JP2019118841A - Membrane element and membrane separator - Google Patents

Membrane element and membrane separator Download PDF

Info

Publication number
JP2019118841A
JP2019118841A JP2017252741A JP2017252741A JP2019118841A JP 2019118841 A JP2019118841 A JP 2019118841A JP 2017252741 A JP2017252741 A JP 2017252741A JP 2017252741 A JP2017252741 A JP 2017252741A JP 2019118841 A JP2019118841 A JP 2019118841A
Authority
JP
Japan
Prior art keywords
membrane
flow path
softening point
path material
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017252741A
Other languages
Japanese (ja)
Other versions
JP6941559B2 (en
Inventor
茂之 森
Shigeyuki Mori
茂之 森
好男 松崎
Yoshio Matsuzaki
好男 松崎
前田 潤
Jun Maeda
潤 前田
泰弘 大川
Yasuhiro Okawa
泰弘 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2017252741A priority Critical patent/JP6941559B2/en
Publication of JP2019118841A publication Critical patent/JP2019118841A/en
Application granted granted Critical
Publication of JP6941559B2 publication Critical patent/JP6941559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a membrane element capable of decreasing kinds of components.SOLUTION: A filter membrane 22 is joined to at least one surface of a flow path material 21. The flow path material 21 is composed of nonwoven fabric having a large number of fibers 24. A cavity 32, along which permeate after passing through the filter membrane 22, is disposed between the fibers 24. At least a part of the fibers 24 out of the fibers 24 constituting the flow path material 21 has a lower softening point than a softening point of the filter membrane 22.SELECTED DRAWING: Figure 4

Description

本発明は、例えば膜分離活性汚泥法(MBR)と称される分野で汚泥と処理水との分離のために用いられる膜エレメントおよび膜エレメントを備えた膜分離機器に関するものである。   The present invention relates to a membrane element used for separation of sludge and treated water in a field called, for example, a membrane separation activated sludge process (MBR) and a membrane separation apparatus provided with the membrane element.

従来、この種の膜エレメントとしては、例えば図9に示すように、樹脂製のろ板101の両面にろ過膜102を接合したものがあり、ろ過膜102の周縁部102aが熱溶着又は超音波溶着によってろ板101に固着されている。ろ板101とろ過膜102との間およびろ板101の内部には透過液流路(図示省略)が形成され、透過液流路に連通する透過液取出口103がろ板101の上端縁に設けられている。   Conventionally, as a membrane element of this type, for example, as shown in FIG. 9, there is a membrane element in which filtration membranes 102 are joined to both sides of a resin filter plate 101, and the peripheral edge part 102a of filtration membranes 102 is thermally welded or ultrasonicated. It is fixed to the filter plate 101 by welding. A permeated fluid flow path (not shown) is formed between the filter plate 101 and the filtration membrane 102 and in the filter plate 101, and the permeated liquid outlet 103 communicating with the permeated fluid flow path is at the upper edge of the filter plate 101. It is provided.

図10の実線で示すように、上記のような膜エレメント104は、膜ケース(図示省略)内に、所定間隔おきに複数配列されている。   As indicated by a solid line in FIG. 10, a plurality of the above-described membrane elements 104 are arranged at predetermined intervals in a membrane case (not shown).

これによると、ろ過運転を行っている際、被処理液は、ろ過膜102を一次側から二次側へ通過してろ過され、その後、透過液105として透過液流路を流れ、透過液取出口103から外部へ取り出される。また、ろ過運転を停止し、膜エレメント104を逆洗する際、逆洗用水を透過液取出口103から透過液流路に注入する。これにより、逆洗用水がろ過膜102を二次側から一次側へ通過し、ろ過膜102が逆洗される。   According to this, when performing the filtration operation, the liquid to be treated passes through the filtration membrane 102 from the primary side to the secondary side and is filtered, and then flows as the permeated liquid 105 through the permeated liquid flow path, and the permeated liquid is collected. It is taken out from the outlet 103 to the outside. In addition, when the filtration operation is stopped and the membrane element 104 is backwashed, water for backwashing is injected from the permeated liquid outlet 103 into the permeated liquid flow path. Thereby, the water for backwashing passes through the filtration membrane 102 from the secondary side to the primary side, and the filtration membrane 102 is backwashed.

このような膜エレメント104では、ろ過膜102の全体がろ板101に固着しているのではなく、ろ過膜102の周縁部102aのみがろ板101に溶着されているため、ろ過膜102を逆洗している際、図10の仮想線で示すように、ろ過膜102が外向き(一次側)に膨出し、隣の膜エレメント104のろ過膜102と接触することがあった。このように、隣り同士の膜エレメント104のろ過膜102が膨出して接触してしまうと、逆洗の効果が低下する虞があった。また、長期にわたり二次側へ逆洗用水を導入することで、ろ過膜102が外向きに膨出し、ろ過膜102の周縁部102aの溶着部分が開口する虞があった。   In such a membrane element 104, the entire filtration membrane 102 is not fixed to the filter plate 101, and only the peripheral portion 102a of the filtration membrane 102 is welded to the filter plate 101. During the washing, as shown by the phantom line in FIG. 10, the filtration membrane 102 may bulge outward (primary side) and contact the filtration membrane 102 of the next membrane element 104. As described above, when the filtration membranes 102 of the membrane elements 104 adjacent to each other bulge and contact, there is a possibility that the effect of the backwashing may be reduced. Further, by introducing the backwashing water to the secondary side for a long time, there is a possibility that the filtration membrane 102 bulges outward, and the welded portion of the peripheral portion 102 a of the filtration membrane 102 is opened.

このような問題を解決するために、図11に示すように、第一ろ過膜111と、第二ろ過膜112と、これら両ろ過膜111,112の間に設けられた排液織布113と、第一ろ過膜111と排液織布113とを接着する第一接着性ネット114と、第二ろ過膜112と排液織布113とを接着する第二接着性ネット115とを有する膜エレメント116がある。尚、排液織布113は、ループを形成するように編んだ三次元構造のスペーサ布地(スペーサーファブリック)である。   In order to solve such a problem, as shown in FIG. 11, a first filtration membrane 111, a second filtration membrane 112, and a drainage woven fabric 113 provided between the both filtration membranes 111 and 112. A membrane element having a first adhesive net 114 for bonding the first filtration membrane 111 and the drainage woven fabric 113, and a second adhesive net 115 for bonding the second filtration membrane 112 and the drainage woven fabric 113 There are 116. The drainage woven fabric 113 is a three-dimensional spacer fabric (spacer fabric) knitted to form a loop.

第一ろ過膜111と第二ろ過膜112との間に排液織布113と接着性ネット114,115とを積層して、加熱ロールで圧延することにより、接着性ネット114,115が一時的に融解し、第一接着性ネット114を介して第一ろ過膜111と排液織布113とが接着されるとともに、第二接着性ネット115を介して第二ろ過膜112と排液織布113とが接着され、膜エレメント116が完成する。   By laminating the drainage woven fabric 113 and the adhesive nets 114 and 115 between the first filtration membrane 111 and the second filtration membrane 112 and rolling them with a heating roll, the adhesive nets 114 and 115 become temporary. And the first filtration membrane 111 and the drainage woven fabric 113 are adhered via the first adhesive net 114, and the second filtration membrane 112 and the drainage woven fabric via the second adhesive net 115. And 113 are adhered, and the membrane element 116 is completed.

尚、上記のような膜エレメント116は例えば下記特許文献1に記載されている。   The above-mentioned membrane element 116 is described, for example, in Patent Document 1 below.

また、下記特許文献2には、溶剤に溶かした液状の膜材料樹脂(以下「ドープ」と言う)を、スペーサーファブリックの片側又は両側の面(フェース)に直接塗布し、相分離法によってろ過膜層をスペーサーファブリックのフェース上に形成することが記載されている。   Further, in Patent Document 2 below, a liquid membrane material resin (hereinafter referred to as "dope") dissolved in a solvent is directly applied to one side or both sides (faces) of the spacer fabric, and the filtration membrane is separated by phase separation method. It is described to form a layer on the face of the spacer fabric.

特表2011−519716Special table 2011-519716 WO 2006/015461 A1WO 2006/015461 A1

しかしながら上記特許文献1に挙げた従来形式では、図11に示したように、膜エレメント116を製作するには、排液織布113とろ過膜111,112と接着性ネット114,115とが必要になるため、膜エレメント116を構成する部品の種類が増えるといった問題がある。   However, in the conventional method described in Patent Document 1, as shown in FIG. 11, in order to manufacture the membrane element 116, the drainage woven fabric 113, the filtration membranes 111 and 112, and the adhesive nets 114 and 115 are required. Therefore, there is a problem that the types of parts constituting the membrane element 116 increase.

また、上記特許文献2については、スペーサーファブリックの内部空間はろ過膜層を透過した透過液の通り道となるのであるが、ドープをスペーサーファブリックのフェースに直接塗布した際、ドープの粘性が低いと、ドープがスペーサーファブリックの内部空間に侵入して固化し、スペーサーファブリックの内部における透過液の流れが妨げられる虞がある。   Moreover, about the said patent document 2, although the interior space of a spacer fabric becomes a passage of the permeated fluid which permeate | transmitted the filtration membrane layer, when the dope is directly apply | coated to the face of a spacer fabric, when the viscosity of dope is low, The dope may intrude into the interior space of the spacer fabric and solidify, which may impede the flow of permeate inside the spacer fabric.

本発明は、構成部品の種類を減らすことが可能な膜エレメントおよび膜分離機器を提供することを目的とする。   An object of the present invention is to provide a membrane element and a membrane separation apparatus capable of reducing the types of components.

上記目的を達成するために、本第1発明における膜エレメントは、流路材の少なくとも片面にろ過膜が接合され、
流路材は、多数の繊維を有する不織布からなり、繊維間に、ろ過膜を透過した透過液が流れる空隙を有し、
流路材を構成する繊維のうちの少なくとも一部の繊維はろ過膜の軟化点よりも低い軟化点を有するものである。
In order to achieve the above object, in the membrane element according to the first aspect of the present invention, a filtration membrane is bonded to at least one side of a flow path material,
The flow path material is made of a non-woven fabric having a large number of fibers, and between the fibers, there is a space through which the permeated liquid that has permeated the filtration membrane flows
At least some of the fibers constituting the flow path material have a softening point lower than that of the filtration membrane.

これによると、流路材上にろ過膜を配置し、流路材を形成している不織布の少なくとも一部の繊維の軟化点以上の温度に加熱することによって、流路材を構成する繊維のうちの少なくとも一部の繊維が軟化してろ過膜に絡み付くため、ろ過膜が流路材に接合される。このように、流路材とろ過膜とで膜エレメントを製作することができるため、接着性ネット等の接着専用の部材を流路材とろ過膜との間に介在させる必要が無く、膜エレメントを構成する部品の種類を減らすことができる。   According to this, the filtration membrane is disposed on the flow path material, and heating is performed to a temperature equal to or higher than the softening point of at least a part of the fibers of the non-woven fabric forming the flow path material. The filtration membrane is joined to the flow path material because at least a part of the fibers is softened and entangled in the filtration membrane. As described above, since the membrane element can be manufactured by the flow path material and the filtration membrane, there is no need to interpose an adhesion member such as an adhesive net between the flow path material and the filtration membrane, and thus the membrane element Can reduce the types of parts that make up the

また、上記のように加熱温度を、ろ過膜の軟化点の温度よりも低く、流路材の不織布の少なくとも一部の繊維の軟化点以上の温度にしているため、ろ過膜が軟化してろ過膜の孔径分布が変化してしまうのを防止することができる。   In addition, as described above, the heating temperature is lower than the softening point temperature of the filtration membrane and is higher than the softening point of the fibers of at least part of the non-woven fabric of the flow path material. It is possible to prevent the pore size distribution of the membrane from changing.

本第2発明における膜エレメントは、流路材は、表面に、ろ過膜の軟化点よりも低い軟化点を有する第1の繊維を有するとともに、内部に、第1の繊維の軟化点よりも高い軟化点を有する第2の繊維を有するものである。   In the membrane element according to the second aspect of the present invention, the flow path material has, on the surface, the first fiber having a softening point lower than the softening point of the filtration membrane, and also has the inside higher than the softening point of the first fiber It has a second fiber having a softening point.

これによると、流路材の表面にろ過膜を配置し、流路材の表面の第1の繊維の軟化点以上の温度に加熱することによって、流路材の表面の第1の繊維が軟化してろ過膜に絡み付くため、ろ過膜が流路材の表面に接合される。   According to this, the filtration fiber is arranged on the surface of the flow path material, and the first fibers on the surface of the flow path material are softened by heating to a temperature higher than the softening point of the first fiber on the surface of the flow path material Then, in order to be entangled in the filtration membrane, the filtration membrane is joined to the surface of the flow path material.

この際、流路材の内部にある第2の繊維の軟化点は流路材の表面の第1の繊維の軟化点よりも高いため、第2の繊維が軟化するのを防止することができる。これにより、第2の繊維が軟化して流路材の厚さが大幅に減少してしまうのを抑制することができる。   Under the present circumstances, since the softening point of the 2nd fiber in the inside of channel material is higher than the softening point of the 1st fiber on the surface of channel material, it can prevent that the 2nd fiber is softened. . Thereby, it can suppress that a 2nd fiber softens and the thickness of a flow-path material reduces large.

本第3発明における膜エレメントは、流路材を構成する不織布の繊維の表面はろ過膜の軟化点よりも低い軟化点を有し、
流路材を構成する不織布の繊維の内部は表面の軟化点よりも高い軟化点を有するものである。
これによると、流路材の表面にろ過膜を配置し、流路材の繊維の表面の軟化点以上の温度に加熱することによって、流路材の繊維の表面が軟化してろ過膜に絡み付くため、ろ過膜が流路材の表面に接合される。
In the membrane element according to the third aspect of the present invention, the surface of the non-woven fabric constituting the flow path material has a softening point lower than that of the filtration membrane,
The inside of the non-woven fabric of the flow path material has a softening point higher than that of the surface.
According to this, the filtration membrane is disposed on the surface of the flow path material, and the fiber surface of the flow path material is softened and entangled in the filtration membrane by heating to a temperature higher than the softening point of the surface of the flow path fiber. Therefore, the filtration membrane is bonded to the surface of the flow path material.

この際、流路材の繊維の内部の軟化点は繊維の表面の軟化点よりも高いため、繊維全体が軟化するのを防止することができる。これにより、繊維全体が軟化して流路材の厚さが大幅に減少してしまうのを抑制することができる。   Under the present circumstances, since the softening point inside the fiber of flow-path material is higher than the softening point of the surface of a fiber, it can prevent that the whole fiber softens. Thereby, it is possible to suppress that the entire fiber is softened and the thickness of the flow passage material is significantly reduced.

本第4発明における膜エレメントは、ろ過膜が流路材の表裏両面に接合されたものである。   In the membrane element in the fourth invention, the filtration membrane is bonded to both the front and back sides of the flow path material.

本第5発明における膜エレメントは、ろ過膜はPTFEを材質とする多孔膜を有するものである。   In the membrane element in the fifth invention, the filtration membrane has a porous membrane made of PTFE.

本第6発明は、上記第1発明から第5発明のいずれか1項に記載の膜エレメントを備えた膜分離機器であって、
複数の膜エレメントを支持する支持部材を備え、
支持部材は内部に集水空間を有し、
各膜エレメントの端部が集水空間に挿入され、
透過液が流路材の空隙を通って支持部材の集水空間に流れ込むものである。
The sixth aspect of the present invention is a membrane separation apparatus comprising the membrane element according to any one of the first to fifth aspects of the present invention,
A support member for supporting a plurality of membrane elements;
The support member has a water collection space inside,
The end of each membrane element is inserted into the water collection space,
The permeate flows into the water collection space of the support member through the space of the flow path material.

これによると、膜分離機器を被処理液中に浸漬させた状態で、ろ過運転を行うことにより、被処理液は、膜エレメントのろ過膜を一次側から二次側へ通過してろ過され、その後、透過液として、流路材の内部の微小な空隙に流れ込み、流路材内の微小な空隙を通って、支持部材の集水空間に流出する。   According to this, in the state where the membrane separation apparatus is immersed in the liquid to be treated, the liquid to be treated passes through the filtration membrane of the membrane element from the primary side to the secondary side by performing the filtration operation. Thereafter, as a permeated liquid, it flows into a minute void inside the flow passage material, passes through the minute void in the flow passage material, and flows out to the water collection space of the support member.

以上のように本発明によると、流路材とろ過膜とで膜エレメントを製作することができるため、接着性ネット等の接着専用の部材が不要になり、膜エレメントを構成する部品の種類を減らすことができる。   As described above, according to the present invention, since a membrane element can be manufactured from the flow path material and the filtration membrane, a member dedicated to adhesion such as an adhesive net is not necessary, and the type of parts constituting the membrane element It can be reduced.

本発明の第1の実施の形態における複数台の膜分離機器を用いた膜分離装置の正面図である。It is a front view of a membrane separation device using a plurality of membrane separation equipment in a 1st embodiment of the present invention. 同、膜分離機器の斜視図である。It is a perspective view of a membrane separation apparatus equally. 同、膜分離機器の断面図である。It is a sectional view of a membrane separation apparatus equally. 同、膜分離機器の膜エレメントの構成を示す一部切欠き斜視図である。It is a partially cutaway perspective view which shows the structure of the membrane element of a membrane separation apparatus equally. 同、膜エレメントの断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the membrane element equally. 同、膜エレメントの流路材の一部拡大斜視図である。It is a partially expanded perspective view of the flow-path material of a membrane element equally. 本発明の第2の実施の形態における膜エレメントの断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the membrane element in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における膜エレメントの流路材の繊維の断面を拡大した模式図である。It is the schematic diagram which expanded the cross section of the fiber of the flow-path material of the membrane element in the 3rd Embodiment of this invention. 従来の膜エレメントの正面図である。It is a front view of the conventional membrane element. 同、膜エレメントの側面図であり、複数の膜エレメントを所定間隔おきに配置した状態を示す。It is a side view of a membrane element equally, and shows a state where a plurality of membrane elements are arranged at predetermined intervals. 別の従来の膜エレメントの構成を示す一部切欠き斜視図である。It is a partially cutaway perspective view which shows the structure of another conventional membrane element.

以下、本発明における実施の形態を、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
第1の実施の形態では、図1に示すように、1は膜ろ過を行う浸漬型の膜分離装置であり、有機性排水等の被処理液2に浸漬されて処理槽3内に設置されている。膜分離装置1は、上下方向に積み重ねられた複数台の膜分離機器5(膜ろ過モジュールとも言う)と、最下段に設けられた散気装置6とを有している。
First Embodiment
In the first embodiment, as shown in FIG. 1, 1 is an immersion-type membrane separation apparatus for performing membrane filtration, which is immersed in a liquid 2 to be treated such as organic drainage and installed in a treatment tank 3 ing. The membrane separation device 1 has a plurality of membrane separation devices 5 (also referred to as a membrane filtration module) stacked vertically, and a diffuser 6 provided at the lowermost stage.

図2,図3に示すように、膜分離機器5は、左右一対の集水ケース11(支持部材の一例)と、これら両集水ケース11間に支持されている複数の膜エレメント12と、前後一対の連結板13とを有している。集水ケース11は内部に集水空間15を有する中空状の部材である。また、連結板13は両集水ケース11の前端部間および後端部間にそれぞれ設けられている。   As shown in FIGS. 2 and 3, the membrane separation apparatus 5 includes a pair of left and right water collecting cases 11 (an example of a support member), and a plurality of membrane elements 12 supported between the two water collecting cases 11. It has a pair of front and rear connection plates 13. The water collection case 11 is a hollow member having a water collection space 15 inside. Further, the connecting plate 13 is provided between the front end and the rear end of the two water collecting cases 11 respectively.

尚、下位の膜分離機器5の集水ケース11内の集水空間15と上位の膜分離機器5の集水ケース11内の集水空間15とは、各集水ケース11に形成された連通口16によって連通している。   The water collection space 15 in the water collection case 11 of the lower membrane separation apparatus 5 and the water collection space 15 in the water collection case 11 of the upper membrane separation apparatus 5 are in communication with each other in the water collection case 11. It communicates by the port 16.

集水ケース11の内側壁17には、上下方向に細長い複数の貫通孔が形成され、各膜エレメント12の左右両端部が各貫通孔に挿入されて集水空間15内に突入している。   A plurality of through holes elongated in the vertical direction are formed in the inner side wall 17 of the water collection case 11, and left and right ends of each of the membrane elements 12 are inserted into the respective through holes and rush into the water collection space 15.

図4,図5に示すように、膜エレメント12は、例えば四角形のシート状の部材であり、流路材21と、流路材21の表裏両面に接合されたろ過膜22とを有している。   As shown in FIGS. 4 and 5, the membrane element 12 is, for example, a square sheet-like member, and has a flow path material 21 and filtration membranes 22 joined to both the front and back sides of the flow path material 21. There is.

図6に示すように、流路材21は、多数の繊維24を有する不織布からなり、蜘蛛の巣のように複雑に絡み合った繊維24間に、ろ過膜22を透過した透過液33が流れる微小な空隙32を有している。流路材21の繊維24はろ過膜22の軟化点T1よりも低い軟化点T2を有している。   As shown in FIG. 6, the flow path material 21 is made of a non-woven fabric having a large number of fibers 24, and the permeating fluid 33 which has permeated through the filtration membrane 22 flows between the intricately intertwined fibers 24 like cobwebs. The air gap 32 is provided. The fibers 24 of the flow path material 21 have a softening point T2 lower than the softening point T1 of the filtration membrane 22.

尚、軟化点とは、樹脂等が軟化して変形するときの温度であり、例えば、流路材21の繊維24の材質には、約55℃〜90℃の軟化点T2を有するエチレン酢酸ビニル共重合体(EVA)が用いられている。   The softening point is a temperature at which a resin or the like softens and deforms, and, for example, ethylene vinyl acetate having a softening point T2 of about 55 ° C. to 90 ° C. as a material of the fibers 24 of the passage material 21 Copolymers (EVA) are used.

また、流路材21の坪量は例えば300〜600g/mであり、その厚さは例えば1〜3mmである。 Further, the basis weight of the flow path material 21 is, for example, 300 to 600 g / m 2 , and the thickness thereof is, for example, 1 to 3 mm.

ろ過膜22は、多数の微細孔を有する多孔質の樹脂層22a(多孔膜)を外面側に有するとともに、この樹脂層22aを支持する不織布等の樹脂層支持体22bを内面側に有している。上記多孔質の樹脂層22aには、例えばポリテトラフルオロエチレン(PTFE)が用いられている。また、樹脂層支持体22bの材質には、例えば、260℃〜280℃の軟化点T1(樹脂層支持体22bの軟化点T1)を有するポリエチレンテレフタラート(PET)が用いられている。   The filtration membrane 22 has a porous resin layer 22a (porous membrane) having a large number of micropores on the outer surface side and a resin layer support 22b such as a non-woven fabric for supporting the resin layer 22a on the inner surface side There is. For example, polytetrafluoroethylene (PTFE) is used for the porous resin layer 22a. Further, as a material of the resin layer support 22b, for example, polyethylene terephthalate (PET) having a softening point T1 of 260 ° C. to 280 ° C. (softening point T1 of the resin layer support 22 b) is used.

以下、上記構成における作用を説明する。   Hereinafter, the operation in the above configuration will be described.

膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、これら流路材21と両ろ過膜22との3つの部材を、上下一対の加熱ロール間に挿通して、圧縮しながら加熱する。   When manufacturing the membrane element 12, the flow path material 21 is disposed between the pair of filtration membranes 22, and the three members of the flow path material 21 and the both filtration membranes 22 are inserted between the upper and lower heating rolls. And heat while compressing.

この際、流路材21を形成している繊維24の温度が軟化点T2(すなわち55℃〜90℃)に到達するように加熱することにより、流路材21の繊維24が軟化してろ過膜22の樹脂層支持体22bに絡み付くため、ろ過膜22が流路材21の表裏両面に接合される。尚、実際には、圧延時に、熱は上下の加熱ロールからろ過膜22を介して繊維24に伝わるため、加熱温度はT2よりも高い100℃〜140℃が用いられる。   At this time, by heating so that the temperature of the fibers 24 forming the flow path material 21 reaches the softening point T2 (that is, 55 ° C. to 90 ° C.), the fibers 24 of the flow path material 21 soften and filter In order to be entangled with the resin layer support 22 b of the membrane 22, the filtration membrane 22 is joined to both the front and back sides of the flow path material 21. In practice, since heat is transferred from the upper and lower heating rolls to the fibers 24 through the filtration membrane 22 during rolling, a heating temperature of 100 ° C. to 140 ° C. higher than T2 is used.

この時、ろ過膜22は、流路材21の繊維24と接触している多数の接触点において、接合される。また、上記のように加熱温度を、ろ過膜22の樹脂層支持体22bの軟化点T1の温度(すなわち260℃〜280℃)と流路材21の繊維24の軟化点T2の温度(すなわち55℃〜90℃)との間にしているため、ろ過膜22が軟化するのを防止することができる。これにより、ろ過膜22の孔径分布が変化したり、ろ過膜22に皺が生じるのを防ぐことができる。
このように、流路材21とろ過膜22とで膜エレメント12を製作することができるため、接着性ネット等の接着専用の部材を流路材21とろ過膜22との間に介在させる必要が無くなり、膜エレメント12を構成する部品の種類を減らすことができる。尚、上記のように流路材21とろ過膜22とを加熱ロールで加熱する際の温度は100℃〜140℃、好ましくは115℃〜125℃である。
At this time, the filtration membrane 22 is joined at a number of contact points in contact with the fibers 24 of the flow path material 21. Further, as described above, the heating temperature is set to the temperature of the softening point T1 of the resin layer support 22b of the filtration membrane 22 (ie 260 ° C. to 280 ° C.) and the temperature of the softening point T2 of the fibers 24 of the flow path material 21 (ie 55 ° C). Because the temperature is in the range of 0 C to 90 C, it is possible to prevent the filtration membrane 22 from being softened. As a result, it is possible to prevent the pore size distribution of the filtration membrane 22 from being changed or to make the filtration membrane 22 have wrinkles.
As described above, since the membrane element 12 can be manufactured by the flow path material 21 and the filtration membrane 22, it is necessary to interpose a member dedicated to adhesion such as an adhesive net between the flow path material 21 and the filtration membrane 22. Can be eliminated, and the types of parts constituting the membrane element 12 can be reduced. In addition, the temperature at the time of heating the flow-path material 21 and the filtration film 22 by a heating roll as mentioned above is 100 degreeC-140 degreeC, Preferably it is 115 degreeC-125 degreeC.

また、本発明の膜エレメント12は加熱することによってろ過膜22を流路材21に融着しており、従来のように溶剤に溶かしたドープをスペーサーファブリックのフェースに直接塗布してろ過膜層を形成するものではないため、透過液33の通り道となる流路材21内の微小な空隙32(内部空間)に、ドープが侵入して固化することはない。   In addition, the membrane element 12 of the present invention is fused and the filtration membrane 22 is fused to the channel material 21 by heating, and the dope dissolved in the solvent as in the prior art is directly applied to the face of the spacer fabric to filter membrane layer. Therefore, the dope does not intrude into the minute air gaps 32 (internal space) in the flow path material 21 which is the passage of the permeated liquid 33 and solidify.

このようにして製作された可撓性を有する膜エレメント12が備えられた膜分離機器5を、図1〜図3に示すように、被処理液2中に浸漬した状態で、ろ過運転を行う。これにより、被処理液2は、膜エレメント12のろ過膜22を一次側から二次側へ通過してろ過され、その後、透過液33として、流路材21の内部の微小な空隙32に流れ込み、流路材21内の微小な空隙32を通って集水ケース11内の集水空間15に流出し、連通孔16を通って最上位の膜分離機器5の集水ケース11内から槽外へ取り出される。   A filtration operation is performed in a state in which the membrane separation device 5 provided with the flexible membrane element 12 manufactured in this manner is immersed in the liquid 2 to be treated as shown in FIGS. 1 to 3. . Thereby, the liquid 2 to be treated passes through the filtration membrane 22 of the membrane element 12 from the primary side to the secondary side and is filtered, and then flows into the minute gap 32 inside the flow path material 21 as the permeated liquid 33 The liquid flows out to the water collection space 15 in the water collection case 11 through the minute air gap 32 in the flow path material 21, and from the inside of the water collection case 11 of the uppermost membrane separation apparatus 5 through the communication hole 16. Taken out.

上記第1の実施の形態では、流路材21の繊維24の材質に、エチレン酢酸ビニル共重合体(EVA)を用いたが、これに限定されるものではなく、例えば、ポリエチレン(PE)等を用いてもよい。   In the first embodiment, the ethylene-vinyl acetate copolymer (EVA) is used as the material of the fibers 24 of the flow path member 21. However, the present invention is not limited to this. For example, polyethylene (PE) May be used.

(第2の実施の形態)
第2の実施の形態では、図7に示すように、流路材21は、表裏両面に、ろ過膜22の樹脂層支持体22bの軟化点T1よりも低い軟化点T3を有する多数の第1の繊維41を備えているとともに、内部に、第1の繊維41の軟化点T3よりも高い軟化点T4を有する多数の第2の繊維42を備えている。
Second Embodiment
In the second embodiment, as shown in FIG. 7, the flow path material 21 has a large number of first points having softening points T3 lower than the softening point T1 of the resin layer support 22b of the filtration membrane 22 on both front and back sides. The fibers 41 are provided therein, and a plurality of second fibers 42 having a softening point T4 higher than the softening point T3 of the first fibers 41 are provided inside.

第1の繊維41の材質には、例えば、約55℃〜90℃の軟化点T3を有するエチレン酢酸ビニル共重合体(EVA)が用いられている。また、第2の繊維42には、例えば、260℃以上の軟化点T4を有するポリエチレンテレフタラート(PET)が用いられている。   As a material of the first fiber 41, for example, an ethylene vinyl acetate copolymer (EVA) having a softening point T3 of about 55 ° C to 90 ° C is used. For the second fiber 42, polyethylene terephthalate (PET) having a softening point T4 of 260 ° C. or higher, for example, is used.

尚、流路材21は、第2の繊維42からなる不織布42Aの表裏両面に第1の繊維41を吹き付けて第1の繊維41の層41Aを形成することにより、一枚のシート状の部材に製作される。   The channel material 21 sprays the first fibers 41 on both the front and back sides of the nonwoven fabric 42A made of the second fibers 42 to form the layer 41A of the first fibers 41, thereby forming a single sheet-like member. Manufactured in

以下、上記構成における作用を説明する。   Hereinafter, the operation in the above configuration will be described.

膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、これら流路材21と両ろ過膜22との3つの部材を、上下一対の加熱ロール間に挿通して、圧縮しながら加熱する。   When manufacturing the membrane element 12, the flow path material 21 is disposed between the pair of filtration membranes 22, and the three members of the flow path material 21 and the both filtration membranes 22 are inserted between the upper and lower heating rolls. And heat while compressing.

この際、流路材21の表裏両面の第1の繊維41が軟化点T3(すなわち55℃〜90℃)に到達するように加熱することにより、流路材21の第1の繊維41が軟化してろ過膜22の樹脂層支持体22bに絡み付くため、ろ過膜22が流路材21の表裏両面に接合される。   At this time, the first fibers 41 of the flow path material 21 are softened by heating so that the first fibers 41 on both the front and back sides of the flow path material 21 reach the softening point T3 (that is, 55 ° C to 90 ° C). Then, in order to be entangled with the resin layer support 22 b of the filtration membrane 22, the filtration membrane 22 is joined to both the front and back sides of the flow path material 21.

この時、ろ過膜22は、流路材21の第1の繊維41と接触している多数の接触点において、接合される。また、上記のように加熱温度を、ろ過膜22の樹脂層支持体22bの軟化点T1(すなわち260℃〜280℃)と流路材21の第1の繊維41の軟化点T3(すなわち55℃〜90℃)との間にしているため、ろ過膜22が軟化するのを防止することができる。   At this time, the filtration membrane 22 is joined at a number of contact points in contact with the first fibers 41 of the flow path material 21. Further, as described above, the heating temperature is set to the softening point T1 of the resin layer support 22b of the filtration membrane 22 (that is, 260 ° C. to 280 ° C.) and the softening point T3 of the first fiber 41 of the flow path material 21 (that is, 55 ° C.). Since the temperature is in the range of -90 ° C, the filtration membrane 22 can be prevented from being softened.

さらに、流路材21の内部にある第2の繊維42の軟化点T4は流路材21の表裏両面の第1の繊維41の軟化点T3よりも高い温度であるため、第2の繊維42が軟化するのを防止することができる。これにより、第2の繊維42が軟化して流路材21の厚さが大幅に減少してしまうのを抑制することができる。   Furthermore, since the softening point T4 of the second fiber 42 inside the flow path material 21 is higher than the softening point T3 of the first fibers 41 on both the front and back sides of the flow path material 21, the second fiber 42 is Can be prevented from softening. Thereby, it can suppress that the 2nd fiber 42 softens and the thickness of the flow-path material 21 reduces large.

上記第2の実施の形態では、流路材21の表裏両面に、ろ過膜22の樹脂層支持体22bの軟化点T1よりも低い軟化点T3を有する第1の繊維41の層を備えているが、第1の繊維41の層に、軟化点T3よりも高い軟化点を有する繊維(例えば材質がポリエチレンテレフタラートの繊維)を所定の割合で混在させてもよい。   In the second embodiment, the front and back sides of the flow path material 21 are provided with a layer of the first fibers 41 having a softening point T3 lower than the softening point T1 of the resin layer support 22b of the filtration membrane 22. However, fibers having a softening point higher than the softening point T3 (for example, fibers of a material of polyethylene terephthalate) may be mixed in the layer of the first fiber 41 at a predetermined ratio.

これよると、膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、第1の繊維41の軟化点T3の温度に加熱した場合、流路材21の表裏両面が溶けてろ過膜22の樹脂層支持体22bの繊維間の空隙および樹脂層22aの微細孔を塞いでしまうのを抑制することができる。   According to this, when the membrane element 12 is manufactured, the flow path material 21 is disposed between the pair of filtration membranes 22 and the flow path material 21 is heated when heated to the temperature of the softening point T3 of the first fiber 41. It is possible to prevent the front and back surfaces from melting and blocking the voids between the fibers of the resin layer support 22b of the filtration membrane 22 and the fine pores of the resin layer 22a.

上記第2の実施の形態では、流路材21の第1の繊維41の材質に、エチレン酢酸ビニル共重合体(EVA)を用いたが、これに限定されるものではなく、例えば、ポリエチレン(PE)等を用いてもよい。
(第3の実施の形態)
第3の実施の形態では、図8に示すように、流路材21を構成する繊維24は、芯鞘構造となっており、内部にある芯24aと、芯24aの外周を覆う表面の鞘24bとを有している。鞘24bは第1の樹脂で構成され、芯24aは第2の樹脂で構成されている。第2の樹脂で構成された芯24aの軟化点T6は第1の樹脂で構成された鞘24bの軟化点T5よりも高い。
In the second embodiment, the ethylene-vinyl acetate copolymer (EVA) is used as the material of the first fibers 41 of the flow path material 21. However, the present invention is not limited to this. For example, polyethylene ( PE) or the like may be used.
Third Embodiment
In the third embodiment, as shown in FIG. 8, the fibers 24 constituting the flow path material 21 have a core-sheath structure, and a sheath of a surface covering the core 24 a inside and the outer periphery of the core 24 a And 24b. The sheath 24b is made of a first resin, and the core 24a is made of a second resin. The softening point T6 of the core 24a made of the second resin is higher than the softening point T5 of the sheath 24b made of the first resin.

第1の樹脂の材質には、例えば、約55℃〜90℃の軟化点T5を有するエチレン酢酸ビニル共重合体(EVA)が用いられている。また、第2の樹脂には、例えば、80℃〜120℃以上の軟化点T6を有するポリエチレン(PE)が用いられている。   As a material of the first resin, for example, an ethylene-vinyl acetate copolymer (EVA) having a softening point T5 of about 55 ° C. to 90 ° C. is used. Moreover, for example, polyethylene (PE) having a softening point T6 of 80 ° C. to 120 ° C. is used as the second resin.

尚、流路材21は、例えば金属製の二重管の内側から溶融したPE樹脂を、外側から溶融したEVA樹脂を、同時に吹き出すことによって、芯24aがPE、鞘24bがEVAで構成される繊維24からなる一枚のシート状の接着性ネットに製作される。   The flow path member 21 is made of, for example, PE of the core 24a and EVA of the sheath 24b by simultaneously blowing out the molten PE resin from the outside of the metal double pipe, for example. A sheet of adhesive net made of fibers 24 is manufactured.

以下、上記構成における作用を説明する。   Hereinafter, the operation in the above configuration will be described.

膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、これら流路材21と両ろ過膜22との3つの部材を、上下一対の加熱ロール間に挿通して、圧縮しながら加熱する。   When manufacturing the membrane element 12, the flow path material 21 is disposed between the pair of filtration membranes 22, and the three members of the flow path material 21 and the both filtration membranes 22 are inserted between the upper and lower heating rolls. And heat while compressing.

この際、流路材21の繊維24の鞘24bが軟化点T5(すなわち55℃〜90℃)に到達するように加熱することにより、流路材21の繊維24の鞘24bが軟化してろ過膜22の樹脂層支持体22bに絡み付くため、ろ過膜22が流路材21の表裏両面に接合される。   At this time, the sheath 24b of the fiber 24 of the flow path material 21 is softened by heating so that the sheath 24b of the fiber 24 of the flow path material 21 reaches the softening point T5 (that is, 55.degree. C. to 90.degree. C.). In order to be entangled with the resin layer support 22 b of the membrane 22, the filtration membrane 22 is joined to both the front and back sides of the flow path material 21.

この時、ろ過膜22は、流路材21の繊維24と接触している多数の接触点において、接合される。また、上記のように加熱温度を、ろ過膜22の樹脂層支持体22bの軟化点T1(すなわち260℃〜280℃)と流路材21の繊維24の鞘24bの軟化点T5(すなわち55℃〜90℃)との間にしているため、ろ過膜22が軟化するのを防止することができる。   At this time, the filtration membrane 22 is joined at a number of contact points in contact with the fibers 24 of the flow path material 21. Further, as described above, the heating temperature is set to the softening point T1 of the resin layer support 22b of the filtration membrane 22 (that is, 260 ° C. to 280 ° C.) and the softening point T5 of the sheath 24b of the fibers 24 of the flow path material 21 (that is, 55 ° C.). Since the temperature is in the range of -90 ° C, the filtration membrane 22 can be prevented from being softened.

さらに、流路材21の繊維24の芯24aを構成する第2の樹脂の軟化点T6は、上記繊維24の鞘24bを構成する第1の樹脂の軟化点T5よりも高い温度であるため、流路材21の繊維24が軟化するのを防止することができる。これにより、流路材21の繊維24が軟化して流路材21の厚さが大幅に減少してしまうのを抑制することができる。   Furthermore, since the softening point T6 of the second resin constituting the core 24a of the fibers 24 of the flow path material 21 is higher than the softening point T5 of the first resin constituting the sheath 24b of the fibers 24, It can prevent that the fiber 24 of the flow-path material 21 softens. Thereby, it can be suppressed that the fibers 24 of the flow path material 21 are softened and the thickness of the flow path material 21 is significantly reduced.

上記第3の実施の形態では、流路材21は、ろ過膜22の樹脂層支持体22bの軟化点T1よりも低い軟化点T5を有する樹脂で覆われている繊維24からなるが、この繊維24に、軟化点T5よりも高い軟化点を有する繊維(例えば材質がポリエチレンの繊維)を所定の割合で混紡させてもよい。   In the third embodiment, the passage material 21 is made of the fiber 24 covered with the resin having the softening point T5 lower than the softening point T1 of the resin layer support 22b of the filtration membrane 22. At 24, a fiber having a softening point higher than the softening point T5 (for example, a fiber made of polyethylene) may be blended at a predetermined ratio.

これよると、膜エレメント12を製作する際、一対のろ過膜22間に流路材21を挟んで配置し、流路材21の繊維24の鞘24bの軟化点T5以上の温度に加熱した場合、鞘24bが溶けて樹脂層支持体22bの繊維間の空隙およびろ過膜22の樹脂層22aの微細孔を塞いでしまうのを抑制することができる。   According to this, when the membrane element 12 is manufactured, the flow path material 21 is disposed between the pair of filtration membranes 22 and heated to a temperature higher than the softening point T5 of the sheath 24 b of the fibers 24 of the flow path material 21. Thus, it is possible to prevent the sheath 24b from melting and blocking the voids between the fibers of the resin layer support 22b and the fine pores of the resin layer 22a of the filtration membrane 22.

上記第3の実施の形態では、流路材21の繊維24の鞘24bの材質にエチレン酢酸ビニル共重合体(EVA)を、芯24aの材質にPEを用いたが、これに限定されるものではなく、例えば、鞘24bの材質にポリエチレン(PE)やポリアクリル酸系樹脂等、芯24aの材質に共重合ポリエステル等を用いてもよい。   In the third embodiment, the ethylene-vinyl acetate copolymer (EVA) is used as the material of the sheath 24b of the fiber 24 of the flow path material 21, and PE is used as the material of the core 24a. Instead, for example, polyethylene (PE) or polyacrylic acid resin may be used as the material of the sheath 24b, and copolyester may be used as the material of the core 24a.

上記各実施の形態では、流路材21の表裏両面にそれぞれろ過膜22を接合しているが、ろ過膜22を流路材21の表裏いずれか一面に接合し、他面側を水密にしてもよい。   In each of the above embodiments, the filtration membranes 22 are respectively joined to the front and back sides of the flow path material 21. However, the filtration membrane 22 is joined to any one of the front and back sides of the flow path material 21 and the other side is made watertight. It is also good.

上記各実施の形態において、ろ過膜22を接合する前の流路材21に、成形時若しくは後加工で、左右方向(図2の両集水ケース11間の方向)の溝又は切れ目を設け、透過液33が集水ケース11に向かって流れ易くしてもよい。   In each of the above embodiments, the channel material 21 before bonding the filtration membrane 22 is provided with a groove or a cut in the left-right direction (direction between both water collecting cases 11 in FIG. 2) during molding or post processing. The permeated liquid 33 may easily flow toward the water collection case 11.

上記各実施の形態では、各軟化点T1〜T6を指標にしているが、軟化点T1〜T6の代わりに融点を指標にしてもよい。尚、融点を指標にする場合であっても、軟化点T1〜T6と同様の温度の高低関係が成立する。   Although each softening point T1 to T6 is used as an index in each of the above embodiments, a melting point may be used as an index instead of the softening points T1 to T6. Even when the melting point is used as an index, the same high-low relationship of temperature as the softening points T1 to T6 is established.

また、上記各実施の形態において示したエチレン酢酸ビニル共重合体、ポリエチレン、ポリエチレンテレフタラート、ポリテトラフルオロエチレン等の材質および数値は、一例であって、これらに限定されるものではない。   Further, the materials and numerical values of the ethylene-vinyl acetate copolymer, polyethylene, polyethylene terephthalate, polytetrafluoroethylene and the like shown in the above-mentioned respective embodiments are merely examples, and the present invention is not limited to these.

5 膜分離機器
11 集水ケース(支持部材)
12 膜エレメント
15 集水空間
21 流路材
22 ろ過膜
24 繊維
32 微小な空隙
33 透過液
41 第1の繊維
42 第2の繊維
T1 ろ過膜の樹脂層支持体の軟化点
T2 流路材の繊維の軟化点
T3 第1の繊維の軟化点
T4 第2の繊維の軟化点
T5 繊維の鞘の軟化点
T6 繊維の芯の軟化点
5 Membrane separation equipment 11 Water collection case (support member)
12 membrane element 15 water collection space 21 flow path material 22 filtration membrane 24 fiber 32 minute air gap 33 permeated liquid 41 first fiber 42 second fiber T1 softening point T2 of resin layer support of filtration membrane fiber of flow path material Softening point T3 Softening point T1 of first fiber Softening point T2 of second fiber Softening point of sheath of fiber T6 Softening point of core of fiber

Claims (6)

流路材の少なくとも片面にろ過膜が接合され、
流路材は、多数の繊維を有する不織布からなり、繊維間に、ろ過膜を透過した透過液が流れる空隙を有し、
流路材を構成する繊維のうちの少なくとも一部の繊維はろ過膜の軟化点よりも低い軟化点を有することを特徴とする膜エレメント。
A filtration membrane is bonded to at least one side of the flow path material,
The flow path material is made of a non-woven fabric having a large number of fibers, and between the fibers, there is a space through which the permeated liquid that has permeated the filtration membrane flows
A membrane element characterized in that at least a part of fibers among the fibers constituting the flow path material have a softening point lower than that of a filtration membrane.
流路材は、表面に、ろ過膜の軟化点よりも低い軟化点を有する第1の繊維を有するとともに、内部に、第1の繊維の軟化点よりも高い軟化点を有する第2の繊維を有することを特徴とする請求項1記載の膜エレメント。 The flow path material has, on the surface, a first fiber having a softening point lower than that of the filtration membrane, and, inside, a second fiber having a softening point higher than the softening point of the first fiber. The membrane element according to claim 1, characterized in that it comprises. 流路材を構成する不織布の繊維の表面はろ過膜の軟化点よりも低い軟化点を有し、
流路材を構成する不織布の繊維の内部は表面の軟化点よりも高い軟化点を有することを特徴とする請求項1記載の膜エレメント。
The surface of the non-woven fabric constituting the channel material has a softening point lower than that of the filtration membrane,
The membrane element according to claim 1, wherein the interior of the non-woven fabric constituting the flow passage material has a softening point higher than the softening point of the surface.
ろ過膜が流路材の表裏両面に接合されたことを特徴とする請求項2又は請求項3記載の膜エレメント。 The membrane element according to claim 2 or 3, wherein the filtration membrane is bonded to both the front and back sides of the flow path material. ろ過膜はPTFEを材質とする多孔膜を有することを特徴とする請求項1から請求項4のいずれか1項に記載の膜エレメント。 The membrane element according to any one of claims 1 to 4, wherein the filtration membrane has a porous membrane made of PTFE. 上記請求項1から請求項5のいずれか1項に記載の膜エレメントを備えた膜分離機器であって、
複数の膜エレメントを支持する支持部材を備え、
支持部材は内部に集水空間を有し、
各膜エレメントの端部が集水空間に挿入され、
透過液が流路材の空隙を通って支持部材の集水空間に流れ込むことを特徴とする膜分離機器。
A membrane separation apparatus comprising the membrane element according to any one of claims 1 to 5,
A support member for supporting a plurality of membrane elements;
The support member has a water collection space inside,
The end of each membrane element is inserted into the water collection space,
A membrane separation apparatus characterized in that a permeated liquid flows into a water collection space of a support member through an air gap of a flow path material.
JP2017252741A 2017-12-28 2017-12-28 Membrane element and membrane separation device Active JP6941559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017252741A JP6941559B2 (en) 2017-12-28 2017-12-28 Membrane element and membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252741A JP6941559B2 (en) 2017-12-28 2017-12-28 Membrane element and membrane separation device

Publications (2)

Publication Number Publication Date
JP2019118841A true JP2019118841A (en) 2019-07-22
JP6941559B2 JP6941559B2 (en) 2021-09-29

Family

ID=67307609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252741A Active JP6941559B2 (en) 2017-12-28 2017-12-28 Membrane element and membrane separation device

Country Status (1)

Country Link
JP (1) JP6941559B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267423A (en) * 1998-03-24 1999-10-05 Nitto Denko Corp Filter media for air filter
JP2009136863A (en) * 2007-11-14 2009-06-25 Nitto Denko Corp Filter member, its manufacturing method and filter unit
WO2009118788A1 (en) * 2008-03-27 2009-10-01 株式会社クボタ Membrane element and membrane module
JP2010149064A (en) * 2008-12-25 2010-07-08 Shima Kankyo Jigyo Kyogyo Kumiai Immersion type membrane separation apparatus
WO2011004743A1 (en) * 2009-07-10 2011-01-13 住友電工ファインポリマー株式会社 Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
JP2015000371A (en) * 2013-06-14 2015-01-05 日本バルカー工業株式会社 Hydrophobic ptfe membrane, hydrophobic ptfe membrane with support material, production method of treating liquid, selection method of activated sludge and filtration membrane in membrane separation activated sludge method, inhibiting method of fouling in membrane separation activated sludge method and treating method of treating object liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267423A (en) * 1998-03-24 1999-10-05 Nitto Denko Corp Filter media for air filter
JP2009136863A (en) * 2007-11-14 2009-06-25 Nitto Denko Corp Filter member, its manufacturing method and filter unit
WO2009118788A1 (en) * 2008-03-27 2009-10-01 株式会社クボタ Membrane element and membrane module
JP2010149064A (en) * 2008-12-25 2010-07-08 Shima Kankyo Jigyo Kyogyo Kumiai Immersion type membrane separation apparatus
WO2011004743A1 (en) * 2009-07-10 2011-01-13 住友電工ファインポリマー株式会社 Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
JP2015000371A (en) * 2013-06-14 2015-01-05 日本バルカー工業株式会社 Hydrophobic ptfe membrane, hydrophobic ptfe membrane with support material, production method of treating liquid, selection method of activated sludge and filtration membrane in membrane separation activated sludge method, inhibiting method of fouling in membrane separation activated sludge method and treating method of treating object liquid

Also Published As

Publication number Publication date
JP6941559B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
KR101993023B1 (en) Backwashable filtration element
KR102390788B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR102055725B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP2015009182A (en) Spiral type separation membrane element and spiral type separation membrane module
KR102576129B1 (en) Filter media and Filter unit comprising the same
WO2006044711A1 (en) Separation elements and methods of making separation elements
KR102064359B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP7228360B2 (en) Membrane elements and membrane separation equipment
JP2019118841A (en) Membrane element and membrane separator
KR102576134B1 (en) Filter media and Filter unit comprising the same
CN111587144B (en) Membrane module and membrane separation equipment
KR102064920B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
JP7228361B2 (en) MEMBRANE ELEMENT MANUFACTURING METHOD
KR102591625B1 (en) Filter for flat type water treatment
JP7158270B2 (en) Membrane separation equipment
KR102591620B1 (en) Filter for flat type water treatment
WO2006044712A1 (en) Separation elements and methods of making separation elements
KR102591622B1 (en) Filter for flat type water treatment
KR102603560B1 (en) Filter for flat type water treatment
KR102109454B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR102400732B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR102051368B1 (en) Tubular Macrofiltration Membrane
KR102014105B1 (en) Tubular Macrofiltration Membrane
KR102119477B1 (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
KR102602669B1 (en) Filter for flat type water treatment and filter module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150