7.前記補助剤が、環境調和型材料であることを特徴とする6.に記載の濁水処理剤。
The means for solving the problems of the present invention are as follows.
1. A method for treating turbid water, comprising adding an auxiliary agent containing any one or more of an anionic dispersant, a nonionic dispersant, and a zwitterionic dispersant after aggregation treatment with a chitosan-based aggregating agent.
2. A turbid water treatment method comprising simultaneously adding a chitosan-based flocculant and an adjuvant containing any of an anionic dispersant, a nonionic dispersant, and a zwitterionic dispersant.
3. The addition concentration of the chitosan-based flocculant is 0.1 ppm or more and 100 ppm or less. Or 2. Turbid water treatment method as described in.
4. 0.1 to 100 parts by weight (dry weight) of the auxiliary agent is added to 100 parts by weight (dry weight) of the chitosan-based flocculant. ~ 3. The turbid water treatment method according to any of the above.
5. The auxiliary agent is an environmentally harmonized material. ~ 4. The turbid water treatment method according to any of the above.
6. A turbid water treatment agent comprising an adjuvant comprising a chitosan-based flocculant and either an anionic dispersant, a nonionic dispersant, or a zwitterionic dispersant.
7. The above-mentioned adjuvant is characterized by being an environmental harmonization material. Turbid water treatment agent as described in.

本発明の濁水処理方法により、キトサン系凝集剤の適用濃度範囲を広くすることができ、濁水処理時の凝集剤管理を簡便にすることができる。本発明の濁水処理方法は、補助剤を添加・撹拌することにより濁度が低下するため、作業員が作業と結果の結びつきを容易に理解することができ、作業ミスを少なくすることができる。補助剤を用いることにより、短い撹拌時間でも濁度が低下するため、処理時間を短くすることができる。また、補助剤を用いることにより、高価なキトサン系凝集剤の使用量を減らすことができるため、低コスト化が可能である。   According to the turbid water treatment method of the present invention, the application concentration range of the chitosan-based coagulant can be broadened, and coagulant management at the time of turbid water treatment can be simplified. In the turbid water treatment method of the present invention, the turbidity is lowered by adding and stirring the auxiliary agent, so that the worker can easily understand the connection between the operation and the result, and the operation error can be reduced. By using the adjuvant, since the turbidity decreases even with a short stirring time, the treatment time can be shortened. Moreover, by using an adjuvant, since the usage-amount of expensive chitosan-type flocculant can be reduced, cost reduction is possible.

補助剤としてバイオサーファクタントを用いた場合、キトサン系凝集剤も生物由来であるため、濁水処理に伴う環境への負荷を低減することができ、環境調和型の濁水処理とすることができる。
本発明の濁水処理方法は、凝集剤と補助剤の添加順が重要であるが、凝集剤と補助剤とを予め混合した濁水処理剤とすることにより、添加順の間違いを防止することができる。
When a biosurfactant is used as an auxiliary agent, the chitosan-based flocculant is also derived from a living thing, so that the load on the environment due to the treatment of turbid water can be reduced, and the turbid water treatment can be environmentally friendly.
In the turbid water treatment method of the present invention, the order of addition of the flocculant and the auxiliary agent is important, but by setting the coagulant and the auxiliary agent in advance as the turbid water treating agent, an error in the order of addition can be prevented. .

実験1における濁度の測定結果を示す図。The figure which shows the measurement result of the turbidity in experiment 1. 実験2における濁度の測定結果を示す図。The figure which shows the measurement result of the turbidity in experiment 2. 実験3における濁度の測定結果を示す図。The figure which shows the measurement result of the turbidity in experiment 3. 実験4における濁度の測定結果を示す図。The figure which shows the measurement result of the turbidity in experiment 4. 実験5における濁度の測定結果を示す図。The figure which shows the measurement result of the turbidity in experiment 5.

本発明は、キトサン系凝集剤と、キトサン系凝集剤の効果を高める補助剤として陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかを用いた濁水処理方法に関する。   The present invention relates to a method for treating turbid water using a chitosan-based flocculant and an anionic dispersant, a nonionic dispersant, or an amphoteric dispersant as an auxiliary agent for enhancing the effect of the chitosan-based flocculant.

「キトサン系凝集剤」
本発明で使用するキトサン系凝集剤は、水に溶解して懸濁物質に対して凝集能を示すものであれば特に制限することなく使用することができる。例えば、脱アセチル化度が40〜90モル%のキトサンを用いることができる。脱アセチル化度が40モル%より小さいと水への溶解性に劣り、脱アセチル化度が90モル%より大きいものは、キチンからの製造に手間がかかるため高価であり、脱アセチル化反応時に主鎖が切断されてしまうため重量平均分子量が低くなる。
"Chitosan-based flocculant"
The chitosan-based flocculant used in the present invention can be used without particular limitation as long as it is dissolved in water and exhibits flocculating ability to suspended substances. For example, chitosan having a degree of deacetylation of 40 to 90 mol% can be used. If the degree of deacetylation is less than 40 mol%, the solubility in water is poor, and if the degree of deacetylation is more than 90 mol%, it takes time to produce chitin and it is expensive, and it is necessary at the time of deacetylation reaction As the main chain is cut, the weight average molecular weight is lowered.

キトサン系凝集剤の重量平均分子量は、1,000〜3,000,000のものが好ましく、3,000〜2,000,000のものがより好ましく、10,000〜1,500,000のものがさらに好ましい。重量平均分子量が高いほど、一分子あたりのアミノ基が多くなるため、濁水中の粒子を凝集する能力に優れ、少ない量で懸濁物質を凝集沈殿させることができる。ただし、重量平均分子量が大きくなると、水への溶解性が低下して取り扱い性が低下してしまう。   The weight average molecular weight of the chitosan-based flocculant is preferably 1,000 to 3,000,000, more preferably 3,000 to 2,000,000, and 10,000 to 1,500,000. Is more preferred. The higher the weight average molecular weight, the more amino groups per molecule, so the ability to aggregate particles in the turbid water is excellent, and the suspended matter can be aggregated and precipitated in a small amount. However, when the weight average molecular weight is increased, the solubility in water is reduced and the handleability is reduced.

キトサンは、凝集剤として利用できるものであれば、ヒドロキシル基、アミノ基の一部がポリオキシアルキレン基、アシル基、糖側鎖などで置換されていてもよい。これらで置換されることにより、水への溶解性を向上させることができる。ポリオキシアルキレン基としてはポリエチレングリコール基、アシル基としてはアセチル基、プロピオニル基等を挙げることができる。また、キトサンは、単独、または分子量や脱アセチル化度の異なる2種以上を併用してもよい。   Chitosan may be substituted with a hydroxyl group or a part of an amino group with a polyoxyalkylene group, an acyl group, a sugar side chain or the like, as long as it can be used as a coagulant. By substitution with these, the solubility in water can be improved. Examples of polyoxyalkylene groups include polyethylene glycol groups, and examples of acyl groups include acetyl and propionyl groups. In addition, chitosan may be used alone or in combination of two or more different in molecular weight and deacetylation degree.

「補助剤」
本発明は、キトサン系凝集剤の効果を高める補助剤として陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかを用いる。ここで、分散剤とは、水中で微粒子を均一に分散させる効果を有する化合物を意味し、界面活性剤の多くは分散剤として作用する。
陰イオン性分散剤としては、各種のものが使用できるが、例えば、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、ポリオキシエチレンアルキルリン酸塩等を挙げることができる。
非イオン性分散剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、シリコーン系等を挙げることができる。
両性イオン性分散剤としてはレシチン等を上げることができる。両性イオン性分散剤は、アルカリ性領域では陰イオン性分散剤の性質を、酸性領域では陽イオン性分散剤の性質を示す分散剤である。ここで、キトサン系凝集剤は、pH5.6〜8.6の領域が好適な使用pH域であり、また、建設現場で発生する濁水はコンクリート等の影響でアルカリ性を主に示す。そのため、濁水処理は、中和工程後の弱アルカリ領域で行われる場合が多い。両性イオン性分散剤は、弱アルカリ領域では、陰イオン性分散剤と同様の効果を奏する。
"Adjuvant"
In the present invention, any one of an anionic dispersant, a nonionic dispersant, and a zwitterionic dispersant is used as an auxiliary agent that enhances the effect of the chitosan-based flocculant. Here, a dispersing agent means a compound having an effect of uniformly dispersing fine particles in water, and most of surfactants act as a dispersing agent.
As the anionic dispersant, various types can be used. For example, alkyl sulfate, alkyl benzene sulfonate, dialkyl sulfo succinate, alkyl diphenyl ether disulfonate, polyoxyethylene alkyl sulfate, polyoxyethylene alkyl phosphorus An acid salt etc. can be mentioned.
Examples of nonionic dispersants include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, silicone type and the like.
Lecithin etc. can be raised as a amphoteric ionic dispersing agent. Zwitterionic dispersants are dispersants that exhibit the properties of anionic dispersants in the alkaline region and the properties of cationic dispersants in the acidic region. Here, the chitosan-type flocculant has a preferred pH range of 5.6 to 8.6, and turbid water generated at a construction site mainly exhibits alkalinity due to the influence of concrete and the like. Therefore, the turbid water treatment is often performed in the weakly alkaline region after the neutralization step. The amphoteric dispersant exhibits the same effect as the anionic dispersant in the weak alkaline region.

本発明において、補助剤は、本発明の効果を阻害しない限り、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤の2種以上を含むこともできる。2種以上の分散剤を含む場合は、同一の性能を有する分散剤から2種以上、異なる性能を有する分散剤から2種以上を用いることができる。例えば、2種以上の陰イオン性分散剤、陰イオン性分散剤と非イオン性分散剤から1種以上ずつ含むことができる。   In the present invention, the adjuvant can also contain two or more of anionic dispersants, nonionic dispersants, and amphoteric dispersants as long as the effects of the present invention are not impaired. When two or more dispersants are included, two or more dispersants having the same performance and two or more dispersants having different performance can be used. For example, one or more of two or more anionic dispersants, an anionic dispersant and a nonionic dispersant may be included.

また、補助剤として、自然由来、生分解性である環境調和型材料を用いることが好ましい。本発明の濁水処理方法は、濁水処理後の清澄水は河川等に排出されるが、清澄水中に凝集剤(キトサン)及び補助剤が残留する場合がある。補助剤として環境調和型材料を用いた本発明の濁水処理方法は、凝集剤、補助剤がともに自然由来、かつ、生分解性であるため、環境負荷の小さな環境調和型の処理方法とすることができる。   Moreover, it is preferable to use an environmentally-friendly material which is naturally derived or biodegradable as an adjuvant. In the turbid water treatment method of the present invention, the clear water after the turbid water treatment is discharged to a river or the like, but a flocculant (chitosan) and an auxiliary agent may remain in the clear water. In the turbid water treatment method of the present invention using an environmentally friendly material as an adjuvant, since both the flocculant and the adjuvant are naturally derived and biodegradable, the environmentally friendly treatment method with a small environmental load Can.

環境調和型材料としては、上記した植物由来の分散剤であるレシチン、バイオサーファクタントを挙げることができる。バイオサーファクタントとは、微生物が疎水性の高い物質を細胞内に取り込むために分泌する界面活性剤様の物質である。
バイオサーファクタントは、アミノ酸型、糖型、高分子型などを特に制限することなく用いることができ、例えば、アミノ酸型のサーファクチン、ビスコシン、糖型のラムノリピッド、ソホロリピッド、マンノシルエリスリトールリピッド、トレハロースリピッド、高分子型のエマルザン等のうち、分散能を有する、陰イオン性、非イオン性、両性イオン性のものを用いることができる。
As environmentally friendly materials, mention may be made of lecithin, which is a plant-derived dispersant as described above, and biosurfactants. A biosurfactant is a surfactant-like substance that a microorganism secretes in order to incorporate a highly hydrophobic substance into cells.
The biosurfactant can be used without particular limitation on amino acid type, glycoform, polymer form, etc. For example, surfactin of amino acid form, biscocin, rhamnolipid of glycoform, sophorolipid, mannosyl erythritol lipid, trehalose lipid, high Among the molecular types of emulsan and the like, anionic, nonionic and zwitterionic ones having dispersing ability can be used.

「濁水処理方法」
本発明の濁水処理方法は、キトサン系凝集剤による凝集処理後、または、キトサン系凝集剤と同時に、補助剤を添加することを特徴とする。補助剤の投入後にキトサン系凝集剤を投入した場合は、本発明の効果が得られない場合がある。なお、本発明の濁水処理方法は、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれか1種以上を含む補助剤を用いること以外は、従来公知の装置・方法により行うことができる。
"Muddy water treatment method"
The method for treating turbid water according to the present invention is characterized in that an adjuvant is added after the coagulant treatment with a chitosan-based coagulant, or simultaneously with the chitosan-type coagulant. When the chitosan-based flocculant is added after the addition of the adjuvant, the effects of the present invention may not be obtained. The turbid water treatment method of the present invention may be carried out by a conventionally known device or method except that an auxiliary agent containing any one or more of an anionic dispersant, a nonionic dispersant, and an amphoteric dispersant is used. It can be carried out.

キトサン系凝集剤と補助剤とを併用することで、凝集作用が高まる詳細なメカニズムは不明であるが、本発明者は以下の様に推測している。
水中の懸濁物質は、通常、負に帯電している。キトサンは、正の電荷を有するため、これら懸濁物質を凝集する作用となる。ただし、キトサンが過剰量となると、正の電荷を有するキトサン同士が反発しあうため、分散効果となる。補助剤は、それぞれ、キトサンの正の電荷を有する部分、帯電していない部分と相互作用して、キトサン同士の反発力を弱める。その結果、キトサンによる分散作用が働く濃度範囲が狭くなり、キトサン系凝集剤の適用可能濃度が広くなる。
Although the detailed mechanism in which the aggregation action is enhanced is unknown by using the chitosan-based flocculant in combination with an adjuvant, the present inventors speculate as follows.
Suspended substances in water are usually negatively charged. Since chitosan has a positive charge, it acts to aggregate these suspended substances. However, when the amount of chitosan is excessive, the positively charged chitosans repel each other, resulting in a dispersion effect. The adjuvant interacts with the positively charged part and uncharged part of chitosan, respectively, to reduce the repulsive force of the chitosan. As a result, the concentration range in which the dispersing action of chitosan works is narrowed, and the applicable concentration of the chitosan-based flocculant is broadened.

キトサン系凝集剤と補助剤とを予め混合した濁水処理剤として添加することもできる。濁水処理剤は、固体状または液体状とすることができる。予めキトサン系凝集剤と補助剤と混合した濁水処理剤とすることにより、濁水処理時の凝集剤と補助剤の添加順を間違えることがなくなるという利点がある。   It is also possible to add a chitosan-based flocculant and an adjuvant as a previously mixed turbid water treatment agent. The turbid water treatment agent can be solid or liquid. By using a turbid water treating agent previously mixed with a chitosan-based coagulant and an auxiliary agent, there is an advantage that the addition order of the coagulant and the auxiliary agent at the time of turbid water treatment is not mistaken.

キトサン系凝集剤の添加濃度は、濁水中に0.1ppm以上100ppm以下であることが好ましく、0.5ppm以上50ppm以下であることがより好ましく、1ppm以上30ppm以下であることがさらに好ましい。また、補助剤の添加量(乾燥重量)は、前記キトサン系凝集剤100重量部(乾燥重量)に対して、0.1重量部以上100重量部以下であることが好ましく、0.5重量部以上50重量部以下であることがより好ましく、1重量部以上30重量部以下であることがさらに好ましい。   The addition concentration of the chitosan-based flocculant is preferably 0.1 ppm or more and 100 ppm or less in the turbid water, more preferably 0.5 ppm or more and 50 ppm or less, and still more preferably 1 ppm or more and 30 ppm or less. In addition, the addition amount (dry weight) of the adjuvant is preferably 0.1 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight (dry weight) of the chitosan-based flocculant, 0.5 parts by weight The content is more preferably 50 parts by weight or less, still more preferably 1 part by weight to 30 parts by weight.

「実験1」
粒径75μm以下に調製したカオリン粉末を蒸留水に添加、撹拌して模擬濁水1(500ppm)を作成した。模擬濁水1の初期濁度を濁度計(装置名:ポータブル濁度計、HANNAinstruments社製、測定範囲0.00〜1000FTU)で測定したところ、初期濁度は368FTUであった。模擬濁水1のpHは、7.8であった。
この模擬濁水1を200mlずつビーカーに分注した。各ビーカーにキトサン系凝集剤(フジクリーン、富士エンジニアリング社製)を5ppmとなるように加え、さらに、下記に示す陰イオン性分散剤3種、非イオン性分散剤5種、両性イオン性分散剤1種、陽イオン性分散剤1種を、それぞれ1ppmとなるように添加し、急速撹拌(120rpm)1分、緩速撹拌(30rpm)3分、静置5分の撹拌サイクルの後、水面から1cmの場所から10mlを採取して濁度計で濁度測定した。その後、さらに分散剤1ppmを追加して、再度上記撹拌サイクルを行い、同様にして2回目の濁度を測定した。また、コントロールとして分散剤を加えない以外は同様の操作を行った。各サンプルの濁度を図1に示す。
"Experiment 1"
Kaolin powder prepared to have a particle size of 75 μm or less was added to distilled water and stirred to form simulated turbid water 1 (500 ppm). The initial turbidity of the simulated turbid water 1 was measured with a turbidimeter (device name: portable turbidimeter, manufactured by HANNA Instruments, measurement range 0.00 to 1000 FTU), and the initial turbidity was 368 FTU. The pH of the simulated turbid water 1 was 7.8.
200 ml of this simulated turbid water 1 was dispensed into a beaker. A chitosan-based flocculant (Fuji Clean, manufactured by Fuji Engineering Co., Ltd.) is added to each beaker to a concentration of 5 ppm, and the following three anionic dispersants, five nonionic dispersants, and ampholytic dispersants One kind of cationic dispersant and one kind of cationic dispersant are added to 1 ppm each, and after 1 minute of rapid stirring (120 rpm), 3 minutes of slow stirring (30 rpm) and 5 minutes of standing, from the water surface 10 ml was collected from a 1 cm location and turbidity was measured with a turbidimeter. Thereafter, 1 ppm of the dispersant was further added, the above-mentioned stirring cycle was performed again, and the second turbidity was similarly measured. In addition, the same operation was performed except that no dispersant was added as a control. The turbidity of each sample is shown in FIG.

分散剤(商品名)
・陰イオン性
1.マスターポゾリスNo.70(BASF社製)
2.マスターグレニウムSP8(BASF社製)
3.カネカSF(カネカ社製、環境調和型材料)
・非イオン性
4.Tween20(関東化学社製)
5.Tween80(関東化学社製)
6.トリトン(和光純薬工業社製)
7.消泡剤SI(和光純薬工業社製)
8.KM−72(信越シリコーン社製)
・両性イオン性
9.レシチン(和光純薬工業社製、環境調和型材料)
・陽イオン性
10.トリメチルステアリルアンモニウムクロリド(和光純薬工業社製)
Dispersant (trade name)
Anionic 1. Master pozzolith No. 70 (manufactured by BASF)
2. Masterglynium SP8 (manufactured by BASF)
3. Kaneka SF (Kaneka company, environmentally friendly material)
Nonionic 4. Tween 20 (manufactured by Kanto Chemical Co., Ltd.)
5. Tween 80 (Kanto Chemical Co., Ltd.)
6. Triton (manufactured by Wako Pure Chemical Industries, Ltd.)
7. Defoamer SI (manufactured by Wako Pure Chemical Industries, Ltd.)
8. KM-72 (Shin-Etsu Silicone Co., Ltd.)
・ Zwitterionic 9. Lecithin (Wako Pure Chemical Industries, Environmentally-friendly material)
-Cationic 10. Trimethyl stearyl ammonium chloride (made by Wako Pure Chemical Industries, Ltd.)

凝集剤と、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかからなる補助剤とを併用することにより、凝集剤単独で用いた場合と比較して濁度が低下することが確かめられた。
陽イオン性分散剤では、濁度が悪化しており、凝集剤の効果を高めることはできなかった。
凝集剤と補助剤とを同時添加した1回目と比べて、補助剤を追加した2回目はさらに濁度が低下しており、補助剤を追加することにより、濁度を低くできることが確かめられた。
The combined use of a flocculant and an adjuvant consisting of either an anionic dispersant, a nonionic dispersant, or a zwitterionic dispersant reduces the turbidity compared to using the flocculant alone. It was confirmed to do.
In the case of the cationic dispersant, the turbidity was deteriorated, and the effect of the flocculant could not be enhanced.
Compared with the first addition of the flocculant and the auxiliaries simultaneously, the turbidity was further reduced the second time with the addition of the auxiliaries, and it was confirmed that the turbidity could be lowered by the addition of the auxiliaries. .

「実験2」
カオリン濃度を5000ppmとした以外は、上記実験1と同様にして模擬濁水2を作成した。模擬濁水2の初期濁度は、濁度計の測定限界を超えており、1000FTU以上であった。
この模擬濁水2を200mlずつビーカーに分注した。各ビーカーにキトサン系凝集剤をそれぞれ3ppm、5ppm、10ppmとなるように加え、上記実験1と同様の撹拌サイクルで撹拌した。撹拌1回目、3回目、10回目に濁度を測定した。各サンプルの濁度を図2に示す。なお、コントロールとしてキトサン系凝集剤を加えない以外は同様の操作を行ったところ、いずれの濁度も1000FTU以上であった。
"Experiment 2"
Simulated turbid water 2 was prepared in the same manner as in Experiment 1 above, except that the kaolin concentration was 5000 ppm. The initial turbidity of simulated turbid water 2 exceeded the measurement limit of the turbidimeter and was over 1000 FTU.
200 ml of this simulated turbid water 2 was dispensed into a beaker. The chitosan-based flocculant was added to each beaker at 3 ppm, 5 ppm, and 10 ppm, respectively, and stirring was performed in the same stirring cycle as in Experiment 1 above. The turbidity was measured at the 1st, 3rd, and 10th stirrings. The turbidity of each sample is shown in FIG. In addition, when the same operation was performed except that a chitosan-type flocculant was not added as a control, any turbidity was 1000 FTU or more.

キトサン系凝集剤の濃度が5ppmのときに濁度が最も低く、10ppmでは濁度が増加した。すなわち、キトサン系凝集剤の適応濃度範囲が狭いことが確かめられた。
いずれのキトサン添加濃度においても、撹拌回数を増やすことで、濁度の低下がみられた。このことから、キトサン系凝集剤を用いた濁水処理では、キトサン系凝集剤の分散が重要であることが確かめられた。
The turbidity was lowest when the concentration of the chitosan-based flocculant was 5 ppm, and increased at 10 ppm. That is, it was confirmed that the application concentration range of the chitosan-based flocculant is narrow.
At any chitosan addition concentration, the decrease in turbidity was observed by increasing the number of times of stirring. From this, it was confirmed that dispersion of the chitosan-based flocculant is important in the treatment of turbid water using the chitosan-based flocculant.

「実験3」
キトサン系凝集剤(3ppm)と同時に補助剤として上記陰イオン性分散剤1、または非イオン性分散剤4を加えた以外は、上記実験2と同様にして撹拌サイクルを1回行った後、濁度を測定した。測定結果を、上記実験2のキトサン系凝集剤(3ppm)の結果と合わせて図3に示す。
"Experiment 3"
After a stirring cycle was performed once in the same manner as in Experiment 2 except that the anionic dispersant 1 or the nonionic dispersant 4 was added as an adjuvant simultaneously with the chitosan-based flocculant (3 ppm), turbidity was observed. The degree was measured. The measurement results are shown in FIG. 3 together with the results of the chitosan-based flocculant (3 ppm) in Experiment 2 above.

キトサン系凝集剤と補助剤を同時に添加することにより、撹拌サイクル1回のみで、キトサン系添加剤のみを添加して撹拌サイクルを3回繰り返した場合よりも、濁度が低下した。このことから、補助剤を用いることにより、濁水処理に要する時間を短くできることが確かめられた。また、高価なキトサン系凝集剤の使用量を削減でき、濁水処理の低コスト化を実現できることが確かめられた。   The simultaneous addition of the chitosan-based flocculant and the adjuvant reduced the turbidity more than the case where only the chitosan-based additive was added and the stirring cycle was repeated three times, with only one stirring cycle. From this, it was confirmed that the time required for the treatment of turbid water can be shortened by using the adjuvant. In addition, it has been confirmed that the amount of use of the expensive chitosan-based flocculant can be reduced and the cost reduction of the turbid water treatment can be realized.

「実験4」
造成現場の貯水池から採取した土に蒸留水を添加し、撹拌した後、10分間静置し、粒径の大きな固形分を沈殿させた後、液相を採取して模擬濁水3(10000ppm)を作成した。模擬濁水3の初期濃度は測定限界以上だったが、希釈して測定したところ約2000FTUと算出された。
この模擬濁水3を200mlずつビーカーに分注した。各ビーカーにキトサン系凝集剤を、それぞれ2.5ppm、12.5ppm、30ppmとなるように加え、上記実験1と同様の撹拌サイクルで撹拌し、濁度を測定した。また、キトサン系凝集剤を少量ずつ添加、撹拌サイクルを繰り返し、撹拌サイクルごとに濁度を測定した。結果を図4に示す。
"Experiment 4"
Distilled water is added to the soil collected from the reservoir at the construction site, and after stirring, it is allowed to stand for 10 minutes to precipitate large particle size solid content, then the liquid phase is collected and simulated turbid water 3 (10000 ppm) Created. Although the initial concentration of the simulated turbid water 3 was above the measurement limit, when it was diluted and measured, it was calculated to be about 2000 FTU.
200 ml of this simulated turbid water 3 was dispensed into a beaker. A chitosan-based flocculant was added to each beaker so as to be 2.5 ppm, 12.5 ppm, and 30 ppm, respectively, and stirring was performed in the same stirring cycle as in Experiment 1 above to measure turbidity. Further, the chitosan-based flocculant was added little by little, the stirring cycle was repeated, and the turbidity was measured every stirring cycle. The results are shown in FIG.

模擬濁水3は、キトサン系凝集剤12.5ppmの添加で濁度が11FTU、30ppmの添加で濁度が235FTUとなった。また、キトサン系凝集剤を少量ずつ添加した場合、キトサン系凝集剤が過剰量となっても、濁度は悪化しなかった。このことから、キトサン系凝集剤が分散することが、凝集に関与することが確かめられた。   The simulated turbid water 3 had a turbidity of 11 FTU with the addition of 12.5 ppm of a chitosan-based flocculant and a turbidity of 235 FTU with the addition of 30 ppm. In addition, when the chitosan-based flocculant was added little by little, the turbidity did not deteriorate even if the chitosan-based flocculant became excessive. From this, it was confirmed that dispersion of the chitosan-based flocculant is involved in aggregation.

「実験5」
上記実験4で、キトサン系凝集剤を30ppm添加した濁度235FTUの濁水に対し、バイオサーファクタントである陰イオン性分散剤3の1ppm添加、撹拌サイクル後の濁度測定を3回繰り返した。結果を図5に示す。
"Experiment 5"
In Experiment 4 above, 1 ppm of the anionic surfactant 3 which is a biosurfactant was added to turbidity water having a turbidity of 235 FTU to which 30 ppm of a chitosan-based flocculant was added, and turbidity measurement after a stirring cycle was repeated three times. The results are shown in FIG.

キトサン系凝集剤が過剰添加となった濁水に対し、補助剤を添加することにより、濁度が低下することが確かめられた。   It was confirmed that the turbidity was reduced by adding an auxiliary agent to the turbid water to which the chitosan-based flocculant was added in excess.

「実験6」
実験4で作成した模擬濁水3、及び、粒径75μm以下に調製したベントナイト粉末に蒸留水を添加、撹拌して作成した模擬濁水4(5000ppm)を用い、キトサン系凝集剤とバイオサーファクタントである陰イオン性分散剤3の添加順を検討した。なお、模擬濁水4は、模擬濁水3と同様の濁度となるように調製し、希釈して測定した濁度から約2000FTUと算出された。
"Experiment 6"
Using simulated turbid water 3 (5000 ppm) prepared by adding distilled water to simulated turbid water 3 prepared in Experiment 4 and bentonite powder prepared to a particle size of 75 μm or less and stirring, a chitosan-based flocculant and a biosurfactant The order of addition of the ionic dispersant 3 was examined. The simulated turbid water 4 was prepared to have the same turbidity as the simulated turbid water 3 and was diluted and measured to be about 2000 FTU from the measured turbidity.

下記表1に示す順で凝集剤、または補助剤を添加し、各薬剤の添加後には撹拌サイクル1回行い、撹拌サイクル後に濁度を測定した。
A flocculant or an adjuvant was added in the order shown in Table 1 below, and one stirring cycle was performed after the addition of each drug, and the turbidity was measured after the stirring cycle.

補助剤を用いることにより、キトサン系凝集剤の添加量を削減できた。補助剤の添加後に凝集剤を添加した場合、凝集剤の効果が十分に発揮されないが、さらに補助剤を添加することで、凝集が進むことが確かめられた。   By using the adjuvant, the amount of addition of the chitosan-based flocculant could be reduced. When the flocculant was added after the addition of the adjuvant, the effect of the flocculant was not sufficiently exhibited, but it was confirmed that the flocculation proceeded by further adding the adjuvant.

Claims (7)

キトサン系凝集剤による凝集処理後、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれか1種以上を含む補助剤を添加することを特徴とする濁水処理方法。   A method for treating turbid water, comprising adding an auxiliary agent containing any one or more of an anionic dispersant, a nonionic dispersant, and a zwitterionic dispersant after aggregation treatment with a chitosan-based aggregating agent. キトサン系凝集剤と、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかを含む補助剤とを、同時に添加することを特徴とする濁水処理方法。   A turbid water treatment method comprising simultaneously adding a chitosan-based flocculant and an auxiliary agent containing any of an anionic dispersant, a nonionic dispersant, and a zwitterionic dispersant. 前記キトサン系凝集剤の添加濃度が、0.1ppm以上100ppm以下であることを特徴とする請求項1または2に記載の濁水処理方法。   The turbid water treatment method according to claim 1 or 2, wherein the addition concentration of the chitosan-based flocculant is 0.1 ppm or more and 100 ppm or less. 前記キトサン系凝集剤100重量部(乾燥重量)に対して、前記補助剤を0.1重量部以上100重量部以下(乾燥重量)添加することを特徴とする請求項1〜3のいずれかに記載の濁水処理方法。   The method according to any one of claims 1 to 3, wherein 0.1 to 100 parts by weight (dry weight) of the auxiliary is added to 100 parts by weight (dry weight) of the chitosan-based flocculant. Turbid water treatment method described. 前記補助剤が、環境調和型材料であることを特徴とする請求項1〜4のいずれかに記載の濁水処理方法。   The method for treating turbid water according to any one of claims 1 to 4, wherein the auxiliary agent is an environmentally friendly material. キトサン系凝集剤と、陰イオン性分散剤、非イオン性分散剤、両性イオン性分散剤のいずれかを含む補助剤を、含むことを特徴とする濁水処理剤。   A turbid water treatment agent comprising an adjuvant comprising a chitosan-based flocculant and either an anionic dispersant, a nonionic dispersant, or a zwitterionic dispersant. 前記補助剤が、環境調和型材料であることを特徴とする請求項6に記載の濁水処理剤。   The turbid water treatment agent according to claim 6, wherein the auxiliary agent is an environmentally friendly material.
JP2018000858A 2018-01-05 2018-01-05 Muddy water treatment method Active JP7053271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018000858A JP7053271B2 (en) 2018-01-05 2018-01-05 Muddy water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018000858A JP7053271B2 (en) 2018-01-05 2018-01-05 Muddy water treatment method

Publications (2)

Publication Number Publication Date
JP2019118887A true JP2019118887A (en) 2019-07-22
JP7053271B2 JP7053271B2 (en) 2022-04-12

Family

ID=67306733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018000858A Active JP7053271B2 (en) 2018-01-05 2018-01-05 Muddy water treatment method

Country Status (1)

Country Link
JP (1) JP7053271B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333162A (en) * 2020-03-26 2020-06-26 王禹 Natural polymeric flocculant and preparation method thereof
WO2023240110A1 (en) * 2022-06-08 2023-12-14 Locus Solutions Ipco, Llc Compositions and methods for flocculation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621609A (en) * 1979-07-28 1981-02-28 Dai Ichi Kogyo Seiyaku Co Ltd New type coagulant composition and coagulating treatment
JPH05345180A (en) * 1992-06-12 1993-12-27 Umehara Jiro Improving method of water quality
US20060196834A1 (en) * 2005-02-15 2006-09-07 Nichols Everett J Method for the removal of submicron particulates from chlorinated water by sequentially adding a cationic polymer followed by adding an anionic polymer
JP2007196222A (en) * 2005-12-28 2007-08-09 Yokohama Yushi Kogyo Kk Waste water treating method by ionic organic polymer, and waste water treating agent set
WO2007128371A1 (en) * 2006-05-04 2007-11-15 The Jordanian Pharmaceutical Manufacturing Co. Process for collecting and separating of water-insoluble pollutant from aqueous or soil environments and adsorbent composition utilized therein
JP2012532020A (en) * 2009-07-06 2012-12-13 ハロソース インコーポレイテッド Binary polymers for water recovery and separation of suspended solids from aqueous media

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621609A (en) * 1979-07-28 1981-02-28 Dai Ichi Kogyo Seiyaku Co Ltd New type coagulant composition and coagulating treatment
JPH05345180A (en) * 1992-06-12 1993-12-27 Umehara Jiro Improving method of water quality
US20060196834A1 (en) * 2005-02-15 2006-09-07 Nichols Everett J Method for the removal of submicron particulates from chlorinated water by sequentially adding a cationic polymer followed by adding an anionic polymer
JP2007196222A (en) * 2005-12-28 2007-08-09 Yokohama Yushi Kogyo Kk Waste water treating method by ionic organic polymer, and waste water treating agent set
WO2007128371A1 (en) * 2006-05-04 2007-11-15 The Jordanian Pharmaceutical Manufacturing Co. Process for collecting and separating of water-insoluble pollutant from aqueous or soil environments and adsorbent composition utilized therein
JP2012532020A (en) * 2009-07-06 2012-12-13 ハロソース インコーポレイテッド Binary polymers for water recovery and separation of suspended solids from aqueous media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333162A (en) * 2020-03-26 2020-06-26 王禹 Natural polymeric flocculant and preparation method thereof
WO2023240110A1 (en) * 2022-06-08 2023-12-14 Locus Solutions Ipco, Llc Compositions and methods for flocculation

Also Published As

Publication number Publication date
JP7053271B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
Tzoupanos et al. Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents
Lee et al. Comparative study on the effectiveness of hydrophobically modified cationic polyacrylamide groups in the flocculation of kaolin
CN1301919C (en) Treatment of iron sulphide deposits
Change et al. Inhibition of Ca3 (PO4) 2, CaCO3, and CaSO4 precipitation for industrial recycling water
Chen et al. Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide
JP2019118887A (en) Turbid water treatment method
US20100006511A1 (en) Treatment additives and methods for treating an aqueous medium
TR201902051T4 (en) Personal cleaning composition.
Zhu et al. Corrosion-induced performance degradation of phosphorus-containing scale inhibitors at carbon steel–water interface
CN101205093B (en) Wet type coating chamber circulating water treatment agent and treatment method
Li et al. Preparation and evaluation of a polyether-based polycarboxylate as a kind of inhibitor for water systems
Li et al. Adsorption and flocculation of bentonite by chitosan with varying degree of deacetylation and molecular weight
JP2008229497A (en) Dehydrator for treating civil engineering and construction sludge
Talens et al. Micelar flocculation of anionic surfactants
Sun et al. Evaluation of dewatering performance and fractal characteristics of alum sludge
Kumar et al. Coagulation process for tannery industry effluent treatment using Moringa oleifera seeds protein: Kinetic study, pH effect on floc characteristics and design of a thickener unit
CA2801199A1 (en) Treatment additives, methods for making and methods for clarifying aqueous media
CN106795016A (en) Water treatment composition and application method
EP3519363B1 (en) Water clarification composition containing amphoteric polymer
Kim et al. Factors affecting flocculation performance of synthetic polymer for turbidity control
Liu et al. Effect of fertilization and sediment flow hydraulic characteristics on emitter clogging in muddy water drip fertigation system
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
CN107107070A (en) Wet-type mineral ore processing in mining application
JP6744526B2 (en) Wastewater treatment method and wastewater treatment agent
Owiwe et al. Surface tension of the oppositely charged sodium poly (styrene sulfonate)/benzyldimethylhexadecylammonium chloride and sodium poly (styrene sulfonate)/polyallylamine hydrochloride mixtures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211102

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150