JP2019114608A - Method of manufacturing rare earth magnet - Google Patents

Method of manufacturing rare earth magnet Download PDF

Info

Publication number
JP2019114608A
JP2019114608A JP2017245312A JP2017245312A JP2019114608A JP 2019114608 A JP2019114608 A JP 2019114608A JP 2017245312 A JP2017245312 A JP 2017245312A JP 2017245312 A JP2017245312 A JP 2017245312A JP 2019114608 A JP2019114608 A JP 2019114608A
Authority
JP
Japan
Prior art keywords
mold
rare earth
magnetic field
molded body
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017245312A
Other languages
Japanese (ja)
Inventor
篤司 多田
Atsushi Tada
篤司 多田
敏也 寳角
Toshiya Takarazumi
敏也 寳角
修 大畑
Osamu Ohata
修 大畑
周 藤島
Shu Fujishima
周 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017245312A priority Critical patent/JP2019114608A/en
Publication of JP2019114608A publication Critical patent/JP2019114608A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method of manufacturing rare earth magnets capable of suppressing a variation in a degree of orientation in the rare earth magnets and suppressing deformation of the rare earth magnets.SOLUTION: The method of manufacturing rare earth magnets includes: a forming step of supplying a metal powder containing a rare earth element into a die 2 to form a molded body 10; an orientation step of applying a pulse magnetic field H to the molded body 10 held in the die 2 to orient the metal powder contained in the molded body 10; and a sintering step of sintering the molded body 10 after the orientation step. In the orientation step, a pulse magnetic field H is applied to the molded body 10 using at least two coils 17a, 17b arranged to have a same central axis A.SELECTED DRAWING: Figure 3

Description

本発明は、希土類磁石の製造方法に関する。   The present invention relates to a method of manufacturing a rare earth magnet.

希土類磁石は、モータ又はアクチュエーター等の部品であり、例えば、ハードディスクドライブ、ハイブリッド自動車、電気自動車、磁気共鳴画像装置(MRI)、スマートフォン、デジタルカメラ、薄型TV、スキャナー、エアコン、ヒートポンプ、冷蔵庫、掃除機、洗濯乾燥機、エレベーター及び風力発電機等の様々な分野で利用されている。これらの多様な用途に応じて、希土類磁石に要求される寸法及び形状は異なる。したがって、多品種の希土類磁石を効率的に製造するためには、希土類磁石の寸法及び形状を容易に変更することが可能な成形方法が望まれる。   The rare earth magnet is a component such as a motor or an actuator, and for example, a hard disk drive, a hybrid car, an electric car, a magnetic resonance imaging apparatus (MRI), a smartphone, a digital camera, a thin TV, a scanner, an air conditioner, a heat pump, a refrigerator, a vacuum cleaner It is used in various fields such as washing and drying machines, elevators and wind power generators. Depending on these various applications, the required size and shape of the rare earth magnet will vary. Therefore, in order to efficiently produce a wide variety of rare earth magnets, a molding method that can easily change the size and shape of the rare earth magnets is desired.

従来の希土類磁石の製造では、希土類元素を含む金属粉末(例えば合金粉末)を高圧(例えば、50MPa以上200MPa以下)で加圧しながら、磁場を金属粉末へ印加する。その結果、磁場に沿って配向した金属粉末から成形体が形成される。このような成形方法を、以下では「高圧磁場プレス法」と記す。高圧磁場プレス法によれば、金属粉末が配向し易く、高い残留磁束密度Brと優れた保形性とを有する成形体を得ることが可能である。この成形体の焼結によって焼結体を得て、焼結体を所望の形状に加工することにより、磁石製品が完成する。   In the manufacture of a conventional rare earth magnet, a magnetic field is applied to the metal powder while pressing the metal powder (for example, alloy powder) containing the rare earth element under high pressure (for example, 50 MPa or more and 200 MPa or less). As a result, a compact is formed from the metal powder oriented along the magnetic field. Such a forming method is hereinafter referred to as "high pressure magnetic field pressing method". According to the high-pressure magnetic field pressing method, it is possible to obtain a molded body in which the metal powder is easy to be oriented and which has high residual magnetic flux density Br and excellent shape retention. A sintered body is obtained by sintering the molded body, and the sintered body is processed into a desired shape to complete a magnet product.

しかし、高圧磁場プレス法では、磁場中で高い圧力を金属粉末へ及ぼす必要があるため、大規模で複雑な成形装置が必要であり、成形用の金型の寸法及び形状が制限される。この制限のために、高圧磁場プレス法によって得られる一般的な成形体の形状は、粗大なブロックに限られる。したがって、従来の方法によって多品種の磁石製品を製造する場合、ブロック状の成形体を焼結させて焼結体を得た後、磁石製品に要求される寸法及び形状に応じて焼結体を加工する必要がある。焼結体の加工では、焼結体を切削したり、研磨したりするため、高価な希土類元素を含む屑が生じてしまう。その結果、磁石製品の歩留まり率(yield rate)が低下する。また、高圧磁場プレス法では、金型同士のカジリ(galling)、又は金型と成形体との間におけるカジリによって、金型又は成形体が破損し易い。例えば、高圧磁場プレス法で得られた成形体には亀裂(crack)が発生することがある。   However, high pressure magnetic field pressing requires high pressure to be applied to the metal powder in a magnetic field, which requires a large-scale and complicated forming apparatus, which limits the size and shape of the mold for forming. Due to this limitation, the general shape of the shaped body obtained by high-pressure magnetic field pressing is limited to coarse blocks. Therefore, when producing various kinds of magnet products by the conventional method, after sintering the block-like molded body to obtain a sintered body, the sintered body is produced according to the size and shape required for the magnet product. It is necessary to process. In the processing of the sintered body, scraps containing expensive rare earth elements are generated because the sintered body is cut or polished. As a result, the yield rate of the magnet product is reduced. Further, in the high-pressure magnetic field pressing method, the mold or the molded body is easily broken by galling between the molds or by the galling between the mold and the molded body. For example, a crack may occur in a compact obtained by high-pressure magnetic field pressing.

上記のような理由のため、従来の高圧磁場プレス法を用いた製造方法は、多品種又は少量の磁石製品の製造に適していない。高圧磁場プレス法に代わる成形方法として、下記特許文献1には、低圧(0.98MPa以上2.0MPa以下)で合金粉末を成形する方法が開示されている。この希土類磁石の製造方法は、合金粉末をモールド内に充填して、合金粉末を低圧で加圧することにより、成形体を作製する工程(充填工程)と、モールド中の成形体に磁場を印加して、成形体中の合金粉末を配向させる工程(配向工程)と、モールドから取り出した成形体を焼結する工程(焼結工程)と、を備える。そして、下記特許文献1に記載の製造方法では、充填工程と、配向工程とが、別の場所で行われる。   For the reasons as described above, the manufacturing method using the conventional high-pressure magnetic field pressing method is not suitable for the manufacture of a large variety or a small amount of magnet products. As a forming method that replaces the high pressure magnetic field pressing method, Patent Document 1 below discloses a method of forming an alloy powder at a low pressure (0.98 MPa or more and 2.0 MPa or less). In the method of manufacturing a rare earth magnet, the alloy powder is filled in a mold and the alloy powder is pressurized at a low pressure to apply a magnetic field to the step of producing a compact (filling step) and the compact in the mold. And a step of orienting the alloy powder in the compact (orientation step), and a step of sintering the compact taken out of the mold (sintering step). And in the manufacturing method of following patent document 1, a filling process and an orientation process are performed in another place.

国際公開第2016/047593号パンフレットInternational Publication No. 2016/047593 Brochure

上記特許文献1に記載の成形方法のように、低圧で金属粉末を成形する場合、高圧に対する耐久性が金型に要求されず、大規模で複雑な成形装置も不要である。したがって、低圧で金属粉末を成形する場合、金型の材質、寸法及び形状が制限されず、多様な寸法及び形状を有する型を用いて、多品種の希土類磁石を比較的容易に製造することができる。また、高圧磁場プレス法では、金属粉末の成形及び配向に長時間を要するが、低圧で金属粉末を成形することにより、成形及び配向に要する時間が大幅に短縮され、希土類磁石の生産性が向上する。   When molding a metal powder at low pressure as in the molding method described in Patent Document 1, durability against high pressure is not required of the mold, and a large-scale complex molding apparatus is also unnecessary. Therefore, when molding metal powder under low pressure, it is relatively easy to manufacture various kinds of rare earth magnets using molds having various sizes and shapes without being limited in material, size and shape of the mold. it can. In addition, in the high-pressure magnetic field pressing method, although it takes a long time to form and orientate the metal powder, by shaping the metal powder under a low pressure, the time required for the shaping and orientation is significantly shortened and the productivity of the rare earth magnet is improved. Do.

しかしながら、上記特許文献1に記載の製造方法では、一つの空芯コイルを用いて磁場を発生させるため、成形体における金属粉末の配向度がばらつき易く、成形体が焼結工程中に均一に収縮し難い。その結果、得られる希土類磁石(焼結体)における配向度もばらつき易く、希土類磁石が変形し易い。   However, in the manufacturing method described in Patent Document 1 described above, since the magnetic field is generated using one air core coil, the degree of orientation of the metal powder in the compact tends to vary, and the compact shrinks uniformly during the sintering step. It is difficult to do. As a result, the degree of orientation in the obtained rare earth magnet (sintered body) also tends to vary, and the rare earth magnet is easily deformed.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、希土類磁石における配向度のばらつき(variatiоn)を抑制し、且つ希土類磁石の変形を抑制することができる希土類磁石の製造方法を提供することを目的とする。   The present invention has been made in view of the problems of the prior art described above, and a method of manufacturing a rare earth magnet capable of suppressing variation in orientation (variatilon) of the rare earth magnet and suppressing deformation of the rare earth magnet. Intended to be provided.

本発明の一側面に係る希土類磁石の製造方法は、希土類元素を含む金属粉末を、型内へ供給して、成形体を形成する成形工程と、型内に保持された成形体にパルス磁場を印加して、成形体に含まれる金属粉末を配向させる配向工程と、配向工程後、成形体を焼結させる焼結工程と、を備え、配向工程では、同一の中心軸を持つように配置された少なくとも二つのコイルを用いて、成形体にパルス磁場を印加する。   In the method of manufacturing a rare earth magnet according to one aspect of the present invention, a metal powder containing a rare earth element is supplied into a mold to form a molded body, and a pulse magnetic field is applied to the molded body held in the mold. And an orientation step of applying and orienting the metal powder contained in the formed body, and a sintering step of sintering the formed body after the orientation step, wherein the orientation step is arranged to have the same central axis A pulsed magnetic field is applied to the compact using at least two coils.

一方のコイルの内径は、他方のコイルの内径と等しくてよく、二つのコイル其々の内径が2Rで表されてよく、中心軸に垂直な方向における成形体の幅の最大値がWで表されてよく、2RがW以上であってよく、配向工程では、成形体が二つのコイルの内側に配置されてよい。   The inner diameter of one coil may be equal to the inner diameter of the other coil, the inner diameter of each of the two coils may be represented by 2R, and the maximum width of the molded body in the direction perpendicular to the central axis is represented by W And R may be equal to or greater than W, and in the orientation step, the compact may be disposed inside the two coils.

一方のコイルの内径は、他方のコイルの内径と等しくてよく、二つのコイル其々の内径が2Rで表され、中心軸に平行な方向における二つのコイル間の距離がDで表されてよく、D/2Rが0より大きく0.55以下であってよく、配向工程では、成形体が二つのコイルの内側に配置されてよい。   The inner diameter of one coil may be equal to the inner diameter of the other coil, the inner diameter of each of the two coils may be represented by 2R, and the distance between the two coils in the direction parallel to the central axis may be represented by D. , D / 2R may be greater than 0 and less than or equal to 0.55, and in the orientation step, the shaped body may be disposed inside the two coils.

配向工程の前に、成形体の密度が3.0g/cm以上4.4g/cm以下に調整されてよい。 Before the orientation step, the density of the molded body may be adjusted to 3.0 g / cm 3 or more and 4.4 g / cm 3 or less.

型の少なくとも一部が非磁性体から形成されていてよい。   At least a portion of the mold may be formed of nonmagnetic material.

型の少なくとも一部が樹脂から形成されていてよい。   At least a portion of the mold may be formed of a resin.

焼結工程では、型から分離された成形体を焼結させてよい。   In the sintering step, the compact separated from the mold may be sintered.

本発明によれば、希土類磁石における配向度のばらつきを抑制し、且つ希土類磁石の変形を抑制することができる希土類磁石の製造方法が提供される。   According to the present invention, there is provided a method of manufacturing a rare earth magnet capable of suppressing variation in the degree of orientation in the rare earth magnet and suppressing deformation of the rare earth magnet.

成形工程に用いる型(上型、側型及び下型)の模式的な斜視図である。It is a typical perspective view of a model (an upper model, a side model, and a lower model) used for a forming process. 磁場配向装置が備える一対のコイル(ダブルコイル)の模式的な斜視図である。It is a typical perspective view of a pair of coils (double coil) with which a magnetic field orientation device is provided. ダブルコイル、ダブルコイルの内側に配置された型、及び型内に保持された成形体の模式的な断面図である。It is typical sectional drawing of the double coil, the type | mold arrange | positioned inside a double coil, and the molded object hold | maintained in the type | mold. ダブルコイル、及びダブルコイルの内側に配置された成形体の模式的な斜視図である。It is a typical perspective view of a double coil and a forming object arranged inside a double coil. 図3及び図4に示されるダブルコイル及び成形体の模式的な断面図である。FIG. 5 is a schematic cross-sectional view of the double coil and the molded body shown in FIGS. 3 and 4. 図6中の(a)は、図3〜5に示される成形体及びダブルコイル其々の模式的な上面図であり、図6中の(b)は、他の成形体及びダブルコイル其々の模式的な断面図である。(A) in FIG. 6 is a schematic top view of the molded body and double coil shown in FIGS. 3 to 5, and (b) in FIG. 6 is another molded body and double coil. It is typical sectional drawing of. 図7中の(a)は、他の成形体及びダブルコイル其々の模式的な断面図であり、図7中の(b)は、他の成形体及びダブルコイル其々の模式的な上面図である。(A) in FIG. 7 is a schematic cross-sectional view of another molded body and each double coil, and (b) in FIG. 7 is a schematic upper surface of each other molded body and the double coil. FIG. 図4に示される成形体から得られた希土類磁石の模式的な斜視図である。It is a schematic perspective view of the rare earth magnet obtained from the molded object shown by FIG. 成形工程において成形体へ印加されるパルス磁場の一例を示す図である。It is a figure which shows an example of the pulse magnetic field applied to a molded object in a formation process.

以下、図面を参照しながら、本発明の好適な実施形態について説明する。図面において、同等の構成要素には同等の符号を付す。本発明は下記実施形態に限定されるものではない。各図に示すX,Y及びZは、互いに直交する3つの座標軸を意味する。各座標軸が示す方向は、全図に共通する。説明の便宜のため、図4〜7では型が省略されているが、図4〜7に示される成形体は実際には型内に保持される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, equivalent components are denoted by the same reference numerals. The present invention is not limited to the following embodiments. X, Y and Z shown in each figure mean three coordinate axes orthogonal to each other. The direction indicated by each coordinate axis is common to all the drawings. Although the mold is omitted in FIGS. 4 to 7 for the convenience of description, the molded body shown in FIGS. 4 to 7 is actually held in the mold.

本実施形態において、希土類磁石とは焼結磁石を意味する。希土類磁石の製造方法では、まず合金を鋳造する。鋳造方法は、例えば、ストリップキャスト法であってよい。合金はフレーク状であってよく、インゴット状であってもよい。合金は、希土類元素を含む。希土類元素の例は、長周期型周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)及びランタノイドからなる群より選ばれる一種以上の元素を含む。ここで、ランタノイドは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuからなる群より選ばれる少なくとも一種であればよい。原料合金は、希土類元素に加えて、B,N,Fe,Co,Cu,Ni,Mn,Al,Nb,Zr,Ti,W,Mo,V,Ga,Zn,Si及びBiからなる群より選ばれる少なくとも一種の元素を含んでよい。合金の化学組成は、最終的に得たい希土類磁石の主相及び粒界相の化学組成に応じて調整すればよい。つまり、目的とする希土類磁石の組成に応じて上記元素を含む各出発原料を秤量・配合して、合金の原料を調製すればよい。希土類磁石は、例えば、ネオジム磁石、サマリウムコバルト磁石、サマリウム‐鉄‐窒素磁石、又はプラセオジム磁石であってよい。希土類磁石の主相は、例えば、NdFe14B,SmCo,SmCo17,SmFe17,SmFe,又はPrCoであってよい。粒界相は、例えば、主相に比べて希土類元素の含有量が大きい相(Rリッチ相)であってよい。粒界相は、Bリッチ相、酸化物相又は炭化物相を含んでもよい。 In the present embodiment, the rare earth magnet means a sintered magnet. In the method of manufacturing a rare earth magnet, an alloy is first cast. The casting method may be, for example, a strip casting method. The alloy may be flake-like or ingot-like. The alloy contains a rare earth element. Examples of the rare earth elements include one or more elements selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoids belonging to Group 3 of the long period periodic table. Here, the lanthanoid may be at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The raw material alloy is selected from the group consisting of B, N, Fe, Co, Cu, Ni, Mn, Al, Nb, Zr, Ti, W, Mo, V, Ga, Zn, Si and Bi in addition to the rare earth elements. And at least one element. The chemical composition of the alloy may be adjusted according to the chemical composition of the main phase and the grain boundary phase of the rare earth magnet to be finally obtained. That is, the starting materials of the alloy may be prepared by weighing and blending the respective starting materials containing the above-mentioned elements according to the composition of the target rare earth magnet. The rare earth magnet may be, for example, a neodymium magnet, a samarium cobalt magnet, a samarium-iron-nitrogen magnet, or a praseodymium magnet. The main phase of the rare earth magnet may be, for example, Nd 2 Fe 14 B, SmCo 5 , Sm 2 Co 17 , Sm 2 Fe 17 N 3 , Sm 1 Fe 7 N x , or PrCo 5 . The grain boundary phase may be, for example, a phase (R-rich phase) in which the content of the rare earth element is larger than that of the main phase. The grain boundary phase may contain a B-rich phase, an oxide phase or a carbide phase.

上記の合金の粗粉砕により、合金の粗粉末を得る。粗粉砕では、例えば、水素を合金の粒界(Rリッチ相)に吸蔵させることより、合金を粉砕してよい。合金の粗粉砕では、ディスクミル、ジョークラッシャー、ブラウンミル又はスタンプミル等の機械的な粉砕方法を用いてもよい。粗粉砕によって得られた粗粉末の粒径は、例えば、10μm以上100μm以下であってよい。   Rough grinding of the above-mentioned alloy gives a rough powder of the alloy. In the coarse grinding, for example, the alloy may be crushed by storing hydrogen in the grain boundary (R rich phase) of the alloy. In rough grinding of the alloy, mechanical grinding methods such as a disc mill, a jaw crusher, a brown mill or a stamp mill may be used. The particle size of the coarse powder obtained by the coarse grinding may be, for example, 10 μm or more and 100 μm or less.

上記の粗粉末の微粉砕により、合金の微粉末を得る。微粉砕では、ジェットミル、ボールミル、振動ミル、又は湿式アトライター等により、合金粉末を粉砕してよい。微粉砕によって得られた微粉末の粒径は、例えば、0.5μm以上5μm以下であってよい。以下では、粗粉末又は微粉末を、合金粉末又は金属粉末と記載する場合がある。   The fine powder of the alloy is obtained by pulverizing the above-mentioned coarse powder. In pulverizing, the alloy powder may be pulverized by a jet mill, a ball mill, a vibrating mill, a wet attritor, or the like. The particle size of the fine powder obtained by pulverization may be, for example, 0.5 μm or more and 5 μm or less. Below, a coarse powder or fine powder may be described as alloy powder or metal powder.

粗粉砕で得た合金粉末へ有機物を添加してよい。微粉砕で得た微粉末へ有機物を添加してもよい。つまり、微粉砕の前後いずれかにおいて、有機物を金属粉末と混ぜてよい。有機物は、例えば、潤滑剤として機能する。潤滑剤を金属粉末へ添加するにより、金属粉末の凝集が抑制される。また、潤滑剤を金属粉末へ添加することにより、後工程において型と金属粉末との摩擦が抑制され易い。その結果、配向工程において金属粉末が配向し易く、金属粉末から得られる成形体の表面又は型の表面における傷を抑制し易い。有機物は、例えば、脂肪酸又は脂肪酸の誘導体であってよい。有機物は、例えば、オレイン酸アミド、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アミド、パルミチン酸アミド、ペンタデシル酸アミド、ミリスチン酸アミド、ラウリン酸アミド、カプリン酸アミド、ペラルゴン酸アミド、カプリル酸アミド、エナント酸アミド、カプロン酸アミド、バレリアン酸アミド及びブチル酸アミドからなる群より選ばれる少なくとも一種であってよい。潤滑剤は、粉末状の有機物であってよい。潤滑剤は、液状の有機物であってもよい。粉末状の潤滑剤が溶解した有機溶媒を合金粉末へ添加してもよい。   An organic substance may be added to the alloy powder obtained by coarse grinding. An organic substance may be added to the fine powder obtained by pulverization. That is, the organic substance may be mixed with the metal powder either before or after the pulverization. The organic matter functions, for example, as a lubricant. The addition of the lubricant to the metal powder suppresses aggregation of the metal powder. In addition, by adding a lubricant to the metal powder, the friction between the mold and the metal powder is easily suppressed in the subsequent step. As a result, the metal powder is easy to be oriented in the orientation step, and it is easy to suppress scratches on the surface of the molded body obtained from the metal powder or the surface of the mold. The organic matter may be, for example, a fatty acid or a derivative of a fatty acid. Organic substances are, for example, oleic acid amide, zinc stearate, calcium stearate, stearic acid amide, palmitic acid amide, pentadecyl acid amide, myristic acid amide, lauric acid amide, capric acid amide, pelargonic acid amide, caprylic acid amide, enanthate It may be at least one selected from the group consisting of amides, caproic acid amides, valeric acid amides and butyric acid amides. The lubricant may be a powdered organic matter. The lubricant may be a liquid organic substance. An organic solvent in which a powdered lubricant is dissolved may be added to the alloy powder.

成形工程では、上記の手順で得られた合金粉末を、型内へ供給して、成形体を形成する。型の寸法、形状及び構造は限定されない。例えば、図1に示されるように、型2は、下型8と、下型8の上に配置される筒状の側型6と、側型6の上に配置される上型4(パンチ)と、を備える。希土類磁石の形状及び寸法に対応する空間が、側型6を鉛直方向に貫通している。側型6は、型の側壁と言い換えてよい。下型8は板状であってよい。側型6の下部が、下型8の表面に形成された爪部(stops)に嵌合することにより、水平方向における側型6の位置が固定されてよい。成形工程では、側型6を下型8の上に載置して、側型6の下面側の開口部(穴)を下型8で塞ぐ。このような配置により、側型6及び下型8がキャビティ(雌型)を構成する。続いて、合金粉末を、側型6の上面側の開口部(穴)からキャビティ内へ導入する。その結果、合金粉末がキャビティ内において希土類磁石の形状及び寸法に対応するように成形される。合金粉末を、キャビティへ充填してよい。つまり、キャビティを合金粉末で満たしてよい。上型4は、コア(雄型)と言い換えてよい。上型4は、キャビティに嵌合する形状を有してよい。上型4をキャビティへ挿入してよい。キャビティ内の成形体10(合金粉末)を、上型4の先端面で圧縮してよい。ただし、焼結工程における合金粉末同士の焼結だけにより、成形体10の密度が十分に高まり、所望の密度を有する希土類磁石が得られるので、キャビティ内の合金粉末を圧縮しなくてもよい。   In the forming step, the alloy powder obtained by the above procedure is supplied into a mold to form a formed body. The size, shape and structure of the mold are not limited. For example, as shown in FIG. 1, the mold 2 includes a lower mold 8, a cylindrical side mold 6 disposed on the lower mold 8, and an upper mold 4 disposed on the side mold 6 (punch And. A space corresponding to the shape and size of the rare earth magnet penetrates the side mold 6 in the vertical direction. Side mold 6 may be reworded as the side wall of the mold. The lower mold 8 may be plate-shaped. The lower portion of the side mold 6 may be engaged with the stops formed on the surface of the lower mold 8 to fix the position of the side mold 6 in the horizontal direction. In the molding process, the side mold 6 is placed on the lower mold 8, and the opening (hole) on the lower surface side of the side mold 6 is closed by the lower mold 8. By such an arrangement, the side mold 6 and the lower mold 8 constitute a cavity (female mold). Subsequently, the alloy powder is introduced into the cavity from the opening (hole) on the upper surface side of the side mold 6. As a result, the alloy powder is shaped to correspond to the shape and size of the rare earth magnet in the cavity. Alloy powder may be loaded into the cavity. That is, the cavity may be filled with alloy powder. The upper mold 4 may be reworded as a core (male mold). The upper mold 4 may have a shape that fits in the cavity. The upper mold 4 may be inserted into the cavity. The compact 10 (alloy powder) in the cavity may be compressed at the end face of the upper mold 4. However, it is not necessary to compress the alloy powder in the cavity because the density of the formed body 10 is sufficiently increased and the rare earth magnet having the desired density is obtained only by sintering the alloy powders in the sintering step.

成形工程において、型が合金粉末に及ぼす圧力を、0.049MPa以上20MPa以下(0.5kgf/cm以上200kgf/cm以下)に調整してよい。圧力とは、例えば、上型4の先端面が合金粉末に及ぼす圧力であってよい。このように、従来の高圧磁場プレス法よりも低圧で、合金粉末から成形体10を形成することにより、型2と成形体10との摩擦が抑制され易く、型2又は成形体10の破損(例えば成形体10の亀裂)が抑制され易い。圧力が高過ぎる場合、型2が撓んでしまい、目的のキャビティの容量を確保し難く、目的の成形体10の密度が得られ難い。従来の高圧磁場プレス法では、高圧下で合金粉末の成形及び配向を同時に行う必要があった。一方、本実施形態では、成形及び配向を同時に行う必要がないので、成形工程後に、配向工程を行うことができる。成形工程と配向工程とを分けることにより、従来よりも小型で安価な装置(例えば、プレス成形装置、及び磁場印加装置)を各工程に用いることができる。成形工程及び配向工程を略同時に行ってもよい。 In the molding process, the pressure type is on the alloy powder, may be adjusted to more than 0.049 MPa 20 MPa or less (0.5 kgf / cm 2 or more 200 kgf / cm 2 or less). The pressure may be, for example, the pressure exerted by the end face of the upper mold 4 on the alloy powder. Thus, by forming the compact 10 from the alloy powder at a lower pressure than the conventional high-pressure magnetic field pressing method, the friction between the mold 2 and the compact 10 is easily suppressed, and damage to the mold 2 or the compact 10 ( For example, cracks in the molded body 10 are easily suppressed. If the pressure is too high, the mold 2 will bend, making it difficult to secure the volume of the intended cavity, and it is difficult to obtain the density of the targeted compact 10. In the conventional high pressure magnetic field pressing method, it has been necessary to simultaneously form and orient the alloy powder under high pressure. On the other hand, in the present embodiment, since it is not necessary to simultaneously perform molding and orientation, the orientation process can be performed after the molding process. By separating the forming step and the orienting step, smaller and less expensive apparatuses (for example, a press forming apparatus and a magnetic field application apparatus) can be used in each step than in the prior art. The molding process and the orientation process may be performed substantially simultaneously.

成形工程を経た成形体10(配向工程前の成形体10)の密度は、3.0g/cm以上4.4g/cm以下、好ましくは3.2g/cm以上4.2g/cm以下、より好ましくは3.4g/cm以上4.0g/cm以下に調整されていてよい。成形体10の密度は、例えば、成形工程において型2が成形体10に及ぼす圧力によって調整されてよい。成形体10の密度は、例えば、型2内に供給される合金粉末の質量によって調整されてもよい。配向工程前の成形体10の密度が上記の範囲である場合、最終的に得られる希土類磁石の残留磁束密度Brが高まり易い。配向工程前の成形体10の密度が低いほど、成形体10を構成する合金粉末が自由に回転し易く、磁場に沿って配向し易い。その結果、希土類磁石の残留磁束密度Brが高まり易い。配向工程前の成形体10の密度が低過ぎる場合、成形体10の保形性(機械的強度)が不十分であり、後工程における成形体10と型との摩擦により、成形体10の表面に位置する合金粉末の配向度が乱れる。その結果、希土類磁石の残留磁束密度Brが低下し易い。また配向工程前の成形体10の密度が低過ぎる場合、成形体10の保形性(機械的強度)が不十分であるため、希土類磁石に亀裂が生じ易い。配向工程前の成形体10の密度が高過ぎる場合、希土類磁石の変形は抑制され易いが、成形体10を構成する合金粉末が自由に回転し難く、磁場に沿って配向し難い。その結果、希土類磁石の残留磁束密度Brが低下し易い。 The density of the molded body 10 (the molded body 10 before the orientation step) subjected to the molding step is 3.0 g / cm 3 or more and 4.4 g / cm 3 or less, preferably 3.2 g / cm 3 or more and 4.2 g / cm 3 or less, more preferably it may have been adjusted to below 3.4 g / cm 3 or more 4.0 g / cm 3. The density of the molded body 10 may be adjusted, for example, by the pressure exerted by the mold 2 on the molded body 10 in the molding process. The density of the compact 10 may be adjusted, for example, by the mass of the alloy powder supplied into the mold 2. When the density of the compact 10 before the orientation step is in the above range, the residual magnetic flux density Br of the finally obtained rare earth magnet tends to increase. As the density of the green body 10 before the orientation step is lower, the alloy powder constituting the green body 10 is more easily rotated and oriented along the magnetic field. As a result, the residual magnetic flux density Br of the rare earth magnet tends to increase. When the density of the molded body 10 before the orientation step is too low, the shape retention property (mechanical strength) of the molded body 10 is insufficient, and the surface of the molded body 10 is formed by the friction between the molded body 10 and the mold in a later step. The degree of orientation of the alloy powder located at is disturbed. As a result, the residual magnetic flux density Br of the rare earth magnet tends to decrease. In addition, when the density of the molded body 10 before the orientation step is too low, the shape retention property (mechanical strength) of the molded body 10 is insufficient, and thus the rare earth magnet is easily cracked. When the density of the green body 10 before the orientation step is too high, deformation of the rare earth magnet is easily suppressed, but the alloy powder constituting the green body 10 is hard to rotate freely and is hard to orient along the magnetic field. As a result, the residual magnetic flux density Br of the rare earth magnet tends to decrease.

配向工程では、型2内に保持された成形体10にパルス磁場を印加して、成形体10を構成する合金粉末を型2内でパルス磁場に沿って配向させる。配向工程では、ダブルコイルを備える磁場発生装置を用いて、成形体10にパルス磁場を印加する。   In the orientation step, a pulse magnetic field is applied to the compact 10 held in the mold 2 to orient the alloy powder constituting the compact 10 in the mold 2 along the pulsed magnetic field. In the orientation step, a pulse magnetic field is applied to the compact 10 using a magnetic field generator provided with a double coil.

図2〜5に示されるように、ダブルコイル15とは、同一の中心軸Aを持つように配置された少なくとも二つのコイル17a及び17bである。一方のコイル17aの内径は、他方のコイル17bの内径と等しくてよい。一方のコイル17aと、他方のコイル17bとは、全く同じコイルであってよい。二つのコイル17a及び17bは、中心軸Aに垂直な平面(XY面)に対して平行に配置されていてよい。中心軸Aに平行な方向から見て一方のコイル17aが他方のコイル17bに重なっていてよい。つまり、二つのコイル17a及び17bが、中心軸Aに平行な方向から見て真っ直ぐに配列されていてよい。二つのコイル17a及び17b其々に流される電流Iの大きさ及び向きは同じであってよい。一方のコイル17aと他方のコイル17bとの距離Dは、コイル17a及び17b其々の内側の半径Rと異なっていてよい。距離Dとは、一方のコイル17aの端面(下面)と、当該端面(下面)と向かい合う他のコイル17bの端面(上面)との最短距離と言い換えられてよい。距離Dが半径Rと等しい場合、ダブルコイル15はヘルムホルツコイルである。   As shown in FIGS. 2 to 5, the double coil 15 is at least two coils 17 a and 17 b arranged to have the same central axis A. The inner diameter of one coil 17a may be equal to the inner diameter of the other coil 17b. One coil 17a and the other coil 17b may be completely the same coil. The two coils 17 a and 17 b may be disposed parallel to a plane (XY plane) perpendicular to the central axis A. When viewed in the direction parallel to the central axis A, one coil 17a may overlap the other coil 17b. That is, the two coils 17a and 17b may be arranged straight as seen from the direction parallel to the central axis A. The magnitude and direction of the current I applied to each of the two coils 17a and 17b may be the same. The distance D between one coil 17a and the other coil 17b may be different from the inner radius R of the coils 17a and 17b. The distance D may be restated as the shortest distance between the end surface (lower surface) of one coil 17a and the end surface (upper surface) of the other coil 17b facing the end surface (lower surface). If the distance D is equal to the radius R, the double coil 15 is a Helmholtz coil.

図3に示されるように、配向工程では、型2内に保持された成形体10が、型2と共に、ダブルコイル15の内側に配置される。成形体10は、ダブルコイル15の中心軸A上に配置されてよい。成形体10の中心が、ダブルコイル15の中心軸A上に位置してよい。成形体10の中心が、一方のコイル17aの中心と他方のコイル17bの中心との間の中点に位置してよい。ダブルコイル15に電流Iを流すことにより、中心軸Aに平行なパルス磁場Hが、二つのコイル17a及び17bの内外に発生する。このパルス磁場Hが、型2内の成形体10へ印加される。パルス磁場Hを成形体10に印加する回数は、1回でもよく、複数回でもよい。ダブルコイル15と他のコイルとが、同一の中心軸Aを持つように配置されてもよい。ダブルコイル15と他のコイルとが形成するパルス磁場Hを、型2内の成形体10に印加してもよい。配向工程では、成形体を保持する複数の型が、ダブルコイルの内側に配置されてよい。つまり配向工程では、複数の成形体が、型と共に、ダブルコイルの内側に配置されてよい。コイル17a及び17bが同一の中心軸に沿って斜めに配列されていてよい。コイル17a及び17b其々は、空芯コイルであってよい。軟磁性体がコイル17a及び17bの内部に配置されてもよい。コイル17a及び17bが樹脂中に埋められていてもよい。   As shown in FIG. 3, in the orientation step, the compact 10 held in the mold 2 is placed inside the double coil 15 together with the mold 2. The molded body 10 may be disposed on the central axis A of the double coil 15. The center of the molded body 10 may be located on the central axis A of the double coil 15. The center of the molded body 10 may be located at a midpoint between the center of one coil 17a and the center of the other coil 17b. By passing the current I through the double coil 15, a pulse magnetic field H parallel to the central axis A is generated inside and outside the two coils 17a and 17b. The pulse magnetic field H is applied to the compact 10 in the mold 2. The number of times of applying the pulse magnetic field H to the compact 10 may be one or more than one. The double coil 15 and the other coils may be arranged to have the same central axis A. A pulse magnetic field H formed by the double coil 15 and another coil may be applied to the compact 10 in the mold 2. In the orientation step, a plurality of molds for holding the compact may be disposed inside the double coil. That is, in the orientation step, a plurality of molded bodies may be disposed inside the double coil together with the mold. The coils 17a and 17b may be arranged diagonally along the same central axis. Each of the coils 17a and 17b may be an air core coil. A soft magnetic material may be disposed inside the coils 17a and 17b. The coils 17a and 17b may be embedded in the resin.

二つのコイル17a及び17bで囲まれた空間では、均質なパルス磁場H(方向及び強度が一様であるパルス磁場)が形成される。ダブルコイル15によって形成されるパルス磁場Hの磁力線は、ダブルコイル15で囲まれた空間においてのみならず、コイル17a及び17b其々の端部近傍においても、互いに平行に分布し易い。したがって、ダブルコイル15を用いることにより、一つのコイルのみを用いる場合に比べて、より均質なパルス磁場Hを成形体10に印加することができる。その結果、一つのコイルのみを用いる場合に比べて、成形体10に含まれる個々の合金粉末がパルス磁場Hに沿って均一に配向し易く、成形体10における合金粉末の配向度(配向方向)がばらつき難い。成形体10は合金粉末の配向方向において収縮し易い。したがって、合金粉末の配向度のばらつきが抑制された成形体10を焼結させることにより、合金粉末の配向方向(パルス磁場Hの方向)に沿って成形体10が均一に収縮する。その結果、配向度のばらつきが抑制され、且つ配向方向における厚みが均一である焼結体(希土類磁石)が得られる。つまり、成形体10における合金粉末の配向度のばらつきを抑制することにより、希土類磁石における配向度のばらつきが抑制され、且つ希土類磁石の変形が抑制される。   In the space surrounded by the two coils 17a and 17b, a homogeneous pulsed magnetic field H (a pulsed magnetic field having uniform direction and intensity) is formed. The magnetic lines of force of the pulse magnetic field H formed by the double coil 15 are likely to be distributed parallel to each other not only in the space surrounded by the double coil 15 but also near the end portions of the coils 17a and 17b. Therefore, by using the double coil 15, a more homogeneous pulse magnetic field H can be applied to the molded body 10 as compared with the case where only one coil is used. As a result, as compared with the case where only one coil is used, the individual alloy powders contained in the compact 10 can be easily oriented uniformly along the pulse magnetic field H, and the degree of orientation of the alloy powder in the compact 10 (oriented direction) Is less likely to vary. The compact 10 tends to shrink in the orientation direction of the alloy powder. Therefore, by sintering the shaped body 10 in which the variation in the degree of orientation of the alloy powder is suppressed, the shaped body 10 shrinks uniformly along the orientation direction of the alloy powder (the direction of the pulse magnetic field H). As a result, a sintered body (rare earth magnet) is obtained in which the variation in the degree of orientation is suppressed and the thickness in the orientation direction is uniform. That is, by suppressing the variation in the degree of orientation of the alloy powder in the compact 10, the variation in the degree of orientation in the rare earth magnet is suppressed, and the deformation of the rare earth magnet is suppressed.

従来の一つの空芯コイルのみによって磁場が形成される場合、磁力線はコイルの中心軸付近では中心軸に対して平行である。しかし磁力線は、コイルの中心軸から離れるに伴って、コイルの外側を向き易い。特にコイルの両端近傍においては、コイルの中心軸に対して平行でない磁界が形成される。このように均質でない磁場を成形体へ印加した場合、コイルの中心軸との位置関係によって、成形体における合金粉末の配向度がばらつき易い。合金粉末の配向度がばらついた成形体を焼結させると、成形体が不均一に収縮してしまう。その結果、配向度のばらつきが大きく、且つ厚みが不均一である焼結体(希土類磁石)が形成されてしまう。一つの空芯コイルの両端に強磁性体が配置された場合、空芯コイル内で発生する磁場が空芯コイルの中心軸に対して平行な方向になり易い。しかし、強度が高いパルス磁場が空芯コイル内で発生すると、空芯コイルの両端側に設置された強磁性体が磁気的に飽和し易く、空芯コイルの両端側における磁力線は、空芯コイルの中心軸から外側へ向き易い。つまり、一つの空芯コイルの両端に強磁性体が配置された場合であっても、空芯コイルの両端側における磁場は空芯コイルの中心軸に対して平行になり難い。   When the magnetic field is formed by only one conventional air core coil, the magnetic field lines are parallel to the central axis near the central axis of the coil. However, as the magnetic field lines move away from the central axis of the coil, they tend to face the outside of the coil. In particular, in the vicinity of both ends of the coil, a magnetic field which is not parallel to the central axis of the coil is formed. When a magnetic field that is not homogeneous as described above is applied to the compact, the degree of orientation of the alloy powder in the compact tends to vary depending on the positional relationship with the central axis of the coil. When a compact having a variation in the degree of orientation of the alloy powder is sintered, the compact shrinks unevenly. As a result, a sintered body (rare earth magnet) having a large variation in the degree of orientation and an uneven thickness is formed. When ferromagnetic materials are disposed at both ends of one air core coil, the magnetic field generated in the air core coil tends to be in a direction parallel to the central axis of the air core coil. However, when a high-intensity pulse magnetic field is generated in the air core coil, the ferromagnetic members disposed at both ends of the air core coil tend to saturate magnetically, and the magnetic lines of force at both ends of the air core coil become the air core coil. Easy to turn outward from the central axis of the That is, even when ferromagnetic materials are disposed at both ends of one air core coil, the magnetic fields at both ends of the air core coil are unlikely to be parallel to the central axis of the air core coil.

低圧で形成された成形体10は比較的脆いため、成形体10における合金粉末の配向度を直接測定することは難しい。したがって、成形体10における合金粉末の配向度及びそのばらつきは、希土類磁石(焼結体)における配向度及びそのばらつきから遡及的に推定される。以下に説明されるように、希土類磁石における配向度は、X線回折(XRD)法を応用したロットゲーリング法によって測定される。希土類磁石における配向度の測定方法の詳細は、特開2006−258616号公報に記載されている。   Since the compact 10 formed at low pressure is relatively brittle, it is difficult to directly measure the degree of orientation of the alloy powder in the compact 10. Therefore, the degree of orientation of the alloy powder in the compact 10 and the variation thereof are retrospectively estimated from the degree of orientation in the rare earth magnet (sintered body) and the variation thereof. As described below, the degree of orientation in a rare earth magnet is measured by the Lotgering method applying X-ray diffraction (XRD). The detail of the measuring method of the orientation degree in a rare earth magnet is described in Unexamined-Japanese-Patent No. 2006-258616.

ロットゲーリング法では、希土類磁石における配向度fc(単位:%)が下記数式1で定義される。

Figure 2019114608
In the Lotgering method, the degree of orientation fc (unit:%) in the rare earth magnet is defined by the following equation 1.
Figure 2019114608

数式1中のI(00l)とは、希土類磁石の(00l)面における反射X線の回折強度である。数式1中のI(hk0)とは、希土類磁石の(hk0)面における反射X線の回折強度である。数式1の分子では、(00l)面の反射成分(配向方向の成分)のみが積算される。一方、配向方向と少しでも異なる方位を有する回折ピークは、(hk0)面の反射成分(配向方向に対する垂直方向の成分)とみなされ、数式1の分子から除外される。したがって、算出される配向度fcは、実際の配向度に比べて小さい値である。できるだけ実際の配向度に近いfcを算出するためには、回折ピークに対するベクトル補正を行うことが好ましい。ベクトル補正では、(00l)面の反射X線とは方位が異なる回折ピークが、(00l)面の反射成分と、これと直交する(hk0)面の反射成分とに分離される。分離された(00l)面の反射成分は数式1中の分子に加算される。例えば、ある結晶面Xの面方位が(00l)とは異なる場合、当該結晶面Xの面方位に対応する回折ピークに対して、その回折ピークの傾き角αに基づくcosαが乗じられる。この乗算により、結晶面Xの反射成分のうち(00l)面の反射成分が算出される。この結晶面Xの反射成分から算出された(00l)の反射成分が数式1中の分子において積算される。   I (001) in Equation 1 is the diffraction intensity of the reflected X-ray on the (001) plane of the rare earth magnet. I (hk0) in Equation 1 is the diffraction intensity of the reflected X-ray on the (hk0) plane of the rare earth magnet. In the numerator of Formula 1, only the reflection component (component in the orientation direction) of the (001) plane is integrated. On the other hand, a diffraction peak having an orientation slightly different from the orientation direction is regarded as a reflection component (component perpendicular to the orientation direction) of the (hk0) plane and is excluded from the molecules of Formula 1. Therefore, the calculated degree of orientation fc is a smaller value than the actual degree of orientation. In order to calculate fc as close as possible to the actual degree of orientation, it is preferable to perform vector correction on the diffraction peak. In the vector correction, a diffraction peak whose direction is different from that of the (001) reflection X-ray is separated into a reflection component of the (001) plane and a reflection component of the (hk0) plane orthogonal thereto. The reflection component of the separated (001) plane is added to the numerator in Eq. For example, when the plane orientation of a certain crystal plane X is different from (001), the diffraction peak corresponding to the plane orientation of the crystal plane X is multiplied by cos α based on the inclination angle α of the diffraction peak. By this multiplication, the reflection component of the (001) plane among the reflection components of the crystal plane X is calculated. The reflection component of (001) calculated from the reflection component of the crystal plane X is integrated in the numerator in Equation 1.

希土類磁石の配向度fcのばらつきは、以下の方法で算出される。   The variation of the orientation degree fc of the rare earth magnet is calculated by the following method.

希土類磁石を略均等に分割して、複数個の磁石片を形成する。例えば、図8に示されるように、直方体状の希土類磁石100を均等に分割して、9個の磁石片a,b,c,d,e,f,g,h及びiを形成する。ただし、希土類磁石の分割によって形成される磁石片の数は、9個に限定されない。続いて、各磁石片のXRDパターンを測定して、各磁石片における配向度fcを上記のロットゲーリング法によって算出する。例えば図8に示されるように、各磁石片のXRDパターンの測定においてX線が入射する面は、配向工程においてダブルコイル15の中心軸A(パルス磁場H)に対して垂直な面100sに属していた面であってよい。複数個の磁石片のうち、配向度fcが最も高い磁石片の配向度は、fc(max)と表される。複数個の磁石片のうち、配向度が最も低い磁石片の配向度は、fc(min)と表される。以上の前提に基づいて、希土類磁石の配向度fcのばらつきVfは、下記数式2で定義される。希土類磁石の配向度fcのばらつきVfは小さいほど好ましい。
Vf(%)=fc(max)−fc(min) (2)
The rare earth magnet is divided substantially equally to form a plurality of magnet pieces. For example, as shown in FIG. 8, the rectangular parallelepiped rare earth magnet 100 is equally divided to form nine magnet pieces a, b, c, d, e, f, g, h and i. However, the number of magnet pieces formed by division of the rare earth magnet is not limited to nine. Subsequently, the XRD pattern of each magnet piece is measured, and the degree of orientation fc of each magnet piece is calculated by the Lotgering method described above. For example, as shown in FIG. 8, in the measurement of the XRD pattern of each magnet piece, the plane on which X-rays are incident belongs to the plane 100s perpendicular to the central axis A (pulsed magnetic field H) of the double coil 15 in the orientation step. It may be the side that was The orientation degree of the magnet piece having the highest degree of orientation fc among the plurality of magnet pieces is expressed as fc (max). The orientation degree of the magnet piece having the lowest degree of orientation among the plurality of magnet pieces is expressed as fc (min). Based on the above premise, the variation Vf of the orientation degree fc of the rare earth magnet is defined by the following equation 2. The smaller the variation Vf in the orientation degree fc of the rare earth magnet, the better.
Vf (%) = fc (max)-fc (min) (2)

コイル17a及びコイル17b其々の内径が2Rで表され、中心軸Aに垂直な方向における成形体10の幅の最大値がWで表される場合、2RはW以上であってよい。つまり、2R/Wは1以上であってよい。例えば、図4及び図6中の(a)に示されるように、成形体10が直方体であり、中心軸Aに垂直な成形体10の表面が長方形である場合、成形体10の幅の最大値Wとは、中心軸Aに垂直な成形体10の表面の対角線Ldの長さに相当する。成形体10の表面の対角線Ldに沿って中心軸Aに平行に切断された成形体10及びダブルコイル15其々の断面は、図5に示される。   When the inner diameter of each of the coil 17a and the coil 17b is represented by 2R and the maximum value of the width of the molded body 10 in the direction perpendicular to the central axis A is represented by W, 2R may be W or more. That is, 2R / W may be 1 or more. For example, as shown in (a) in FIGS. 4 and 6, when the molded body 10 is a rectangular solid and the surface of the molded body 10 perpendicular to the central axis A is rectangular, the maximum width of the molded body 10 is The value W corresponds to the length of the diagonal Ld of the surface of the molded body 10 perpendicular to the central axis A. The cross section of each of the molded body 10 and the double coil 15 cut parallel to the central axis A along the diagonal Ld of the surface of the molded body 10 is shown in FIG.

2RがW以上であることにより、成形体10の全体がダブルコイル15の内側に収まり易く、パルス磁場Hが成形体10の全体に均一に作用し易い。その結果、成形体10における合金粉末の配向度のばらつきが抑制され易く、希土類磁石における配向度のばらつきも抑制され易く、希土類磁石の変形も抑制され易い。同様の理由から、2R/Wは、0.9以上7.5以下、1.7以上7.5以下、2.8以上7.5以下、3.7以上7.5以下、又は5.0以上7.5以下であってもよい。この順に2R/Wが狭まるに伴って、配向度のばらつきがさらに抑制され、希土類磁石の変形もさらに抑制される傾向がある。   When 2R is equal to or greater than W, the entire compact 10 is likely to fit inside the double coil 15, and the pulse magnetic field H is likely to act uniformly on the entire compact 10. As a result, the variation in the degree of orientation of the alloy powder in the compact 10 is easily suppressed, the variation in the degree of orientation in the rare earth magnet is also easily suppressed, and the deformation of the rare earth magnet is also easily suppressed. For the same reason, 2R / W is 0.9 or more and 7.5 or less, 1.7 or more and 7.5 or less, 2.8 or more and 7.5 or less, 3.7 or more and 7.5 or less, or 5.0 It may be 7.5 or less. As 2R / W narrows in this order, the variation in the degree of orientation is further suppressed, and the deformation of the rare earth magnet tends to be further suppressed.

成形体10の上面(中心軸Aに垂直な成形体10の表面)の形状は、図6中の(a)に示される多角形に限定されない。図6中の(b)に示されるように、成形体10aの断面(中心軸Aに平行な面方向における成形体10の断面)又は側面が、semi−cylindrical形であってもよい。図7中の(a)に示されるように、成形体10bの断面(中心軸Aに平行な面方向における成形体10の断面)又は側面が、C字形であってもよい。図7中の(b)に示されるように、成形体10cの上面(中心軸Aに垂直な成形体10の表面)は、円形であってもよい。これらの成形体の形状に関わらず、2RがW以上であることにより、パルス磁場Hが成形体の全体に均一に作用し易い。   The shape of the top surface of the molded body 10 (the surface of the molded body 10 perpendicular to the central axis A) is not limited to the polygon shown in (a) in FIG. As shown in (b) in FIG. 6, the cross section of the molded body 10a (the cross section of the molded body 10 in the plane direction parallel to the central axis A) or the side surface may have a semi-cylindrical shape. As shown in (a) in FIG. 7, the cross section of the molded body 10 b (the cross section of the molded body 10 in the plane direction parallel to the central axis A) or the side surface may be C-shaped. As shown in (b) in FIG. 7, the upper surface of the molded body 10 c (the surface of the molded body 10 perpendicular to the central axis A) may be circular. Regardless of the shape of these compacts, when 2R is W or more, the pulse magnetic field H tends to act uniformly on the entire compact.

コイル17a及びコイル17b其々の内径が2Rで表され、中心軸Aに平行な方向における二つのコイル間の距離がDで表される場合、D/2Rが0より大きく0.55以下であってよい。D/2Rが0より大きく0.55以下である場合、ダブルコイル15によって発生するパルス磁場Hの方向及び強度が一様になり易い。その結果、成形体10における合金粉末の配向度のばらつきが抑制され易く、希土類磁石における配向度のばらつきも抑制され易く、希土類磁石の変形も抑制され易い。同様の理由から、D/2Rは、0.17以上0.55以下、好ましくは0.17以上0.48以下、より好ましくは0.23以上0.43以下であってもよい。   When the inner diameter of each of the coil 17a and the coil 17b is represented by 2R and the distance between the two coils in the direction parallel to the central axis A is represented by D, D / 2R is greater than 0 and 0.55 or less You may When D / 2R is more than 0 and not more than 0.55, the direction and the intensity of the pulse magnetic field H generated by the double coil 15 tend to be uniform. As a result, the variation in the degree of orientation of the alloy powder in the compact 10 is easily suppressed, the variation in the degree of orientation in the rare earth magnet is also easily suppressed, and the deformation of the rare earth magnet is also easily suppressed. For the same reason, D / 2R may be 0.17 or more and 0.55 or less, preferably 0.17 or more and 0.48 or less, and more preferably 0.23 or more and 0.43 or less.

パルス磁場Hは、交番磁場(alternating magnetic field)であってよい。つまりパルス磁場Hは、時間の経過に伴って強度及び方向の変化を繰り返す磁場であってよい。パルス磁場Hは、減衰する交番磁場であってよい。換言すると、パルス磁場Hは、時間の経過に伴って反転を繰り返しながら減衰してよい。パルス磁場Hの一例は、図9に示される。図9の縦軸は、パルス磁場Hの磁束密度(単位:T)であり、図9の横軸は、時間(単位:秒)である。図9に示されるように、成形体10に最初に印加される磁場のパルス波(第一パルス波PW1)の最大強度(振幅)は、第一パルス波PW1に続いて成形体10に印加される磁場のパルス波(第二パルス波PW2)の最大強度よりも大きくてよい。第二パルス波PW2の方向は、第一パルス波PW1の方向と逆であってよい。第一パルス波PW1の印加により、成形体10を構成する合金粉末を配向させ、第二パルス波PW2の印加により、成形体10を脱磁(degauss)してもよい。交番磁場の発生方法は、交流方式又は直流反転方式であってよい。   The pulsed magnetic field H may be an alternating magnetic field. That is, the pulsed magnetic field H may be a magnetic field that repeats the change in intensity and direction as time passes. The pulsed magnetic field H may be an alternating magnetic field that decays. In other words, the pulse magnetic field H may be attenuated while repeating inversion as time passes. An example of the pulsed magnetic field H is shown in FIG. The vertical axis of FIG. 9 is the magnetic flux density (unit: T) of the pulse magnetic field H, and the horizontal axis of FIG. 9 is time (unit: second). As shown in FIG. 9, the maximum intensity (amplitude) of the pulse wave (the first pulse wave PW1) of the magnetic field initially applied to the formed body 10 is applied to the formed body 10 following the first pulse wave PW1. May be larger than the maximum intensity of the pulse wave of the magnetic field (second pulse wave PW2). The direction of the second pulse wave PW2 may be opposite to the direction of the first pulse wave PW1. The alloy powder constituting the compact 10 may be oriented by the application of the first pulse wave PW1, and the compact 10 may be degaussed by the application of the second pulse wave PW2. The method of generating the alternating magnetic field may be an alternating current method or a direct current inversion method.

型2内の成形体10に印加するパルス磁場Hの強度は、例えば、796kA/m以上5173kA/m以下(10kOe以上65kOe以下)、又は2387kA/m以上3979kA/m以下(30kOe以上50kOe以下)であってよい。パルス磁場Hの強度が796kA/m以上である場合、合金粉末の配向度が十分に向上し易い。合金粉末の配向度が高いほど、得られる希土類磁石の残留磁束密度Brが高まり易い。パルス磁場Hの強度が5173kA/mを超える場合、パルス磁場Hの強度が増加しても合金粉末の配向度が向上し難くなる。また、パルス磁場Hの強度が5173kA/mを超える場合、大型の磁場発生装置が必要になり、配向工程に係る費用が高くなる。型2内の成形体10に印加するパルス磁場の強度は、必ずしも上記の範囲に限定されない。   The strength of the pulse magnetic field H applied to the compact 10 in the mold 2 is, for example, 796 kA / m to 5173 kA / m (10 kOe to 65 kOe), or 2387 kA / m to 3979 kA / m (30 kOe to 50 kOe). May be there. When the intensity of the pulse magnetic field H is 796 kA / m or more, the degree of orientation of the alloy powder is likely to be sufficiently improved. The higher the degree of orientation of the alloy powder, the higher the residual magnetic flux density Br of the obtained rare earth magnet. When the intensity of the pulse magnetic field H exceeds 5173 kA / m, it becomes difficult to improve the degree of orientation of the alloy powder even if the intensity of the pulse magnetic field H increases. In addition, when the intensity of the pulse magnetic field H exceeds 5173 kA / m, a large-sized magnetic field generator is required, and the cost of the alignment process becomes high. The intensity of the pulsed magnetic field applied to the compact 10 in the mold 2 is not necessarily limited to the above range.

パルス磁場Hの持続時間は、例えば、10μ秒以上0.5秒以下であってよい。パルス磁場Hの持続時間とは、成形体10へのパルス磁場Hの印加を開始した時点から印加を終了するまでの時間である。パルス磁場Hの持続時間が10μ秒以上である場合、合金粉末の配向度が十分に高まり易い。パルス磁場Hの持続時間が長い程、パルス磁場Hを発生させるダブルコイル15における発熱量が大きくなり、電力が浪費される傾向がある。パルス磁場Hとして最初に成形体10へ印加される第一パルス波PW1の周期は、例えば、0.01ミリ秒以上100ミリ秒以下、好ましくは1ミリ秒以上30ミリ秒以下であってよい。第一パルス波PW1の周期が上記の範囲内である場合、個々の合金粉末の回転がパルス磁場Hの印加に追随し易く、合金粉末が配向し易い。その結果、最終的に得られる希土類磁石の磁気特性(例えば残留磁束密度Br)が向上し易い。流動性の高い合金粉末及び流動性の低い合金粉末のいずれを用いた場合であっても、第一パルス波PW1の周期が短いほど、合金粉末の配向度が向上して、希土類磁石の残留磁束密度Brが高まる傾向がある。   The duration of the pulse magnetic field H may be, for example, 10 μsec or more and 0.5 sec or less. The duration of the pulse magnetic field H is the time from the start of the application of the pulse magnetic field H to the molded body 10 to the end of the application. When the duration of the pulse magnetic field H is 10 μsec or more, the degree of orientation of the alloy powder tends to be sufficiently increased. The longer the duration of the pulse magnetic field H, the larger the amount of heat generation in the double coil 15 that generates the pulse magnetic field H, and power tends to be wasted. The period of the first pulse wave PW1 first applied to the compact 10 as the pulse magnetic field H may be, for example, 0.01 ms or more and 100 ms or less, preferably 1 ms or more and 30 ms or less. When the period of the first pulse wave PW1 is within the above range, the rotation of the individual alloy powder tends to follow the application of the pulse magnetic field H, and the alloy powder tends to be oriented. As a result, the magnetic properties (for example, residual magnetic flux density Br) of the finally obtained rare earth magnet can be easily improved. Even in the case of using either the high flowability alloy powder or the low flowability alloy powder, the shorter the period of the first pulse wave PW1, the better the degree of orientation of the alloy powder, and the residual magnetic flux of the rare earth magnet The density Br tends to increase.

パルス磁場Hは、従来の高圧磁場プレス法で多用された静磁場に比べ、高い磁場強度を有しており、短時間で成形体10へ印加される。したがって、パルス磁場Hを用いた配向工程により、静磁場を用いる場合に比べて、短時間で配向度の高い成形体10が得られ、結果的に残留磁束密度Brの高い希土類磁石を製造される。ただし、仮に電気伝導体(例えば金属)から構成される型内に保持された成形体10にパルス磁場Hが印加されると、静磁場が印加される場合に比べて、型に作用する磁場の強度が短時間で急激に変化するため、電磁誘導によって渦電流が型に流れ易く、逆磁場が生じ易い。   The pulse magnetic field H has a magnetic field strength higher than that of the static magnetic field frequently used in the conventional high-pressure magnetic field pressing method, and is applied to the compact 10 in a short time. Therefore, by the orientation process using the pulse magnetic field H, the compact 10 having a high degree of orientation can be obtained in a short time as compared to the case where the static magnetic field is used, and as a result, a rare earth magnet having a high residual magnetic flux density Br is manufactured. . However, if a pulse magnetic field H is applied to the molded body 10 held in a mold made of an electrical conductor (for example, metal), the magnetic field acting on the mold will be lower than when a static magnetic field is applied. Since the intensity rapidly changes in a short time, the eddy current is likely to flow to the mold by electromagnetic induction, and the reverse magnetic field is easily generated.

パルス磁場Hの印加に伴う衝撃によって、型2がダブルコイル15内で動くことがある。型2が動くことにより、型2に隙間が生じて、合金粉末が隙間から漏れることがある。したがって、型2の動きを抑制するために、ダブルコイル15内に配置される型2を冶具等で固定してよい。   The impact associated with the application of the pulsed magnetic field H may cause the mold 2 to move within the double coil 15. The movement of the mold 2 may cause a gap in the mold 2 and the alloy powder may leak from the gap. Therefore, in order to suppress the movement of the mold 2, the mold 2 disposed in the double coil 15 may be fixed by a jig or the like.

型2の一部又は全部は、非磁性体(強磁性体でない物質)から形成されていてよい。換言すれば、型2の一部又は全部は、反磁性体、常磁性体及び反強磁性体からなる群より選ばれる少なくとも一種から形成されていてよい。型2の一部又は全部が非磁性体から形成されている場合、配向工程において型2自体の磁性に起因する型2の振動が抑制され易く、型2内に保持された成形体の破損が抑制され易い。型2に含まれる非磁性体は、例えば、後述される樹脂であってよい。樹脂以外の非磁性体として、例えばステンレス鋼、アルミニウム、モリブデン、タングステン、炭素質材料、及びセラミックスからなる群より選ばれる少なくとも一種が型2に含まれていてもよい。下型8、側型6、及び上型4の全てが非磁性体から形成されていてよい。下型8、側型6、及び上型4のうち、側型6のみが非磁性体から形成されていてよい。下型8、側型6、及び上型4のうち、下型8のみが非磁性体から形成されていてもよい。下型8、側型6、及び上型4のうち、上型4のみが非磁性体から形成されていてもよい。下型8、側型6、及び上型4のうち、側型6及び上型4が非磁性体から形成されていてもよく、下型8は非磁性体以外の組成物から形成されてよい。下型8、側型6、及び上型4のうち、下型8及び側型6が非磁性体から形成されていてもよく、上型4は非磁性体以外の組成物から形成されてよい。下型8、側型6、及び上型4のうち、下型8及び上型4が非磁性体から形成されていてもよく、側型6は非磁性体以外の組成物から形成されてよい。   Part or all of the mold 2 may be formed of nonmagnetic material (nonferromagnetic material). In other words, part or all of the mold 2 may be formed of at least one selected from the group consisting of a diamagnetic body, a paramagnetic body and an antiferromagnetic body. When part or all of the mold 2 is formed of a nonmagnetic material, the vibration of the mold 2 due to the magnetism of the mold 2 itself is easily suppressed in the orientation step, and breakage of the molded body held in the mold 2 It is easy to be suppressed. The nonmagnetic material contained in the mold 2 may be, for example, a resin described later. As the nonmagnetic material other than resin, for example, at least one selected from the group consisting of stainless steel, aluminum, molybdenum, tungsten, a carbonaceous material, and ceramics may be included in the mold 2. The lower mold 8, the side mold 6, and the upper mold 4 may all be formed of nonmagnetic material. Of the lower mold 8, the side mold 6, and the upper mold 4, only the side mold 6 may be formed of a nonmagnetic material. Of the lower mold 8, the side mold 6, and the upper mold 4, only the lower mold 8 may be formed of a nonmagnetic material. Of the lower mold 8, the side mold 6, and the upper mold 4, only the upper mold 4 may be formed of a nonmagnetic material. Of the lower mold 8, the side mold 6, and the upper mold 4, the side mold 6 and the upper mold 4 may be formed of a nonmagnetic material, and the lower mold 8 may be formed of a composition other than the nonmagnetic material. . Of the lower mold 8, the side mold 6 and the upper mold 4, the lower mold 8 and the side mold 6 may be formed of a nonmagnetic material, and the upper mold 4 may be formed of a composition other than a nonmagnetic material . Of the lower mold 8, the side mold 6, and the upper mold 4, the lower mold 8 and the upper mold 4 may be formed of a nonmagnetic material, and the side mold 6 may be formed of a composition other than the nonmagnetic material .

型2の一部又は全部は、樹脂から形成されていてもよい。型2の一部又は全部が、樹脂から形成されている場合、型2内に配置された金属粉末にパルス磁場Hを印加する際に、型2において渦電流が流れ難く、逆磁場も発生し難い。したがって、成形体10を構成する金属粉末が逆磁場によって型2の表面に引き寄せられる現象が抑制される。その結果、成形体10の密度が均一になり易く、焼結工程において焼結体(希土類磁石)に亀裂が発生し難くなる。また配向工程において渦電流及び逆磁場を抑制することにより、金属粉末の配向度が向上し、結果的に希土類磁石の磁気特性も向上する。さらに型2の一部又は全部が樹脂から形成されているため、配向工程において、渦電流損に起因する型2の温度上昇が抑制され、型2自体に瞬間的に衝撃(磁力)が作用し難い。その結果、型2が消耗し難くなる。   Part or all of the mold 2 may be formed of a resin. When part or all of the mold 2 is formed of resin, when applying a pulse magnetic field H to the metal powder disposed in the mold 2, eddy current does not easily flow in the mold 2 and a reverse magnetic field is also generated. hard. Therefore, the phenomenon in which the metal powder constituting the molded body 10 is attracted to the surface of the mold 2 by the reverse magnetic field is suppressed. As a result, the density of the molded body 10 is likely to be uniform, and cracks are less likely to occur in the sintered body (rare earth magnet) in the sintering step. Further, by suppressing the eddy current and the reverse magnetic field in the orientation step, the degree of orientation of the metal powder is improved, and as a result, the magnetic properties of the rare earth magnet are also improved. Furthermore, since part or all of the mold 2 is formed of resin, temperature increase of the mold 2 due to eddy current loss is suppressed in the orientation step, and impact (magnetic force) acts instantaneously on the mold 2 itself. hard. As a result, the mold 2 becomes difficult to wear out.

仮に金型内に保持された成形体10にパルス磁場Hを印加する場合、金型を構成する金属(例えば鉄)の飽和磁束密度が限られているため、金型内の成形体10に実効的に作用する磁場の強度は、金型外のパルス磁場Hの強度よりも低い。しかし、型2が樹脂から形成されている場合、強いパルス磁場Hを型2内の成形体10へ印加することができる。   If the pulse magnetic field H is applied to the molded body 10 temporarily held in the mold, the saturation magnetic flux density of the metal (for example, iron) constituting the mold is limited, so that the molded body 10 in the mold is effective. The strength of the acting magnetic field is lower than the strength of the pulse magnetic field H outside the mold. However, if the mold 2 is made of resin, a strong pulsed magnetic field H can be applied to the compact 10 in the mold 2.

型2を構成する樹脂は絶縁性樹脂であってよい。絶縁性樹脂から構成される型2を用いることにより、配向工程において、渦電流及び逆磁場が抑制され易く、型2自体に瞬間的に衝撃が作用し難い。樹脂の抵抗率は、例えば、1Ω・m以上1×1020Ω・m以下、好ましくは1×10Ω・m以上1×1016Ω・m以下であってよい。このように抵抗率が高い樹脂から型2を形成することにより、配向工程において、渦電流及び逆磁場が抑制され易く、型2自体に瞬間的に衝撃が作用し難い。型2の形成に用いられる樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリエチレン・テレフタレート、ポリプロピレン、ポリスチレン、ABS樹脂(アクリロニトリル、ブタジエン及びスチレンの共重合体)、エチルセルロース、パラフィンワックス、スチレン・ブタジエン共重合体、エチレン・酢酸ビニル共重合体、エチレン・エチルアクリレート共重合体、アタクチック・ポリプロピレン、メタクリル酸共重合体、ポリアミド、ポリブテン、ポリビニルアルコール、フェノール樹脂及びポリエステル樹脂、及びシリコン樹脂(silicone)からなる群より選ばれる一種又は複数種であってよい。金属及び黒鉛よりも抵抗率が高い導電性プラスチックから構成される型2を用いてもよい。その結果、型2の帯電が抑制され、型2の帯電に起因する合金粉末の型2への付着が抑制される。 The resin constituting the mold 2 may be an insulating resin. By using the mold 2 made of an insulating resin, eddy current and reverse magnetic field are easily suppressed in the orientation step, and it is difficult for an impact to act instantaneously on the mold 2 itself. The resistivity of the resin may be, for example, 1 Ω · m or more and 1 × 10 20 Ω · m or less, preferably 1 × 10 9 Ω · m or more and 1 × 10 16 Ω · m or less. By forming the mold 2 from a resin having a high resistivity in this manner, eddy currents and a reverse magnetic field are easily suppressed in the orientation step, and it is difficult for an impact to act instantaneously on the mold 2 itself. The resin used to form mold 2 is, for example, acrylic resin, polyethylene, polyethylene terephthalate, polypropylene, polystyrene, ABS resin (copolymer of acrylonitrile, butadiene and styrene), ethyl cellulose, paraffin wax, styrene butadiene copolymer Ethylene / vinyl acetate copolymer, ethylene / ethyl acrylate copolymer, atactic polypropylene, methacrylic acid copolymer, polyamide, polybutene, polyvinyl alcohol, phenol resin and polyester resin, and silicone resin (silicone) It may be one or more selected. You may use the type | mold 2 comprised from electroconductive plastics whose resistivity is higher than metal and graphite. As a result, charging of the mold 2 is suppressed, and adhesion of the alloy powder to the mold 2 due to charging of the mold 2 is suppressed.

型2において渦電流が流れる部分と成形体10との接触面積が広い程、渦電流に起因する焼結体の亀裂、及び磁気特性の劣化が起き易い。本実施形態では、下型8、側型6、及び上型4のうち、側型6と成形体10との接触面積が、下型8及び上型4其々と成形体10との接触面積よりも広い。したがって、下型8、側型6、及び上型4のうち、少なくとも側型6が樹脂から形成されていてよい。成形体10と接触する面積が広い側型6を樹脂から形成することにより、側型6における渦電流及び逆磁場の発生が効果的に抑制され、渦電流及び逆磁場に起因する希土類磁石の亀裂及び磁気特性の劣化が抑制され易くなる。   As the contact area between the portion where the eddy current flows in the mold 2 and the compact 10 is wider, cracking of the sintered body due to the eddy current and deterioration of the magnetic characteristics are more likely to occur. In the present embodiment, among the lower mold 8, the side mold 6 and the upper mold 4, the contact area between the side mold 6 and the molded body 10 is the contact area between the lower mold 8 and the upper mold 4 and the molded body 10. It is wider than. Therefore, at least the side mold 6 of the lower mold 8, the side mold 6, and the upper mold 4 may be formed of a resin. By forming the side mold 6 having a large area in contact with the molded body 10 from resin, generation of eddy current and reverse magnetic field in the side mold 6 is effectively suppressed, and cracking of the rare earth magnet caused by eddy current and reverse magnetic field And deterioration of the magnetic properties are easily suppressed.

型2のうち、樹脂から形成される部分の位置は限定されない。型2の寸法及び形状、又はパルス磁場Hの方向に応じて、型2のうち渦電流を抑制する必要がある部分を樹脂から形成すればよい。例えば、型2のうち、合金粉末を配向させるパルス磁場Hの方向に対して周回する回路を形成する部分において、渦電流及び逆磁場が生じ易い。すなわち、側型6の貫通部(側型6の内壁6a)がパルス磁場Hの方向と平行となる場合において、渦電流及び逆磁場が生じ易い。したがって、型2のうち、合金粉末を配向させるパルス磁場Hの方向に対して、周回する回路を形成する部分である側型6が樹脂から形成される場合、渦電流及び逆磁場が抑制され易い。   In the mold 2, the position of the portion formed of the resin is not limited. Depending on the size and shape of the mold 2 or the direction of the pulse magnetic field H, the part of the mold 2 in which the eddy current needs to be suppressed may be formed of resin. For example, in the part of the mold 2 that forms a circuit that circulates in the direction of the pulse magnetic field H that orients the alloy powder, an eddy current and a reverse magnetic field easily occur. That is, when the penetration part of the side die 6 (the inner wall 6a of the side die 6) is parallel to the direction of the pulse magnetic field H, an eddy current and a reverse magnetic field are easily generated. Therefore, in the case where the side mold 6 which is a portion forming the circuit which circulates in the direction of the pulse magnetic field H for orienting the alloy powder in the mold 2 is formed from resin, the eddy current and the reverse magnetic field are easily suppressed .

下型8、側型6、及び上型4の全てが樹脂から形成されていてよい。下型8、側型6、及び上型4のうち、側型6のみが樹脂から形成されていてよい。下型8、側型6、及び上型4のうち、下型8のみが樹脂から形成されていてもよい。下型8、側型6、及び上型4のうち、上型4のみが樹脂から形成されていてもよい。下型8、側型6、及び上型4のうち、側型6及び上型4が樹脂から形成されていてもよく、下型8は樹脂以外の組成物から形成されてよい。下型8、側型6、及び上型4のうち、下型8及び側型6が樹脂から形成されていてもよく、上型4は樹脂以外の組成物から形成されてよい。下型8、側型6、及び上型4のうち、下型8及び上型4が樹脂から形成されていてもよく、側型6は樹脂以外の組成物から形成されてよい。型2の一部が樹脂から形成されている場合、型2のうち樹脂以外の部分は、例えば、鉄、ケイ素鋼、ステンレス、パーマロイ、アルミニウム、モリブデン、タングステン、炭素質材料、セラミックス、及びシリコン樹脂からなる群より選ばれる少なくとも一種から形成されていてよい。型2のうち樹脂以外の部分は、合金(例えば、アルミニウム合金)から形成されていてもよい。   The lower mold 8, the side mold 6, and the upper mold 4 may all be formed of resin. Of the lower mold 8, the side mold 6, and the upper mold 4, only the side mold 6 may be formed of a resin. Of the lower mold 8, the side mold 6, and the upper mold 4, only the lower mold 8 may be formed of a resin. Of the lower mold 8, the side mold 6, and the upper mold 4, only the upper mold 4 may be formed of a resin. Of the lower mold 8, the side mold 6, and the upper mold 4, the side mold 6 and the upper mold 4 may be formed of a resin, and the lower mold 8 may be formed of a composition other than a resin. Of the lower mold 8, the side mold 6, and the upper mold 4, the lower mold 8 and the side mold 6 may be formed of a resin, and the upper mold 4 may be formed of a composition other than a resin. Of the lower mold 8, the side mold 6, and the upper mold 4, the lower mold 8 and the upper mold 4 may be formed of a resin, and the side mold 6 may be formed of a composition other than a resin. When a part of the mold 2 is formed of resin, the part of the mold 2 other than the resin is, for example, iron, silicon steel, stainless steel, permalloy, aluminum, molybdenum, tungsten, carbonaceous material, ceramics, and silicon resin And at least one selected from the group consisting of The portion of the mold 2 other than the resin may be formed of an alloy (for example, an aluminum alloy).

仮に、下型8、側型6、及び上型4の全てが金属から形成されている場合、成形工程において側型6と上型4との摩擦により、金属屑が側型6又は上型4の表面から脱離して、成形体10に混入する場合がある。成形体10に混入した金属屑(例えば、アルミニウム又はアルミニウム合金)は、最終的に得られる希土類磁石の磁気特性を損なう場合がある。対照的に、型2の一部又は全部が樹脂から形成されている場合、型2が金属のみから構成されている場合に比べて、型2の摩耗屑(樹脂)が希土類磁石の磁気特性に及ぼす影響が抑制される。例えば、成形工程において摩擦し合う側型6及び上型4のうち、一方(例えば、側型6)が樹脂であり、他方(例えば、上型4)が金属である場合、側型6と上型4との摩擦により、金属屑の代わりに、金属よりも硬度が低い樹脂屑が生じ易い。樹脂屑は、金属屑に比べて、希土類磁石の磁気特性を損ない難い。例えば、側型6のみが樹脂から形成され、下型8及び上型4が、金属(例えば、アルミニウム又はアルミニウム合金)から形成されていてよい。   If all of the lower mold 8, the side mold 6, and the upper mold 4 are made of metal, metal scraps are scraped from the side mold 6 or the upper mold 4 due to the friction between the side mold 6 and the upper mold 4 in the molding process. And may be mixed into the molded body 10. Metal scrap (e.g., aluminum or aluminum alloy) mixed in the compact 10 may impair the magnetic properties of the finally obtained rare earth magnet. In contrast, when part or all of the mold 2 is formed of resin, wear debris (resin) of the mold 2 affects the magnetic characteristics of the rare earth magnet as compared to the case where the mold 2 is made of metal only. The impact is reduced. For example, when one of the side molds 6 and the upper mold 4 which rubs in the molding process (for example, the side mold 6) is a resin and the other (for example, the upper mold 4) is a metal, The friction with the mold 4 tends to generate resin scrap having a hardness lower than that of metal instead of metal scrap. Resin scrap is less likely to damage the magnetic properties of the rare earth magnet than metal scrap. For example, only the side mold 6 may be formed of a resin, and the lower mold 8 and the upper mold 4 may be formed of a metal (eg, aluminum or an aluminum alloy).

焼結過程におけるネオジム磁石の収縮率には異方性があるため、収縮後のネオジム磁石(焼結体)の形状(特に複雑な形状)を精密に予測することは困難である。したがって、ネットシェイプのためには、型2の寸法及び形状を調整するための試行錯誤が必要であり、型2の材料としては、切削し易い樹脂が適している。つまり、多様な用途に応じた多品種の希土類磁石を効率的に製造するためには、樹脂から形成された型2が適している。従来の金型は、加工し難く、高価であるため、多様な用途に応じた多品種の希土類磁石の製造に適していない。   Since the contraction rate of the neodymium magnet in the sintering process is anisotropic, it is difficult to accurately predict the shape (especially complicated shape) of the neodymium magnet (sintered body) after contraction. Therefore, for the net shape, trial and error are required to adjust the size and shape of the mold 2, and as the material of the mold 2, a resin that is easy to cut is suitable. That is, in order to efficiently produce a wide variety of rare earth magnets according to various applications, the mold 2 made of resin is suitable. Conventional molds are difficult to process and expensive, so they are not suitable for producing a wide variety of rare earth magnets suitable for various applications.

同一の型2を用いた成形工程及び配向工程を繰り返す場合、成形及び配向の度に型2内を清掃してよい。例えば、型2内に残った余分な合金粉末を磁場で吸引することによって、型2内を清掃してよい。成形及び配向の度に型2内を清掃することにより、型2内で成形される合金粉末の秤量の精度が向上し、得られる成形体10の密度及び寸法のばらつきが抑制される。その結果、最終的に得られる希土類磁石の密度、寸法及び磁気特性のばらつきが抑制される。仮に、型2が強磁性を有する金属(例えば鉄)から形成されている場合、型2内を清掃する際に、型2自体が磁場によって吸引されるので、型2を清掃し難い。しかし、型2が、強磁性を有しない樹脂から形成されている場合、型2自体が磁場によって吸引されないので、型2内を清掃し易い。仮に、型2が強磁性を有する金属(例えば鉄)から形成されている場合、配向工程において型2自体が着磁して、合金粉末が型2に付着してしまうため、合金粉末の配向度が乱れたり、成形体10の保形性が損なわれたりする。しかし、樹脂から構成される型2を用いることにより、型2自体の着磁が抑制される。   When the molding process and orientation process using the same mold 2 are repeated, the inside of the mold 2 may be cleaned each time of molding and orientation. For example, the inside of the mold 2 may be cleaned by attracting the excess alloy powder remaining in the mold 2 with a magnetic field. By cleaning the inside of the mold 2 at each molding and orientation, the accuracy of weighing of the alloy powder molded in the mold 2 is improved, and variations in density and size of the obtained molded body 10 are suppressed. As a result, variations in density, size and magnetic properties of the finally obtained rare earth magnet are suppressed. If the mold 2 is formed of a ferromagnetic metal (for example, iron), the mold 2 itself is attracted by a magnetic field when cleaning the inside of the mold 2, and it is difficult to clean the mold 2. However, when the mold 2 is formed of a resin having no ferromagnetism, the inside of the mold 2 is easy to clean because the mold 2 itself is not attracted by the magnetic field. If the mold 2 is formed of a metal (for example, iron) having ferromagnetism, the mold 2 itself is magnetized in the orientation step, and the alloy powder adheres to the mold 2. Therefore, the degree of orientation of the alloy powder Or the shape retention of the molded body 10 is impaired. However, by using the mold 2 made of resin, the magnetization of the mold 2 itself is suppressed.

合金粉末を型2内へ供給しながら、型2内で成形される合金粉末の質量を、型2の質量と合わせて、測定してもよい。型2内で成形される合金粉末の質量と、型2の質量と、を同時に測定する場合、型2の質量が重い程、秤の精度が低下して、合金粉末自体の質量の測定の精度も低下する。しかし、従来の金属よりも軽い樹脂から構成される型2を用いることにより、合金粉末の質量を型2自体の質量と共に高い精度で測定することができる。   While supplying the alloy powder into the mold 2, the mass of the alloy powder to be formed in the mold 2 may be measured in combination with the mass of the mold 2. When simultaneously measuring the mass of the alloy powder molded in the mold 2 and the mass of the mold 2, the heavier the mass of the mold 2, the lower the accuracy of the balance, and the accuracy of the measurement of the mass of the alloy powder itself Also falls. However, by using the mold 2 made of a resin lighter than the conventional metal, it is possible to measure the mass of the alloy powder together with the mass of the mold 2 itself with high accuracy.

型2内の合金粉末を加圧しながら、合金粉末をパルス磁場Hで配向させてもよい。つまり、配向工程においても、型2内の成形体10を圧縮してよい。型2が成形体10に及ぼす圧力は、上記の理由により、0.049MPa以上20MPa以下に調整してよい。   The alloy powder may be oriented in a pulse magnetic field H while pressing the alloy powder in the mold 2. That is, also in the orientation step, the compact 10 in the mold 2 may be compressed. The pressure exerted on the compact 10 by the mold 2 may be adjusted to 0.049 MPa or more and 20 MPa or less for the above-mentioned reason.

分離工程では、型2の少なくとも一部を、成形体10から分離する。例えば、分離工程では、上型4及び側型6を成形体10から分離・除去することにより、成形体10を下型8の上に載置してよい。成形体10を保持した側型6及び上型4を下型8から分離して、成形体10を保持した側型6及び上型4を加熱工程用トレイの上に載置してもよい。そして、側型6及び上型4を成形体10から分離して、成形体10を加熱工程用トレイに載置してもよい。上型4及び側型6のうち一方又は両方は、分解及び組立てが可能であってよい。分離工程において、上型4及び側型6のうち一方又は両方を分解することにより、上型4及び側型6のうち一方又は両方を成形体10から外してよい。   In the separation step, at least a part of the mold 2 is separated from the compact 10. For example, in the separation step, the molded body 10 may be placed on the lower mold 8 by separating and removing the upper mold 4 and the side mold 6 from the molded body 10. The side mold 6 and the upper mold 4 holding the molded body 10 may be separated from the lower mold 8, and the side mold 6 and the upper mold 4 holding the molded body 10 may be placed on the heating process tray. Then, the side mold 6 and the upper mold 4 may be separated from the compact 10 and the compact 10 may be placed on the heating process tray. One or both of the upper mold 4 and the side mold 6 may be capable of disassembly and assembly. In the separation step, one or both of the upper mold 4 and the side mold 6 may be removed from the molded body 10 by decomposing one or both of the upper mold 4 and the side mold 6.

成形工程及び配向工程を経た成形体10(加熱工程前の成形体10)の密度は、3.0g/cm以上4.4g/cm以下、好ましくは3.2g/cm以上4.2g/cm以下、より好ましくは3.4g/cm以上4.0g/cm以下に調整されていてよい。成形体10の密度は、例えば、型2が成形体10に及ぼす圧力によって調整されてよい。成形体10の密度は、例えば、型2内に供給される合金粉末の質量によって調整されてもよい。 The density of the formed body 10 (the formed body 10 before the heating step) subjected to the forming step and the orientation step is 3.0 g / cm 3 or more and 4.4 g / cm 3 or less, preferably 3.2 g / cm 3 or more and 4.2 g / cm 3 or less, more preferably it has been adjusted to be equal to or less than 3.4 g / cm 3 or more 4.0 g / cm 3. The density of the shaped body 10 may be adjusted, for example, by the pressure exerted by the mold 2 on the shaped body 10. The density of the compact 10 may be adjusted, for example, by the mass of the alloy powder supplied into the mold 2.

分離工程に続いて、加熱工程を行ってよい。加熱工程では、成形体10を加熱して、成形体10の温度を200℃以上450℃以下に調整してよい。加熱工程では、成形体10の温度を200℃以上400℃以下、又は200℃以上350℃以下に調整してもよい。成形工程では、合金粉末にかかる圧力が、従来の高圧磁場プレス法よりも低いため、合金粉末が押し固まり難く、得られる成形体10が崩れ易い。しかし、加熱工程によって、成形体10の保形性が向上する。   Following the separation step, a heating step may be performed. In the heating step, the temperature of the green body 10 may be adjusted to 200 ° C. or higher and 450 ° C. or lower by heating the green body 10. In the heating step, the temperature of the molded body 10 may be adjusted to 200 ° C. or more and 400 ° C. or less, or 200 ° C. or more and 350 ° C. or less. In the forming step, since the pressure applied to the alloy powder is lower than that of the conventional high-pressure magnetic field pressing method, the alloy powder is hard to be pressed and solidified, and the obtained molded body 10 is easily broken. However, the shape retention property of the molded body 10 is improved by the heating step.

加熱工程では、成形体10の温度が200℃以上になると、成形体10が固まり始めて、成形体10の保形性が向上する。換言すると、成形体10の温度が200℃以上になると、成形体10の機械的強度が向上する。成形体10の保形性が向上するため、成形体10の搬送、又は後工程における成形体10のハンドリングの際に、成形体10が破損し難い。例えば、成形体10を搬送用チャック(chuck)等により掴んで焼結用トレイ上に並べる際に、成形体10が崩れ難い。その結果、最終的に得られる希土類磁石の欠陥が抑制される。   In the heating step, when the temperature of the formed body 10 reaches 200 ° C. or more, the formed body 10 starts to solidify, and the shape retention property of the formed body 10 is improved. In other words, when the temperature of the formed body 10 becomes 200 ° C. or more, the mechanical strength of the formed body 10 is improved. Since the shape retention property of the molded body 10 is improved, the molded body 10 is less likely to be broken during transportation of the molded body 10 or handling of the molded body 10 in a later step. For example, when the green body 10 is gripped by a transport chuck or the like and arranged on the sintering tray, the green body 10 is unlikely to collapse. As a result, defects of the finally obtained rare earth magnet are suppressed.

仮に加熱工程において成形体10の温度が450℃を超えた場合、加熱工程後に実施される焼結工程において、成形体10に亀裂が形成され易い。亀裂が形成される原因は定かでない。例えば、加熱工程における成形体10の急激な温度上昇により、成形体10中に残存する水素が、ガスとして成形体10外へ吹き出すことで、成形体10に亀裂が形成される可能性がある。しかし、加熱工程において成形体10の温度を450℃以下に調整することにより、焼結工程における成形体10の亀裂が抑制される。その結果、最終的に得られる希土類磁石における亀裂も抑制され易い。また、加熱工程において成形体10の温度を450℃以下に調整するため、成形体10の昇温又は冷却に要する時間が抑制され、希土類磁石の生産性が向上する。また、加熱工程における成形体10の温度が450℃以下であり、一般的な焼結温度よりも低いため、型2の一部(例えば下型8)とともに成形体10を加熱したとしても、型2の劣化又は成形体10と型2との化学反応が起き難い。したがって、必ずしも耐熱性が高くない組成物(樹脂)から構成される型2であっても利用することができる。   If the temperature of the molded body 10 exceeds 450 ° C. in the heating step, cracks are likely to be formed in the molded body 10 in the sintering step performed after the heating step. It is not clear why the crack is formed. For example, there is a possibility that a crack may be formed in the compact 10 by blowing out the hydrogen remaining in the compact 10 as a gas to the outside of the compact 10 due to the rapid temperature rise of the compact 10 in the heating step. However, by adjusting the temperature of the green body 10 to 450 ° C. or less in the heating step, cracking of the green body 10 in the sintering step is suppressed. As a result, cracks in the finally obtained rare earth magnet are also easily suppressed. Moreover, in order to adjust the temperature of the molded object 10 to 450 degrees C or less in a heating process, the time which temperature rising or cooling of the molded object 10 requires is suppressed, and productivity of a rare earth magnet improves. In addition, since the temperature of the molded body 10 in the heating step is 450 ° C. or lower and lower than a general sintering temperature, even if the molded body 10 is heated with a part of the mold 2 (for example, the lower mold 8), It is difficult for the deterioration of No. 2 or the chemical reaction between the molded body 10 and the mold 2 to occur. Therefore, even the mold 2 composed of a composition (resin) which is not necessarily high in heat resistance can be used.

成形体10の温度を200℃以上450℃以下に調整することにより、成形体10の保形性が向上するメカニズムは明らかではない。例えば、合金粉末に添加されている有機物(例えば、潤滑剤)が、加熱工程において炭素になり、合金粉末(合金粒子)同士が炭素を介して結着される可能性がある。その結果、成形体10の保形性が向上するのかもしれない。仮に加熱工程において成形体10の温度が450℃を超えた場合、合金粉末を構成する金属の炭化物が生成したり、合金粉末(合金粒子)同士が直接焼結したりする可能性がある。一方、成形体10の温度が200℃以上450℃以下に調整される場合、金属の炭化物は必ずしも生成せず、合金粒子同士は必ずしも直接焼結しない。   By adjusting the temperature of the molded body 10 to 200 ° C. or more and 450 ° C. or less, the mechanism for improving the shape retention property of the molded body 10 is not clear. For example, an organic substance (for example, a lubricant) added to the alloy powder may become carbon in the heating step, and the alloy powder (alloy particles) may be bound to each other via the carbon. As a result, the shape retention of the molded body 10 may be improved. If the temperature of the molded body 10 exceeds 450 ° C. in the heating step, carbides of the metal constituting the alloy powder may be generated, or the alloy powders (alloy particles) may be directly sintered to each other. On the other hand, when the temperature of the formed body 10 is adjusted to 200 ° C. or more and 450 ° C. or less, metal carbides are not necessarily generated, and the alloy particles are not necessarily directly sintered.

加熱工程において成形体10の温度を200℃以上450℃以下に維持する時間は、特に限定されず、成形体10の寸法及び形状に応じて適宜調整すればよい。   The time for maintaining the temperature of the formed body 10 at 200 ° C. or more and 450 ° C. or less in the heating step is not particularly limited, and may be appropriately adjusted according to the size and shape of the formed body 10.

加熱工程では、赤外線を成形体10へ照射することにより、成形体10を加熱してよい。赤外線の照射(つまり輻射熱)によって成形体10を直接加熱することにより、伝導又は対流による加熱の場合に比べて、成形体10の昇温に要する時間が短縮され、生産効率及びエネルギー効率が高まる。ただし、加熱工程では、加熱炉内の熱伝導又は対流により、成形体10を加熱してもよい。赤外線の波長は、例えば、0.75μm以上1000μm以下、好ましくは0.75μm以上30μm以下であってよい。赤外線は、近赤外線、短波長赤外線、中波長赤外線、長波長赤外線(熱赤外線)、及び遠赤外線からなる群より選ばれる少なくとも一つであってよい。上記の赤外線のうち近赤外線は比較的金属に吸収され易い。したがって、近赤外線を成形体へ照射する場合、短時間で金属(合金粉末)を昇温し易い。一方、上記の赤外線のうち遠赤外線は比較的有機物に吸収され易く、金属(合金粉末)によって反射され易い。したがって、遠赤外線を成形体10へ照射する場合、上述した有機物(例えば、潤滑剤)が選択的に加熱され易く、有機物に起因する上記のメカニズムによって成形体10が硬化し易い。赤外線を成形体10へ照射する場合、例えば、赤外線ヒーター(セラミックヒーター等)又は赤外線ランプを用いてよい。   In the heating step, the formed body 10 may be heated by irradiating the formed body 10 with infrared radiation. By directly heating the formed body 10 by irradiation of infrared rays (that is, radiant heat), the time required for the temperature rise of the formed body 10 is shortened, and the production efficiency and the energy efficiency are increased, as compared with the case of heating by conduction or convection. However, in the heating step, the formed body 10 may be heated by heat conduction or convection in the heating furnace. The wavelength of the infrared light may be, for example, 0.75 μm or more and 1000 μm or less, preferably 0.75 μm or more and 30 μm or less. The infrared radiation may be at least one selected from the group consisting of near infrared radiation, short wavelength infrared radiation, middle wavelength infrared radiation, long wavelength infrared radiation (thermal infrared radiation), and far infrared radiation. Of the above infrared rays, near infrared rays are relatively easily absorbed by metals. Therefore, when irradiating a near infrared ray to a molded object, it is easy to heat up a metal (alloy powder) in a short time. On the other hand, among the above infrared rays, far infrared rays are relatively easily absorbed by the organic matter and easily reflected by the metal (alloy powder). Therefore, when far-infrared rays are irradiated to the molded object 10, the organic substance (for example, lubricant) mentioned above is easily heated selectively, and the molded object 10 tends to be hardened by the above-mentioned mechanism resulting from the organic substance. When irradiating the infrared rays to the molded body 10, for example, an infrared heater (ceramic heater or the like) or an infrared lamp may be used.

型2の一部又は全部と分離された成形体10を加熱工程において加熱する場合、加熱による型2の劣化(例えば、型2の変形、硬化又は摩耗)が抑制され易く、成形体10と型2との焼き付きも抑制され易い。また型2の一部又は全部と分離された成形体10を加熱する場合、型2が熱を断熱し難く、成形体10が加熱され易い。その結果、成形体10の保形性が向上する。型2の一部又は全部と分離された成形体10を加熱する場合、型2が成形体10と化学的に反応する可能性が低い。そのため、必ずしも型2に耐熱性が要求されるわけではなく、型2の材質が制限され難い。したがって、型2の原料として、所望の寸法及び形状に加工し易く、且つ安価な材料を選定し易い。仮に、加熱工程において成形体10と型2の全部とを一括して加熱した場合、成形体10と型2との間の熱膨張率の差に起因して、成形体10に応力が作用し易く、成形体10が変形したり、破損したりする。また、加熱工程において成形体10と型2の全部とを一括して加熱した場合、加熱対象全体の体積・熱容量が大きい。その結果、一括して加熱される成形体10の数量が制限され、加熱工程に要する時間が長くなり、エネルギーが浪費され、希土類磁石の生産性が低下する。   When the molded body 10 separated from part or all of the mold 2 is heated in the heating step, deterioration of the mold 2 due to heating (for example, deformation, hardening or wear of the mold 2) is easily suppressed, and the molded body 10 and the mold The burn-in with 2 is also easily suppressed. Moreover, when heating the molded object 10 isolate | separated from one part or all part of the type | mold 2, the type | mold 2 is hard to thermally insulate a heat | fever and the molded object 10 tends to be heated. As a result, the shape retention of the molded body 10 is improved. When heating the molded body 10 separated from part or all of the mold 2, the possibility of the mold 2 chemically reacting with the molded body 10 is low. Therefore, heat resistance is not necessarily required for the mold 2, and the material of the mold 2 is not easily restricted. Therefore, it is easy to process as a raw material of type | mold 2 to a desired size and shape, and to select cheap material. Temporarily, when the molded body 10 and the whole of the mold 2 are collectively heated in the heating step, stress acts on the molded body 10 due to the difference in the thermal expansion coefficient between the molded body 10 and the mold 2 The molded body 10 is easily deformed or broken. Moreover, when the molded object 10 and all of the type | mold 2 are heated collectively in a heating process, the volume and heat capacity of the whole heating object are large. As a result, the number of molded bodies 10 heated collectively is limited, the time required for the heating process is extended, energy is wasted, and the productivity of the rare earth magnet is reduced.

加熱工程では、例えば、下型8の上に載置された成形体10を加熱してよい。加熱工程では、加熱工程用トレイに載置された成形体10を加熱してもよい。加熱工程では、成形体10の酸化を抑制するために、不活性ガス又は真空中で成形体10を加熱してよい。不活性ガスは、アルゴン等の希ガスであってよい。   In the heating step, for example, the compact 10 placed on the lower mold 8 may be heated. In the heating step, the formed body 10 placed on the heating step tray may be heated. In the heating step, the molded body 10 may be heated in an inert gas or vacuum to suppress oxidation of the molded body 10. The inert gas may be a noble gas such as argon.

加熱工程において、成形体10の温度を200℃以上450℃以下に調整した後、成形体10を100℃以下に冷却してよい。加熱工程後の成形体10の搬送に用いるチャックの表面が樹脂から構成されている場合、成形体10の冷却により、チャックの表面と成形体10との化学反応が抑制され、チャックの劣化、及び成形体10表面の汚染が抑制される。冷却方法は、例えば、自然冷却であってよい。   In the heating step, after the temperature of the formed body 10 is adjusted to 200 ° C. or more and 450 ° C. or less, the formed body 10 may be cooled to 100 ° C. or less. When the surface of the chuck used to convey the formed body 10 after the heating step is made of a resin, the cooling of the formed body 10 suppresses the chemical reaction between the surface of the chuck and the formed body 10 to deteriorate the chuck, Contamination of the surface of the molded body 10 is suppressed. The cooling method may be, for example, natural cooling.

焼結工程では、配向工程後の成形体を加熱して焼結させる。焼結工程では、成形体10中の合金粒子同士が焼結して、焼結体(希土類磁石)が得られる。配向工程後、上記の加熱工程を経ることなく、焼結工程を行ってよい。配向工程後、上記の加熱工程を経て、焼結工程を行ってよい。   In the sintering step, the compact after the orientation step is heated and sintered. In the sintering step, the alloy particles in the compact 10 are sintered to obtain a sintered body (rare earth magnet). After the orientation step, the sintering step may be performed without the above heating step. After the orientation step, the sintering step may be performed through the above heating step.

焼結工程において焼結させる成形体10の密度(焼結工程直前の成形体10の密度)は、3.0g/cm以上4.4g/cm以下に調整されていてよい。焼結工程において焼結させる成形体10の密度(焼結工程直前の成形体10の密度)は、好ましくは3.2g/cm以上4.2g/cm以下、より好ましくは3.4g/cm以上4.0g/cm以下に調整されていてよい。成形工程及び配向工程において型が成形体10(合金粉末)に及ぼす圧力が低いほど、焼結工程直前の成形体10の密度が低い傾向がある。また、成形工程及び配向工程において型が成形体10(合金粉末)に及ぼす圧力が低いほど、成形体10を構成する合金粉末が自由に回転し易く、磁場に沿って配向し易い。その結果、最終的に得られる希土類磁石の残留磁束密度Brが高まり易い。したがって、焼結工程直前の成形体10の密度が低いほど、希土類磁石の残留磁束密度Brが高まり易い、といえる。ただし、成形工程及び配向工程において型が成形体10(合金粉末)に及ぼす圧力が低過ぎる場合、成形体10の保形性(機械的強度)が不十分であり、分離工程に伴う成形体10と型との摩擦により、成形体10の表面に位置する合金粉末の配向度が乱れる。その結果、最終的に得られる希土類磁石の残留磁束密度Brが低下する。したがって、焼結工程直前の成形体10の密度が低過ぎる場合、希土類磁石の残留磁束密度Brが低い、といえる。一方、成形工程から焼結工程に至るまでの間に成形体10(合金粉末)に及ぶ圧力が高いほど、焼結工程直前の成形体10の密度が高く、成形体10の保形性(機械的強度)が高い。その結果、最終的に得られる希土類磁石における亀裂が抑制され易い。したがって、焼結工程直前の成形体10の密度が高いほど、希土類磁石における亀裂が抑制され易い、といえる。ただし、成形工程及び配向工程において型が成形体10(合金粉末)に及ぼす圧力が高過ぎる場合、スプリングバックに因り、成形体10に亀裂が形成され易く、成形体10から得られる希土類磁石に亀裂が残ってしまう。なお、スプリングバックとは、合金粉末を加圧して成形した後、圧力を解除した時に、成形体10が膨張する現象である。以上の通り、焼結工程直前の成形体10の密度は、希土類磁石の残留磁束密度Br及び亀裂に相関している。焼結工程直前の成形体10の密度が上記の範囲内に調整されることにより、希土類磁石の残留磁束密度Brが高まり易く、且つ希土類磁石における亀裂が抑制され易い。 The density of the compact 10 to be sintered in the sintering step (the density of the compact 10 immediately before the sintering step) may be adjusted to 3.0 g / cm 3 or more and 4.4 g / cm 3 or less. The density of the compact 10 to be sintered in the sintering step (the density of the compact 10 immediately before the sintering step) is preferably 3.2 g / cm 3 or more and 4.2 g / cm 3 or less, more preferably 3.4 g / cm 3. cm 3 or more 4.0 g / cm 3 may have been adjusted as follows. The lower the pressure exerted by the mold on the compact 10 (alloy powder) in the compacting process and the orienting process, the lower the density of the compact 10 immediately before the sintering process tends to be. Further, as the pressure exerted by the mold on the compact 10 (alloy powder) in the forming step and the orientation step is lower, the alloy powder constituting the compact 10 is more easily rotated and oriented along the magnetic field. As a result, the residual magnetic flux density Br of the finally obtained rare earth magnet tends to increase. Therefore, it can be said that the residual magnetic flux density Br of the rare earth magnet is easily increased as the density of the compact 10 immediately before the sintering step is lower. However, if the pressure exerted on the compact 10 (alloy powder) by the mold in the compacting step and the orienting step is too low, the shape retention property (mechanical strength) of the compact 10 is insufficient, and the compact 10 associated with the separation step. The friction between the mold and the mold disturbs the degree of orientation of the alloy powder located on the surface of the compact 10. As a result, the residual magnetic flux density Br of the finally obtained rare earth magnet decreases. Therefore, when the density of the compact 10 immediately before the sintering step is too low, it can be said that the residual magnetic flux density Br of the rare earth magnet is low. On the other hand, the higher the pressure applied to the formed body 10 (alloy powder) from the forming step to the sintering step, the higher the density of the formed body 10 immediately before the sintering step, and the shape retention of the formed body 10 (machine Strength) is high. As a result, cracks in the finally obtained rare earth magnet are easily suppressed. Therefore, it can be said that cracks in the rare earth magnet are more easily suppressed as the density of the compact 10 immediately before the sintering step is higher. However, if the pressure exerted by the mold on the compact 10 (alloy powder) in the forming step and the orientation step is too high, cracks are likely to be formed in the compact 10 due to springback, and the rare earth magnet obtained from the compact 10 is cracked. Will remain. Springback is a phenomenon in which the compact 10 expands when the pressure is released after the alloy powder is pressed and shaped. As described above, the density of the compact 10 immediately before the sintering step is correlated to the residual magnetic flux density Br and the crack of the rare earth magnet. By adjusting the density of the compact 10 immediately before the sintering step within the above range, the residual magnetic flux density Br of the rare earth magnet is likely to increase, and cracking in the rare earth magnet is likely to be suppressed.

焼結工程直前の成形体10の密度は、成形工程において型2内へ導入する合金粉末の質量、及び成形工程において型2が成形体10(合金粉末)に及ぼす圧力によって調整されてよい。成形工程から焼結工程に至るまでの間に成形体10(合金粉末)を複数回圧縮することにより、焼結工程直前の成形体10の密度を上記の数値範囲内に調整してもよい。つまり、成形工程とは別の工程において、成形体10を更に加圧してよい。希土類磁石における亀裂を抑制するためには、成形工程から焼結工程に至るまでの間に金属粉末に及ぼす圧力を、0.049MPa以上20MPa以下に調整したほうがよい。   The density of the formed body 10 immediately before the sintering step may be adjusted by the mass of the alloy powder introduced into the mold 2 in the forming step and the pressure exerted on the formed body 10 (alloy powder) by the mold 2 in the forming step. The density of the formed body 10 immediately before the sintering step may be adjusted within the above numerical range by compressing the formed body 10 (alloy powder) a plurality of times between the forming step and the sintering step. That is, the molded body 10 may be further pressurized in a process different from the molding process. In order to suppress the cracks in the rare earth magnet, it is better to adjust the pressure exerted on the metal powder to 0.049 MPa or more and 20 MPa or less between the molding process and the sintering process.

焼結工程では、型2と共に成形体10を加熱してよい。焼結工程では、型2の一部又は全部から分離された成形体10を焼結させたほうがよい。   In the sintering step, the compact 10 may be heated together with the mold 2. In the sintering step, it is preferable to sinter the compact 10 separated from part or all of the mold 2.

仮に、焼結工程において、成形体10を樹脂製の型2から分離せず、成形体10及び型2を共に加熱した場合、型2を構成する樹脂が分解して、樹脂に由来する炭素成分が成形体10に混入してしまう。焼結工程の過程で樹脂から構成される型が焼失したとしても、焼失に伴って生成した炭素成分が成形体10中に混入することを十分に抑制することは困難である。その結果、焼結体(希土類磁石)中に炭素成分が残存し、炭素成分が希土類磁石の磁気特性(例えば、保磁力)を損なう。一方、型2から分離された成形体10を加熱する場合、樹脂に由来する炭素成分が成形体10に混入し難く、希土類磁石の磁気特性(例えば、保磁力)が炭素成分によって損なわれ難い。   If the molded body 10 and the mold 2 are heated together without separating the molded body 10 from the resin mold 2 in the sintering step, the resin constituting the mold 2 is decomposed, and the carbon component derived from the resin Is mixed into the molded body 10. Even if the mold composed of the resin is burnt away in the process of the sintering step, it is difficult to sufficiently suppress the carbon component generated along with the burnout from being mixed in the molded body 10. As a result, the carbon component remains in the sintered body (rare earth magnet), and the carbon component impairs the magnetic properties (for example, coercivity) of the rare earth magnet. On the other hand, when the molded body 10 separated from the mold 2 is heated, the carbon component derived from the resin is less likely to be mixed into the molded body 10, and the magnetic properties (for example, coercivity) of the rare earth magnet are less likely to be impaired by the carbon component.

仮に、焼結工程において、成形体10と型2の一部又は全部とを一括して加熱した場合、成形体10と型2との間の熱膨張率の差に起因して、成形体10に応力が作用し易く、成形体10が変形したり、破損したりすることがある。さらに、焼結工程において、成形体10と型2の全部とを一括して加熱した場合、加熱対象全体の体積・熱容量が大きい。その結果、一括して加熱される成形体10の数量が制限され、焼結工程に要する時間が長くなり、エネルギーが浪費され、希土類磁石の生産性が低下する。一方、型2から分離された成形体10を加熱する場合、成形体10と型2の全部とを一括して加熱した場合に比べて、加熱対象全体の体積・熱容量が小さい。その結果、多数の成形体10を一括して昇温させ易く、焼結工程に要する時間及びエネルギーが抑制され易く、希土類磁石の生産性が向上する。   Temporarily, in the sintering step, when the molded body 10 and part or all of the mold 2 are heated at one time, the molded body 10 is caused due to the difference in the coefficient of thermal expansion between the molded body 10 and the mold 2. Stress tends to act on the molded body 10, and the molded body 10 may be deformed or broken. Furthermore, when the compact 10 and the whole of the mold 2 are collectively heated in the sintering step, the volume and heat capacity of the entire object to be heated are large. As a result, the number of the compacts 10 heated collectively is limited, the time required for the sintering process becomes long, energy is wasted, and the productivity of the rare earth magnet is lowered. On the other hand, when heating the molded object 10 isolate | separated from the type | mold 2, compared with the case where the molded object 10 and all the type | molds 2 are heated collectively, the volume and heat capacity of whole heating object are small. As a result, it is easy to raise the temperature of a large number of compacts 10 collectively, the time and energy required for the sintering process are easily suppressed, and the productivity of the rare earth magnet is improved.

焼結工程では、下型8に載置された成形体10を、焼結用トレイの上に移してよい。焼結工程では、加熱工程用に載置された成形体10を、焼結用トレイの上に移してもよい。加熱工程において成形体10の保形性が向上しているため、成形体10を搬送用チャックで掴んで焼結用トレイ上に並べる際に、成形体10の破損が抑制される。   In the sintering step, the compact 10 placed on the lower mold 8 may be transferred onto a sintering tray. In the sintering step, the compact 10 placed for the heating step may be transferred onto a sintering tray. Since the shape retention property of the green body 10 is improved in the heating step, breakage of the green body 10 is suppressed when the green body 10 is gripped by the transport chuck and aligned on the sintering tray.

焼結工程では、複数の成形体10を焼結用トレイ上に載置してよく、焼結用トレイ上に載置された複数の成形体10を一括して加熱してよい。多数の成形体10を狭い間隔で焼結用トレイ上に並べて、多数の成形体10を一括して加熱することにより、希土類磁石の生産性が向上する。   In the sintering step, the plurality of compacts 10 may be placed on the sintering tray, and the plurality of compacts 10 placed on the sintering tray may be heated at one time. The productivity of the rare earth magnet is improved by arranging a large number of compacts 10 at narrow intervals on the sintering tray and heating the large number of compacts 10 collectively.

焼結用トレイの組成は、焼結時に成形体10と反応し難く、且つ成形体10を汚染する物質を生成し難い組成物であればよい。例えば、焼結用トレイは、モリブデン又はモリブデン合金から構成されていてよい。   The composition of the tray for sintering may be any composition that does not easily react with the compact 10 at the time of sintering, and hardly produces a substance that contaminates the compact 10. For example, the sintering tray may be comprised of molybdenum or a molybdenum alloy.

焼結温度は、例えば900℃以上1200℃以下であればよい。焼結時間は、例えば0.1時間以上100時間以下であればよい。焼結工程を繰り返してもよい。焼結工程では、不活性ガス又は真空中で成形体10を加熱してよい。不活性ガスは、アルゴン等の希ガスであってよい。   The sintering temperature may be, for example, 900 ° C. or more and 1200 ° C. or less. The sintering time may be, for example, 0.1 hours or more and 100 hours or less. The sintering process may be repeated. In the sintering step, the compact 10 may be heated in an inert gas or vacuum. The inert gas may be a noble gas such as argon.

焼結体に対して時効処理を施してよい。時効処理では、焼結体を例えば450℃以上950℃以下で熱処理してよい。時効処理では、焼結体を、例えば0.1時間以上100時間以下、熱処理してよい。時効処理は不活性ガス又は真空中で行えばよい。時効処理は、温度の異なる多段階の熱処理から構成されてもよい。   The sintered body may be subjected to an aging treatment. In the aging treatment, the sintered body may be heat-treated at, for example, 450 ° C. or more and 950 ° C. or less. In the aging treatment, the sintered body may be heat-treated, for example, for 0.1 hours or more and 100 hours or less. Aging treatment may be performed in an inert gas or vacuum. Aging treatment may consist of multi-step heat treatment with different temperatures.

焼結体を切削又は研磨してもよい。焼結体の表面に保護層を形成してもよい。保護層は、例えば、樹脂層、又は無機物層(例えば、金属層若しくは酸化物層)であってよい。保護層の形成方法は、例えば、めっき法、塗布法、蒸着重合法、気相法、又は化成処理法であってよい。   The sintered body may be cut or polished. A protective layer may be formed on the surface of the sintered body. The protective layer may be, for example, a resin layer or an inorganic layer (for example, a metal layer or an oxide layer). The method of forming the protective layer may be, for example, a plating method, a coating method, a vapor deposition polymerization method, a gas phase method, or a chemical conversion treatment method.

希土類磁石の寸法及び形状は、希土類磁石の用途に応じて様々であり、特に限定されない。希土類磁石の形状は、例えば、直方体状、立方体状、多角柱状、セグメント状、扇状、矩形状、板状、球状、円板状、円柱状、リング状、又はカプセル状であってよい。希土類磁石の断面の形状は、例えば、多角形状、円弦状、弓状、又は円状であってよい。型2又はキャビティの寸法及び形状は、希土類磁石の寸法及び形状に対応するものであり、限定されない。   The size and shape of the rare earth magnet vary depending on the application of the rare earth magnet and is not particularly limited. The shape of the rare earth magnet may be, for example, a rectangular parallelepiped, a cube, a polygonal prism, a segment, a fan, a rectangle, a plate, a sphere, a disc, a cylinder, a ring, or a capsule. The shape of the cross section of the rare earth magnet may be, for example, a polygon, a chord, an arc, or a circle. The size and shape of the mold 2 or cavity correspond to the size and shape of the rare earth magnet and is not limited.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

(実施例1)
ストリップキャスト法により、組成が重量分率でNd29DyFebal.であるフレーク状の合金を作製した。合金を水素吸蔵法により粗粉砕して、粗粉末を得た。粗粉末にオレイン酸アミド(潤滑剤)を添加した。続いて粗粉末を不活性ガス中でジェットミルにより粉砕して、微粉末(希土類元素を含む金属粉末)を得た。微粉末中のオレイン酸アミドの含有量は、0.1質量%であった。微粉末の粒子径D50は、4μmに調整した。微粉末中の酸素の含有量は、800質量ppm以下であった。微粉末中の窒素の含有量は、500質量ppm以下であった。微粉末中の炭素の含有量は、1500質量ppm以下であった。
Example 1
By the strip casting method, the composition is Nd 29 Dy 1 Fe bal. A flake-like alloy of B 1 was produced. The alloy was roughly crushed by a hydrogen storage method to obtain a coarse powder. Oleic acid amide (lubricant) was added to the crude powder. Subsequently, the coarse powder was pulverized by a jet mill in an inert gas to obtain a fine powder (a metal powder containing a rare earth element). The content of oleic acid amide in the fine powder was 0.1% by mass. The particle diameter D50 of the fine powder was adjusted to 4 μm. The content of oxygen in the fine powder was 800 mass ppm or less. The content of nitrogen in the fine powder was 500 mass ppm or less. The content of carbon in the fine powder was 1,500 ppm by mass or less.

成形工程では、オレイン酸アミドが添加された微粉末を、型内へ供給して、成形体を形成した。成形工程の詳細は以下の通りであった。   In the molding step, a fine powder to which oleic acid amide was added was fed into a mold to form a molded body. The details of the molding process were as follows.

型は、矩形状の下型と、下型の上に配置される直方体状の側型と、側型の上に配置される上型と、を備えていた。上型及び下型は、アルミニウムから形成されていた。側型は、アクリル樹脂から形成されていた。側型の中央部には、直方体状の空間が鉛直方向に貫通していた。つまり、側型は筒状であった。上型は、側型内に嵌合する形状を有していた。成形工程では、側型を下型の上に載置して、側型の下面側の開口部を下型で塞いだ。側型及び下型で囲まれた空間(キャビティ)の寸法は、20mm×12mm×8mmであった。続いて、所定の質量の微粉末を、側型の上面側の開口部から側型内へ充填した。微粉末が保持された側型及び下型の全体を振動させることにより、キャビティ内の微粉末のレベリングを行った。続いて、タッピングにより、キャビティ内の微粉末をより緻密にした。タッピング後、上型を側型内へ挿入して、側型内の微粉末を上型の先端面で圧縮した。成形工程では、上型が型内の微粉末(成形体)に及ぼす圧力を0.14MPaに調整した。   The mold was provided with a rectangular lower mold, a rectangular parallelepiped side mold arranged above the lower mold, and an upper mold arranged above the side mold. The upper and lower molds were formed of aluminum. The side mold was formed of acrylic resin. A rectangular parallelepiped space penetrates in the vertical direction at the central portion of the side mold. That is, the side mold was cylindrical. The upper mold had a shape fitted into the side mold. In the molding process, the side mold was placed on the lower mold, and the opening on the lower surface side of the side mold was closed with the lower mold. The dimensions of the side mold and the space enclosed by the lower mold (cavity) were 20 mm × 12 mm × 8 mm. Subsequently, fine powder of a predetermined mass was filled into the side mold through the opening on the upper surface side of the side mold. Leveling of the fine powder in the cavity was performed by vibrating the whole of the side mold and the lower mold in which the fine powder was held. Subsequently, the fine powder in the cavity was made more compact by tapping. After tapping, the upper mold was inserted into the side mold and the fine powder in the side mold was compressed at the tip face of the upper mold. In the molding step, the pressure exerted by the upper mold on the fine powder (molded body) in the mold was adjusted to 0.14 MPa.

以上の手順で、50個の成形体を作製した。図3〜5及び図6中の(a)に示されるように、成形体10は直方体であった。成形体10の寸法は、20mm×12mm×6mmであった。成形体10の体積及び質量から、成形工程直後の成形体10の密度を算出した。成形工程直後(配向工程前)の実施例1の成形体の密度は、3.6g/cmに調整されていた。 Fifty molded articles were produced by the above procedure. As shown to (a) in FIGS. 3-5 and FIG. 6, the molded object 10 was a rectangular parallelepiped. The dimensions of the molded body 10 were 20 mm × 12 mm × 6 mm. The density of the compact 10 immediately after the molding process was calculated from the volume and mass of the compact 10. The density of the molded body of Example 1 immediately after the molding step (before the orientation step) was adjusted to 3.6 g / cm 3 .

成形工程に続く配向工程では、交流電源を備えた磁場発生装置を用いた。磁場発生装置は、図2〜5に示されるダブルコイル15とコンデンサとを備えていた。ダブルコイル15のインダクタンスL及びコンデンサの静電容量Cのいずれも自在に可変であり、磁場発生装置によれば、所望の交流減衰波形を有するパルス磁場を発生することができた。ダブルコイル15は、同一の中心軸Aを持つように配置された二つのコイル17a及び17bを備えていた。ダブルコイル15を構成する一方のコイル17aと他方のコイル17bとは、全く同じコイルであった。中心軸Aに平行な方向から見て一方のコイル17aが他方のコイル17bと完全に重なっていた。二つのコイル17a及び17b間の距離Dは、自在に可変であった。   In the orientation step subsequent to the forming step, a magnetic field generator equipped with an AC power supply was used. The magnetic field generator was provided with the double coil 15 and the capacitor shown in FIGS. Both the inductance L of the double coil 15 and the capacitance C of the capacitor were freely variable, and according to the magnetic field generator, it was possible to generate a pulsed magnetic field having a desired alternating current decay waveform. The double coil 15 was provided with two coils 17a and 17b arranged to have the same central axis A. One coil 17a and the other coil 17b that constitute the double coil 15 are completely the same coil. When viewed in the direction parallel to the central axis A, one coil 17a completely overlapped with the other coil 17b. The distance D between the two coils 17a and 17b was freely variable.

図3〜5に示されるように、配向工程では、型2内に保持された成形体10を、ダブルコイル15内に配置し、型2を治具で固定した。図5及び図6中の(a)に示されるように、成形体10が有する長方形状の表面がダブルコイル15の中心軸A(パルス磁場H)の方向に垂直になるように、型2内に保持された成形体10を、ダブルコイル15内に配置した。そして、時間の経過に伴って反転しながら減衰するパルス磁場Hを、型2内の成形体10へ印加した。このパルス磁場H(減衰する交番磁場)の印加により、成形体10を構成する個々の微粉末を配向させ、且つ脱磁した。配向工程では、パルス磁場Hの第一波(最大磁場)の強度を6.1Tに調整し、第一波の周期を9ミリ秒に調整した。図5に示されるように、ダブルコイル15の中心軸Aに平行な方向における二つのコイル17a及び17b間の距離は、Dで表され、コイル17a及びコイル17b其々の内径は、2Rで表される。実施例1のD/2Rは、下記表1に示される値であった。図4、図5及び図6中の(a)に示されるように、ダブルコイル15の中心軸Aに垂直な方向における成形体10の幅の最大値(対角線Ldの長さ)は、Wで表される。実施例1の2R/Wは、下記表1に示される値であった。   As shown in FIGS. 3 to 5, in the orientation step, the molded body 10 held in the mold 2 was placed in the double coil 15, and the mold 2 was fixed by a jig. As shown in (a) in FIG. 5 and FIG. 6, the inside of the mold 2 is such that the rectangular surface of the molded body 10 is perpendicular to the direction of the central axis A (pulsed magnetic field H) of the double coil 15. Were placed in the double coil 15. Then, a pulse magnetic field H which attenuates while being reversed as time passes is applied to the compact 10 in the mold 2. By the application of this pulse magnetic field H (attenuating alternating magnetic field), the individual fine powders constituting the compact 10 were oriented and demagnetized. In the orientation step, the intensity of the first wave (maximum magnetic field) of the pulsed magnetic field H was adjusted to 6.1 T, and the period of the first wave was adjusted to 9 milliseconds. As shown in FIG. 5, the distance between the two coils 17a and 17b in the direction parallel to the central axis A of the double coil 15 is represented by D, and the inner diameter of each of the coils 17a and 17b is 2R. Be done. D / 2R of Example 1 was a value shown in Table 1 below. As shown in (a) in FIGS. 4, 5 and 6, the maximum value of the width of the molded body 10 (length of the diagonal Ld) in the direction perpendicular to the central axis A of the double coil 15 is W expressed. 2R / W of Example 1 was a value shown in the following Table 1.

配向工程後、上型及び側型を成形体から分離した。下型上に載置された成形体を、下型と共に加熱炉内で赤外線を照射して加熱した。加熱中の成形体の温度(最高温度)は、300℃に維持した。   After the orientation step, the upper mold and the side mold were separated from the compact. The molded body placed on the lower mold was heated by irradiation with infrared rays in a heating furnace together with the lower mold. The temperature of the molded body (maximum temperature) during heating was maintained at 300.degree.

加熱後の成形体を下型から分離して、50個の成形体を焼結用トレイ上に載置した。焼結用トレイはモリブデンから構成されていた。焼結工程直前の実施例1の成形体の密度は、成形工程直後の成形体の密度とほぼ同じであった。   The compact after heating was separated from the lower mold, and 50 compacts were placed on a sintering tray. The sintering tray was composed of molybdenum. The density of the compact of Example 1 immediately before the sintering step was substantially the same as the density of the compact immediately after the molding step.

焼結工程では、焼結用トレイ上の成形体を、真空雰囲気中において焼結させた。焼結温度(最高温度)は1080℃に調整した。焼結時間は4時間に調整した。焼結工程に続いて、時効処理を行った。時効処理では、焼結体を900℃(最高温度)で1時間加熱した。続いて、焼結体を500℃(最高温度)で1時間加熱した。   In the sintering step, the compact on the sintering tray was sintered in a vacuum atmosphere. The sintering temperature (maximum temperature) was adjusted to 1080.degree. The sintering time was adjusted to 4 hours. Following the sintering step, aging treatment was performed. In the aging treatment, the sintered body was heated at 900 ° C. (maximum temperature) for 1 hour. Subsequently, the sintered body was heated at 500 ° C. (maximum temperature) for 1 hour.

以上の工程により、50個の焼結体(希土類磁石)を得た。いずれの希土類磁石も直方体であった。   Fifty sintered bodies (rare earth magnets) were obtained by the above steps. All rare earth magnets were also rectangular parallelepipeds.

<希土類磁石の変形量ΔTの測定>
希土類磁石を研磨する前に、希土類磁石の変形量ΔTを以下の方法で測定した。
<Measurement of deformation amount ΔT of rare earth magnet>
Before polishing the rare earth magnet, the deformation amount ΔT of the rare earth magnet was measured by the following method.

図8に示されるように、希土類磁石100の長方形状の表面を、均等な9つの領域a,b,c,d,e,f,g,h及びiに区画して、各領域の厚さTを測定した。区画された表面は、配向工程においてダブルコイル15の中心軸A(パルス磁場H)に垂直に配置された成形体10の表面に対応する。各領域の厚さTとは、配向工程においてダブルコイル15の中心軸A(パルス磁場H)に平行な方向における成形体10の厚さに対応する。9つの領域の厚さのうち最大値と最小値との差(変形量ΔT)を算出した。ΔTが小さいほど、希土類磁石の変形が抑制されている。ΔTは140μm以下であることが好ましく、120μm以下であることがより好ましく、80μm以下であることが最も好ましい。実施例1のΔTは、下記表1に示される値であった。   As shown in FIG. 8, the rectangular shaped surface of the rare earth magnet 100 is divided into nine equal areas a, b, c, d, e, f, g, h and i, and the thickness of each area is determined. T was measured. The partitioned surface corresponds to the surface of the molded body 10 disposed perpendicularly to the central axis A (pulsed magnetic field H) of the double coil 15 in the orientation step. The thickness T of each region corresponds to the thickness of the molded body 10 in the direction parallel to the central axis A (pulse magnetic field H) of the double coil 15 in the orientation step. The difference (the amount of deformation ΔT) between the maximum value and the minimum value among the thicknesses of the nine regions was calculated. The smaller the ΔT, the more the deformation of the rare earth magnet is suppressed. ΔT is preferably 140 μm or less, more preferably 120 μm or less, and most preferably 80 μm or less. ΔT of Example 1 was a value shown in Table 1 below.

<希土類磁石の相対密度の測定>
続いて、各焼結体(希土類磁石)の端面を研磨し、各希土類磁石の寸法を15mm×10mm×4mmに調整した。
<Measurement of relative density of rare earth magnet>
Subsequently, the end face of each sintered body (rare earth magnet) was polished to adjust the size of each rare earth magnet to 15 mm × 10 mm × 4 mm.

寸法が調製された50個の希土類磁石其々の重量を測定した。重量と寸法とから各希土類磁石の相対密度を計算した。50個の希土類磁石の相対密度はいずれも、99.5%以上であった。   The weight of each of the 50 sized rare earth magnets was measured. The relative density of each rare earth magnet was calculated from the weight and size. The relative density of all 50 rare earth magnets was 99.5% or more.

<クラックの発生率の測定>
50個の希土類磁石を目視で観察することより、各希土類磁石に亀裂(クラック)が生じているか否かを調べた。実施例1のクラックの発生率は、10%未満であった。クラックの発生率とは、実施例1の希土類磁石50個のうち、クラックが生じていた希土類磁石の個数nの百分率(つまり、(n/50)×100=2n)である。
<Measurement of crack occurrence rate>
By visually observing the 50 rare earth magnets, it was examined whether or not a crack was generated in each rare earth magnet. The incidence of cracks in Example 1 was less than 10%. The crack generation rate is a percentage of the number n of the rare earth magnets in which the crack was generated among the 50 rare earth magnets of Example 1 (that is, (n / 50) × 100 = 2 n).

<希土類磁石の配向度fcのばらつきVfの測定>
図8に示されるように、希土類磁石100をダイヤモンドカッターで均等に分割して、9個の磁石片a,b,c,d,e,f,g,h及びiを形成した。各磁石片の端面を研磨し、各磁石片の寸法を4mm×3mm×4mmに調整した。続いて、各磁石片に対するXRDパターンを測定した。XRDパターンの測定においてX線が入射する各磁石片の表面は、ダブルコイル15の中心軸A(パルス磁場H)に対して垂直な面(図8中の面100sに相当する面)に対応していた。回折角2θが20°以上70°以下での範囲で、各磁石片のXRDパターンを測定した。XRDパターンの測定における角度刻みは、1ステップ当たり0.1°であった。XRDパターンに基づき、各磁石片における配向度fcを上述のロットゲーリング法によって算出した。図8に示されるように、希土類磁石100を均等に分割することによって得られた複数個の磁石片のうち、配向度が最も高い磁石片の配向度はfc(max)と表される。複数個の磁石片のうち、配向度が最も低い磁石片の配向度はfc(min)と表される。以上の前提に基づいて、希土類磁石の配向度fcのばらつきVfを、下記数式2から算出した。上述の通り、希土類磁石の配向度fcのばらつきVfは小さいほど好ましい。Vfは10%以下であることが好ましい。実施例1の希土類磁石の配向度fcのばらつきVfは、下記表1に示される値であった。
Vf(%)=fc(max)−fc(min) (2)
<Measurement of variation Vf of orientation degree fc of rare earth magnet>
As shown in FIG. 8, the rare earth magnet 100 was equally divided by a diamond cutter to form nine magnet pieces a, b, c, d, e, f, g, h and i. The end face of each magnet piece was polished, and the dimensions of each magnet piece were adjusted to 4 mm × 3 mm × 4 mm. Subsequently, the XRD pattern for each magnet piece was measured. The surface of each magnet piece on which X-rays are incident in the measurement of the XRD pattern corresponds to the plane (the plane corresponding to the plane 100s in FIG. 8) perpendicular to the central axis A (pulse magnetic field H) of the double coil 15. It was The XRD pattern of each magnet piece was measured in the range where the diffraction angle 2θ is 20 ° or more and 70 ° or less. The angular step in the measurement of the XRD pattern was 0.1 ° per step. Based on the XRD pattern, the degree of orientation fc of each magnet piece was calculated by the Lotgering method described above. As shown in FIG. 8, among the plurality of magnet pieces obtained by equally dividing the rare earth magnet 100, the orientation degree of the magnet piece having the highest degree of orientation is represented as fc (max). The orientation degree of the magnet piece having the lowest degree of orientation among the plurality of magnet pieces is expressed as fc (min). Based on the above premise, the variation Vf of the degree of orientation fc of the rare earth magnet was calculated from the following formula 2. As described above, the smaller the variation Vf in the degree of orientation fc of the rare earth magnet, the better. It is preferable that Vf is 10% or less. The variation Vf of the degree of orientation fc of the rare earth magnet of Example 1 was a value shown in Table 1 below.
Vf (%) = fc (max)-fc (min) (2)

(比較例1)
比較例1の配向工程に用いた磁場発生装置は、ダブルコイル15ではなく、一つの空芯コイルとコンデンサとを備えていた。空芯コイルのインダクタンスL及びコンデンサの静電容量Cのいずれも自在に可変であり、磁場発生装置によれば、所望の交流減衰波形を有するパルス磁場を発生することができた。
(Comparative example 1)
The magnetic field generator used in the orientation step of Comparative Example 1 was provided with one air core coil and a capacitor instead of the double coil 15. Both the inductance L of the air core coil and the capacitance C of the capacitor were freely variable, and according to the magnetic field generator, it was possible to generate a pulse magnetic field having a desired alternating current attenuation waveform.

比較例1の配向工程では、型内に保持された成形体を、空芯コイル内に配置し、型を治具で固定した。そして、時間の経過に伴って反転しながら減衰するパルス磁場を、型内の成形体へ印加した。   In the orientation step of Comparative Example 1, the molded body held in the mold was disposed in the air core coil, and the mold was fixed by a jig. Then, a pulse magnetic field which decays while being reversed as time passes was applied to the compact in the mold.

以上の通り、ダブルコイルを用いなかったことを除いて実施例1と同様の方法で、比較例1の希土類磁石を作製した。実施例1と同様の方法で、比較例1のΔT及びVfを測定した。比較例1のΔT及びVfは、下記表1に示される値であった。   As described above, the rare earth magnet of Comparative Example 1 was produced in the same manner as in Example 1 except that the double coil was not used. In the same manner as Example 1, ΔT and Vf of Comparative Example 1 were measured. ΔT and Vf of Comparative Example 1 were values shown in Table 1 below.

(実施例2〜7)
実施例2〜7其々の成形工程では、実施例1で用いた型とは寸法が異なる型を用いて成形体10の寸法を変えたことにより、2R/Wを下記表1に示される値に調整した。
(Examples 2 to 7)
In the molding processes of Examples 2 to 7, the values of 2R / W shown in Table 1 below were obtained by changing the size of the molded body 10 using a mold having a size different from that of the mold used in Example 1. Adjusted to

2R/Wを除いて実施例1と同様の方法で、実施例2〜7其々の希土類磁石を作製した。実施例1と同様の方法で、実施例2〜7其々のΔT及びVfを測定した。実施例2〜7其々のΔT及びVfは、下記表1に示される値であった。   The rare earth magnets of Examples 2 to 7 were produced in the same manner as in Example 1 except for 2R / W. In the same manner as in Example 1, ΔT and Vf in each of Examples 2 to 7 were measured. The ΔT and Vf in Examples 2 to 7 were the values shown in Table 1 below.

(実施例8)
実施例8の成形工程に用いた型の寸法は、実施例1で用いた型と寸法が同じであった。しかし、実施例8の成形工程に用いた型の全体はカーボンからなっていた。そして、実施例8の焼結工程では、成形体10を型から分離しなかった。つまり実施例8の焼結工程では、型と共に成形体10を加熱した。型の組成と焼結工程とを除いて実施例1と同様の方法で、実施例8の希土類磁石を作製した。実施例1と同様の方法で、実施例8のΔT及びVfを測定した。実施例8のΔT及びVfは、下記表1に示される値であった。
(Example 8)
The dimensions of the mold used in the molding step of Example 8 were the same as those of the mold used in Example 1. However, the entire mold used in the molding step of Example 8 was made of carbon. Then, in the sintering step of Example 8, the compact 10 was not separated from the mold. That is, in the sintering step of Example 8, the compact 10 was heated together with the mold. The rare earth magnet of Example 8 was produced in the same manner as in Example 1 except for the composition of the mold and the sintering step. In the same manner as Example 1, ΔT and Vf of Example 8 were measured. ΔT and Vf of Example 8 were values shown in Table 1 below.

Figure 2019114608
Figure 2019114608

(実施例9〜15)
実施例9〜15其々の配向工程では、コイル17aとコイル17bとの間の距離Dを変えたことにより、実施例9〜15其々のD/2Rを下記表2に示される値に調整した。D/2Rを除いて実施例1と同様の方法で、実施例9〜15其々の希土類磁石を作製した。実施例1と同様の方法で、実施例9〜15其々のΔT及びVfを測定した。実施例4のΔT及びVfは、下記表2に示される値であった。
(Examples 9 to 15)
In the orientation steps of Examples 9-15, the D / 2 R of Examples 9-15 is adjusted to the values shown in Table 2 below by changing the distance D between the coil 17a and the coil 17b. did. Rare earth magnets of Examples 9 to 15 were produced in the same manner as in Example 1 except for D / 2R. In the same manner as in Example 1, ΔT and Vf in each of Examples 9 to 15 were measured. ΔT and Vf of Example 4 were values shown in Table 2 below.

Figure 2019114608
Figure 2019114608

(実施例16〜23)
実施例16〜23其々の成形工程では、型が合金粉末に及ぼす圧力を変えることにより、成形工程直後(配向工程前)の成形体の密度を、下記表3に示す値に調整した。成形体の密度を除いて実施例1と同様の方法で、実施例16〜23其々の希土類磁石を作製した。実施例1と同様の方法で、実施例16〜23其々のΔT及びVfを測定した。実施例16〜23其々のΔT及びVfは、下記表3に示される値であった。
(Examples 16 to 23)
In each of the forming steps of Examples 16 to 23, the density of the formed body immediately after the forming step (before the orientation step) was adjusted to the value shown in Table 3 below by changing the pressure exerted on the alloy powder by the mold. The rare earth magnets of Examples 16 to 23 were produced in the same manner as in Example 1 except for the density of the compact. In the same manner as in Example 1, ΔT and Vf in each of Examples 16 to 23 were measured. The ΔT and Vf of Examples 16 to 23 were values shown in Table 3 below.

<希土類磁石の残留磁束密度Brの測定>
実施例16の希土類磁石50個の残留磁束密度Brを、直流BHトレーサを用いて測定して、これらの測定値から、実施例16の希土類磁石の残留磁束密度Brの平均値を算出した。同様の方法で、実施例17〜23其々の希土類磁石の残留磁束密度Brの平均値を算出した。実施例16〜23の残留磁束密度Brの平均値のうち、実施例20の残留磁束密度Brの平均値が最大であった。実施例20の残留磁束密度Brの平均値を、以下ではBrmaxと表す。実施例n(nは16〜23のうちいずれかの自然数である。)の残留磁束密度Brの平均値を、Brnと表す。これらの前提に基づき、残留磁束密度Brの減少率ΔBr/Brは、下記数式3で定義される。ΔBr/Brは、2%以下であることが好ましく、1%以下であることがより好ましい。実施例16〜23其々のΔBr/Brは、下記表3に示される値であった。実施例23の比較的高いΔBr/Brは、実施例23の成形体の高い密度に起因することが推察される。
ΔBr/Br(%)=(Brmax−Brn)÷Brmax×100 (3)
<Measurement of residual magnetic flux density Br of rare earth magnet>
The residual magnetic flux density Br of 50 rare earth magnets of Example 16 was measured using a direct current BH tracer, and from these measured values, the average value of the residual magnetic flux density Br of the rare earth magnet of Example 16 was calculated. The average value of the residual magnetic flux density Br of each of the rare earth magnets of Examples 17 to 23 was calculated in the same manner. The average value of the residual magnetic flux density Br of Example 20 was the largest among the average values of the residual magnetic flux density Br of Examples 16-23. The average value of the residual magnetic flux density Br of Example 20 is hereinafter referred to as Brmax. The average value of the residual magnetic flux density Br of Example n (n is a natural number of 16 to 23) is represented as Brn. Based on these assumptions, the reduction rate ΔBr / Br of the residual magnetic flux density Br is defined by the following formula 3. The ΔBr / Br is preferably 2% or less, more preferably 1% or less. The ΔBr / Br in each of Examples 16 to 23 was a value shown in Table 3 below. It is inferred that the relatively high ΔBr / Br of Example 23 is due to the high density of the compact of Example 23.
ΔBr / Br (%) = (Brmax−Brn) ÷ Brmax × 100 (3)

実施例1と同様の方法で、実施例16〜23其々のクラックの発生率を求めた。実施例16〜23のクラックの発生率はいずれも、10%未満であった。実施例16のクラックの発生率は、実施例17〜23のクラックの発生率のいずれよりも高かった。実施例16の比較的高いクラック率は、実施例16の成形体の低い密度に起因することが推察される。   In the same manner as in Example 1, the incidence of cracks in Examples 16 to 23 was determined. The incidences of cracks in Examples 16 to 23 were all less than 10%. The incidence of cracks in Example 16 was higher than any of the incidences of cracks in Examples 17-23. It is assumed that the relatively high crack rate of Example 16 is due to the low density of the compact of Example 16.

Figure 2019114608
Figure 2019114608

本発明に係る希土類磁石の製造方法によれば、例えば、ハードディスクドライブ、ハイブリッド自動車又は電気自動車等の多様な用途に応じて、多品種の希土類磁石を生産することが可能であり、その生産量が少量であっても製造コストを抑制することが可能である。   According to the method for producing a rare earth magnet according to the present invention, it is possible to produce various types of rare earth magnets according to various applications such as hard disk drive, hybrid car or electric car, and the production amount thereof is Even small amounts can reduce the manufacturing cost.

2…型、4…上型、6…側型、8…下型、10,10a,10b,10c…成形体、15…ダブルコイル、17a,17b…コイル、100…希土類磁石、A…二つのコイルに共通する中心軸、D…二つのコイル間の距離、R…コイルの内側の半径、2R…コイルの内径、H…パルス磁場、W…中心軸に垂直な方向における成形体の幅の最大値。   DESCRIPTION OF SYMBOLS 2 ... type | mold 4 ... upper mold | type 6 ... side mold type | mold 8 ... lower mold | type 10, 10a, 10b, 10c ... molded body 15 ... double coil 17a, 17b ... coil 100 rare earth magnet, A ... two Central axis common to coils, D: Distance between two coils, R: Inner radius of coil, 2R: Inner diameter of coil, H: Pulsed magnetic field, W: Maximum width of molded body in a direction perpendicular to central axis value.

Claims (7)

希土類元素を含む金属粉末を、型内へ供給して、成形体を形成する成形工程と、
前記型内に保持された前記成形体にパルス磁場を印加して、前記成形体に含まれる前記金属粉末を配向させる配向工程と、
前記配向工程後、前記成形体を焼結させる焼結工程と、
を備え、
前記配向工程では、同一の中心軸を持つように配置された少なくとも二つのコイルを用いて、前記成形体に前記パルス磁場を印加する、
希土類磁石の製造方法。
A forming step of supplying a metal powder containing a rare earth element into a mold to form a formed body;
An orientation step of orientating the metal powder contained in the compact by applying a pulse magnetic field to the compact held in the mold;
A sintering step of sintering the compact after the orientation step;
Equipped with
In the orientation step, the pulse magnetic field is applied to the compact using at least two coils disposed to have the same central axis.
Method of manufacturing rare earth magnet.
一方の前記コイルの内径は、他方の前記コイルの内径と等しく、
二つの前記コイル其々の内径が2Rで表され、
前記中心軸に垂直な方向における前記成形体の幅の最大値がWで表され、
2RがW以上であり、
前記配向工程では、前記成形体が二つの前記コイルの内側に配置される、
請求項1に記載の希土類磁石の製造方法。
The inner diameter of one of the coils is equal to the inner diameter of the other of the coils,
The inner diameter of each of the two coils is represented by 2R,
The maximum value of the width of the compact in the direction perpendicular to the central axis is represented by W,
2R is W or more,
In the orientation step, the molded body is disposed inside the two coils.
The manufacturing method of the rare earth magnet of Claim 1.
一方の前記コイルの内径は、他方の前記コイルの内径と等しく、
二つの前記コイル其々の内径が2Rで表され、
前記中心軸に平行な方向における二つの前記コイル間の距離がDで表され、
D/2Rが0より大きく0.55以下であり、
前記配向工程では、前記成形体が二つの前記コイルの内側に配置される、
請求項1又は2に記載の希土類磁石の製造方法。
The inner diameter of one of the coils is equal to the inner diameter of the other of the coils,
The inner diameter of each of the two coils is represented by 2R,
The distance between the two coils in a direction parallel to the central axis is represented by D,
D / 2R is greater than 0 and less than or equal to 0.55,
In the orientation step, the molded body is disposed inside the two coils.
The manufacturing method of the rare earth magnet of Claim 1 or 2.
前記配向工程の前に、前記成形体の密度が3.0g/cm以上4.4g/cm以下に調整される、
請求項1〜3のいずれか一項に記載の希土類磁石の製造方法。
Before the orientation step, the density of the molded body is adjusted to 3.0 g / cm 3 or more and 4.4 g / cm 3 or less.
The manufacturing method of the rare earth magnet as described in any one of Claims 1-3.
前記型の少なくとも一部が非磁性体から形成されている、
請求項1〜4のいずれか一項に記載の希土類磁石の製造方法。
At least a portion of the mold is formed of non-magnetic material,
The manufacturing method of the rare earth magnet as described in any one of Claims 1-4.
前記型の少なくとも一部が樹脂から形成されている、
請求項1〜5のいずれか一項に記載の希土類磁石の製造方法。
At least a portion of the mold is formed of a resin,
The manufacturing method of the rare earth magnet as described in any one of Claims 1-5.
前記焼結工程では、前記型から分離された前記成形体を焼結させる、
請求項1〜6のいずれか一項に記載の希土類磁石の製造方法。
In the sintering step, the compact separated from the mold is sintered.
The manufacturing method of the rare earth magnet as described in any one of Claims 1-6.
JP2017245312A 2017-12-21 2017-12-21 Method of manufacturing rare earth magnet Pending JP2019114608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245312A JP2019114608A (en) 2017-12-21 2017-12-21 Method of manufacturing rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245312A JP2019114608A (en) 2017-12-21 2017-12-21 Method of manufacturing rare earth magnet

Publications (1)

Publication Number Publication Date
JP2019114608A true JP2019114608A (en) 2019-07-11

Family

ID=67222799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245312A Pending JP2019114608A (en) 2017-12-21 2017-12-21 Method of manufacturing rare earth magnet

Country Status (1)

Country Link
JP (1) JP2019114608A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543904A (en) * 1991-07-16 1993-02-23 Inter Metallics Kk Production of permanent magnet green compact
JPH0935932A (en) * 1995-07-21 1997-02-07 Toyota Central Res & Dev Lab Inc Manufacture of anisotropic magnet by dry molding
JP2003193107A (en) * 2001-12-28 2003-07-09 Sumitomo Special Metals Co Ltd Method for pressing rare-earth alloy powder, and method for manufacturing sintered compact of rare-earth alloy
WO2016047593A1 (en) * 2014-09-28 2016-03-31 Ndfeb株式会社 Method for manufacturing rare-earth sintered magnet, and manufacturing device used for said manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543904A (en) * 1991-07-16 1993-02-23 Inter Metallics Kk Production of permanent magnet green compact
JPH0935932A (en) * 1995-07-21 1997-02-07 Toyota Central Res & Dev Lab Inc Manufacture of anisotropic magnet by dry molding
JP2003193107A (en) * 2001-12-28 2003-07-09 Sumitomo Special Metals Co Ltd Method for pressing rare-earth alloy powder, and method for manufacturing sintered compact of rare-earth alloy
WO2016047593A1 (en) * 2014-09-28 2016-03-31 Ndfeb株式会社 Method for manufacturing rare-earth sintered magnet, and manufacturing device used for said manufacturing method

Similar Documents

Publication Publication Date Title
JP4391897B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
JP6780707B2 (en) Rare earth magnet manufacturing method
EP2472535A1 (en) NdFeB SINTERED MAGNET PRODUCTION METHOD AND PRODUCTION DEVICE, AND NdFeB SINTERED MAGNET PRODUCED WITH SAID PRODUCTION METHOD
US20140328959A1 (en) System and process for friction consolidation fabrication of permanent magnets and other extrusion and non-extrusion structures
JP6780706B2 (en) Rare earth magnet manufacturing method
EP2767992A1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
JPWO2015146888A1 (en) R-T-B system alloy powder and manufacturing method thereof, R-T-B system sintered magnet and manufacturing method thereof
KR101087574B1 (en) Fabrication method of sintered magnetic by cyclic heat treatment and sintered magnetic prepared thereby
JP4819103B2 (en) Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
Samardak et al. Investigation of the composition, structure and magnetic properties of the Nd2Fe14B ceramics dependence on the initial powder characteristics and spark plasma sintering modes
JP7056086B2 (en) Manufacturing method of rare earth magnets
JP6733507B2 (en) Rare earth magnet manufacturing method
JP6677140B2 (en) Rare earth magnet manufacturing method
JP2019114608A (en) Method of manufacturing rare earth magnet
JP2019197778A (en) Manufacturing method for rare earth magnet
JP2020009886A (en) Method for manufacturing sintered magnet
EP3276644B1 (en) Method of manufacturing a permanent magnet
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
JP6809150B2 (en) Rare earth magnet manufacturing method
WO2019188303A1 (en) Method for manufacturing industrial article comprising sintered compact
JP2022175413A (en) Manufacturing method of rare-earth magnet
JP4415681B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215