JP6927106B2 - All-solid-state secondary battery - Google Patents

All-solid-state secondary battery Download PDF

Info

Publication number
JP6927106B2
JP6927106B2 JP2018054453A JP2018054453A JP6927106B2 JP 6927106 B2 JP6927106 B2 JP 6927106B2 JP 2018054453 A JP2018054453 A JP 2018054453A JP 2018054453 A JP2018054453 A JP 2018054453A JP 6927106 B2 JP6927106 B2 JP 6927106B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
solid
negative electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054453A
Other languages
Japanese (ja)
Other versions
JP2019169274A (en
Inventor
吉田 淳
淳 吉田
知哉 鈴木
知哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018054453A priority Critical patent/JP6927106B2/en
Publication of JP2019169274A publication Critical patent/JP2019169274A/en
Application granted granted Critical
Publication of JP6927106B2 publication Critical patent/JP6927106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本開示は、全固体二次電池に関する。 The present disclosure relates to an all-solid-state secondary battery.

電解液を用いずに固体電解質を使用した全固体電池が、エネルギー密度の高さから注目されている。このような全固体電池を製造する場合に、電極材料を溶媒に分散又は溶解したスラリーを用いて電極の形状に成形後、溶媒を除去して電極を製造する方法が提案されている。 All-solid-state batteries that use solid electrolytes without using electrolytes are attracting attention due to their high energy density. When manufacturing such an all-solid-state battery, a method has been proposed in which an electrode material is formed into an electrode shape using a slurry in which an electrode material is dispersed or dissolved in a solvent, and then the solvent is removed to manufacture the electrode.

特許文献1には、フッ化ビニリデン単量体単位を含むフッ素系共重合体、正極活物質、及び溶媒又は分散媒を少なくとも含有する硫化物系固体電池用正極用スラリーが開示されている。特許文献1には、前記スラリーに用いられる溶媒又は分散媒として酪酸ブチルが好ましい旨記載されている。 Patent Document 1 discloses a slurry for a positive electrode for a sulfide-based solid-state battery containing at least a fluorine-based copolymer containing a vinylidene fluoride monomer unit, a positive electrode active material, and a solvent or a dispersion medium. Patent Document 1 describes that butyl butyrate is preferable as the solvent or dispersion medium used in the slurry.

特開2014−007138号公報Japanese Unexamined Patent Publication No. 2014-007138

しかし、本研究者らは、溶媒又は分散媒として酪酸ブチルを用いて製造した全固体電池では、充放電を繰り返した場合に容量が低下する場合があることを知見した。
本開示は、上記実情に鑑み、高い容量維持率を有する全固体二次電池を提供することを目的とする。
However, the present researchers have found that the capacity of an all-solid-state battery manufactured using butyl butyrate as a solvent or dispersion medium may decrease when charging and discharging are repeated.
In view of the above circumstances, it is an object of the present disclosure to provide an all-solid-state secondary battery having a high capacity retention rate.

本開示の全固体二次電池は、正極活物質層、負極活物質層、及び、固体電解質層を備える全固体二次電池であって、前記全固体電池は酪酸ブチルを含有し、前記正極活物質層、前記負極活物質層、及び前記固体電解質層の合計質量を100質量%としたとき、前記酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下であることを特徴とする。 The all-solid-state secondary battery of the present disclosure is an all-solid-state secondary battery including a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and the all-solid-state battery contains butyl butyrate and has the positive electrode activity. When the total mass of the material layer, the negative electrode active material layer, and the solid electrolyte layer is 100% by mass, the content ratio of the butyl butyrate exceeds 0% by mass and is 0.158% by mass or less. do.

本開示によれば、高い容量維持率を有する全固体二次電池を提供することができる。 According to the present disclosure, it is possible to provide an all-solid-state secondary battery having a high capacity retention rate.

本開示の全固体二次電池の構成例の模式図である。It is a schematic diagram of the structural example of the all-solid-state secondary battery of this disclosure. 正極活物質層、負極活物質層、及び固体電解質層の合計質量を100質量%としたときの酪酸ブチルの含有割合と比容量維持率(%)の関係を示すグラフである。It is a graph which shows the relationship between the content ratio of butyl butyrate and the specific volume retention rate (%) when the total mass of a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer is 100% by mass. 正極活物質層、負極活物質層、及び固体電解質層の合計質量を100質量%としたときの酪酸ブチルの含有割合と初期放電比容量の関係を示すグラフである。It is a graph which shows the relationship between the content ratio of butyl butyrate and the initial discharge specific volume when the total mass of a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer is 100% by mass.

本開示の全固体二次電池は、負極活物質層、正極活物質層、及び、固体電解質層を備える全固体二次電池であって、前記全固体二次電池は酪酸ブチルを含有し、前記負極活物質層、前記正極活物質層、及び前記固体電解質層の合計質量を100質量%としたとき、前記酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下であることを特徴とする。 The all-solid secondary battery of the present disclosure is an all-solid secondary battery including a negative electrode active material layer, a positive electrode active material layer, and a solid electrolyte layer, and the all-solid secondary battery contains butyl butyrate. When the total mass of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is 100% by mass, the content ratio of the butyl butyrate exceeds 0% by mass and is 0.158% by mass or less. It is a feature.

酪酸ブチルは、一般的な条件下で固体電解質との反応性が低く、電極材料を溶媒に分散又は溶解したときの沈降速度が遅く、揮発スピードも穏やかであるという特性を有するため、電極材料を分散又は溶解したスラリーを用いて電極を製造する場合の溶媒として適していることが知られている。 Butyl butyrate has the characteristics of low reactivity with solid electrolyte under general conditions, slow settling rate when the electrode material is dispersed or dissolved in a solvent, and moderate volatilization speed. It is known that it is suitable as a solvent when an electrode is produced using a dispersed or dissolved slurry.

また、このような溶媒は、スラリーを用いて電極の形状に成形後、乾燥などにより除去されるが、製造効率などの観点から、完全に除去することは困難であり、得られる電極中に一部残存することが知られている。溶媒として酪酸ブチルを用いて製造された電池では、酪酸ブチルが少量残存した場合には電極内での原料の分散性やバインダーのマイグレーションに対して好影響を与え、また、比較的多量に残存した場合であっても他の溶媒と比較して電池の放電容量などの性能に与える影響が小さいため、好ましいと考えられていた。 Further, such a solvent is removed by drying or the like after being formed into an electrode shape using a slurry, but it is difficult to completely remove such a solvent from the viewpoint of manufacturing efficiency, etc., and one of them is contained in the obtained electrode. It is known that the part remains. In a battery manufactured using butyl butyrate as a solvent, if a small amount of butyl butyrate remains, it has a positive effect on the dispersibility of the raw material and the migration of the binder in the electrode, and a relatively large amount remains. Even in this case, it has been considered preferable because it has a smaller effect on the performance such as the discharge capacity of the battery as compared with other solvents.

しかし、本研究者らは更なる検討を進めたところ、固体電解質を用いた全固体電池では、電池内に特定量以上に酪酸ブチルが残存すると、容量維持率が低下する場合があることを知見した。
酪酸ブチルが、容量維持率を低下させる機序は明らかではないが、容量維持率の低下が確認された全固体二次電池を解析すると、電極活物質層内の固体電解質粒子に多孔質(ポーラス)化している部分が確認された。このことから、充放電に伴い電極に繰り返し高い電位がかかると、固体電解質粒子と特定量以上残留した酪酸ブチルが反応し、固体電解質粒子が劣化して抵抗が増加するため、容量維持率が低下すると推定される。
However, as a result of further studies, the researchers found that in an all-solid-state battery using a solid electrolyte, the capacity retention rate may decrease if more than a specific amount of butyl butyrate remains in the battery. bottom.
The mechanism by which butyl butyrate reduces the capacity retention rate is not clear, but analysis of all-solid-state secondary batteries in which the reduction in capacity retention rate was confirmed revealed that the solid electrolyte particles in the electrode active material layer were porous. ) The part that has become is confirmed. From this, when a high potential is repeatedly applied to the electrode due to charging and discharging, the solid electrolyte particles react with butyl butyrate remaining in a specific amount or more, the solid electrolyte particles deteriorate and the resistance increases, so that the capacity retention rate decreases. It is estimated that.

本開示の全固体二次電池では酪酸ブチルの含有量を、従来の電池で許容されていた残留量より低い範囲とすることで、容量維持率の低下を抑制することができると考えられる。
以下、本開示の全固体二次電池について詳細に説明する。
In the all-solid-state secondary battery of the present disclosure, it is considered that the decrease in the capacity retention rate can be suppressed by setting the content of butyl butyrate in a range lower than the residual amount allowed in the conventional battery.
Hereinafter, the all-solid-state secondary battery of the present disclosure will be described in detail.

(1)負極活物質層
本開示の全固体二次電池において、負極活物質層は集電体と共に全固体二次電池の負極として機能するものであれば、特に制限はないが、通常、負極活物質を含み、必要に応じ、固体電解質、結着剤、及び導電材等の他の成分を含む。
図1に示すように、通常、負極3は、負極集電体3−2と負極活物質層3−1を有し、正極2と反対側の側面において固体電解質層1と負極活物質層3−1が接合し、更に、固体電解質層1と反対側の側面おいて負極活物質層3−1と負極集電体3−2が接合している。
(1) Negative electrode active material layer In the all-solid secondary battery of the present disclosure, the negative electrode active material layer is not particularly limited as long as it functions as the negative electrode of the all-solid secondary battery together with the current collector, but is usually a negative electrode. It contains active materials and, if necessary, other components such as solid electrolytes, binders, and conductive materials.
As shown in FIG. 1, the negative electrode 3 usually has a negative electrode current collector 3-2 and a negative electrode active material layer 3-1 and has a solid electrolyte layer 1 and a negative electrode active material layer 3 on a side surface opposite to the positive electrode 2. -1 is bonded, and further, the negative electrode active material layer 3-1 and the negative electrode current collector 3-2 are bonded on the side surface opposite to the solid electrolyte layer 1.

なお、本開示において用いる負極集電体は、全固体二次電池に使用できるものであれば、特に制限はない。負極集電体の材料としては、Al、Zn、Sn、Ni、SUS、及びCuからなる群より選ばれる少なくとも一種の金属材料であってもよい。なお、負極集電体の表面が上記材料で構成されていれば、内部が表面と異なる材料で構成されていてもよい。本開示の電池がLiイオン電池である場合には、耐Li還元性の観点から、Ni又はSUSを用いてもよい。負極集電体の形状としては、例えば、箔状、板状、メッシュ状、パンチングメタル状、発泡体等とすることができる。 The negative electrode current collector used in the present disclosure is not particularly limited as long as it can be used for an all-solid-state secondary battery. The material of the negative electrode current collector may be at least one metal material selected from the group consisting of Al, Zn, Sn, Ni, SUS, and Cu. As long as the surface of the negative electrode current collector is made of the above material, the inside may be made of a material different from the surface. When the battery of the present disclosure is a Li ion battery, Ni or SUS may be used from the viewpoint of Li reduction resistance. The shape of the negative electrode current collector can be, for example, a foil shape, a plate shape, a mesh shape, a punching metal shape, a foam, or the like.

(負極活物質)
本開示において前記負極活物質は、全固体二次電池中において、正極活物質との関係で電池化学反応上の負極活物質として機能し、金属元素Mイオンの移動を伴う電気化学反応を進行させる物質であれば、特に制限されず負極活物質として用いることができ、従来全固体二次電池の負極活物質として知られている物質も、本開示において用いることができる。
負極活物質の原料としては、例えば、炭素系活物質である黒鉛、ハードカーボン、及び、CNT、合金系活物質であるSi合金系活物質、及び、Sn合金系活物質、並びに、チタン酸リチウム等を挙げることができる。
(Negative electrode active material)
In the present disclosure, the negative electrode active material functions as a negative electrode active material in the battery chemical reaction in relation to the positive electrode active material in the all-solid secondary battery, and promotes an electrochemical reaction accompanied by the movement of the metal element M ion. As long as it is a substance, it can be used as a negative electrode active material without particular limitation, and a material conventionally known as a negative electrode active material of an all-solid secondary battery can also be used in the present disclosure.
Examples of raw materials for the negative electrode active material include carbon-based active materials such as graphite, hard carbon, and CNT, alloy-based active materials such as Si alloy-based active materials, Sn alloy-based active materials, and lithium titanate. And so on.

なお、合金系活物質と使用した負極では、充放電に伴う体積変化が大きい。上述のように、従来技術の全固体二次電池に含まれる充放電に伴いポーラス化した脆弱な固体電解質粒子では、体積変化により粒子構造自体が破壊されるため、容量維持率に対する影響が大きい。
そのため、酪酸ブチルの含有割合が低く設定された本開示の全固体二次電池は、負極活物質として合金系活物質を使用した負極において、高い効果を発揮すると考えられる。
In the negative electrode used with the alloy-based active material, the volume change due to charging and discharging is large. As described above, in the fragile solid electrolyte particles contained in the all-solid-state secondary battery of the prior art, which are porous due to charging and discharging, the particle structure itself is destroyed by the volume change, so that the capacity retention rate is greatly affected.
Therefore, the all-solid-state secondary battery of the present disclosure in which the content ratio of butyl butyrate is set to be low is considered to be highly effective in a negative electrode using an alloy-based active material as the negative electrode active material.

負極活物質層中の負極活物質の割合は、特に限定されるものではないが、例えば40質量%以上であり、50質量%〜90質量%の範囲内であってもよく、50質量%〜70質量%の範囲内であってもよい。
負極活物質の形状にも特に制限はなく、例えば、粒子状、膜状の形状等が挙げられ、粒子状であってもよい。
The ratio of the negative electrode active material in the negative electrode active material layer is not particularly limited, but is, for example, 40% by mass or more, may be in the range of 50% by mass to 90% by mass, and is 50% by mass to 90% by mass. It may be in the range of 70% by mass.
The shape of the negative electrode active material is also not particularly limited, and examples thereof include a particle-like shape and a film-like shape, and may be a particle-like shape.

(固体電解質)
本開示において負極活物質層に用いられる固体電解質は、全固体二次電池に使用できるものであれば、特に制限はない。例えば、本開示の電池がLiイオン電池である場合には、Liイオンの伝導度が高い酸化物系非晶質固体電解質、硫化物系非晶質固体電解質、結晶質酸化物・窒化物等が好ましく用いられる。
前記酸化物系非晶質固体電解質としては、例えばLiO−B−P、LiO−SiO等が挙げられ、前記硫化物系非晶質固体電解質としては、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiS−P等が挙げられる。また、前記結晶質酸化物・窒化物等としては、LiI、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4等が挙げられる。
なお、酸化物系固体電解質と比較して、硫化物系固体電解質では、充放電に伴いポーラス化しやすい。
そのため、酪酸ブチルの含有割合が低く設定された本開示の全固体二次電池では、固体電解質として硫化物系固体電解質を使用した場合に、高い効果を発揮すると考えられる。
負極活物質層中の固体電解質の割合は、特に限定されるものではないが、例えば10質量%以上であり、20質量%〜50質量%の範囲内であってもよく、25質量%〜45質量%の範囲内であってもよい。
固体電解質の形状にも特に制限はなく、例えば、粒子状、膜状の形状等が挙げられ、粒子状であってもよい。
(Solid electrolyte)
The solid electrolyte used for the negative electrode active material layer in the present disclosure is not particularly limited as long as it can be used for an all-solid secondary battery. For example, when the battery of the present disclosure is a Li ion battery, an oxide-based amorphous solid electrolyte, a sulfide-based amorphous solid electrolyte, a crystalline oxide / nitride, etc. having high Li ion conductivity may be used. It is preferably used.
Examples of the oxide-based amorphous solid electrolyte include Li 2 O-B 2 O 3- P 2 O 3 , Li 2 O-SiO 2, and the like, and examples of the sulfide-based amorphous solid electrolyte include Li 2 O-B 2 O 3-P 2 O 3. For example, Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 S-P 2 S 5 , LiI-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5, etc. Can be mentioned. Examples of the crystalline oxide / nitride include Li I, Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , and Li 3 PO. (4-3 / 2w) N w (w <1), Li 3.6 Si 0.6 P 0.4 O 4 and the like can be mentioned.
Compared with the oxide-based solid electrolyte, the sulfide-based solid electrolyte is more likely to become porous with charge and discharge.
Therefore, it is considered that the all-solid-state secondary battery of the present disclosure in which the content ratio of butyl butyrate is set to be low is highly effective when a sulfide-based solid electrolyte is used as the solid electrolyte.
The ratio of the solid electrolyte in the negative electrode active material layer is not particularly limited, but is, for example, 10% by mass or more, may be in the range of 20% by mass to 50% by mass, and 25% by mass to 45%. It may be in the range of mass%.
The shape of the solid electrolyte is also not particularly limited, and examples thereof include a particle-like shape and a film-like shape, and may be a particle-like shape.

(導電材)
本開示において負極活物質層に用いられる導電材は、全固体二次電池に使用できるものであれば、特に制限はない。例えば、前記導電材の原料は、アセチレンブラックやファーネスブラック等のカーボンブラック、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種の炭素系素材であってもよい。
電子伝導性の観点から、カーボンナノチューブ、及び、カーボンナノファイバーからなる群より選ばれる少なくとも一種の炭素系素材であってもよく、当該カーボンナノチューブ、及び、カーボンナノファイバーはVGCF(気相法炭素繊維)であってもよい。
負極活物質層中の導電材の割合は、特に限定されるものではないが、例えば1.0質量%以上であり、1.0質量%〜12.0質量%の範囲内であってもよく、2.0質量%〜10.0質量%の範囲内であってもよい。
(Conductive material)
The conductive material used for the negative electrode active material layer in the present disclosure is not particularly limited as long as it can be used for an all-solid-state secondary battery. For example, the raw material of the conductive material may be at least one carbon-based material selected from the group consisting of carbon black such as acetylene black and furnace black, carbon nanotubes, and carbon nanofibers.
From the viewpoint of electron conductivity, it may be at least one carbon-based material selected from the group consisting of carbon nanotubes and carbon nanofibers, and the carbon nanotubes and carbon nanofibers are VGCF (gas phase carbon fibers). ) May be.
The ratio of the conductive material in the negative electrode active material layer is not particularly limited, but may be, for example, 1.0% by mass or more, and may be in the range of 1.0% by mass to 12.0% by mass. , 2.0% by mass to 10.0% by mass.

(結着剤)
負極活物質層には、更に、必要に応じて結着剤が含まれていてもよい。
前記結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を用いることができ、ポリフッ化ビニリデン(PVdF)であってもよい。
負極活物質層中の結着剤の割合は、特に限定されるものではないが、例えば0.1〜10%(vol/vol)の範囲内であってもよく、1〜5%(vol/vol)の範囲内であってもよい。
(Binder)
The negative electrode active material layer may further contain a binder, if necessary.
As the binder, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), butylene rubber (BR), styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), acrylic resin and the like can be used. It can be polyvinylidene fluoride (PVdF).
The ratio of the binder in the negative electrode active material layer is not particularly limited, but may be, for example, in the range of 0.1 to 10% (vol / vol), and may be in the range of 1 to 5% (vol / vol /). It may be within the range of vol).

本開示の全固体二次電池の製造方法に特に制限はないが、通常、少なくとも負極活物質層、又は、後述する正極活物質層のいずれか一方が、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを用いて製造される。負極活物質層、又は、正極活物質層の両方を、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを用いて製造してもよい。
負極活物質層のみを、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを用いて製造する場合には、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを後述する固体電解質層の上又は負極集電体の上に塗布、乾燥して、最終的に、前記負極活物質層、前記正極活物質層、及び前記固体電解質層の合計質量を100質量%としたときに、酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下となるまで除去されるように、製造される。
負極活物質層及び正極活物質層の両方を、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを用いて製造する場合には、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを固体電解質層の上又は負極集電体の上に塗布、乾燥して、最終的に、前記負極活物質層、前記正極活物質層、及び前記固体電解質層の合計質量を100質量%としたときに、負極活物質層及び正極活物質層中の酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下となるまで除去されるように、製造される。
また、負極活物質層は、固体電解質層や集電体以外の支持体上に形成してもよい。その場合、当該支持体から負極活物質層を剥離し、剥離した負極活物質層を、固体電解質層又は負極集電体の上に接合する。
The method for producing the all-solid-state secondary battery of the present disclosure is not particularly limited, but usually at least one of the negative electrode active material layer and the positive electrode active material layer described later uses butyl butyrate as a solvent as a raw material for the electrode. Manufactured using suspended slurries. Both the negative electrode active material layer and the positive electrode active material layer may be produced by using a slurry in which the raw material of the electrode is suspended in butyl butyrate as a solvent.
When only the negative electrode active material layer is produced using a slurry in which the electrode raw material is suspended in butyl butyrate as a solvent, a solid electrolyte layer in which the electrode raw material is suspended in butyl butyrate as a solvent will be described later. When the total mass of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is 100% by mass, the butyric acid is finally applied and dried on the above or on the negative electrode current collector. It is manufactured so that the butyl content is removed until it exceeds 0% by mass and becomes 0.158% by mass or less.
When both the negative electrode active material layer and the positive electrode active material layer are produced using a slurry in which the electrode raw material is suspended in butyl butyrate as a solvent, a slurry in which the electrode raw material is suspended in butyl butyrate as a solvent. Was applied and dried on the solid electrolyte layer or the negative electrode current collector, and finally, the total mass of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer was set to 100% by mass. Occasionally, it is manufactured so that the content of butyl butyrate in the negative electrode active material layer and the positive electrode active material layer is removed until it exceeds 0% by mass and becomes 0.158% by mass or less.
Further, the negative electrode active material layer may be formed on a support other than the solid electrolyte layer or the current collector. In that case, the negative electrode active material layer is peeled from the support, and the peeled negative electrode active material layer is bonded onto the solid electrolyte layer or the negative electrode current collector.

また、正極活物質層のみを、溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを用いて製造して、負極活物質層を溶媒である酪酸ブチルに電極の原料を懸濁したスラリーを用いずに製造する場合には、例えば、負極活物質層用原料の粉末を圧縮成形して製造してもよい。圧縮成形する場合には、例えば、負極活物質層用原料の粉末を投入し均一な厚みに堆積して圧縮成形することにより、負極活物質層を作製してもよい。
負極活物質層用原料の粉末を圧縮成形する場合には、通常、400〜1000MPa程度のプレス圧を負荷する。また、ロールプレスを用いて圧縮成形してもよく、その場合には線圧を10〜100kN/cmに設定してもよい。
Further, only the positive electrode active material layer is produced by using a slurry in which the electrode raw material is suspended in butyl butyrate as a solvent, and the negative electrode active material layer is manufactured by suspending the electrode raw material in butyl butyrate as a solvent. When it is produced without using it, for example, the powder of the raw material for the negative electrode active material layer may be compression-molded. In the case of compression molding, for example, the negative electrode active material layer may be produced by adding powder of the raw material for the negative electrode active material layer, depositing the powder to a uniform thickness, and compression molding.
When the powder of the raw material for the negative electrode active material layer is compression-molded, a press pressure of about 400 to 1000 MPa is usually applied. Further, compression molding may be performed using a roll press, in which case the linear pressure may be set to 10 to 100 kN / cm.

(2)正極活物質層
本開示の全固体二次電池において、正極活物質層は集電体と共に全固体二次電池の正極として機能するものであれば、特に制限はないが、通常、金属元素Mを含有する正極活物質を含み、必要に応じ、結着剤、固体電解質、及び導電材等の他の成分を含む。例えば、図1に示すように、本開示において、正極2は、当該正極活物質、及び、必要に応じ、結着剤、固体電解質、及び導電材等の他の成分を含む正極活物質層2−1と正極集電体2−2を有するものであってもよい。
正極で集電体に特に制限はないが、例えば、Cu及び銅合金、並びに、CuにNi、Cr、C等をメッキ又は蒸着したものを用いることができる。
本開示において正極活物質は、金属元素Mを含む活物質であれば特に制限されるものではない。負極活物質との関係で電池化学反応上の正極活物質として機能し、上述の金属元素Mイオンの移動を伴う電池化学反応を進行させる物質であれば、特に制限されず正極活物質として用いることができ、従来、全固体二次電池の正極活物質として知られている物質も、本開示において用いることができる。
例えば、本開示の全固体二次電池が、全固体リチウムイオン二次電池である場合には、正極活物質の原料としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、Li1+xNi1/3Mn1/3Co1/3、Li1+xMn2−x−y(LがAl、Mg、Co、Fe、Ni、Znから選ばれる1種以上の元素)で表される組成の異種元素置換Li−Mnスピネル、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiLPO、L=Fe、Mn、Co、Ni等)等を挙げることができる。
前記正極活物質は、Mイオン伝導性を有し、かつ、活物質や固体電解質と接触しても流動しない物質を含有する被覆層を有していてもよい。本開示の電池がLiイオン電池である場合には、当該物質としては、例えば、LiNbO、LiTi12、LiPOが挙げられる。
前記正極活物質の形状は特に限定されないが、膜状であっても粒子状であってもよい。
正極中の正極活物質の割合は、特に限定されるものではないが、例えば60質量%以上であり、70質量%〜95質量%の範囲内であってもよく、80質量%〜90質量%の範囲内であってもよい。
(2) Positive Electrode Active Material Layer In the all-solid secondary battery of the present disclosure, the positive electrode active material layer is not particularly limited as long as it functions as the positive electrode of the all-solid secondary battery together with the current collector, but is usually a metal. It contains a positive electrode active material containing the element M, and if necessary, contains other components such as a binder, a solid electrolyte, and a conductive material. For example, as shown in FIG. 1, in the present disclosure, the positive electrode 2 is a positive electrode active material layer 2 containing the positive electrode active material and, if necessary, other components such as a binder, a solid electrolyte, and a conductive material. It may have -1 and a positive electrode current collector 2-2.
The current collector of the positive electrode is not particularly limited, and for example, Cu and a copper alloy, and Cu plated or vapor-deposited with Ni, Cr, C or the like can be used.
In the present disclosure, the positive electrode active material is not particularly limited as long as it is an active material containing the metal element M. Any substance that functions as a positive electrode active material in the battery chemical reaction in relation to the negative electrode active material and promotes the battery chemical reaction accompanied by the movement of the above-mentioned metal element M ion is used as the positive electrode active material without particular limitation. A substance conventionally known as a positive electrode active material for an all-solid secondary battery can also be used in the present disclosure.
For example, when the all-solid secondary battery of the present disclosure is an all-solid lithium ion secondary battery, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and manganese can be used as raw materials for the positive electrode active material. Lithium oxide (LiMn 2 O 4 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 , Li 1 + x Mn 2-xy L y O 4 (L is Al, Mg, Co, Fe, Ni , different element substituted Li-Mn spinel composition represented by selected one or more elements are) from Zn, lithium titanate (Li x TiO y), phosphate metal lithium (LiLPO 4, L = Fe, Mn, Co , Ni, etc.) and the like.
The positive electrode active material may have a coating layer having M ion conductivity and containing a substance that does not flow even when in contact with the active material or a solid electrolyte. When the battery of the present disclosure is a Li ion battery, examples of the substance include LiNbO 3 , Li 4 Ti 5 O 12 , and Li 3 PO 4 .
The shape of the positive electrode active material is not particularly limited, but may be in the form of a film or particles.
The ratio of the positive electrode active material in the positive electrode is not particularly limited, but is, for example, 60% by mass or more, may be in the range of 70% by mass to 95% by mass, and 80% by mass to 90% by mass. It may be within the range of.

正極活物質層で使用される固体電解質の原料は、全固体二次電池に使用できるものであれば、特に制限はないが、負極で使用される固体電解質の原料と同様に、Mイオンの伝導度が高い酸化物系非晶質固体電解質、硫化物系非晶質固体電解質、結晶質酸化物・窒化物等が好ましく用いられる。
導電材、結着剤の原料としては、負極で使用する材料と同様のものを用いることができる。
例えば、正極活物質層は、負極活物質層と同じ方法で製造することができる。
The raw material of the solid electrolyte used in the positive electrode active material layer is not particularly limited as long as it can be used in an all-solid secondary battery, but the conduction of M ions is the same as the raw material of the solid electrolyte used in the negative electrode. Oxide-based amorphous solid electrolytes, sulfide-based amorphous solid electrolytes, crystalline oxides / nitrides, and the like having a high degree of degree are preferably used.
As the raw materials for the conductive material and the binder, the same materials as those used for the negative electrode can be used.
For example, the positive electrode active material layer can be produced by the same method as the negative electrode active material layer.

(3)固体電解質層
前記固体電解質層も、Mイオン伝導性固体電解質原料を含み、全固体二次電池の固体電解質層として機能するものであれば、特に制限はないが、通常、前記Mイオン伝導性固体電解質原料の他、必要に応じ、結着剤等の他の成分を含む。
固体電解質、結着剤の原料としては、正極及び負極で使用する材料と同様のものを用いることができる。
固体電解質層中の固体電解質原料の割合は、特に限定されるものではないが、例えば50質量%以上であり、70質量%〜99.99質量%の範囲内であってもよく、90質量%〜99.9質量%の範囲内であってもよい。
(3) Solid Electrolyte Layer The solid electrolyte layer is not particularly limited as long as it also contains an M ion conductive solid electrolyte raw material and functions as a solid electrolyte layer of an all-solid secondary battery, but is usually the M ion. In addition to the conductive solid electrolyte raw material, it contains other components such as a binder, if necessary.
As the raw materials for the solid electrolyte and the binder, the same materials as those used for the positive electrode and the negative electrode can be used.
The ratio of the solid electrolyte raw material in the solid electrolyte layer is not particularly limited, but is, for example, 50% by mass or more, may be in the range of 70% by mass to 99.99% by mass, and 90% by mass. It may be in the range of ~ 99.9% by mass.

固体電解質層を形成する方法としては、固体電解質原料及び必要に応じ他の成分を含む固体電解質材料の粉末を圧縮成形する方法が挙げられる。固体電解質材料の粉末を圧縮成形する場合には、通常、負極用合材の原料粉末を圧縮成形する場合と同様に、400〜1000MPa程度のプレス圧を負荷する。また、ロールプレスを用いて圧縮成形してもよく、その場合には線圧を10〜100kN/cmに設定してもよい。
また、他の方法としては、固体電解質原料及び必要に応じ他の成分を含有する固体電解質材料の溶液又は分散液を用いたキャスト成膜法などを行うことができる。
Examples of the method for forming the solid electrolyte layer include a method of compression molding a powder of a solid electrolyte material containing a solid electrolyte raw material and, if necessary, other components. When the powder of the solid electrolyte material is compression-molded, a press pressure of about 400 to 1000 MPa is usually applied as in the case of compression-molding the raw material powder of the negative electrode mixture. Further, compression molding may be performed using a roll press, in which case the linear pressure may be set to 10 to 100 kN / cm.
Further, as another method, a cast film forming method using a solution or dispersion of a solid electrolyte raw material and a solid electrolyte material containing other components as needed can be performed.

4.全固体二次電池
本開示の全固体二次電池は、正極活物質層、負極活物質層、及び、固体電解質層を備える全固体電池であって、前記全固体電池は酪酸ブチルを含有し、前記正極活物質層、前記負極活物質層、及び前記固体電解質層の合計質量を100質量%としたとき、前記酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下であることを特徴とする。当該酪酸ブチルの含有割合は0.05〜0.158質量%の範囲であることが好ましく、0.05〜0.95質量%の範囲であることがより好ましい。
本開示の全固体電池では、全固体電池に含有される酪酸ブチルの含有量を従来技術の固体電池で許容される範囲より低い上記特定の範囲に制限することによって、サイクル特性を向上することが可能となった。
4. All-solid-state secondary battery The all-solid-state secondary battery of the present disclosure is an all-solid-state battery including a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and the all-solid-state battery contains butyl butyrate. When the total mass of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is 100% by mass, the content ratio of the butyl butyrate exceeds 0% by mass and is 0.158% by mass or less. It is characterized by. The content ratio of the butyl butyrate is preferably in the range of 0.05 to 0.158% by mass, more preferably in the range of 0.05 to 0.95% by mass.
In the all-solid-state battery of the present disclosure, the cycle characteristics can be improved by limiting the content of butyl butyrate contained in the all-solid-state battery to the above-mentioned specific range lower than the range allowed by the solid-state battery of the prior art. It has become possible.

本開示の全固体二次電池は、典型的には、図1に示すように、正極2、負極3、並びに、当該正極2及び当該負極3の間に配置される固体電解質層1を備え、正極−固体電解質層−負極集合体101として構成される。
上記の正極−固体電解質層−負極集合体101が、機能的単位であるセルとなる。当該セルをそのまま本開示の全固体二次電池として用いてもよいし、複数のセルを集積して電気的に接続することによりセル集合体として、本開示の全固体二次電池として用いてもよい。
正極活物質層と負極活物質層それぞれの厚みは、通常0.1μm〜10mm程度であり、固体電解質層の厚みは、通常0.01μm〜1mm程度である。
The all-solid-state secondary battery of the present disclosure typically comprises a positive electrode 2, a negative electrode 3, and a solid electrolyte layer 1 arranged between the positive electrode 2 and the negative electrode 3, as shown in FIG. It is configured as a positive electrode-solid electrolyte layer-negative electrode aggregate 101.
The positive electrode-solid electrolyte layer-negative electrode aggregate 101 becomes a cell which is a functional unit. The cell may be used as it is as the all-solid-state secondary battery of the present disclosure, or may be used as an all-solid-state secondary battery of the present disclosure as a cell aggregate by integrating and electrically connecting a plurality of cells. good.
The thickness of each of the positive electrode active material layer and the negative electrode active material layer is usually about 0.1 μm to 10 mm, and the thickness of the solid electrolyte layer is usually about 0.01 μm to 1 mm.

電池を作製する方法は、特に限定されるものではなく、上述のように製造した正極集電体、正極活物質層、固体電解質層、負極活物質層、及び、負極集電体を、この順番で配置した状態で接合してもよい。 The method for producing the battery is not particularly limited, and the positive electrode current collector, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector manufactured as described above are arranged in this order. It may be joined in the state of being arranged in.

1.全固体二次電池の製造
[実施例1]
(1)負極の製造
固体電解質材料であるLiBr及びLiIを含むLiS−P系非晶質固体電解質400mg、負極活物質材料であるのSi単体粒子500mg、結着剤であるPVdF系樹脂の5質量%酪酸ブチル溶液1200mg、並びに、導電助剤材料であるVGCF40mgをポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、負極活物質層成形用スラリーを調製した。
このように準備した負極活物質層成形用スラリーを、アプリケーターを使用するブレード法により、集電体であるCu箔上に塗工し、100℃に調整したホットプレート上で30分間乾燥した。
1. 1. Manufacture of an all-solid-state secondary battery [Example 1]
(1) Manufacture of negative electrode Li 2 SP 2 S 5 system amorphous solid electrolyte containing LiBr and LiI which are solid electrolyte materials 400 mg, Si single particles which are negative electrode active material 500 mg, PVdF which is a binder 1200 mg of a 5 mass% butyl butyrate solution of the system resin and 40 mg of VGCF, which is a conductive additive material, were added to the polypropylene container. The container was ultrasonically treated in an ultrasonic disperser for 30 seconds and then permeated for 30 minutes using a shaker to prepare a slurry for forming a negative electrode active material layer.
The slurry for forming the negative electrode active material layer thus prepared was applied onto a Cu foil as a current collector by a blade method using an applicator, and dried on a hot plate adjusted to 100 ° C. for 30 minutes.

(2)正極の作製
固体電解質原料であるLiBr及びLiIを含むLiS−P系非晶質固体電解質350mg、正極活物質原料である平均粒子径が6μmのLiNi1/3Co1/3Mn1/3粒子2200mg、結着剤であるPVdF系樹脂の5質量%酪酸ブチル溶液1400mg、並びに、導電助剤であるVGCF30mg、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、正極活物質層成形用スラリーを調製した。
このように準備した正極活物質層成形用スラリーを、アプリケーターを使用するブレード法により、集電体であるAl箔上に塗工し、100℃に調整したホットプレート上で30分間乾燥した。
(2) Preparation of positive electrode Li Ni 1/3 Co 1 containing 350 mg of Li 2 SP 2 S 5 system amorphous solid electrolyte containing LiBr and Li I, which are raw materials for solid electrolytes, and an average particle size of 6 μm, which is a raw material for positive electrode active materials. / 3 Mn 1/3 O 2 particles 2200 mg, a 5 mass% butyl butyrate solution of PVdF resin as a binder 1400 mg, and a conductive auxiliary agent VGCF 30 mg were added to a polypropylene container. The container was ultrasonically treated in an ultrasonic disperser for 30 seconds and then permeated for 30 minutes using a shaker to prepare a slurry for forming a positive electrode active material layer.
The slurry for forming the positive electrode active material layer thus prepared was applied onto an Al foil as a current collector by a blade method using an applicator, and dried on a hot plate adjusted to 100 ° C. for 30 minutes.

(3)固体電解質層の作製
固体電解質原料である平均粒径が1μmであるLiBr及びLiIを含むLiS−P系非晶質固体電解質500mg、並びに、結着剤であるブチレンゴム系樹脂の5質量%酪酸ブチル溶液750mg、をポリプロピレン製容器に添加した。当該容器を超音波分散装置中で30秒間超音波処理後、振とう器を用いて30分間浸透処理することで、固体電解質層成形用スラリーを調製した。
このように準備した固体電解質層成形用スラリーを、アプリケーターを使用するブレード法により、基盤であるAl箔上に塗工し、100℃に調整したホットプレート上で30分間乾燥することにより固体電解質層を得た。同様の方法で固体電解質層を合計3枚準備した。
(3) Preparation of solid electrolyte layer Li 2 SP 2 S 5 system amorphous solid electrolyte 500 mg containing LiBr and LiI, which are solid electrolyte raw materials with an average particle size of 1 μm, and butylene rubber system as a binder. 750 mg of a 5 mass% butyl butyrate solution of resin was added to the polypropylene container. The container was ultrasonically treated in an ultrasonic disperser for 30 seconds and then permeated for 30 minutes using a shaker to prepare a slurry for forming a solid electrolyte layer.
The slurry for forming the solid electrolyte layer prepared in this way is applied onto the Al foil as the base by the blade method using an applicator, and dried on a hot plate adjusted to 100 ° C. for 30 minutes to obtain the solid electrolyte layer. Got A total of three solid electrolyte layers were prepared in the same manner.

(4)電池の作製
酪酸ブチルの飽和度が50ppmとなるように調製されたグローブボックス内で、(1)及び(3)で得られた負極活物質層と固体電解質層が接するように、負極と固体電解質部材を積層した。この負極部材―固体電解質層―アルミニウム箔積層体に対して、緻密化を目的として、ロール間ギャップ100μm、送り速度0.5m/minの条件で、ロールプレスを用いて5kN/cmの圧力を印加した。固体電解質層の基盤として使用したアルミニウム箔を剥がして、負極―固体電解質層積層体を得た。
(2)及び(3)で得られた正極活物質層と固体電解質層が接するように、正極と固体電解質層を積層した。この正極―固体電解質層―アルミニウム箔積層体に対して、緻密化を目的として、ロール間ギャップ100μm、送り速度0.5m/minの条件で、ロールプレスを用いて5kN/cmの圧力を印加した。固体電解質層の基盤として使用したアルミニウム箔を剥がして、正極―固体電解質層積層体を得た。
負極―固体電解質層積層体に、固体電解質層同士が接するように(3)で準備した固体電解質層を更に積層後、(3)で準備した固体電解質層から基盤として使用したアルミニウム箔を剥離した。
この固体電解質層が転写された負極―固体電解質層積層体に正極―固体電解質層積層体が位置し、且つ、固体電解質層同士が接触するように重ね合わせた状態で、130℃で200MPaの圧力を1分間印加し、集電体を有する電池(25cm×6cm)を得た。
このように得られた電池を、酪酸ブチルの飽和度が50ppmとなるように調製されたグローブボックス中に30分間保持した後で、前記電池に密閉可能な治具を設置して、20MPa拘束圧を付与した。
(4) Preparation of battery In a glove box prepared so that the saturation of butyl butyrate is 50 ppm, the negative electrode is placed in contact with the negative electrode active material layer obtained in (1) and (3) and the solid electrolyte layer. And the solid electrolyte member were laminated. A pressure of 5 kN / cm is applied to the negative electrode member-solid electrolyte layer-aluminum foil laminate using a roll press under the conditions of a gap between rolls of 100 μm and a feed rate of 0.5 m / min for the purpose of densification. bottom. The aluminum foil used as the base of the solid electrolyte layer was peeled off to obtain a negative electrode-solid electrolyte layer laminate.
The positive electrode and the solid electrolyte layer were laminated so that the positive electrode active material layer obtained in (2) and (3) was in contact with the solid electrolyte layer. A pressure of 5 kN / cm was applied to the positive electrode-solid electrolyte layer-aluminum foil laminate using a roll press under the conditions of a gap between rolls of 100 μm and a feed rate of 0.5 m / min for the purpose of densification. .. The aluminum foil used as the base of the solid electrolyte layer was peeled off to obtain a positive electrode-solid electrolyte layer laminate.
The solid electrolyte layer prepared in (3) was further laminated on the negative electrode-solid electrolyte layer laminate so that the solid electrolyte layers were in contact with each other, and then the aluminum foil used as the base was peeled off from the solid electrolyte layer prepared in (3). ..
The positive electrode-solid electrolyte layer laminate is located on the negative electrode-solid electrolyte layer laminate to which this solid electrolyte layer is transferred, and the solid electrolyte layers are superposed so as to be in contact with each other, and the pressure is 200 MPa at 130 ° C. Was applied for 1 minute to obtain a battery (25 cm × 6 cm) having a current collector.
The battery thus obtained was held in a glove box prepared so that the saturation of butyl butyrate was 50 ppm for 30 minutes, and then a sealable jig was installed on the battery to restrain the pressure at 20 MPa. Was given.

上述のように得られた電池に対して、1.0Cで4.55Vまで定電流で通電後、終止電流1/100Cまで定電圧で通電することで初回充電を行った。初回充電後の電池について、1.0Cで2.5Vまで定電流で放電後、終止電流1/100Cまで定電圧で初回放電することによって実施例1のリチウムイオン固体電池を得た。 The battery obtained as described above was first charged by energizing the battery at 1.0 C with a constant current up to 4.55 V and then energizing with a constant voltage up to a final current of 1/100 C. The lithium-ion solid-state battery of Example 1 was obtained by discharging the battery after the initial charge at a constant current of 1.0 C to 2.5 V and then discharging the battery at a constant voltage up to a final current of 1/100 C.

[実施例2]
酪酸ブチルの飽和度が350ppmとなるように調製されたグローブボックス内で、電池を保持したこと以外は、実施例1と同様に実施例2のリチウムイオン固体電池を作製した。
[Example 2]
A lithium ion solid-state battery of Example 2 was produced in the same manner as in Example 1 except that the battery was held in a glove box prepared so that the saturation of butyl butyrate was 350 ppm.

[比較例1]
実施例1において溶媒として使用した酪酸ブチルを全てヘプタンに置き換えたこと、及び、グローブボックス内の酪酸ブチルの飽和度を0ppmにしたこと以外は、実施例1と同様に比較例1のリチウムイオン固体電池を作製した。
[Comparative Example 1]
Lithium-ion solid of Comparative Example 1 as in Example 1 except that all butyl butyrate used as a solvent in Example 1 was replaced with heptane and the saturation of butyl butyrate in the glove box was set to 0 ppm. A battery was manufactured.

[比較例2]
酪酸ブチルの飽和度が850ppmとなるように調製されたグローブボックス内で、電池を保持したこと以外は、実施例1と同様に比較例2のリチウムイオン固体電池を作製した。
[Comparative Example 2]
A lithium ion solid-state battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the battery was held in a glove box prepared so that the saturation of butyl butyrate was 850 ppm.

[比較例3]
酪酸ブチルの飽和度が1700ppmとなるように調製されたグローブボックス内で、電池を保持したこと以外は、実施例1と同様に比較例3のリチウムイオン固体電池を作製した。
[Comparative Example 3]
A lithium ion solid-state battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the battery was held in a glove box prepared so that the saturation of butyl butyrate was 1700 ppm.

[比較例4]
酪酸ブチルの飽和度が2000ppmとなるように調製されたグローブボックス内で、電池を保持したこと以外は、実施例1と同様に比較例4のリチウムイオン固体電池を作製した。
[Comparative Example 4]
A lithium ion solid-state battery of Comparative Example 4 was produced in the same manner as in Example 1 except that the battery was held in a glove box prepared so that the saturation of butyl butyrate was 2000 ppm.

2.全固体電池の評価
(1)サイクル特性の評価
実施例1、2、比較例1乃至4の全固体リチウムイオン二次電池に対して、定電流―定電圧放電を行った。まず、上述のように得られた全固体リチウムイオン二次電池を放電した(終止電流1/100C)。放電後の電池に対して、3時間率(1/3C)で、所定の電圧まで定電圧−定電流の条件で充電後、定電流―定電圧放電条件で放電し、1サイクル目の放電容量を測定した。
同一条件で、充放電サイクルを5サイクル繰り返し、5サイクル目の放電容量を測定した。
5サイクル目の放電容量を1サイクル目の放電容量で除することにより、5サイクル目における容量維持率を算出した。
2. Evaluation of all-solid-state battery (1) Evaluation of cycle characteristics The all-solid-state lithium-ion secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 4 were subjected to constant current-constant voltage discharge. First, the all-solid-state lithium-ion secondary battery obtained as described above was discharged (termination current 1 / 100C). The discharged battery is charged at a rate of 3 hours (1 / 3C) to a predetermined voltage under constant voltage-constant current conditions, then discharged under constant current-constant voltage discharge conditions, and the discharge capacity of the first cycle. Was measured.
Under the same conditions, the charge / discharge cycle was repeated for 5 cycles, and the discharge capacity at the 5th cycle was measured.
The capacity retention rate in the 5th cycle was calculated by dividing the discharge capacity in the 5th cycle by the discharge capacity in the 1st cycle.

3.結果
表1に、電池製造時に使用した溶媒の種類、負極活物質層、正極活物質層、及び固体電解質層の合計質量を100質量%としたときの酪酸ブチルの含有割合、比較例1の全固体リチウムイオン二次電池の1サイクル目容量を100%とした場合の各電池の1サイクル目比容量、並びに、比較例1の全固体リチウムイオン二次電池の各電池の5サイクル目容量維持率を100%とした場合の5サイクル目比容量維持率を示す。
3. 3. Results Table 1 shows the type of solvent used in battery production, the content ratio of butyl butyrate when the total mass of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is 100% by mass, and all of Comparative Example 1. The 1st cycle specific capacity of each battery when the 1st cycle capacity of the solid lithium ion secondary battery is 100%, and the 5th cycle capacity retention rate of each battery of the all solid lithium ion secondary battery of Comparative Example 1. Is shown as the 5th cycle specific capacity retention rate when is set to 100%.

Figure 0006927106
Figure 0006927106

表1に示すように、酪酸ブチルを有さない比較例1の電池の5サイクル容量維持率を100%とすると、酪酸ブチルの含有割合が0.166%以上である比較例2乃至4電池の5サイクル比容量維持率は99%以下であった。 As shown in Table 1, assuming that the 5-cycle capacity retention rate of the battery of Comparative Example 1 having no butyl butyrate is 100%, the batteries of Comparative Examples 2 to 4 having a butyl butyrate content of 0.166% or more. The 5-cycle specific capacity retention rate was 99% or less.

これに対し、酪酸ブチルの含有割合が0.05%である実施例1の電池の5サイクル比容量維持率は110%、酪酸ブチルの含有割合が0.095%である実施例2の5サイクル比容量維持率は109%と高かった。
図2に示すように、酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下である範囲において、5サイクル比容量維持率が100%を超えており、高い容量維持率を有する全固体二次電池であることが確認された。
On the other hand, the 5-cycle specific capacity retention rate of the battery of Example 1 in which the content ratio of butyl butyrate is 0.05% is 110%, and the content ratio of butyl butyrate is 0.095% in 5 cycles of Example 2. The specific capacity retention rate was as high as 109%.
As shown in FIG. 2, in the range where the content ratio of butyl butyrate exceeds 0% by mass and is 0.158% by mass or less, the 5-cycle specific volume retention rate exceeds 100% and has a high volume retention rate. It was confirmed that it was an all-solid-state secondary battery.

なお、表1及び図3に示すように、1サイクル目比容量を比較すると、酪酸ブチルの含有割合が0.285質量%を超えるまで、容量に大きな影響はない。このような理由から、従来は、酪酸ブチルは、0.285質量%以下であれば電池性能に影響を及ぼさないと判断されていたと考えられる。 As shown in Table 1 and FIG. 3, when the specific volume of the first cycle is compared, there is no significant influence on the volume until the content ratio of butyl butyrate exceeds 0.285% by mass. For this reason, it is considered that conventionally, it was determined that butyl butyrate does not affect the battery performance if it is 0.285% by mass or less.

以上の結果より、正極活物質層、負極活物質層、及び、固体電解質層を備える全固体二次電池であって、前記全固体電池は酪酸ブチルを含有し、前記正極活物質層、前記負極活物質層、及び前記固体電解質層の合計質量を100質量%としたとき、前記酪酸ブチルの含有割合が0質量%を超えて0.158質量%以下であることを特徴とする、本開示の全固体二次電池は、高い容量維持率を有することが明らかとなった。 From the above results, it is an all-solid secondary battery including a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer. The all-solid-state battery contains butyl butyrate, and the positive electrode active material layer and the negative electrode. The present disclosure is characterized in that, when the total mass of the active material layer and the solid electrolyte layer is 100% by mass, the content ratio of the butyl butyrate exceeds 0% by mass and is 0.158% by mass or less. It was revealed that the all-solid-state secondary battery has a high capacity retention rate.

1 固体電解質層
2 正極
2−1 正極活物質層
2−2 正極集電体
3 負極
3−1 負極活物質層
3−2 負極集電体
101 全固体二次電池
1 Solid electrolyte layer 2 Positive electrode 2-1 Positive electrode active material layer 2-2 Positive electrode current collector 3 Negative electrode 3-1 Negative electrode active material layer 3-2 Negative electrode current collector 101 All-solid secondary battery

Claims (1)

正極活物質層、負極活物質層、及び、固体電解質層を備える全固体二次電池であって、
前記全固体二次電池は酪酸ブチルを含有し、前記正極活物質層、前記負極活物質層、及び前記固体電解質層の合計質量を100質量%としたとき、前記酪酸ブチルの含有割合が0.050質量%以上0.095質量%以下であることを特徴とする全固体二次電池。
An all-solid-state secondary battery including a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer.
The all-solid-state secondary battery contains butyl butyrate, and when the total mass of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is 100% by mass, the content ratio of the butyl butyrate is 0. An all-solid-state secondary battery characterized by having an amount of 050% by mass or more and 0.095% by mass or less.
JP2018054453A 2018-03-22 2018-03-22 All-solid-state secondary battery Active JP6927106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054453A JP6927106B2 (en) 2018-03-22 2018-03-22 All-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054453A JP6927106B2 (en) 2018-03-22 2018-03-22 All-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2019169274A JP2019169274A (en) 2019-10-03
JP6927106B2 true JP6927106B2 (en) 2021-08-25

Family

ID=68108446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054453A Active JP6927106B2 (en) 2018-03-22 2018-03-22 All-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP6927106B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025027A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Method for manufacturing positive electrode for solid battery, method for manufacturing solid battery, and slurry for positive electrode
JP6761928B2 (en) * 2014-12-05 2020-09-30 国立大学法人豊橋技術科学大学 Solid electrolyte glass and its manufacturing method, precursor for solid electrolyte glass, suspension, electrode for lithium ion battery, and lithium ion battery
JP2016134302A (en) * 2015-01-20 2016-07-25 トヨタ自動車株式会社 All solid lithium ion secondary battery
JP6287945B2 (en) * 2015-05-08 2018-03-07 トヨタ自動車株式会社 Method for manufacturing electrode laminate

Also Published As

Publication number Publication date
JP2019169274A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
KR102081397B1 (en) Method of preparing electrodes for lithium secondary battery
CN106558679B (en) Method for manufacturing electrode laminate and method for manufacturing all-solid-state battery
JP6597701B2 (en) Negative electrode mixture, negative electrode including the negative electrode mixture, and all-solid-state lithium ion secondary battery including the negative electrode
WO2018193994A1 (en) All-solid lithium ion secondary battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
US11271196B2 (en) Electrochemical cells having improved ionic conductivity
JP6776994B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
KR101817418B1 (en) Negative electrode active material and method for preparing the same
JP2020047572A (en) Zinc secondary battery electrode active material and secondary battery including the same
KR20200028258A (en) Anode for secondary battery and Secondary battery including the same
JP6776995B2 (en) Manufacturing method of all-solid-state lithium-ion secondary battery
JP7156263B2 (en) ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP7107880B2 (en) Negative electrode mixture layer
JP6927106B2 (en) All-solid-state secondary battery
CN110943255B (en) Method for manufacturing all-solid-state battery and all-solid-state battery
CN114982006A (en) Method for preparing electrode for lithium secondary battery
JP6593381B2 (en) Negative electrode mixture for all solid lithium ion secondary battery, negative electrode including the negative electrode mixture, and all solid lithium ion secondary battery including the negative electrode
JP6776978B2 (en) An all-solid-state lithium-ion secondary battery including a negative electrode for an all-solid-state lithium-ion secondary battery and its negative electrode.
US10847836B2 (en) Method for producing solid-state secondary battery system
KR20190053803A (en) Method for production of all-solid-state battery
JP2020087627A (en) Negative electrode active material composite for all solid state battery
CN112768751B (en) Sodium ion conductor and sodium ion solid battery
US20220344672A1 (en) Current collector comprising primer coating layer having improved adhesive strength, and manufacturing method for same
JP7297378B2 (en) Negative electrode for secondary battery and secondary battery including the same
CN116072836A (en) Positive electrode active material for lithium ion battery, method for producing same, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R151 Written notification of patent or utility model registration

Ref document number: 6927106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151