JP2019114348A - All solid secondary battery - Google Patents

All solid secondary battery Download PDF

Info

Publication number
JP2019114348A
JP2019114348A JP2017245045A JP2017245045A JP2019114348A JP 2019114348 A JP2019114348 A JP 2019114348A JP 2017245045 A JP2017245045 A JP 2017245045A JP 2017245045 A JP2017245045 A JP 2017245045A JP 2019114348 A JP2019114348 A JP 2019114348A
Authority
JP
Japan
Prior art keywords
negative electrode
solid electrolyte
electrolyte layer
active material
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017245045A
Other languages
Japanese (ja)
Inventor
大地 小坂
Daichi Kosaka
大地 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017245045A priority Critical patent/JP2019114348A/en
Publication of JP2019114348A publication Critical patent/JP2019114348A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an all solid secondary battery which has a negative electrode including an Si alloy-based active material and in which an increase in internal resistance due to charge and discharge is suppressed.SOLUTION: In an all solid secondary battery including a positive electrode, a negative electrode and a solid electrolyte layer disposed between the positive electrode and the negative electrode, the negative electrode has a negative electrode collector and a negative electrode mixture layer disposed between the negative electrode collector and the solid electrolyte layer. The negative electrode mixture layer contains an Si alloy-based active material and a solid electrolyte, and, when the negative electrode mixture layer in a state-of-discharge is divided by a plane composed of the center points of the shortest distance between a solid electrolyte layer interface and a negative electrode collector interface, the Si content on a collector side is more than that on an electrolyte layer side.SELECTED DRAWING: Figure 2

Description

本開示は、全固体二次電池に関する。   The present disclosure relates to an all solid secondary battery.

Li等と合金を形成することが可能なSiを含有する活物質(Si合金系活物質)は、炭素系の負極活物質と比較して体積当たりの理論容量が大きいことから、Si合金系活物質を負極に用いた全固体二次電池が提案されている。   The Si-containing active material (Si alloy-based active material) capable of forming an alloy with Li etc. has a large theoretical capacity per volume compared to a carbon-based negative electrode active material. An all solid secondary battery using a substance for the negative electrode has been proposed.

特許文献1には、負極活物質粉末として平均粒径が10μm以下である合金系活物質を使用した二次電池用負極合材及び当該負極活物質粉末を含む負極層を含む全固体リチウムイオン電池が開示されている。   Patent Document 1 discloses an all-solid lithium ion battery including a negative electrode composite material for a secondary battery using an alloy active material having an average particle diameter of 10 μm or less as a negative electrode active material powder, and a negative electrode layer containing the negative electrode active material powder. Is disclosed.

特開2013−069416号公報JP, 2013-069416, A

しかしながら、特許文献1に記載されている負極活物質としてSi合金系活物質を用いた全固体二次電池では、充放電に伴い内部抵抗が増加するという問題があった。
本開示は、上記実情に鑑み、Si合金系活物質を含む負極を有し、充放電に伴う内部抵抗の増加が抑制された全固体二次電池を提供することを目的とする。
However, in the all solid secondary battery using the Si alloy based active material as the negative electrode active material described in Patent Document 1, there is a problem that the internal resistance increases with charge and discharge.
In view of the above situation, the present disclosure aims to provide an all-solid secondary battery including a negative electrode including a Si alloy-based active material and suppressing an increase in internal resistance associated with charge and discharge.

本開示の全固体二次電池は、正極、負極、並びに、当該正極及び当該負極の間に配置する固体電解質層を有する全固体二次電池であって、前記負極は、負極集電体、及び、当該負極集電体と前記固体電解質層の間に配置する負極合材層を有し、前記負極合材層は、Si合金系活物質及び固体電解質を含有し、放電状態における当該負極合材層を、前記固体電解質層界面と前記負極集電体界面の最短距離の中心点で構成される面で分割した場合に、集電体側のSi含有量が、電解質層側のSi含有量より多い、ことを特徴とする。   The all solid secondary battery of the present disclosure is an all solid secondary battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, wherein the negative electrode is a negative electrode current collector, A negative electrode mixture layer disposed between the negative electrode current collector and the solid electrolyte layer, wherein the negative electrode mixture layer contains a Si alloy active material and a solid electrolyte, and the negative electrode mixture in a discharge state When the layer is divided by a plane constituted by the center point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface, the Si content on the current collector side is larger than the Si content on the electrolyte layer side , It is characterized.

本開示によれば、Si合金系活物質を含む負極を有し、充放電に伴う内部抵抗の増加が抑制された全固体二次電池を提供することを目的とする。   According to the present disclosure, it is an object of the present invention to provide an all-solid secondary battery which has a negative electrode containing a Si alloy based active material and in which an increase in internal resistance due to charge and discharge is suppressed.

全固体二次電池の構成例を示す模式図である。It is a schematic diagram which shows the structural example of an all-solid-state secondary battery. 集電体側にSi合金系活物質が多く偏在する負極(合材層)の模式図である。It is a schematic diagram of the negative electrode (mixture material layer) which many Si alloy system active materials are unevenly distributed on the current collector side. Si合金系活物質が均一に分布する負極(合材層)の模式図である。It is a schematic diagram of the negative electrode (mixture layer) with which Si alloy system active material is distributed uniformly. 固体電解質層側にSi合金系活物質が多く偏在する負極(合材層)の模式図である。It is a schematic diagram of the negative electrode (mixture layer) which many Si alloy system active materials unevenly distribute on the solid electrolyte layer side. Si合金系活物質が均一に分布する負極断面の電子顕微鏡画像を示す図である。It is a figure which shows the electron microscope image of the negative electrode cross section which Si alloy type active material distributes uniformly. 固体電解質層側のアモルファス化したSi合金系活物質の電子線回折パターンである。It is the electron-beam-diffraction pattern of the Si-alloy type | system | group active material which was made amorphous on the solid electrolyte layer side. 集電体側の結晶性を保持したSi合金系活物質の電子線回折パターンである。It is the electron-beam-diffraction pattern of Si alloy type | system | group active material which hold | maintained the crystallinity by the side of a collector.

本開示の全固体二次電池は、正極、負極、並びに、当該正極及び当該負極の間に配置する固体電解質層を有する全固体二次電池であって、前記負極は、負極集電体、及び、当該負極集電体と前記固体電解質層の間に配置する負極合材層を有し、前記負極合材層は、Si合金系活物質及び固体電解質を含有し、放電状態における当該負極合材層を、前記固体電解質層界面と前記負極集電体界面の最短距離の中心点で構成される面で分割した場合に、集電体側のSi含有量が、電解質層側のSi含有量より多い、ことを特徴とする。   The all solid secondary battery of the present disclosure is an all solid secondary battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, wherein the negative electrode is a negative electrode current collector, A negative electrode mixture layer disposed between the negative electrode current collector and the solid electrolyte layer, wherein the negative electrode mixture layer contains a Si alloy active material and a solid electrolyte, and the negative electrode mixture in a discharge state When the layer is divided by a plane constituted by the center point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface, the Si content on the current collector side is larger than the Si content on the electrolyte layer side , It is characterized.

図1に一般的な全固体二次電池の構成例を示す。図1に示すように、負極合材層3−1は、固体電解質層1と負極集電体3−2の間に配置されている。
本研究者らは、上述のように、Si合金系活物質及び固体電解質を含む負極合材層3−1、並びに、負極集電体3−2を備える負極3を有する全固体二次電池101では、充放電に伴い、特に負極合材層の固体電解質層側において顕著にひび割れが生じるため、結果として、内部抵抗が増加することを知見した。
FIG. 1 shows a configuration example of a general all-solid secondary battery. As shown in FIG. 1, the negative electrode mixture layer 3-1 is disposed between the solid electrolyte layer 1 and the negative electrode current collector 3-2.
The present inventors studied the all-solid secondary battery 101 having the negative electrode mixture layer 3-1 including the Si alloy-based active material and the solid electrolyte as described above, and the negative electrode 3 including the negative electrode current collector 3-2. In the above, it was found that internal resistance was increased as a result of remarkable cracking especially in the solid electrolyte layer side of the negative electrode mixture layer with charge and discharge.

本研究者は、負極合材層の固体電解質層側において顕著にひび割れが生じる原因について検討を行ったところ、固体電解質層側のSi合金系活物質のみが充放電反応に関与しており、集電体側のSi合金系活物質はほとんど充放電反応に関与していないことが明らかとなった。   The present inventors examined the cause of significant cracking on the solid electrolyte layer side of the negative electrode mixture layer, but only the Si alloy based active material on the solid electrolyte layer side is involved in the charge and discharge reaction, It has become clear that the Si alloy based active material on the side of the electrical conductor hardly participates in the charge and discharge reaction.

ここで、負極活物質としてSi合金系活物質を使用する場合、全固体二次電池の充電に伴い、負極において、下記式(1)に示すような、いわゆる電気化学的合金化反応が起こる。
式(1) xM + xe + ySi → MSi
また、全固体二次電池の放電に伴い、負極では、下記式(2)に示すように、前記Siと金属元素Mとの合金からMイオンの離脱反応が起こる。
式(2) MSi → xM + xe + ySi
Si合金系活物質を負極活物質として使用した全固体二次電池では、上記式(1)及び式(2)に示す金属元素Mの挿入・離脱反応に伴う体積変化が大きい。
Here, when using a Si alloy based active material as the negative electrode active material, so-called electrochemical alloying reaction occurs as shown in the following formula (1) at the negative electrode along with charging of the all-solid secondary battery.
Formula (1) xM + + xe + ySi → M x Si y
Further, with the discharge of the all-solid secondary battery, in the negative electrode, as shown in the following formula (2), a separation reaction of M ions occurs from the alloy of Si and the metal element M.
Formula (2) M x Si y → xM + + xe + ySi
In the all solid secondary battery using the Si alloy based active material as the negative electrode active material, the volume change due to the insertion / detachment reaction of the metal element M shown in the above formulas (1) and (2) is large.

そのため、充放電反応に関与するSi合金系活物質を多く含む固体電解質層側の負極合材層では、充放電反応に伴うSi合金系活物質の体積変化が大きく、ひび割れが生じやすい。また、固体電解質層側の負極合材層には、ほとんど充放電反応に関与しないため体積変化が少ない負極集電体側の負極合材層との間に発生する応力、体積変化が生じない固体電解質との界面で生じる応力も生じるため、顕著にひび割れが生じると考えられる。   Therefore, in the negative electrode mixture layer on the side of the solid electrolyte layer containing a large amount of Si alloy active material involved in charge and discharge reaction, the volume change of the Si alloy active material due to charge and discharge reaction is large, and cracks easily occur. In addition, the negative electrode mixture layer on the solid electrolyte layer side hardly participates in the charge / discharge reaction, and therefore, there is little change in volume. Stress generated between the negative electrode mixture layer on the negative electrode collector side and the solid electrolyte does not occur. It is thought that cracking occurs notably because the stress generated at the interface with the above also occurs.

本開示の全固体二次電池では、固体電解質層側のSi合金系活物質の含有量を少なく、集電体側のSi合金系活物質の含有量を多くして、Si合金系活物質を偏在させた負極合材層を用いることで、負極合材層内全体で充放電反応が進行するようになる。そのため、負極合材層の固体電解質層側において、充放電反応に伴うSi合金系活物質の体積変化を減少させると共に、負極集電体側の負極合材層及び固体電解質層との界面で生じる応力を緩和することが可能となるため、充放電に伴う内部抵抗の増加を抑制することができると考えられる。   In the all solid secondary battery of the present disclosure, the content of the Si alloy based active material on the solid electrolyte layer side is reduced, and the content of the Si alloy based active material on the current collector side is increased, and the Si alloy based active material is unevenly distributed. By using the negative electrode mixture layer, the charge / discharge reaction proceeds in the entire negative electrode mixture layer. Therefore, on the solid electrolyte layer side of the negative electrode mixture layer, the volume change of the Si alloy active material due to charge and discharge reaction is reduced, and the stress generated at the interface with the negative electrode mixture layer on the negative electrode collector side and the solid electrolyte layer It can be considered that it is possible to reduce the increase in internal resistance associated with charge and discharge.

以下、本開示の全固体二次電池について詳細に説明する。   Hereinafter, the all-solid-state secondary battery of the present disclosure will be described in detail.

1.負極
本開示の全固体リチウムイオン電池の負極は、負極集電体、及び、当該負極集電体と固体電解質層の間に配置する負極合材層を有する。図1に示すように、負極3は、負極集電体3−2と負極合材層3−1を有し、正極2と反対側の側面において固体電解質層1と負極合材層3−1が接合し、更に、固体電解質層1と反対側の側面おいて負極合材層3−1と負極集電体3−2が接合している。
1. Negative Electrode The negative electrode of the all solid lithium ion battery of the present disclosure has a negative electrode current collector, and a negative electrode mixture layer disposed between the negative electrode current collector and the solid electrolyte layer. As shown in FIG. 1, the negative electrode 3 has a negative electrode current collector 3-2 and a negative electrode mixture layer 3-1, and on the side opposite to the positive electrode 2, the solid electrolyte layer 1 and the negative electrode mixture layer 3-1. The negative electrode mixture layer 3-1 and the negative electrode current collector 3-2 are joined to each other on the side surface opposite to the solid electrolyte layer 1.

1−1.負極集電体
本開示において用いる負極集電体は、全固体二次電池に使用できるものであれば、特に制限はない。
負極集電体の材料としては、Al、Zn、Sn、Ni、SUS、及びCuからなる群より選ばれる少なくとも一種の金属材料であってもよい。なお、負極集電体の表面が上記材料で構成されていれば、内部が表面と異なる材料で構成されていてもよい。本開示の電池がLiイオン電池である場合には、耐Li還元性の観点から、Ni又はSUSを用いてもよい。
負極集電体の形状としては、例えば、箔状、板状、メッシュ状、パンチングメタル状、発泡体等とすることができる。
1-1. Anode Current Collector The anode current collector used in the present disclosure is not particularly limited as long as it can be used for an all solid secondary battery.
The material of the negative electrode current collector may be at least one metal material selected from the group consisting of Al, Zn, Sn, Ni, SUS, and Cu. In addition, as long as the surface of a negative electrode collector is comprised with the said material, the inside may be comprised with the material different from a surface. When the battery of the present disclosure is a Li-ion battery, Ni or SUS may be used from the viewpoint of resistance to reduction of Li.
The shape of the negative electrode current collector can be, for example, a foil shape, a plate shape, a mesh shape, a punching metal shape, a foam, or the like.

1−2.負極合材層
本開示において負極合材層は、Si合金系活物質及び固体電解質を含有する。負極合材層は必要に応じて、導電材、結着剤等の他の材料を含んでいてもよい。
1-2. Negative Electrode Mixture Layer In the present disclosure, the negative electrode mixture layer contains a Si alloy-based active material and a solid electrolyte. The negative electrode mixture layer may contain other materials such as a conductive material and a binder as required.

(Si合金系活物質)
本開示において、Si合金系活物質は、Si単体、及び、Si単体と金属元素Mとの合金からなる群より選ばれる少なくとも一種の活物質を含む。
金属元素Mは、前記式(1)及び式(2)に示す、いわゆる電気化学的合金化反応に伴い、Siに挿入・離脱することができる金属であれば特に制限はない。Siと合金を形成可能な金属Mの例として、Li、Na、K、Mg、及び、Ca等が挙げられ、中でも、Li、Naであってもよく、Liであってもよい。
(Si alloy based active material)
In the present disclosure, the Si alloy-based active material includes at least one active material selected from the group consisting of elemental Si and an alloy of elemental Si and the metal element M.
The metal element M is not particularly limited as long as it is a metal that can be inserted into and released from Si in accordance with the so-called electrochemical alloying reaction shown in the above formulas (1) and (2). Examples of the metal M capable of forming an alloy with Si include Li, Na, K, Mg, Ca and the like, and among them, Li, Na or Li may be used.

負極合材層中のSi合金系活物質の割合は、特に限定されるものではないが、例えば40質量%以上であり、50質量%〜90質量%の範囲内であってもよく、50質量%〜70質量%の範囲内であってもよい。
Si合金系活物質の形状にも特に制限はなく、例えば、粒子状、膜状の形状等が挙げられ、粒子状であってもよい。
The proportion of the Si alloy-based active material in the negative electrode mixture layer is not particularly limited, but is, for example, 40% by mass or more, and may be in the range of 50% by mass to 90% by mass, 50% by mass. It may be in the range of% to 70% by mass.
The shape of the Si alloy-based active material is not particularly limited, and examples thereof include a particle shape, a film shape, and the like, and may be a particle shape.

(固体電解質)
前記固体電解質の原料は、全固体二次電池に使用できるものであれば、特に制限はない。例えば、本開示の電池がLiイオン電池である場合には、Liイオンの伝導度が高い酸化物系非晶質固体電解質、硫化物系非晶質固体電解質、結晶質酸化物・窒化物等が好ましく用いられる。
前記酸化物系非晶質固体電解質としては、例えばLiO−B−P、LiO−SiO等が挙げられ、前記硫化物系非晶質固体電解質としては、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiS−P等が挙げられる。また、前記結晶質酸化物・窒化物等としては、LiI、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4等が挙げられる。
負極合材層中の固体電解質の割合は、特に限定されるものではないが、例えば10質量%以上であり、20質量%〜50質量%の範囲内であってもよく、25質量%〜45質量%の範囲内であってもよい。
固体電解質の形状にも特に制限はなく、例えば、粒子状、膜状の形状等が挙げられ、粒子状であってもよい。
(Solid electrolyte)
The raw material of the solid electrolyte is not particularly limited as long as it can be used for the all solid secondary battery. For example, when the battery of the present disclosure is a Li-ion battery, an oxide-based amorphous solid electrolyte having high conductivity of Li ion, a sulfide-based amorphous solid electrolyte, a crystalline oxide / nitride, etc. It is preferably used.
Examples of the oxide-based amorphous solid electrolyte include Li 2 O-B 2 O 3 -P 2 O 3 , Li 2 O-SiO 2 and the like, and examples of the sulfide-based amorphous solid electrolyte include For example, Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 S-P 2 S 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 etc. Can be mentioned. As the like the crystalline oxide-nitride, LiI, Li 3 N, Li 5 La 3 Ta 2 O 12, Li 7 La 3 Zr 2 O 12, Li 6 BaLa 2 Ta 2 O 12, Li 3 PO (4-3 / 2 w) N w (w <1), Li 3.6 Si 0.6 P 0.4 O 4 and the like can be mentioned.
The proportion of the solid electrolyte in the negative electrode mixture layer is not particularly limited, but is, for example, 10% by mass or more, and may be in the range of 20% by mass to 50% by mass, and 25% by mass to 45%. It may be in the range of mass%.
The shape of the solid electrolyte is not particularly limited, and examples thereof include a particle shape, a film shape and the like, and may be a particle shape.

(その他の成分)
負極合材層には上記成分以外に、導電材、結着剤などの他の成分が含まれていてもよい。
エネルギー密度が高くなることから、本開示に係る負極合材層は、Si合金系活物質以外の成分が少ないものであってもよい。
前記導電材としては、全固体二次電池に使用できるものであれば、特に制限はない。例えば、前記導電材は、アセチレンブラックやファーネスブラック等のカーボンブラック、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種の炭素系素材であってもよい。
電子伝導性の観点から、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種の炭素系素材であってもよく、当該カーボンナノチューブ、及び、カーボンナノファイバーはVGCF(気相法炭素繊維)であってもよい。
負極合材層中の導電材の割合は、特に限定されるものではないが、例えば1.0質量%以上であり、1.0質量%〜12.0質量%の範囲内であってもよく、2.0質量%〜10.0質量%の範囲内であってもよい。
(Other ingredients)
The negative electrode mixture layer may contain other components such as a conductive material and a binder in addition to the above components.
Since the energy density is high, the negative electrode mixture layer according to the present disclosure may have a small amount of components other than the Si alloy active material.
The conductive material is not particularly limited as long as it can be used for an all solid secondary battery. For example, the conductive material may be at least one carbon-based material selected from the group consisting of carbon black such as acetylene black and furnace black, carbon nanotubes, and carbon nanofibers.
The carbon nanotube may be at least one carbon-based material selected from the group consisting of carbon nanotubes and carbon nanofibers from the viewpoint of electron conductivity, and the carbon nanotubes and carbon nanofibers may be VGCF (vapor grown carbon fibers) ) May be.
The proportion of the conductive material in the negative electrode mixture layer is not particularly limited, but may be, for example, 1.0% by mass or more, and may be in the range of 1.0% by mass to 12.0% by mass. And 2.0% by mass to 10.0% by mass.

前記結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を用いることができ、ポリフッ化ビニリデン(PVdF)であってもよい。   As the binder, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), butylene rubber (BR), styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), acrylic resin, etc. may be used. And may be polyvinylidene fluoride (PVdF).

(負極合材層の構造)
前記負極合材層は、放電状態で前記固体電解質層界面と前記負極集電体界面の最短距離の中心点で構成される面で分割した場合に、集電体側のSi含有量が、電解質層側のSi含有量より多いことを特徴とする。
(Structure of negative electrode mixture layer)
In the case where the negative electrode mixture layer is divided by a plane constituted by the central point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface in a discharge state, the Si content on the current collector side is the electrolyte layer It is characterized by having more than Si content of the side.

図3に、負極合材層中にSi合金系活物質が均一に分布する従来技術の全固体二次電池の断面の模式図を示す。図3示すように、放電状態において負極合材層は、固体電解質層界面と負極集電体界面の最短距離の中心点で構成される線を境界とした場合、集電体側のSi含有量と、電解質層側のSi含有量は等量である。
このような構造を有する従来技術の電池を作製し、数回充放電を繰り返した後に、放電状態で断面の電子顕微鏡観察及びX線結晶解析を行ったところ、図5乃至図7に示すように、負極合材層の固体電解質層側にあるSi単体粒子はアモルファスであったが、負極合材層の負極集電体側にあるSi単体粒子は結晶構造を維持していた。
ここで、Si合金系活物質の原料としてSi単体の結晶粒子を用いると、充放電による金属Mの挿入・離脱を繰り返すうちに、Si単体の結晶構造が崩れてアモルファスとなることが知られている。
そのため、図5乃至図7から、従来技術の全固体二次電池では、固体電解質層側のSi合金系活物質のみが充放電反応に関与しており、集電体側のSi合金系活物質はほとんど充放電反応に関与していないことが分かる。
固体電解質層側のSi合金系活物質のみが充放電反応に関与しているため、固体電解質層側に充放電に伴う体積変化が集中して、負極合材層に割れが生じるため、内部抵抗が増加すると考えられる。
FIG. 3 shows a schematic view of the cross section of the all-solid secondary battery of the prior art in which the Si alloy based active material is uniformly distributed in the negative electrode mixture layer. As shown in FIG. 3, in the discharge state, when the negative electrode mixture layer is a boundary formed by the center point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface, the Si content on the current collector side The Si content on the electrolyte layer side is equal.
A battery of the prior art having such a structure was fabricated, charge and discharge were repeated several times, and then electron microscopic observation and X-ray crystallographic analysis of the cross section were carried out in a discharged state, as shown in FIGS. The single Si particles on the solid electrolyte layer side of the negative electrode mixture layer were amorphous, but the single Si particles on the negative electrode current collector side of the negative electrode mixture layer maintained the crystal structure.
Here, it is known that when crystal particles of simple substance Si are used as a raw material of the Si alloy based active material, the crystalline structure of simple substance Si becomes amorphous while repeating insertion and detachment of metal M by charge and discharge. There is.
Therefore, from FIG. 5 to FIG. 7, in the all solid secondary battery of the prior art, only the Si alloy based active material on the solid electrolyte layer side is involved in the charge and discharge reaction, and the Si alloy based active material on the current collector side is It can be seen that it hardly participates in the charge / discharge reaction.
Since only the Si alloy active material on the solid electrolyte layer side is involved in the charge and discharge reaction, the volume change associated with charge and discharge is concentrated on the solid electrolyte layer side, and cracking occurs in the negative electrode composite material layer. Is considered to increase.

本開示の電池では、図2示すように、集電体側のSi含有量が、電解質層側のSi含有量より多くなるようにSi合金系活物質が偏在している。集電体側のSi含有量を多くすることによって、充放電反応に関与するSi合金系活物質が増えると共に、充放電に伴う体積変化も負極合材層全体で生じるようになる。そのため、負極合材層の一部に応力が集中し、割れ等が生じることを防ぐことができるため、内部抵抗の増加を抑制することができると考えられる。   In the battery of the present disclosure, as shown in FIG. 2, the Si alloy active material is unevenly distributed so that the Si content on the current collector side is larger than the Si content on the electrolyte layer side. By increasing the Si content on the current collector side, the Si alloy active material involved in the charge and discharge reaction increases, and the volume change associated with the charge and discharge also occurs in the entire negative electrode mixture layer. Therefore, stress can be concentrated on a part of the negative electrode mixture layer, and generation of cracks and the like can be prevented, so that it is considered that an increase in internal resistance can be suppressed.

なお、図4示す、電解質層側のSi含有量が、集電体側のSi含有量より多くなるようにSi合金系活物質が偏在している電池では、Si合金系活物質が均一に分布する従来技術の全固体二次電池よりも、充放電に伴う内部抵抗の増加が促進される。電解質層側に充放電反応に関与するSi合金系活物質が増えるため、充放電に伴う体積変化が更に集中するためであると考えられる。   In the battery shown in FIG. 4 in which the Si alloy active material is unevenly distributed so that the Si content on the electrolyte layer side is larger than the Si content on the current collector side, the Si alloy active material is uniformly distributed. The increase in internal resistance associated with charge and discharge is promoted compared to the prior art all solid secondary battery. Since the amount of the Si alloy-based active material involved in the charge and discharge reaction increases on the electrolyte layer side, it is considered that the volume change associated with the charge and discharge is further concentrated.

放電状態における前記負極合材層を、前記固体電解質層界面と前記負極集電体界面の最短距離の中心点で構成される面で分割した場合に、集電体側のSi含有量が、電解質層側のSi含有量より多いか否かを判断する方法にも特に制限はない。   When the negative electrode mixture layer in the discharge state is divided by a plane constituted by the center point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface, the Si content on the current collector side is the electrolyte layer There is no particular limitation on the method of determining whether the content is higher than the Si content on the side.

例えば、放電状態で電池断面について図5と同様に電子顕微鏡観察を行い、以下の手順に従って電解質層側のSi分配比と集電体側のSi分配比を求めて評価することができる。   For example, the cross section of the battery in a discharged state is observed with an electron microscope as in FIG. 5, and the Si distribution ratio on the electrolyte layer side and the Si distribution ratio on the current collector side can be determined and evaluated according to the following procedure.

(1)電子顕微鏡観察画像中に、固体電解質層界面と負極集電体界面の最短距離の中心点で構成される線を引く。
(2)中心点で構成される線と固体電解質層界面で囲まれた領域(固体電解質層側領域)、及び、中心点で構成される線と負極集電体界面で囲まれた領域(負極集電体側領域)の面積をそれぞれ算出する。
(3)固体電解質層側領域中のSi合金系活物質の断面積、及び、負極集電体側領域中のSi合金系活物質の断面積をそれぞれ算出する。
(4)固体電解質層側領域の断面積に対するSi合金系活物質の断面積の割合、負極集電体側領域の断面積に対するSi合金系活物質の断面積の割合をそれぞれ算出する。
(5)下記計算式より、固体電解質層側Si分配比及び負極集電体側Si分配比を算出し、比較を行う。
(1) In the image observed with an electron microscope, a line constituted by the central point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface is drawn.
(2) A region surrounded by the line constituted by the central point and the solid electrolyte layer interface (solid electrolyte layer side area), and a region surrounded by the line constituted by the central point and the negative electrode current collector interface (negative electrode The area of the current collector side region is calculated respectively.
(3) The cross sectional area of the Si alloy based active material in the solid electrolyte layer side region and the cross sectional area of the Si alloy based active material in the negative electrode current collector side region are respectively calculated.
(4) The ratio of the cross sectional area of the Si alloy based active material to the cross sectional area of the solid electrolyte layer side region and the ratio of the cross sectional area of the Si alloy active material to the cross sectional area of the negative electrode current collector side region are calculated.
(5) The solid electrolyte layer side Si distribution ratio and the negative electrode current collector side Si distribution ratio are calculated from the following calculation formula, and comparison is made.

計算式1:固体電解質層側Si分配比=固体電解質層側Si面積割合/(固体電解質層側Si面積割合+負極集電体側Si面積割合)×100
計算式2:負極集電体側Si分配比=負極集電体側Si面積割合/(固体電解質層側Si面積割合+負極集電体側Si面積割合)×100
Calculation formula 1: Solid electrolyte layer side Si distribution ratio = solid electrolyte layer side Si area ratio / (solid electrolyte layer side Si area ratio + negative electrode current collector side Si area ratio) x 100
Calculation formula 2: negative electrode current collector side Si distribution ratio = negative electrode current collector side Si area ratio / (solid electrolyte layer side Si area ratio + negative electrode current collector side Si area ratio) × 100

また、放電状態の電池から負極合材層をサンプリングし、固体電解質層界面と負極集電体界面の最短距離の中心点で構成される面で切断後、それぞれの試料に対して元素分析を行ってSi元素の含有量を測定し、測定値を比較してもよい。   In addition, the negative electrode mixture layer is sampled from the battery in a discharged state, and cut by a plane constituted by the central point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface, and elemental analysis is performed on each sample. The content of the Si element may be measured to compare the measured values.

本開示の全固体二次電池が有する負極合材層の製造方法は、集電体側のSi含有量が、電解質層側のSi含有量より多くなるように製造できれば特に制限はない。例えば、負極合材用原料の粉末を圧縮成形する方法が挙げられる。圧縮成形する場合には、例えば、粉体圧縮成形の圧縮シリンダ内に、相対的にSi合金系活物質の含有量が少ない負極合材用原料の粉末を投入し均一な厚みに堆積し、その上に、相対的にSi合金系活物質の含有量が多い負極合材用原料の粉末を投入し均一な厚みに堆積して、このようにして形成された2層の粉末堆積層を有する粉末堆積体を一度に圧縮成形することにより、負極合材層を作製してもよい。
負極合材用原料の粉末を圧縮成形する場合には、通常、400〜1000MPa程度のプレス圧を負荷する。また、ロールプレスを用いて圧縮成形してもよく、その場合には線圧を10〜100kN/cmに設定してもよい。
The method for producing the negative electrode mixture layer included in the all solid secondary battery of the present disclosure is not particularly limited as long as it can be produced such that the Si content on the current collector side is greater than the Si content on the electrolyte layer side. For example, the method of compression-molding the powder of the raw material for negative mix is mentioned. In the case of compression molding, for example, powder of a raw material for negative electrode mixture having a relatively small content of Si alloy active material is put into a compression cylinder of powder compression molding, and deposited to a uniform thickness. The powder of the raw material for the negative electrode mixture having a relatively high content of the Si alloy active material is placed on top and deposited to a uniform thickness, and the powder having the two-layer powder deposition layer formed in this way The negative electrode mixture layer may be produced by compression molding the deposited body at one time.
When the powder of the raw material for the negative electrode mixture is compression molded, a pressing pressure of about 400 to 1000 MPa is usually applied. Alternatively, compression molding may be performed using a roll press, and in that case, the linear pressure may be set to 10 to 100 kN / cm.

また、溶剤を含む負極合材用原料の分散液を固体電解質層の上又は負極集電体の上に塗布、乾燥して負極合材層を得る方法を用いてもよい。
例えば、相対的にSi合金系活物質の含有量が少ない負極合材用原料、及び、溶剤を含む分散液を固体電解質層の上に塗布することにより塗膜を形成し、相対的にSi合金系活物質の含有量が多い負極合材用原料の粉末、及び、溶剤を含む分散液を負極集電体の上に塗布することにより塗膜を形成した後、これらの塗膜同士を重ねた状態で乾燥・接合することによって負極集電体、及び、当該負極集電体と前記固体電解質層の間に配置する負極合材層を得てもよい。
また、負極合材層は、固体電解質層や集電体以外の支持体上に形成してもよい。その場合、当該支持体から負極合材層を剥離し、剥離した負極合材層を、固体電解質層又は負極集電体の上に接合する。
Alternatively, a dispersion of a material for negative electrode mixture containing a solvent may be coated on a solid electrolyte layer or on a negative electrode current collector and dried to obtain a negative electrode mixture layer.
For example, a coating liquid is formed by applying a dispersion containing a solvent and a raw material for an anode mixture relatively containing a relatively small amount of a Si alloy active material, and a solvent to form a coating film, whereby a relative Si alloy is obtained. After forming a coating film by applying on the negative electrode current collector a dispersion containing a powder of a raw material for a negative electrode mixture having a large content of a system active material, and a solvent, these coated films are overlapped. By drying and bonding in the state, a negative electrode current collector and a negative electrode mixture layer disposed between the negative electrode current collector and the solid electrolyte layer may be obtained.
In addition, the negative electrode mixture layer may be formed on a support other than the solid electrolyte layer and the current collector. In that case, the negative electrode mixture layer is peeled off from the support, and the peeled negative electrode mixture layer is bonded onto the solid electrolyte layer or the negative electrode current collector.

2.正極
前記正極は、金属元素Mを含有する正極活物質を含み全固体二次電池の正極として機能するものであれば、特に制限はない。例えば、図1に示すように、本開示において、正極2は、当該正極活物質、及び、必要に応じ、結着剤、固体電解質、及び導電材等の他の成分を含む正極合材層2−1と正極集電体2−2を有するものであってもよい。
本開示において正極活物質は、金属元素Mを含む活物質であれば特に制限されるものではない。負極活物質との関係で電池化学反応上の正極活物質として機能し、上述の金属元素Mイオンの移動を伴う電池化学反応を進行させる物質であれば、特に制限されず正極活物質として用いることができ、従来、全固体二次電池の正極活物質として知られている物質も、本開示において用いることができる。
例えば、本開示の全固体二次電池が、全固体リチウムイオン二次電池である場合には、正極活物質の原料としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、Li1+xNi1/3Mn1/3Co1/3、Li1+xMn2−x−y(LがAl、Mg、Co、Fe、Ni、Znから選ばれる1種以上の元素)で表される組成の異種元素置換Li−Mnスピネル、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiLPO、L=Fe、Mn、Co、Ni等)等を挙げることができる。
前記正極活物質は、Mイオン伝導性を有し、かつ、活物質や固体電解質と接触しても流動しない物質を含有する被覆層を有していてもよい。本開示の電池がLiイオン電池である場合には、当該物質としては、例えば、LiNbO、LiTi12、LiPOが挙げられる。
前記正極活物質の形状は特に限定されないが、膜状であっても粒子状であってもよい。
正極中の正極活物質の割合は、特に限定されるものではないが、例えば60質量%以上であり、70質量%〜95質量%の範囲内であってもよく、80質量%〜90質量%の範囲内であってもよい。
2. Positive Electrode The positive electrode is not particularly limited as long as it contains a positive electrode active material containing a metal element M and functions as a positive electrode of an all solid secondary battery. For example, as shown in FIG. 1, in the present disclosure, the positive electrode 2 includes the positive electrode active material, and, if necessary, a positive electrode mixture layer 2 including other components such as a binder, a solid electrolyte, and a conductive material. 1 and the positive electrode current collector 2-2 may be included.
In the present disclosure, the positive electrode active material is not particularly limited as long as it is an active material containing the metal element M. It is not particularly limited as long as it is a substance which functions as a positive electrode active material on battery chemical reaction in relation to the negative electrode active material and advances the battery chemical reaction accompanied by the movement of the metal element M ion described above, and is used as a positive electrode active material And materials conventionally known as positive electrode active materials for all solid secondary batteries can also be used in the present disclosure.
For example, in the case where the all solid secondary battery of the present disclosure is an all solid lithium ion secondary battery, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), manganese as a raw material of the positive electrode active material Lithium oxide (LiMn 2 O 4 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 , Li 1 + x Mn 2-xy L y O 4 (where L is Al, Mg, Co, Fe, Ni , A different element substituted Li-Mn spinel having a composition represented by one or more elements selected from Zn, lithium titanate (Li x TiO y ), lithium metal phosphate (LiLPO 4 , L = Fe, Mn, Co) , Ni, etc.).
The positive electrode active material may have a coating layer having M ion conductivity and containing a substance that does not flow even when in contact with the active material or the solid electrolyte. When the battery of the present disclosure is a Li ion battery, examples of the substance include LiNbO 3 , Li 4 Ti 5 O 12 , and Li 3 PO 4 .
The shape of the positive electrode active material is not particularly limited, but may be film-like or particle-like.
The proportion of the positive electrode active material in the positive electrode is not particularly limited, but is, for example, 60% by mass or more, and may be in the range of 70% by mass to 95% by mass, 80% by mass to 90% by mass It may be in the range of

正極で使用される固体電解質の原料は、全固体二次電池に使用できるものであれば、特に制限はないが、負極で使用される固体電解質の原料と同様に、Mイオンの伝導度が高い酸化物系非晶質固体電解質、硫化物系非晶質固体電解質、結晶質酸化物・窒化物等が好ましく用いられる。
導電材、結着剤の原料としては、負極で使用する材料と同様のものを用いることができる。
The raw material of the solid electrolyte used in the positive electrode is not particularly limited as long as it can be used for the all solid secondary battery, but like the raw material of the solid electrolyte used in the negative electrode, the conductivity of M ions is high Oxide-based amorphous solid electrolytes, sulfide-based amorphous solid electrolytes, crystalline oxides, nitrides and the like are preferably used.
As materials for the conductive material and the binder, the same materials as those used in the negative electrode can be used.

正極合材層を形成する方法としては、例えば、正極合材用原料の粉末を圧縮成形する方法が挙げられる。正極合材用原料の粉末を圧縮成形する場合には、通常、400〜1000MPa程度のプレス圧を負荷する。また、ロールプレスを用いて圧縮成形してもよく、その場合には線圧を10〜100kN/cmに設定してもよい。
また、例えば、正極合材用原料、及び、溶剤を含む分散液を固体電解質層や集電体の上に塗布することにより塗膜を形成した後、この塗膜を乾燥する方法を用いてもよい。
As a method of forming a positive electrode mixture layer, for example, a method of compression-molding a powder of a material for a positive electrode mixture can be mentioned. When the powder of the raw material for the positive electrode mixture is compression molded, usually, a pressing pressure of about 400 to 1000 MPa is applied. Alternatively, compression molding may be performed using a roll press, and in that case, the linear pressure may be set to 10 to 100 kN / cm.
Also, for example, after a coating liquid is formed by applying a dispersion containing a raw material for a positive electrode mixture and a solvent on a solid electrolyte layer or a current collector, a method of drying this coating liquid may be used. Good.

3.固体電解質層
前記固体電解質層も、Mイオン伝導性固体電解質原料を含み、全固体二次電池の固体電解質層として機能するものであれば、特に制限はないが、通常、前記Mイオン伝導性固体電解質原料の他、必要に応じ、結着剤等の他の成分を含む。
固体電解質、結着剤の原料としては、正極及び負極で使用する材料と同様のものを用いることができる。
3. Solid Electrolyte Layer The solid electrolyte layer is also not particularly limited as long as it contains an M ion conductive solid electrolyte raw material and functions as a solid electrolyte layer of an all solid secondary battery, but usually the M ion conductive solid In addition to the electrolyte raw material, other components such as a binding agent may be included, if necessary.
As materials for the solid electrolyte and the binder, the same materials as used in the positive electrode and the negative electrode can be used.

固体電解質層中の固体電解質原料の割合は、特に限定されるものではないが、例えば50質量%以上であり、70質量%〜99.99質量%の範囲内であってもよく、90質量%〜99.9質量%の範囲内であってもよい。
固体電解質層を形成する方法としては、固体電解質原料及び必要に応じ他の成分を含む固体電解質材料の粉末を圧縮成形する方法が挙げられる。固体電解質材料の粉末を圧縮成形する場合には、通常、負極用合材の原料粉末を圧縮成形する場合と同様に、400〜1000MPa程度のプレス圧を負荷する。また、ロールプレスを用いて圧縮成形してもよく、その場合には線圧を10〜100kN/cmに設定してもよい。
また、他の方法としては、固体電解質原料及び必要に応じ他の成分を含有する固体電解質材料の溶液又は分散液を用いたキャスト成膜法などを行うことができる。
The proportion of the solid electrolyte material in the solid electrolyte layer is not particularly limited, but is, for example, 50% by mass or more, and may be in the range of 70% by mass to 99.99% by mass, 90% by mass It may be in the range of -99.9% by mass.
Examples of the method of forming a solid electrolyte layer include a method of compression molding a powder of a solid electrolyte material containing a solid electrolyte raw material and, if necessary, other components. When the powder of the solid electrolyte material is compression molded, a pressing pressure of about 400 to 1000 MPa is usually applied, as in the case of compression molding of the raw material powder of the negative electrode composite material. Alternatively, compression molding may be performed using a roll press, and in that case, the linear pressure may be set to 10 to 100 kN / cm.
Further, as another method, it is possible to carry out a cast film forming method using a solution or dispersion liquid of a solid electrolyte material containing a solid electrolyte raw material and, if necessary, other components.

4.全固体二次電池
本開示の全固体二次電池は、前記正極、前記負極、並びに、当該正極及び当該負極の間に配置する前記固体電解質層を有する。
図1に示すように、本開示の全固体二次電池は、典型的には、正極2、負極3、並びに、当該正極2及び当該負極3の間に配置される固体電解質層1を備え、正極−固体電解質層−負極集合体101として構成される。
上記の正極−固体電解質層−負極集合体101が、機能的単位であるセルとなる。当該セルをそのまま本開示の全固体二次電池として用いてもよいし、複数のセルを集積して電気的に接続することによりセル集合体として、本開示の全固体二次電池として用いてもよい。
正極と負極それぞれの厚みは、通常0.1μm〜10mm程度であり、固体電解質層の厚みは、通常0.01μm〜1mm程度である。
4. All Solid Secondary Battery The all solid secondary battery of the present disclosure has the positive electrode, the negative electrode, and the solid electrolyte layer disposed between the positive electrode and the negative electrode.
As shown in FIG. 1, the all solid secondary battery of the present disclosure typically includes a positive electrode 2, a negative electrode 3, and a solid electrolyte layer 1 disposed between the positive electrode 2 and the negative electrode 3, A positive electrode-solid electrolyte layer-negative electrode assembly 101 is configured.
The positive electrode-solid electrolyte layer-negative electrode assembly 101 is a cell which is a functional unit. The cell may be used as it is as an all solid secondary battery of the present disclosure, or may be used as an all solid secondary battery of the present disclosure as a cell assembly by integrating and electrically connecting a plurality of cells. Good.
The thickness of each of the positive electrode and the negative electrode is usually about 0.1 μm to 10 mm, and the thickness of the solid electrolyte layer is usually about 0.01 μm to 1 mm.

電池を作製する方法は、特に限定されるものではなく、上述のように製造した正極集電体、正極合材層、固体電解質層、負極合材層、及び、負極集電体を、この順番で配置した状態で接合してもよい。
また、例えば、粉体圧縮成形の圧縮シリンダ内に、上述のように2層の負極合材用原料粉末層を形成し、その負極合材用原料粉体堆積層の上に、固体電解質粉末及び必要に応じ他の成分を含む固体電解質層用材料の粉末を投入し均一な厚みに堆積して固体電解質層用材料粉末層を形成し、その固体電解質層用材料粉末層の上に、正極活物質を含む正極合材層用原料の粉末を投入し均一な厚みに堆積して正極合材層用原料粉末層を形成した後、このようにして形成された4層の粉末堆積層を有する粉末堆積体を一度に圧縮成形後集電体を接合することにより、電池を作製してもよい。
The method for producing the battery is not particularly limited, and the positive electrode current collector, the positive electrode mixture layer, the solid electrolyte layer, the negative electrode mixture layer, and the negative electrode current collector manufactured as described above are listed in this order You may join in the state arrange | positioned.
Also, for example, as described above, two raw material powder layers for the negative electrode mixture are formed in the compression cylinder for powder compression molding, and the solid electrolyte powder and the negative electrode material raw material powder deposition layer are formed. If necessary, powder of solid electrolyte layer material containing other components is added and deposited in uniform thickness to form a solid electrolyte layer material powder layer, and the positive electrode active material is deposited on the solid electrolyte layer material powder layer. The powder of the raw material for the positive electrode mixture layer containing the substance is added and deposited to a uniform thickness to form the raw material powder layer for the positive electrode mixture layer, and then the powder having the powder deposition layer of four layers formed in this way The battery may be manufactured by compression-depositing the deposited body at one time and then bonding a current collector.

1.全固体二次電池の製造
[実施例1]
(1)負極の作製
固体電解質原料である0.75LiS−0.25Pの組成で表される硫化物固体電解質粒子0.4g、負極活物質原料である平均粒子径が3μmのSi単体粒子0.8g、導電材であるVGCF0.06g、及び、結着剤であるPVDF系樹脂の5質量%酢酸ブチル溶液0.32g、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、相対的に負極活物質含有量が多い負極合材用原料Aを調製した。
固体電解質原料である0.75LiS−0.25Pの組成で表される硫化物固体電解質粒子0.7g、負極活物質原料である平均粒子径が3μmのSi単体粒子0.6g、導電材であるVGCF0.06g、及び、結着剤であるPVDF系樹脂の5質量%酢酸ブチル溶液0.24g、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、相対的に負極活物質含有量が少ない負極合材用原料Bを調製した。
このように準備した負極活物質含有量が多い負極合材用原料Aを、アプリケーターを使用するブレード法により、集電体である銅箔上に塗工し、60分間自然乾燥した。
続いて、自然乾燥した負極合材用原料Aの表面に、負極活物質含有量が少ない負極合材用原料Bを、アプリケーターを使用するブレード法により塗工し、60分間自然乾燥し負極前駆体を得た。
このように得られた負極前駆体を、100℃に調整したホットプレート上で30分間乾燥した。
1. Production of all solid secondary battery [Example 1]
(1) Preparation of Negative Electrode 0.4 g of sulfide solid electrolyte particles represented by the composition of 0.75Li 2 S-0.25P 2 S 5 which is a solid electrolyte material, and having an average particle diameter of 3 μm which is a negative electrode active material 0.8 g of Si single particles, 0.06 g of VGCF as a conductive material, and 0.32 g of a 5 mass% butyl acetate solution of PVDF resin as a binder were added to a polypropylene container. The container was subjected to ultrasonic treatment for 30 seconds in an ultrasonic dispersion apparatus, and then subjected to penetration treatment for 30 minutes using a shaker to prepare a raw material A for a negative electrode mixture having a relatively large negative electrode active material content.
0.7 g of sulfide solid electrolyte particles represented by the composition of 0.75 Li 2 S-0.25 P 2 S 5 which is a solid electrolyte material, and 0.6 g of Si single particles having an average particle diameter of 3 μm which is a negative electrode active material material Then, 0.06 g of VGCF, which is a conductive material, and 0.24 g of a 5% by mass butyl acetate solution of PVDF-based resin, which is a binder, were added to a polypropylene container. The container was subjected to ultrasonic treatment for 30 seconds in an ultrasonic dispersion apparatus, and then subjected to permeation treatment using a shaker for 30 minutes to prepare a raw material B for a negative electrode mixture having a relatively low negative electrode active material content.
The raw material A for the negative electrode mixture having a large content of the negative electrode active material thus prepared was coated on a copper foil as a current collector by a blade method using an applicator and naturally dried for 60 minutes.
Subsequently, the raw material B for the negative electrode mixture having a small content of the negative electrode active material is coated on the surface of the raw material A for the negative electrode mixture naturally dried by the blade method using an applicator, and naturally dried for 60 minutes. I got
The negative electrode precursor thus obtained was dried on a hot plate adjusted to 100 ° C. for 30 minutes.

(2)正極の作製
固体電解質原料である0.75LiS−0.25Pの組成で表される硫化物固体電解質粒子0.3g、正極活物質原料であるLiNi1/3Co1/3Mn1/3粒子2g、導電材であるVGCF0.03g、及び、結着剤であるPVDF系樹脂の5質量%酢酸ブチル溶液0.3g、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、正極合材用原料を調製した。
このように準備した正極合材用原料を、アプリケーターを使用するブレード法により、集電体であるアルミニウム箔上に塗工し、60分間自然乾燥し正極前駆体を得た。
このように得られた正極前駆体を、100℃に調整したホットプレート上で30分間乾燥した。
(2) Preparation of Positive Electrode 0.3 g of sulfide solid electrolyte particles represented by the composition of 0.75Li 2 S-0.25P 2 S 5 which is a solid electrolyte raw material, LiNi 1/3 Co 1 which is a positive electrode active material raw material / 3 Mn 1/3 O 2 particles 2g, a conductive material VGCF0.03G, and was 5 wt% butyl acetate solution 0.3g of PVDF resin as a binder, was added to a polypropylene container. The container was subjected to ultrasonic treatment for 30 seconds in an ultrasonic dispersion apparatus, and then treated with a shaker for 30 minutes to prepare a raw material for positive electrode mixture.
The raw material for positive electrode mixture prepared in this manner was coated on an aluminum foil as a current collector by a blade method using an applicator, and naturally dried for 60 minutes to obtain a positive electrode precursor.
The positive electrode precursor thus obtained was dried on a hot plate adjusted to 100 ° C. for 30 minutes.

(3)固体電解質層の作製
固体電解質原料である平均粒径が2μmである0.75LiS−0.25Pの組成で表される固体電解質0.4g、並びに、結着剤であるABR系樹脂の5質量%ヘプタン溶液0.05g、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、固体電解質層用ペーストを調製した。
このように準備した固体電解質層用ペーストを、アプリケーターを使用するブレード法により、基盤であるAl箔上に塗工し、100℃に調整したホットプレート上で30分間乾燥することにより固体電解質層を得た。
(3) Preparation of solid electrolyte layer 0.4 g of a solid electrolyte represented by the composition of 0.75 Li 2 S-0.25 P 2 S 5 having an average particle diameter of 2 μm, which is a solid electrolyte raw material, and a binder 0.05 g of a 5% by mass heptane solution of an ABR resin was added to a polypropylene container. The container was subjected to ultrasonic treatment in an ultrasonic dispersion device for 30 seconds, and then treated with a shaker for 30 minutes to prepare a paste for a solid electrolyte layer.
The solid electrolyte layer paste prepared in this manner is applied onto the base Al foil by a blade method using an applicator, and dried for 30 minutes on a hot plate adjusted to 100 ° C. to obtain a solid electrolyte layer. Obtained.

(4)電池の作製
(1)から(3)で得られた負極、固体電解質層、正極、この順番で接するように積層した。この負極−固体電解質層−正極積層体に対して、130℃で200MPaの圧力を3分間印加し、実施例1の全固体電池を得た。
上述のように得られた実施例1の全固体電池に対して、0.1Cで所定の電圧まで定電流で通電し初回充電を行った。
(4) Fabrication of Battery The negative electrode obtained in (1) to (3), the solid electrolyte layer, and the positive electrode were laminated in this order so as to be in contact with each other. A pressure of 200 MPa at 130 ° C. was applied for 3 minutes to the negative electrode-solid electrolyte layer-positive electrode laminate, to obtain an all solid battery of Example 1.
The all-solid-state battery of Example 1 obtained as described above was energized at a constant current at 0.1 C to a predetermined voltage to perform initial charging.

[比較例1]
負極を以下のように作製したこと以外は、実施例1と同様に比較例1の全固体二次電池を作製した。
固体電解質原料である0.75LiS−0.25Pの組成で表される固体電解質粒子0.62g、負極活物質原料である平均粒子径が3μmのSi単体粒子0.8g、導電材であるVGCF0.06g、及び、結着剤であるPVDF系樹脂の5質量%酢酸ブチル溶液0.32g、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、負極合材用原料Cを調製した。
このように準備した負極合材用原料Cを、アプリケーターを使用するブレード法により、集電体である銅箔上に塗工後、60分間自然乾燥し負極前駆体を得た。
このように得られた負極前駆体を、100℃に調整したホットプレート上で30分間乾燥した。
Comparative Example 1
An all solid secondary battery of Comparative Example 1 was produced in the same manner as Example 1 except that the negative electrode was produced as follows.
0.62 g of solid electrolyte particles represented by the composition of 0.75 Li 2 S-0.25 P 2 S 5 which is a solid electrolyte material, 0.8 g of Si single particles having an average particle diameter of 3 μm which is a negative electrode active material material, 0.06 g of VGCF which is a material, and 0.32 g of a 5% by mass butyl acetate solution of PVDF-based resin which is a binder were added to a polypropylene container. The container was subjected to ultrasonic treatment for 30 seconds in an ultrasonic dispersion device, and then permeabilized for 30 minutes using a shaker to prepare a raw material C for negative electrode mixture.
The raw material C for negative electrode mixture thus prepared was coated on a copper foil as a current collector by a blade method using an applicator, and then naturally dried for 60 minutes to obtain a negative electrode precursor.
The negative electrode precursor thus obtained was dried on a hot plate adjusted to 100 ° C. for 30 minutes.

[比較例2]
負極を、以下のように作製したこと以外は、実施例1と同様に比較例2の全固体二次電池を作製した。
実施例1と同様に準備した負極活物質含有量が少ない負極合材用原料Bを、アプリケーターを使用するブレード法により、集電体である銅箔上に塗工し、60分間自然乾燥した。
続いて、自然乾燥した負極合材用原料Bの表面に、負極活物質含有量が多い負極合材用原料Aを、アプリケーターを使用するブレード法により塗工し、60分間自然乾燥し負極前駆体を得た。
このように得られた負極前駆体を、100℃に調整したホットプレート上で30分間乾燥した。
Comparative Example 2
An all solid secondary battery of Comparative Example 2 was produced in the same manner as Example 1, except that the negative electrode was produced as follows.
Raw material B for a negative electrode mixture having a small content of negative electrode active material prepared as in Example 1 was coated on a copper foil as a current collector by a blade method using an applicator, and naturally dried for 60 minutes.
Subsequently, the raw material A for the negative electrode mixture having a large content of the negative electrode active material is coated on the surface of the naturally dried raw material B for the negative electrode mixture by the blade method using an applicator and naturally dried for 60 minutes. I got
The negative electrode precursor thus obtained was dried on a hot plate adjusted to 100 ° C. for 30 minutes.

2.評価
2−1.固体電解質層側Si分配比及び負極集電体側Si分配比の算出
放電状態(SOC 0%)電池断面について、電子顕微鏡観察を行い、以下の手順に従って、固体電解質層側Si分配比及び負極集電体側Si分配比を算出した。
(1)電子顕微鏡観察画像中に、固体電解質層界面と負極集電体界面の最短距離の中心点で構成される線を描画した。
(2)中心点で構成される線と固体電解質層界面で囲まれた領域(固体電解質層側領域)、及び、中心点で構成される線と負極集電体界面で囲まれた領域(負極集電体側領域)の面積をそれぞれ測定した。
(3)固体電解質層側領域中のSi合金系活物質の断面積、及び、負極集電体側領域中のSi合金系活物質の断面積をそれぞれ測定した。
(4)固体電解質層側領域の断面積に対するSi合金系活物質の断面積の割合、負極集電体側領域の断面積に対するSi合金系活物質の断面積の割合をそれぞれ算出した。
(5)下記計算式より、固体電解質層側Si分配比及び負極集電体側Si分配比を算出し、比較を行った。
2. Evaluation 2-1. Calculation of solid electrolyte layer side Si distribution ratio and negative electrode current collector side Si distribution ratio Conducting electron microscope observation about the discharge state (SOC 0%) battery cross section, according to the following procedure, solid electrolyte layer side Si distribution ratio and negative electrode current collection The body side Si distribution ratio was calculated.
(1) In the image observed with an electron microscope, a line composed of the central point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface was drawn.
(2) A region surrounded by the line constituted by the central point and the solid electrolyte layer interface (solid electrolyte layer side area), and a region surrounded by the line constituted by the central point and the negative electrode current collector interface (negative electrode The area of the current collector side region was measured.
(3) The cross sectional area of the Si alloy based active material in the solid electrolyte layer side region and the cross sectional area of the Si alloy based active material in the negative electrode current collector side region were each measured.
(4) The ratio of the cross-sectional area of the Si alloy based active material to the cross-sectional area of the solid electrolyte layer side region and the ratio of the cross-sectional area of the Si alloy based active material to the cross-sectional area of the negative electrode current collector side region were calculated.
(5) The solid electrolyte layer side Si distribution ratio and the negative electrode current collector side Si distribution ratio were calculated from the following calculation formula, and comparisons were made.

計算式1:固体電解質層側Si分配比=固体電解質層側Si面積割合/(固体電解質層側Si面積割合+負極集電体側Si面積割合)×100
計算式2:負極集電体側Si分配比=負極集電体側Si面積割合/(固体電解質層側Si面積割合+負極集電体側Si面積割合)×100
Calculation formula 1: Solid electrolyte layer side Si distribution ratio = solid electrolyte layer side Si area ratio / (solid electrolyte layer side Si area ratio + negative electrode current collector side Si area ratio) x 100
Calculation formula 2: negative electrode current collector side Si distribution ratio = negative electrode current collector side Si area ratio / (solid electrolyte layer side Si area ratio + negative electrode current collector side Si area ratio) × 100

2−2.劣化試験
実施例1、比較例1、及び比較例2の全固体二次電池に対して、劣化試験を行った。
上述のように充電された実施例1乃至5及び比較例1の全固体リチウムイオン二次電池を放電した(終止電流1/100C)。放電後の電池に対して、2Cで、4.1Vまで定電流で充電後、3.1Vまで定電流で放電した。1サイクル目の終了後の全固体電池に対して3.4Vにおける内部抵抗を測定した。
同一条件で、充放電サイクルを14日間繰り返す劣化試験を行い、劣化試験後の全固体電池に対して3.4Vにおける内部抵抗を測定した。
上述のように得られた1サイクル目の内部抵抗値と劣化試験後の内部抵抗値を用いて、以下の計算式3から内部抵抗増加率を算出した。
2-2. Deterioration Test A deterioration test was performed on the all solid secondary batteries of Example 1 and Comparative Examples 1 and 2.
The all solid lithium ion secondary batteries of Examples 1 to 5 and Comparative Example 1 charged as described above were discharged (ending current 1/100 C). The battery after discharge was charged at a constant current to 4.1 V at 2 C and discharged at a constant current to 3.1 V. The internal resistance at 3.4 V was measured for the all solid state battery after the end of the first cycle.
Under the same conditions, a deterioration test in which charge and discharge cycles were repeated for 14 days was conducted, and the internal resistance at 3.4 V was measured on the all solid battery after the deterioration test.
Using the internal resistance value of the first cycle obtained as described above and the internal resistance value after the deterioration test, the internal resistance increase rate was calculated from the following formula 3.

計算式3:内部抵抗増加率(%)=劣化試験後の内部抵抗値/1サイクル目の内部抵抗値×100   Formula 3: Internal resistance increase rate (%) = internal resistance value after deterioration test / internal resistance value at first cycle × 100

3.結果
表1に、固体電解質層側Si分配比、負極集電体側Si分配比、及び、比較例1の全固体電池の内部抵抗増加率を1とした場合の、各全固体電池の内部抵抗増加率の割合を示す。なお、各全固体電池の負極合材層中に含まれるSi合金系活物質の量は等量である。
3. Results In Table 1, the internal resistance increase of each all solid battery when the solid electrolyte layer side Si distribution ratio, the negative electrode collector side Si distribution ratio, and the internal resistance increase rate of the all solid battery of Comparative Example 1 are 1, Indicates the percentage of the rate. In addition, the quantity of Si alloy type active material contained in the negative electrode compound material layer of each all-solid-state battery is equal.

表1に示すように、比較例1の全固体電池では、固体電解質層側Si分配比、負極集電体側Si分配比がそれぞれ50%であり、負極合材層中で、Si合金系活物質が均一に分布していた。
これに対し、実施例1の全固体電池では、固体電解質層側Si分配比が46%、負極集電体側Si分配比が54%であり、負極合材層中で、集電体側のSi合金系活物質が、固体電解質層側のSi合金系活物質より多かった。
As shown in Table 1, in the all-solid-state battery of Comparative Example 1, the Si distribution ratio on the solid electrolyte layer side and the Si distribution ratio on the negative electrode current collector side are each 50%, and in the negative electrode mixture layer, the Si alloy active material Were distributed uniformly.
On the other hand, in the all solid battery of Example 1, the Si distribution ratio on the solid electrolyte layer side is 46% and the Si distribution ratio on the negative electrode current collector side is 54%, and the Si alloy on the current collector side in the negative electrode mixture layer The amount of the active material was larger than that of the Si alloy active material on the solid electrolyte layer side.

比較例1の全固体電池の内部抵抗増加率を1とした場合、実施例1の全固体電池の内部抵抗増加率は0.68であり、実施例1の全固体電池では、内部抵抗率の増加が抑制されることが明らかとなった。   When the internal resistance increase rate of the all-solid battery of Comparative Example 1 is 1, the internal resistance increase rate of the all-solid battery of Example 1 is 0.68, and in the all-solid battery of Example 1, the internal resistivity is It became clear that the increase was suppressed.

また、比較例2の全固体電池では、固体電解質層側Si分配比が53%、負極集電体側Si分配比が47%であり、負極合材層中で、固体電解質層側のSi合金系活物質が、集電体側のSi合金系活物質より多かった。   Further, in the all solid battery of Comparative Example 2, the Si distribution ratio on the solid electrolyte layer side is 53%, and the Si distribution ratio on the negative electrode current collector side is 47%, and in the negative electrode mixture layer, the Si alloy system on the solid electrolyte layer side The active material was more than the Si alloy active material on the current collector side.

比較例1の全固体電池の内部抵抗増加率を1とした場合、比較例2の全固体電池の内部抵抗増加率は1.18であり、比較例2の全固体電池では、内部抵抗率の増加が促進されることが明らかとなった。   When the internal resistance increase rate of the all solid state battery of Comparative Example 1 is 1, the internal resistance increase rate of the all solid state battery of Comparative Example 2 is 1.18, and the all solid state battery of Comparative Example 2 has an internal resistivity of It became clear that the increase was promoted.

以上の結果より、正極、負極、並びに、当該正極及び当該負極の間に配置する固体電解質層を有する全固体二次電池であって、前記負極は、負極集電体、及び、当該負極集電体と前記固体電解質層の間に配置する負極合材層を有し、前記負極合材層は、Si合金系活物質及び固体電解質を含有し、放電状態における当該負極合材層を、前記固体電解質層界面と前記負極集電体界面の最短距離の中心点で構成される面で分割した場合に、集電体側のSi含有量が、電解質層側のSi含有量より多いことを特徴とする、本開示の全固体二次電池は、サイクル特性が良好であることが明らかとなった。   From the above results, it is an all solid secondary battery having a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, wherein the negative electrode is a negative electrode current collector, and the negative electrode current collector A negative electrode mixture layer disposed between the body and the solid electrolyte layer, wherein the negative electrode mixture layer contains a Si alloy-based active material and a solid electrolyte, and the negative electrode mixture layer in a discharge state is the solid When divided by a plane constituted by the center point of the shortest distance between the electrolyte layer interface and the negative electrode current collector interface, the Si content on the current collector side is larger than the Si content on the electrolyte layer side The all-solid secondary battery of the present disclosure has been found to have good cycle characteristics.

1 固体電解質層
2 正極
2−1 正極合材層
2−2 正極集電体
3 負極
3−1 負極合材層
3−2 負極集電体
101 全固体二次電池
1 solid electrolyte layer 2 positive electrode 2-1 positive electrode mixture layer 2-2 positive electrode current collector 3 negative electrode 3-1 negative electrode mixture layer 3-2 negative electrode current collector 101 all solid secondary battery

Claims (1)

正極、負極、並びに、当該正極及び当該負極の間に配置する固体電解質層を有する全固体二次電池であって、
前記負極は、負極集電体、及び、当該負極集電体と前記固体電解質層の間に配置する負極合材層を有し、
前記負極合材層は、Si合金系活物質及び固体電解質を含有し、放電状態における当該負極合材層を、前記固体電解質層界面と前記負極集電体界面の最短距離の中心点で構成される面で分割した場合に、集電体側のSi含有量が、電解質層側のSi含有量より多い、
ことを特徴とする、全固体二次電池。
An all solid secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
The negative electrode includes a negative electrode current collector, and a negative electrode mixture layer disposed between the negative electrode current collector and the solid electrolyte layer,
The negative electrode mixture layer contains a Si alloy-based active material and a solid electrolyte, and the negative electrode mixture layer in a discharge state is constituted by a central point of the shortest distance between the solid electrolyte layer interface and the negative electrode current collector interface. In the case of division on the surface side, the Si content on the current collector side is greater than the Si content on the electrolyte layer side,
An all solid secondary battery characterized by
JP2017245045A 2017-12-21 2017-12-21 All solid secondary battery Pending JP2019114348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245045A JP2019114348A (en) 2017-12-21 2017-12-21 All solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245045A JP2019114348A (en) 2017-12-21 2017-12-21 All solid secondary battery

Publications (1)

Publication Number Publication Date
JP2019114348A true JP2019114348A (en) 2019-07-11

Family

ID=67222727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245045A Pending JP2019114348A (en) 2017-12-21 2017-12-21 All solid secondary battery

Country Status (1)

Country Link
JP (1) JP2019114348A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049229A (en) * 2012-08-30 2014-03-17 Toyota Motor Corp Negative electrode body for all-solid-state battery and all-solid-state battery
JP2014107163A (en) * 2012-11-28 2014-06-09 Toyota Motor Corp Metho for manufacturing all-solid-state lithium secondary battery
JP2016076420A (en) * 2014-10-08 2016-05-12 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049229A (en) * 2012-08-30 2014-03-17 Toyota Motor Corp Negative electrode body for all-solid-state battery and all-solid-state battery
JP2014107163A (en) * 2012-11-28 2014-06-09 Toyota Motor Corp Metho for manufacturing all-solid-state lithium secondary battery
JP2016076420A (en) * 2014-10-08 2016-05-12 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US9985314B2 (en) All-solid battery and method for manufacturing the same
CN106558679B (en) Method for manufacturing electrode laminate and method for manufacturing all-solid-state battery
DE112012000513T5 (en) Non-aqueous electrolyte battery
JP6776994B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
US20170092988A1 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
US20200052279A1 (en) Method of preparing energy storage electrodes
JP6965932B2 (en) Electrodes for power storage devices and their manufacturing methods
JPWO2018193992A1 (en) All-solid-state lithium-ion secondary battery
KR20170084450A (en) Manufacturing method of solid electrolyte for all-solid-state battery
CN109216657B (en) All-solid lithium ion secondary battery
JP6696920B2 (en) All-solid-state lithium-ion secondary battery and method for manufacturing the same
JP6776995B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
JP2020035682A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP7156263B2 (en) ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
US20220115691A1 (en) Method for producing all solid-state battery, and all solid-state battery
JP7119940B2 (en) Negative electrode active material composite for all-solid-state battery
JP2019114348A (en) All solid secondary battery
US11469408B2 (en) Electrode and secondary battery
JP6776978B2 (en) An all-solid-state lithium-ion secondary battery including a negative electrode for an all-solid-state lithium-ion secondary battery and its negative electrode.
JP2018181708A (en) Negative electrode mixture material for all-solid lithium ion secondary battery, negative electrode including the same, and all-solid lithium ion secondary battery having negative electrode hereof
JP2020123538A (en) All-solid-state battery
US10847836B2 (en) Method for producing solid-state secondary battery system
JP6927106B2 (en) All-solid-state secondary battery
US20220200002A1 (en) All-solid-state battery comprising lithium storage layer having multilayer structure and method of manufacturing same
CN110875493B (en) Composite solid electrolyte layer, method for producing same, and method for producing all-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210928