JP2019114463A - Method for manufacturing membrane-electrode assembly - Google Patents

Method for manufacturing membrane-electrode assembly Download PDF

Info

Publication number
JP2019114463A
JP2019114463A JP2017247983A JP2017247983A JP2019114463A JP 2019114463 A JP2019114463 A JP 2019114463A JP 2017247983 A JP2017247983 A JP 2017247983A JP 2017247983 A JP2017247983 A JP 2017247983A JP 2019114463 A JP2019114463 A JP 2019114463A
Authority
JP
Japan
Prior art keywords
catalyst layer
ionomer
polymer electrolyte
catalyst
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017247983A
Other languages
Japanese (ja)
Other versions
JP6911748B2 (en
Inventor
淳二 中西
Junji Nakanishi
淳二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017247983A priority Critical patent/JP6911748B2/en
Publication of JP2019114463A publication Critical patent/JP2019114463A/en
Application granted granted Critical
Publication of JP6911748B2 publication Critical patent/JP6911748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

To provide a method for manufacturing a membrane-electrode assembly including an ionomer having Tg equal to or higher than a transfer temperature by a transfer method.SOLUTION: The present invention relates to a method for manufacturing a membrane-electrode assembly, which comprises the step of transferring a catalyst layer disposed over a coating base material to a solid polymer electrolyte film. The coating base material is polytetrafluoroethylene. The catalyst layer includes an ionomer having Tg equal to or higher than a transfer temperature, and a catalyst carrier including carbon, and a sulfonic acid amount A of the ionomer per unit carbon weight of the catalyst layer, which is represented by the following formula, is 0.55≤A≤1.2: A=Ionomer's ion exchange capacity (IEC)(meq/g)×Ionomer's weight (g)/Carbon weight (g).SELECTED DRAWING: Figure 1

Description

本発明は、膜電極接合体の製造方法に関する。   The present invention relates to a method of manufacturing a membrane electrode assembly.

燃料ガスと酸化剤ガスとの電気化学反応によって発電する燃料電池として固体高分子型燃料電池がエネルギー源として注目されている。固体高分子型燃料電池は、室温作動が可能であり、出力密度も高いため、自動車用途などに適した形態として、活発に研究されている。   A polymer electrolyte fuel cell attracts attention as an energy source as a fuel cell which generates electric power by an electrochemical reaction between a fuel gas and an oxidant gas. Since polymer electrolyte fuel cells can be operated at room temperature and have a high power density, they are being actively studied as a form suitable for automotive applications and the like.

固体高分子型燃料電池では、一般に、電解質膜である固体高分子電解質膜の両面に、それぞれ、触媒層からなる電極(空気極及び燃料極)を接合してなる膜電極接合体(「燃料極−固体高分子電解質膜−空気極」)(以下、「MEA」ともいう)が使用される。   In a polymer electrolyte fuel cell, in general, a membrane electrode assembly ("fuel electrode") is formed by bonding electrodes (air electrode and fuel electrode) each comprising a catalyst layer on both sides of a solid polymer electrolyte film which is an electrolyte film. -Solid polymer electrolyte membrane-air electrode "(hereinafter also referred to as" MEA ") is used.

各電極は、触媒層から形成され、触媒層は、触媒層中に含まれる電極触媒によって電極反応をおこなわせるための層である。電極反応を進行させるためには、電解質、触媒及び反応ガスの三相が共存する三相界面が必要であることから、触媒層は、一般に、触媒と、電解質とを含む層からなっている。   Each electrode is formed of a catalyst layer, and the catalyst layer is a layer for causing an electrode reaction by an electrode catalyst contained in the catalyst layer. The catalyst layer is generally composed of a layer containing a catalyst and an electrolyte because a three-phase interface in which three phases of an electrolyte, a catalyst, and a reaction gas coexist is necessary for the electrode reaction to proceed.

例えば、特許文献1は、電解質膜と、その両側に配され、導電性担体に触媒が担持されてなる触媒担持担体と高分子電解質とからなる、アノード側触媒層及びカソード側触媒層と、から形成された膜電極接合体について開示しており、前記アノード側触媒層は、I/C(導電性担体の質量(C)に対する高分子電解質の質量(I)の比)が1.0〜2.0の範囲であり、EW(スルホン酸等量重量)が750〜1100の範囲にあり、さらに高分子電解質の厚みが10nm〜24nmの範囲にある。   For example, Patent Document 1 is composed of an electrolyte membrane and an anode-side catalyst layer and a cathode-side catalyst layer, each of which comprises a catalyst-supporting carrier disposed on both sides thereof and having a catalyst supported on a conductive carrier and a polymer electrolyte. It is disclosed about the formed membrane electrode assembly, and the anode side catalyst layer has an I / C (ratio of mass (I) of polymer electrolyte to mass (C) of conductive support) of 1.0 to 2 The EW (sulfonic acid equivalent weight) is in the range of 750 to 1100, and the thickness of the polymer electrolyte is in the range of 10 to 24 nm.

このようなMEAを製造する方法に関して、例えば、特許文献2は、表面に触媒層を形成した触媒層形成塗工基材を、その触媒層面が固体高分子電解質膜に接するように、含水状態の固体高分子電解質膜の片面又は両面に積層した塗工基材−電解質膜積層体を、2枚のフィルムの間に挟んだ状態で加熱圧接することを特徴とする、膜電極接合体の製造方法について開示している。   With respect to a method for producing such MEA, for example, Patent Document 2 is in a water-hydrated state so that the catalyst layer-forming coated substrate having a catalyst layer formed on the surface is in contact with the solid polymer electrolyte membrane. A method for producing a membrane electrode assembly, comprising heating and pressure-bonding a coated substrate-electrolyte membrane laminate laminated on one side or both sides of a solid polymer electrolyte membrane between two films. Is disclosed.

特許文献3は、触媒層転写用ロールプレス装置を用いて、触媒層を固体高分子電解質膜に転写する方法について開示している。   Patent Document 3 discloses a method of transferring a catalyst layer to a solid polymer electrolyte membrane using a roll press apparatus for transferring a catalyst layer.

特開2011−8940号公報JP, 2011-8940, A 特開2000−90944号公報JP 2000-90944 A 特開2003−257438号公報JP 2003-257438 A

一般的に、MEAを製造する際に用いられる転写法では、塗工基材の熱膨張、設備の樹脂部品(転写面やロールにはゴムを用いることが多い)の耐熱性から、MEAを安定して生産するために、150℃未満の転写温度で実施することが求められる。したがって、MEAにおいて固体高分子電解質膜と触媒層とを密着させるために触媒層に用いられる電解質としては、密着強度を確保するため、150℃未満で軟化するアイオノマー、すなわち、150℃未満のガラス転移点(本明細書等では、「ガラス転移点」を「Tg」ともいう)を有するアイオノマーが好ましい。   Generally, in the transfer method used when manufacturing MEA, the MEA is stabilized from the thermal expansion of the coated substrate and the heat resistance of the resin part of equipment (the transfer surface and the roll are often made of rubber). It is required to carry out at a transfer temperature of less than 150.degree. C. for production. Therefore, as the electrolyte used in the catalyst layer to adhere the solid polymer electrolyte membrane and the catalyst layer in the MEA, an ionomer softened at less than 150 ° C., that is, a glass transition of less than 150 ° C. in order to secure the adhesion strength. An ionomer having a point (herein, “glass transition temperature” is also referred to as “Tg”) is preferred.

一方で、高性能なMEAを得るためには、酸素透過性が高いアイオノマーを使用することが好ましい。しかしながら、酸素透過性が高いアイオノマーの多くは、150℃以上の高いTgを有することが判明している。   On the other hand, in order to obtain a high-performance MEA, it is preferable to use an ionomer having high oxygen permeability. However, many of the ionomers with high oxygen permeability are found to have high Tg of 150 ° C. or higher.

以上より、従来の転写法では、MEAを効率よく製造することは困難である。   From the above, it is difficult to efficiently produce MEA by the conventional transfer method.

したがって、本発明は、転写法により、転写温度以上のTgを有するアイオノマーを含む膜電極接合体を製造する方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a method for producing a membrane electrode assembly including an ionomer having a Tg equal to or higher than a transfer temperature by a transfer method.

塗工基材上に配置された触媒層を固体高分子電解質膜に転写する工程を含むMEAの製造方法において、アイオノマーが転写温度以上のTgを有する場合、触媒層が配置(塗布)されている塗工基材からの触媒層の固体高分子電解質膜への転写性を確保するためには、触媒層のカーボン重量当たりのアイオノマーのスルホン酸量を増加させることが考えられる。触媒層のカーボン重量当たりのアイオノマーのスルホン酸量を増加させることで、固体高分子電解質膜と触媒層との密着強度が向上され、130℃程度の低温でも転写を成立することができると推察される。   In the MEA manufacturing method including the step of transferring the catalyst layer disposed on the coated substrate to the solid polymer electrolyte membrane, the catalyst layer is disposed (coated) when the ionomer has a Tg equal to or higher than the transfer temperature. In order to secure the transferability of the catalyst layer from the coated substrate to the solid polymer electrolyte membrane, it is conceivable to increase the amount of sulfonic acid of ionomer per carbon weight of the catalyst layer. By increasing the amount of sulfonic acid of ionomer per carbon weight of the catalyst layer, the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer is improved, and it is surmised that transfer can be established even at a low temperature of about 130 ° C. Ru.

しかしながら、触媒層のカーボン重量当たりのアイオノマーのスルホン酸量を増加しすぎると、固体高分子電解質膜と触媒層との密着強度以上に、触媒層が配置されている塗工基材と触媒層との密着強度が向上されてしまい、転写が成立しないことが判明した。   However, if the amount of sulfonic acid of ionomer per carbon weight of the catalyst layer is increased too much, the coated substrate and the catalyst layer in which the catalyst layer is disposed more than the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer The adhesion strength was improved, and it was found that transfer was not established.

そこで、本発明者は、前記課題を解決するための手段を種々検討した結果、塗工基材上に配置された触媒層を固体高分子電解質膜に転写する工程を含むMEAの製造方法において、アイオノマーが転写温度以上のTgを有する場合に、固体高分子電解質膜と触媒層との密着強度が、触媒層が配置されている塗工基材としてのポリテトラフルオロエチレン(PTFE)と触媒層との密着強度よりも大きくなるように、触媒層のカーボン重量当たりのアイオノマーのスルホン酸量を規定することによって、触媒層が配置されている塗工基材からの触媒層の固体高分子電解質膜への転写性を確保できることを見出し、本発明を完成した。   Then, as a result of examining the means for solving the above-mentioned subject variously, the inventor of the present invention is a manufacturing method of MEA including a step of transferring a catalyst layer disposed on a coated substrate to a solid polymer electrolyte membrane, When the ionomer has a Tg equal to or higher than the transfer temperature, the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer is determined by the polytetrafluoroethylene (PTFE) as the coated substrate on which the catalyst layer is disposed, and the catalyst layer By defining the amount of sulfonic acid of ionomer per carbon weight of the catalyst layer so that the adhesion strength of the catalyst layer is greater than the adhesion strength of the catalyst layer from the coated substrate on which the catalyst layer is disposed The present invention has been completed by finding that the transferability of the

すなわち、本発明の要旨は以下の通りである。
(1)塗工基材上に配置された触媒層を固体高分子電解質膜に転写する工程を含む膜電極接合体の製造方法であって、
塗工基材が、ポリテトラフルオロエチレンであり、
触媒層が、転写温度以上のTgを有するアイオノマーと、カーボンを含む触媒担体とを含み、
以下の式
A=アイオノマーのイオン交換容量(IEC)(meq/g)×アイオノマーの重量(g)/カーボン重量(g)
により表される触媒層のカーボン重量当たりのアイオノマーのスルホン酸量Aが、
0.55≦A≦1.2
である、膜電極接合体の製造方法。
That is, the gist of the present invention is as follows.
(1) A method for producing a membrane electrode assembly, comprising the step of transferring a catalyst layer disposed on a coated substrate to a solid polymer electrolyte membrane,
The coated substrate is polytetrafluoroethylene,
The catalyst layer comprises an ionomer having a Tg above the transfer temperature and a catalyst support comprising carbon;
The following formula A = ion exchange capacity (IEC) of ionomer (meq / g) × weight of ionomer (g) / weight of carbon (g)
The sulfonic acid amount A of the ionomer per carbon weight of the catalyst layer represented by
0.55 ≦ A ≦ 1.2
A method for producing a membrane electrode assembly.

本発明により、転写法により、転写温度以上のTgを有するアイオノマーを使用して、膜電極接合体を製造する方法が提供される。   The present invention provides a method for producing a membrane electrode assembly using an ionomer having a Tg equal to or higher than the transfer temperature by the transfer method.

触媒層のカーボン重量当たりのアイオノマーのスルホン酸量Aと、固体高分子電解質膜と触媒層との密着強度及びPTFEと触媒層との密着強度との関係を示す。The relationship between the amount A of sulfonic acid of ionomer per carbon weight of the catalyst layer, the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer, and the adhesion strength between PTFE and the catalyst layer is shown.

以下、本発明の好ましい実施形態について詳細に説明する。
本発明の膜電極接合体の製造方法は、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者がおこない得る変更、改良などを施した種々の形態にて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The method for producing a membrane electrode assembly of the present invention is not limited to the following embodiments, and various modifications may be made to those skilled in the art without departing from the scope of the present invention. It can be implemented.

本発明は、塗工基材上に配置された触媒層を固体高分子電解質膜に転写する工程を含む膜電極接合体の製造方法であって、塗工基材が、ポリテトラフルオロエチレンであり、触媒層が、転写温度以上のTgを有するアイオノマーと、カーボンを含む触媒担体とを含み、触媒層のカーボン重量当たりのアイオノマーのスルホン酸量Aが、一定の範囲である、膜電極接合体の製造方法に関する。   The present invention is a method for producing a membrane electrode assembly including the step of transferring a catalyst layer disposed on a coated substrate to a solid polymer electrolyte membrane, wherein the coated substrate is polytetrafluoroethylene. A membrane electrode assembly, wherein the catalyst layer comprises an ionomer having a Tg higher than the transfer temperature, and a catalyst carrier containing carbon, and the sulfonic acid amount A of the ionomer per carbon weight of the catalyst layer is within a certain range. It relates to the manufacturing method.

本発明において、以下の式
A=アイオノマーのイオン交換容量(IEC)(meq/g)×アイオノマーの重量(g)/カーボン重量(g)
により表される触媒層のカーボン重量当たりのアイオノマーのスルホン酸量Aは、0.55≦A≦1.2、好ましくは、0.70≦A≦1.0である。
In the present invention, the following formula A = ion exchange capacity (IEC) of ionomer (meq / g) × weight of ionomer (g) / weight of carbon (g)
The sulfonic acid amount A of the ionomer per carbon weight of the catalyst layer represented by the following formula is 0.55 ≦ A ≦ 1.2, preferably 0.70 ≦ A ≦ 1.0.

ここで、イオン交換容量(IEC)は、一定量の物質が保持できるイオンの量であり、単位重量当たりの交換できるイオンのミリ当量(meq/g)で表される。   Here, the ion exchange capacity (IEC) is the amount of ions that can be held by a fixed amount of substance, and is expressed in milliequivalents (meq / g) of exchangeable ions per unit weight.

Aが前記範囲であることにより、固体高分子電解質膜と触媒層との密着強度が、触媒層が配置されている塗工基材としてのPTFEと触媒層との密着強度よりも大きくなり、触媒層が配置されている塗工基材からの触媒層の固体高分子電解質膜への転写性を確保することができる。   When A is in the above range, the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer becomes larger than the adhesion strength between PTFE and the catalyst layer as the coating base on which the catalyst layer is disposed, and the catalyst The transferability to the solid polymer electrolyte membrane of the catalyst layer from the coating base material in which the layer is arrange | positioned can be ensured.

固体高分子電解質膜と触媒層との密着強度及びPTFEと触媒層との密着強度は、90°剥離試験により測定することができる。   The adhesion strength between the solid polymer electrolyte membrane and the catalyst layer and the adhesion strength between the PTFE and the catalyst layer can be measured by a 90 ° peel test.

固体高分子電解質膜と触媒層との密着強度は、PTFEと触媒層との密着強度よりも大きくなる限り限定されないが、通常0.10N/mm〜0.25N/mm、好ましくは0.15N/mm〜0.20N/mmである。   The adhesion strength between the solid polymer electrolyte membrane and the catalyst layer is not limited as long as it becomes larger than the adhesion strength between PTFE and the catalyst layer, but it is usually 0.10 N / mm to 0.25 N / mm, preferably 0.15 N / mm to 0.20 N / mm.

PTFEと触媒層との密着強度は、固体高分子電解質膜と触媒層との密着強度よりも小さくなる限り限定されないが、通常0.0N/mm〜0.2N/mm、好ましくは0.05N/mm以下である。   The adhesion strength between PTFE and the catalyst layer is not limited as long as it is smaller than the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer, but it is usually 0.0 N / mm to 0.2 N / mm, preferably 0.05 N / mm. It is less than mm.

本発明において、転写温度は、通常120℃〜140℃、好ましくは130℃である。   In the present invention, the transfer temperature is usually 120 ° C to 140 ° C, preferably 130 ° C.

転写温度が前記温度範囲であることにより、塗工基材及び設備の樹脂部品が熱により劣化することなく、MEAを安定して生産することができる。   When the transfer temperature is in the above temperature range, MEA can be stably produced without deterioration of the coated base material and the resin part of the equipment due to heat.

本発明において、転写温度以上のTgを有するアイオノマーは、例えば150℃以上と高いTgを有する。   In the present invention, an ionomer having a Tg above the transfer temperature has a high Tg of, for example, 150 ° C. or more.

転写温度以上のTgを有するアイオノマーのイオン交換容量は、Aが前記範囲になる限り限定されないが、通常1.0meq/g以上である。   The ion exchange capacity of the ionomer having a Tg equal to or higher than the transfer temperature is not limited as long as A falls in the above range, but is usually 1.0 meq / g or more.

本発明において、触媒担体は、カーボンを含む。カーボンは、当該技術分野で公知のカーボンを使用することができる。カーボンを含む触媒担体としては、限定されないが、例えば、アセチレンブラック、サーマルブラック、それらの混合物などが挙げられる。触媒担体は、カーボンからなることが好ましい。   In the present invention, the catalyst support comprises carbon. As carbon, carbon known in the art can be used. The catalyst support containing carbon includes, but is not limited to, for example, acetylene black, thermal black, a mixture thereof and the like. The catalyst support is preferably made of carbon.

本発明において、カーボンを含む触媒担体に担持される触媒は、当該技術分野で公知の触媒を使用することができる。触媒としては、限定されないが、例えば、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスニウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属、又はそれらの合金、例えば白金コバルトなどがある。   In the present invention, as the catalyst supported on the catalyst support containing carbon, catalysts known in the art can be used. The catalyst includes, but is not limited to, for example, platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum and the like, or metals thereof There is an alloy such as platinum cobalt.

本発明において、固体高分子電解質膜は、当該技術分野で公知の固体高分子電解質膜を使用することができる。固体高分子電解質膜は、限定されないが、例えばゴアセレクト(登録商標)を挙げることができる。   In the present invention, as the solid polymer electrolyte membrane, solid polymer electrolyte membranes known in the art can be used. Examples of the solid polymer electrolyte membrane include, but are not limited to, Gore Select (registered trademark).

本発明では、塗工基材上に配置された触媒層を固体高分子電解質膜に転写する工程を含む膜電極接合体の製造方法において、塗工基材が、ポリテトラフルオロエチレンであり、触媒層が、転写温度以上のTgを有するアイオノマーと、カーボンを含む触媒担体とを含み、触媒層のカーボン重量当たりのアイオノマーのスルホン酸量Aが、前記範囲であること以外は、当該技術分野で公知の方法を利用して、膜電極接合体を製造することができる。   In the present invention, in the method of producing a membrane electrode assembly including the step of transferring the catalyst layer disposed on the coated substrate to the solid polymer electrolyte membrane, the coated substrate is polytetrafluoroethylene, and the catalyst The layer is known in the art except that the layer contains an ionomer having a Tg higher than the transfer temperature, and a catalyst carrier containing carbon, and the sulfonic acid amount A of the ionomer per carbon weight of the catalyst layer is in the above range. The membrane electrode assembly can be manufactured using the method of

本発明において製造された膜電極接合体は、燃料電池に使用することができる。   The membrane electrode assembly manufactured in the present invention can be used in a fuel cell.

以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   The present invention will now be described with reference to several examples, which are not intended to limit the present invention to those shown.

密着強度の測定
(1)PTFEと触媒層との密着強度
Tgが150℃以上であるアイオノマー(アクイヴィオン、Solvey社製)と、触媒担体を含むカーボンと、エタノールと、水とを混合し、触媒インクを調製した。触媒インクは、アイオノマーとカーボンの量を変更して、触媒層のカーボン重量当たりのアイオノマーのスルホン酸量A(A=アイオノマーのイオン交換容量(IEC)(meq/g)×アイオノマーの重量(I)(g)/カーボン重量(C)(g))がそれぞれ異なるように、7種類調製した。7種類の触媒インクを、それぞれ塗工基材としてのPTFE上に塗布した。7種類のPTFE−触媒層について、90°剥離試験により、PTFEと触媒層との密着強度を測定した。
Measurement of adhesion strength (1) Adhesion strength between PTFE and catalyst layer An ionomer (Aquivion, manufactured by Solvey) having a Tg of 150 ° C. or higher, carbon containing a catalyst carrier, ethanol, and water are mixed to obtain a catalyst ink Was prepared. In the catalyst ink, the amount of sulfonic acid in the ionomer per carbon weight of the catalyst layer is changed by changing the amount of ionomer and carbon A (A = ion exchange capacity (IEC) of ionomer (meq / g) × weight of ionomer (I) Seven types of (g) / carbon weight (C) (g) were prepared so as to be different from one another. Seven types of catalyst inks were each coated on PTFE as a coating substrate. The adhesion strength between the PTFE and the catalyst layer was measured for the seven types of PTFE-catalyst layers by a 90 ° peeling test.

(2)固体高分子電解質膜と触媒層との密着強度
(1)で調製した7種類の触媒インクを、それぞれ固体高分子電解質膜上に塗布した。7種類の固体高分子電解質膜−触媒層膜について、90°剥離試験により、固体高分子電解質膜と触媒層との密着強度を測定した。
(2) Adhesion Strength Between Solid Polymer Electrolyte Membrane and Catalyst Layer The seven types of catalyst inks prepared in (1) were each coated on a solid polymer electrolyte membrane. The adhesion strength between the solid polymer electrolyte membrane and the catalyst layer was measured for the seven types of solid polymer electrolyte membrane-catalyst layer membranes by a 90 ° peeling test.

(1)及び(2)で測定した密着強度を、Aに対してプロットした。結果を図1に示す。   The adhesion strengths measured in (1) and (2) were plotted against A. The results are shown in FIG.

図1より、固体高分子電解質膜と触媒層との密着強度と、PTFEと触媒層との密着強度とには、一定の関係が存在することがわかった。固体高分子電解質膜と触媒層との密着強度が、PTFEと触媒層との密着強度よりも大きくなることにより転写が成立するため、Aが0.55≦A≦1.2である場合に、触媒層が塗布されているPTFEからの触媒層の固体高分子電解質膜への転写が安定して成立し、さらに、Aが0.70≦A≦1.0である場合に、当該転写がさらに安定して成立することがわかった。   It was found from FIG. 1 that a certain relationship exists between the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer and the adhesion strength between the PTFE and the catalyst layer. When the adhesion strength between the solid polymer electrolyte membrane and the catalyst layer is larger than the adhesion strength between the PTFE and the catalyst layer, the transfer is established, so that when A is 0.55 ≦ A ≦ 1.2, Transfer of the catalyst layer from the PTFE to which the catalyst layer is applied to the solid polymer electrolyte membrane is stably established, and further, when A is 0.70 ≦ A ≦ 1.0, the transfer is further performed. It turned out that it was established stably.

Claims (1)

塗工基材上に配置された触媒層を固体高分子電解質膜に転写する工程を含む膜電極接合体の製造方法であって、
塗工基材が、ポリテトラフルオロエチレンであり、
触媒層が、転写温度以上のTgを有するアイオノマーと、カーボンを含む触媒担体とを含み、
以下の式
A=アイオノマーのイオン交換容量(IEC)(meq/g)×アイオノマーの重量(g)/カーボン重量(g)
により表される触媒層のカーボン重量当たりのアイオノマーのスルホン酸量Aが、
0.55≦A≦1.2
である、膜電極接合体の製造方法。
A process for producing a membrane electrode assembly, comprising the step of transferring a catalyst layer disposed on a coated substrate to a solid polymer electrolyte membrane,
The coated substrate is polytetrafluoroethylene,
The catalyst layer comprises an ionomer having a Tg above the transfer temperature and a catalyst support comprising carbon;
The following formula A = ion exchange capacity (IEC) of ionomer (meq / g) × weight of ionomer (g) / weight of carbon (g)
The sulfonic acid amount A of the ionomer per carbon weight of the catalyst layer represented by
0.55 ≦ A ≦ 1.2
A method for producing a membrane electrode assembly.
JP2017247983A 2017-12-25 2017-12-25 Manufacturing method of membrane electrode assembly Active JP6911748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247983A JP6911748B2 (en) 2017-12-25 2017-12-25 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247983A JP6911748B2 (en) 2017-12-25 2017-12-25 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2019114463A true JP2019114463A (en) 2019-07-11
JP6911748B2 JP6911748B2 (en) 2021-07-28

Family

ID=67223269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247983A Active JP6911748B2 (en) 2017-12-25 2017-12-25 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6911748B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063944A (en) * 2003-07-31 2005-03-10 Toyobo Co Ltd Electrolyte membrane/electrode structure
JP2011008940A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Membrane-electrode assembly, and fuel battery
JP2012204272A (en) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd Membrane electrode assembly for solid polymer fuel cell, method of manufacturing membrane electrode assembly, unit cell of solid polymer fuel cell, and solid polymer fuel cell stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063944A (en) * 2003-07-31 2005-03-10 Toyobo Co Ltd Electrolyte membrane/electrode structure
JP2011008940A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Membrane-electrode assembly, and fuel battery
JP2012204272A (en) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd Membrane electrode assembly for solid polymer fuel cell, method of manufacturing membrane electrode assembly, unit cell of solid polymer fuel cell, and solid polymer fuel cell stack

Also Published As

Publication number Publication date
JP6911748B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP5079457B2 (en) Fuel cell substrate with overcoat
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
TW201222960A (en) Assembly for reversible fuel cell
JP6895512B2 (en) Manufacturing method of membrane electrode assembly for fuel cells
JP2002298867A (en) Solid polymer fuel cell
TWI223466B (en) Polymer electrolyte fuel cell which is improved its performance and reliability and manufacturing method of the same
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
US20100035125A1 (en) Layered electrode for electrochemical cells
US20040197629A1 (en) Electric power generating element for fuel cell and fuel cell using the same
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
JP5527254B2 (en) Carrier film for catalyst layer, catalyst layer transfer film, and method for producing membrane-catalyst layer assembly
JP4538684B2 (en) Catalyst layer forming sheet for fuel cell, catalyst layer-electrolyte membrane laminate, and production method thereof
JP5091890B2 (en) Adhesive for fuel cell and membrane electrode structure produced using the same
JP4400212B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP4538692B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP2019114463A (en) Method for manufacturing membrane-electrode assembly
KR20090092592A (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP2002298868A (en) Solid polymer fuel cell
JP2006286478A (en) Membrane electrode assembly
JP2010061865A (en) Method of manufacturing membrane electrode structure, and membrane electrode structure manufactured by this method
JP5609475B2 (en) Electrode catalyst layer, method for producing electrode catalyst layer, and polymer electrolyte fuel cell using the electrode catalyst layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R151 Written notification of patent or utility model registration

Ref document number: 6911748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151