JP2019114269A - 仮想視点画像を生成するシステム、方法及びプログラム - Google Patents

仮想視点画像を生成するシステム、方法及びプログラム Download PDF

Info

Publication number
JP2019114269A
JP2019114269A JP2019014184A JP2019014184A JP2019114269A JP 2019114269 A JP2019114269 A JP 2019114269A JP 2019014184 A JP2019014184 A JP 2019014184A JP 2019014184 A JP2019014184 A JP 2019014184A JP 2019114269 A JP2019114269 A JP 2019114269A
Authority
JP
Japan
Prior art keywords
image
area
data corresponding
generation
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019014184A
Other languages
English (en)
Other versions
JP6759375B2 (ja
Inventor
梅村 直樹
Naoki Umemura
直樹 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019014184A priority Critical patent/JP6759375B2/ja
Publication of JP2019114269A publication Critical patent/JP2019114269A/ja
Application granted granted Critical
Publication of JP6759375B2 publication Critical patent/JP6759375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • Image Generation (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Abstract

【課題】自然な仮想視点画像が得られるようにする。【解決手段】サーバ140は、オブジェクトの領域、構造物の領域及び背景の領域を含む画像とオブジェクトの領域を含まず構造物の領域及び背景の領域を含む画像とに基づいて生成するオブジェクトに対応する3次元形状データと、構造物に対応する3次元形状データと、背景データと、仮想視点を示す情報とに基づいて、仮想視点画像を生成する。【選択図】図3

Description

本発明は、複数の視点位置から撮像した複数の画像に基づき、仮想視点からの画像を生成する技術に関する。
昨今、複数台の実カメラで撮影した画像を用いて、3次元空間内に仮想的に配置した実際には存在しないカメラ(仮想カメラ)からの画像を再現する仮想視点画像技術が注目されている。この仮想視点画像技術によれば、例えば、サッカーやバスケットボールの試合におけるハイライトシーンを様々な角度から視聴することが可能になるため、ユーザにより高臨場感を与えることができる。
仮想視点画像の生成には、複数の実カメラが撮影した画像データの画像処理サーバ等への集約と、当該サーバ等における3次元モデル(オブジェクトの形状データ)の生成やレンダリング処理が必要となり得る。
オブジェクトの3次元形状を推定する手法として、「視体積交差法(Visual Hull)」と呼ばれる手法が知られている(特許文献1)。
特開2014−10805号公報
従来の3次元形状を推定する技術では、例えば、撮影範囲に存在するサッカーゴールなどの静止物体である構造物については、3次元モデルが生成されない恐れがあった。これは、3次元形状の推定の対象となるオブジェクトは、撮影画像内の動体である人間等の前景の部分であるためである。つまり、サッカーゴールなど静止状態の構造物は背景として扱われる結果、3次元モデルの生成対象とならない。構造物の3次元モデルが生成されていない状態で仮想視点画像を生成すると、動きのない構造物等は動きのある人物等の後ろに2次元的に表現され、地面等に張りついたように表現されてしまい、実際の撮影シーンとはかけ離れた映像表現になってしまう。図1にその一例を示す。図1は、サッカーのワンシーンの仮想視点画像であるが、サッカーゴール(ゴールポスト、クロスバー、ゴールネットの全要素)が芝生のフィールドに張りついたような画像になっている。また、図13(b)は、相撲のワンシーンの仮想視点画像であるが、押し出されて土俵下に倒れているはずの力士が土俵上に倒れているかのような画像になっている。
本発明は、上記課題に鑑みてなされたものであり、その目的は、自然な仮想視点画像が得られるようにすることである。
本発明に係るシステムは、複数の方向から撮影されるオブジェクトに対応する3次元形状データを生成する第1生成手段と、複数の方向から撮影される構造物に対応する3次元形状データを取得する第1取得手段と、複数の方向から撮影される、少なくとも前記オブジェクト及び前記構造物とは異なる背景に対応する背景データを取得する第2取得手段と、指定された視点を示す情報を取得する第3取得手段と、前記第1生成手段により生成された前記オブジェクトに対応する3次元形状データと、前記第1取得手段により取得された前記構造物に対応する3次元形状データと、前記第2取得手段により取得された前記背景データと、前記第3取得手段により取得された前記視点を示す情報とに基づいて、画像を生成する第2生成手段と、を有し、前記第1生成手段は、前記オブジェクトの領域、前記構造物の領域及び前記背景の領域を含む画像と、前記オブジェクトの領域を含まず前記構造物の領域及び前記背景の領域を含む画像とに基づいて、前記オブジェクトに対応する3次元形状データを生成することができることを特徴とする。
本発明によれば、自然な仮想視点画像を得ることができる。
従来手法の問題点を説明する図 実施形態1に係る、カメラシステムの配置の一例を示す図 仮想視点画像生成システムのハードウェア構成の一例を示す図 複数のカメラの共通撮影領域を説明する図 ボリュームデータの説明図 実施形態1に係る、構造物モデルの生成過程を示すシーケンス図 (a)はサッカーゴールがない状態のフィールドの撮影画像を示し、(b)はサッカーゴールがある状態のフィールドの撮像画像を示す図 サッカーゴールの3次元モデルをボリュームデータ上で示した図 実施形態1に係る、仮想視点画像の生成過程を示すシーケンス図 (a)は撮影画像の一例を示し、(b)は前景画像の一例を示し、(c)は仮想視点画像の一例を示す図 選手の3次元モデルをボリュームデータ上で示した図 実施形態1の変形例に係る、カメラシステムの配置の一例を示す図 (a)及び(b)は従来手法の問題点を説明する図 土俵を真上から見た俯瞰図上で、その周囲を4つの領域に分けたことを示す図 実施形態2に係る、撮影シーン内の構造物部分の画像データを間引いて伝送する処理の流を示すフローチャート 実施形態2に係る、仮想視点画像の生成処理の流れを示すフローチャート
以下、添付の図面を参照して、本発明を実施する形態について説明する。各実施形態において示す構成は一例に過ぎず、本発明は図示された構成に限定されるものではない。
実施形態1
近年、カメラの高画質化によって撮影画像の解像度は上がり、そのデータ量は増加する傾向にある。複数のカメラで撮影した複数視点画像のデータを、ネットワーク網を介してサーバ等に送信する際にそのまま送信するとネットワークに大きな負荷が掛かってしまう。さらには、複数視点画像のデータを受信したサーバ等における3次元モデル生成やレンダリング処理時の計算量も増加する。そこで本実施形態では、複数視点画像のデータ伝送時のネットワーク負荷を抑制しつつ、撮影シーン内に存在する構造物等が現実に近くなるように3次元で表現された自然な仮想視点画像を得る態様について説明する。具体的には、撮影シーン内の静止または静止状態に近い状態が継続する構造物を前景でも背景でもない独自属性のオブジェクトとして切り離し、予め3次元モデル化しておく態様を説明する。以下では、サッカーの試合を撮影シーンとし、構造物としてのサッカーゴールを予め3次元モデル化する場合を例に説明を行うものとする。
なお、仮想視点画像とは、エンドユーザ及び/又は選任のオペレータ等が自由に仮想カメラの位置及び姿勢を操作することによって生成される映像であり、自由視点画像や任意視点画像などとも呼ばれる。また、生成される仮想視点画像やその元になる複数視点画像は、動画であっても、静止画であってもよい。以下に述べる各実施形態では、入力される複数視点画像及び出力される仮想視点画像が、共に動画である場合の例を中心に説明するものとする。なお、本実施形態における構造物は、同じアングルから時系列で撮影を行った場合にその位置に変化が見られない静的オブジェクト(静止物体)であればよい。例えば、屋内スタジオなどを撮影シーンとする場合には、家具や小道具を本実施形態でいう構造物として扱うことができる。
図2は、本実施形態に係る、仮想視点画像生成システムを構成する全10台のカメラシステム110a〜110jの配置を、フィールド200を真上から見た俯瞰図において示した図である。各カメラシステム110a〜110jは、地上からある一定の高さにフィールド200を囲むように設置されており、一方のゴール前を様々な角度から撮影して、視点の異なる複数視点画像データを取得する。芝生のフィールド200上には、サッカーコート201が(実際には白のラインで)描かれており、その左右両端にサッカーゴールが置かれている。また、左側のサッカーゴール202の前の×印203はカメラシステム110a〜110jの共通の視線方向(注視点)を示し、破線の円204は注視点203を中心としてカメラシステム110a〜110jがそれぞれ撮影可能なエリアを示している。本実施形態では、フィールド200の1つの角を原点として、長手方向をx軸、短手方向をy軸、高さ方向をz軸とした座標系で表すこととする。
図3は、仮想視点画像生成システムのハードウェア構成の一例を示す図である。図3の仮想視点画像生成システムは、カメラシステム110a〜110j、スイッチングハブ120、制御装置130、サーバ140、及びデータベース150で構成される。
各カメラシステム110a〜110j内には、レンズや撮像センサなどで構成される撮像部111a〜111j、及び制御装置130の指示に従って撮像部の制御や所定の画像処理を行うカメラアダプタ112a〜112jが備わっている。カメラアダプタは、制御や画像処理に必要な演算処理装置(CPU或いはASIC)やメモリ(RAM及びROM)を備えている。また、カメラシステム110a〜110jの間は、ネットワークケーブル160a〜160iによって、隣り合うカメラシステム同士がデイジーチェーン方式で接続されている。カメラシステム110a〜110jで撮影された画像データは、ネットワークケーブル160a〜160iを介して伝送される。スイッチングハブ(以下、「HUB」と表記)120は、ネットワーク上のデータ伝送のルーティングを行う。HUB120とカメラシステム110aとの間はネットワークケーブル170aで接続され、HUB120とカメラシステム110jとの間はネットワークケーブル170bで接続されている。サーバ140は、カメラシステム110a〜110jから送信されてきた複数視点画像データを加工して、仮想視点画像データを生成する。また、サーバ140は、時刻同期信号を生成してシステム全体の同期制御も担う。データベース150(以下、「DB」と表記)は、サーバ140から送られてきた画像データを蓄積し、蓄積した画像データを必要に応じてサーバ150に提供する。なお、HUB120とサーバ140との間はネットワークケーブル170cで、サーバ140とDB150との間はネットワークケーブル170dで、HUB120と制御装置130との間はネットワークケーブル113eで接続されている。制御装置130は、各カメラシステム110a〜110jやサーバ140を統括的に制御する。そして、複数視点画像を元にサーバ140で生成された仮想視点画像を、例えば不図示の表示装置やネットワーク上の他の情報処理装置に出力する。図3に示すシステム構成では、複数のカメラシステム間をデイジーチェーン方式で接続しているが、HUB120と各カメラシステム110a〜110jをそれぞれ直接接続するスター型接続でも構わない。また、仮想視点画像生成システムを構成するカメラシステムの数は10台に限定されるものではない。
ここで、本実施形態における複数視点画像データの取得について説明する。まず、サーバ140が、時刻同期信号を各カメラシステムに対して送信する(タイムサーバ機能)。各カメラシステム110a〜110jにおいては、内部のカメラアダプタ112a〜112jの制御下で各撮像部111a〜111jが、受信した時刻同期信号に従って撮影を行う。これにより、フレーム単位で同期が取れた動画による複数視点画像の取得が可能になる。具体的には以下のようにして、各カメラシステムで撮影された画像データがサーバ140へと順次伝送される。まず、カメラシステム110aにおいて、撮像部111aによって撮影した画像データに対しカメラアダプタ112aにて後述の画像処理を施した後、ネットワークケーブル160a介して、カメラシステム110bに伝送する。カメラシステム110bは、同様の処理を行って、その撮影画像データを、カメラシステム110aから取得した撮影画像データと合わせてカメラシステム110cに伝送する。各カメラシステムで同様の処理が実行され、10台のカメラシステム110a〜110jそれぞれで取得された計10視点分の撮影画像データが、ネットワークケーブル170bを介してHUB120に伝送されて、最終的にサーバ140に送られる。サーバ140は、受け取った10視点分の撮影画像データを用いて、後述する構造物モデルの生成、オブジェクトの形状推定、レンダリングといった画像処理を行う。
図4は、上記10台のカメラシステムのうち4台のカメラシステム110a〜110dがそれぞれ有する撮像部111a〜111dからの撮影領域を、前述の図2をベースに模式的に表した図である。カメラシステム110a〜110dのそれぞれから伸びる三角形の領域411〜414は、カメラシステム110a〜110dにそれぞれ対応する撮影領域を視体積で表したものである。そして、上記4つの三角形で示す撮影領域411〜414が重なる多角形の領域415は、カメラシステム110a〜110dの共通撮像領域を表している。ここでは、4台のカメラシステムの場合を例に共通撮像領域を説明したが、同様の方法で、全10台のカメラシステムにおける共通撮像領域が導出可能である。当然のことながら、全10台のカメラシステムにおける共通撮影領域は、上述の多角形領域415よりも小さくなる。このように共通の注視点を撮像するカメラ群の共通撮像領域は、各カメラが持つ視体積の重複領域を算出することで得ることができる。また、共通撮影領域に存在するオブジェクトの3次元モデルも同様に、各カメラシステムで取得された複数視点画像の重複領域から導出可能である。
次に、本実施形態の特徴の1つである、上述のようにして得た共通撮像領域内に存在する構造物を3次元モデル化する方法について説明する。ここでは、サッカーゴール202の3次元モデルを生成する場合を例に説明を行う。まず、フィールド200上の3次元空間を一定の大きさを持つ立方体(ボクセル)で充填したボリュームデータ(図5を参照)を用意する。ボリュームデータを構成するボクセルの値は0と1で表現され、「1」は形状領域、「0」は非形状領域をそれぞれ示す。図5において、符号501がボクセル(実際のサイズよりも説明の便宜上大きく表記)を示している。次に、各カメラシステム110a〜110jが備える撮像部111a〜111jのカメラパラメータを用いて、ボクセルの3次元座標をワールド座標系からカメラ座標系に変換する。そして、構造物がそのカメラ座標系にある場合は、ボクセルによって当該構造物の3次元形状を表したモデル(構造物モデル)が生成される。なお、カメラパラメータとは、各撮像部111a〜111jの設置位置や向き(視線方向)並びにレンズの焦点距離等の情報を指す。
図6は、撮影シーン内に存在する構造物モデルの生成過程を示すシーケンス図である。このシーケンス図で示される一連の処理を、例えば競技場の設営時など、仮想視点画像の元データとなる複数視点画像の本編の撮影開始前(例えば試合開始前)に行っておく。図6においては、10台のカメラシステム110a〜110jの集合を「カメラシステム群」として表記している。
ステップ601では、各撮像部111a〜111jが、構造物がない(ここでは、サッカーゴール202が未設置)状態の対象3次元空間(ここではフィールド200)を撮影する。図7(a)は、サッカーゴール202がない状態でのフィールド200をカメラシステム110iの撮像部111iから撮影して得られた画像を示している。視点の異なるこのような撮影画像がそれぞれのカメラシステムにおいて取得される。
次に、ステップ602では、各撮像部111a〜111jが、構造物がある(ここでは、サッカーゴール2020が設置)状態の対象3次元空間(フィールド200)を撮影する。図7(b)は、サッカーゴール202がある状態でのフィールド200をカメラシステム110iの撮像部111iから撮影して得られた画像を示している。ステップ601と同様、視点の異なるこのような撮影画像がそれぞれのカメラシステムにおいて取得される。なお、ステップ601及び602で得た撮影画像データは、各カメラアダプタ112a〜112j内のメモリで保持しているものとする。
ステップ603では、各カメラアダプタ112a〜112jが、ステップ601で得た撮影画像とステップ602で得た撮影画像との差分から、構造物が写っている画像領域とそれ以外の背景が写っている画像領域とに分離する。これにより、構造物(ここではサッカーゴール202)に対応する画像データとそれ以外の背景(ここではフィールド200)に対応する画像データが得られる。
ステップ604では、各カメラアダプタ112a〜112jが、ステップ603で得られた構造物に対応する画像データと背景に対応する画像データをサーバ140に対して伝送する。
ステップ605では、サーバ140が、各カメラシステムから受信した構造物の画像データと各カメラシステムのカメラパラメータとに基づいて、前述したボクセルで構成される構造物(ここではサッカーゴール202)の3次元モデルを生成する。図8は、サッカーゴール202の3次元モデルを、前述のボリュームデータ上にて示した図である。なお、ボクセルそのものではなく、ボクセルの中心を示す点の集合(点群)によって、3次元形状を表現してもよい。こうして生成された構造物モデルは、サーバ140内のメモリ或いはDB150に保存される。また、構造物の画像データと一緒に受け取った背景の画像データも併せて保存される。
以上が、撮影シーン内の構造物モデルを生成する際の処理の流れである。同様の手法で、例えばコーナーフラッグといった他の構造物の3次元モデルを生成してもよい。なお、本実施形態では、カメラアダプタ側にて構造物とそれ以外の背景との分離を行ったが、これをサーバ140側で行ってもよい。
続いて、上述のようにして得られた構造物モデルを用いて、撮影シーン内に存在する構造物が違和感なく表現される仮想視点画像の生成について説明する。図9は、本実施形態に係る、仮想視点画像の生成過程を示すシーケンス図である。図6のシーケンス図と同様、10台のカメラシステム110a〜110jの集合を「カメラシステム群」として表記している。
サッカーの試合開始などに合わせ、ステップ901では、制御装置130が、サーバ140に対し仮想視点画像の元になる複数視点画像の撮影指示(撮影開始コマンド)を送る。続くステップ902では、制御装置130からの撮影指示を受けて、サーバ140が、各カメラシステム110a〜110jに対し、時刻同期信号を送信する。そして、ステップ903では、各カメラシステム110a〜110jが、対象3次元空間(ここでは、フィールド200上の3次元空間)の撮影を開始する。これにより例えばカメラシステム110iにおいては、図10(a)で示すような、サッカーの試合中の画像が得られる。そして、視点の異なるこのような画像の撮影がそれぞれのカメラシステムにおいて行われる。
ステップ904では、各カメラアダプタ112a〜112jにおいて、ステップ903で取得した撮影画像から、動きのあるオブジェクトからなる前景(ここでは、選手とボール)のデータを抽出する処理が実行される。この抽出処理は、ステップ903で取得した撮影画像と前述のステップ602で取得した構造物ありの撮影画像(図7(b))とを比較し、その差分に基づいて前景と背景とに分離する処理と言い換えることができる。図10(b)は、図10(a)の撮影画像(全景画像)から抽出された前景のみの画像を示している。続くステップ905では、各カメラアダプタ112a〜112jが、抽出された前景の画像データをサーバ140に対して伝送する。このとき、フィールド200やサッカーゴール202に対応する画像領域(背景の画像データ)については、サーバ140に伝送されない。よって、その分だけデータ伝送量が抑制される。
ステップ906では、ユーザ指示に基づき、制御装置130が、仮想視点画像の生成指示(生成開始コマンド)を、仮想視点や注視点に関する情報と共にサーバ140に送信する。この際、仮想視点画像を作成・視聴したいユーザは、制御装置130が備えるGUI(不図示)を介して、仮想視点画像の生成に必要な情報を入力する。具体的には、仮想視点の位置やその移動経路、さらにはどこ(どのオブジェクト)を注視するのかといった仮想視点画像の生成に必要な情報(以下、「仮想視点情報」と呼ぶ。)を所定のUI画面を介して設定する。
ステップ907では、サーバ140が、カメラ群から受信した前景の画像データと前述のカメラパラメータとを用いて、撮影シーン内で動きのあるオブジェクトの3次元モデル(前景モデル)を生成する。ここでは、選手とボールの3次元モデルが前景モデルとして生成されることになる。図11は、本ステップで生成される選手とボールの3次元モデルのうち、ある一人の選手に対応する3次元モデルを、前述の図8と同様、ボリュームデータ上にて示した図である。
ステップ908では、サーバ140は、制御装置130から受け取った仮想視点情報、ステップ907で取得した前景モデル、及び予め生成・取得しておいた構造物モデル及び背景データを用いて、仮想視点画像を生成する。具体的には、例えばVisual Hull手法などを用いて、設定された仮想視点(仮想カメラ)から見た場合の構造物モデルと前景モデルのそれぞれの形状推定を行う。この形状推定処理の結果、撮影シーン内に存在するオブジェクトの3次元形状を表現したボリュームデータが得られる。こうして、仮想視点からみたオブジェクトの3次元形状が得られると、次に、これらオブジェクトの3次元形状を1つの画像に合成する。合成処理の際、設定された仮想視点からの距離が、構造物モデルよりも前景モデルの方が近い場合は、構造物モデルの上から前景モデルをマッピングする。逆に、構造物モデルの方が前景モデルよりも仮想視点に近い場合は、前景モデルの上から構造物モデルをマッピングする。こうして、例えばカメラシステム110iの撮像部111iからの視点を高さ方向(+z方向)に異動した点を仮想視点とした場合の仮想視点画像は、図10(c)に示したような画像となる。図10(c)に示す仮想視点画像においては、前景モデルである選手とボール、構造物モデルであるサッカーゴールが、いずれも自然な3次元形状にてフィールド200上にマッピングされているのが分かる。このような処理を、別途設定されたタイムフレーム数分だけ繰り返すことで、動画による所望の仮想視点画像が得られる。
なお、本実施形態では、図9のシーケンスにおいて、背景の画像データを一切伝送しないことでトータルのデータ伝送量の抑制を図っている。この場合、例えば屋外でのスポーツシーンを動画で撮影する場合などでは日照条件などが時系列で変化することから、出来上がる仮想視点画像における背景部分が実際と異なってしまうという問題が起こり得る。このような問題が懸念される場合には、前景の画像データを伝送する合間に、ステップ904の前景・背景分離で得られた背景の画像データを適宜伝送してもよい。
また、本実施形態では、構造物モデルの生成と前景モデルの生成とをサーバ140で行っているが、これに限定されない。例えば、構造物モデルの生成までをカメラアダプタで行ってそれをサーバ140に送信してもよい。或いは他の情報処理装置で生成した構造物モデルのデータをサーバ140が取得してもよい。要は、複数視点画像から抽出した前景データから前景モデルを生成する段階で、サーバ140において構造物モデルが利用可能な状態になっていればよい。
<変形例>
上述の例では、撮影シーン内の構造物を前景でも背景でもない独自属性のオブジェクトとして扱い、予め構造物の3次元モデルを生成・保持しておくことでデータ伝送量の削減を図った。データ伝送量の削減の観点からは、構造物の3次元モデルを背景として扱うことでもその目的は達成可能である。ただし、構造物モデルを背景として扱う場合には、以下のような問題が生じる。
図12は、撮影シーンが相撲の場合の、本変形例に係る仮想視点画像生成システムを構成する全10台のカメラシステム110a〜110jの配置を示した図である。各カメラシステム110a〜110jは、相撲会場の天井に土俵の周りを囲むように設置されており、土俵上を様々な角度から撮影して、視点の異なる複数視点画像データを取得する。この場合、土俵(=構造物)だけの状態を撮影した画像に基づき3次元モデル化を行ない、得られた土俵の3次元形状を背景として扱う。
ここで、力士2人が相撲を取った結果、例えば図13(a)に示すように片方の力士が土俵上から落ちたとする。この図13(a)の状態を全10台のカメラシステム110a〜110jで撮影してサーバ140に対して前景の画像データのみを伝送するケースを考える。サーバ140にて前景の画像データを受信したサーバ140は、背景として予め作製しておいた土俵の3次元モデル上に前景である力士2人をマッピングすることになる。そうすると、図13(b)に示すように、押し出されて土俵の外に倒れているはずの力士が土俵の上で倒れているかのような画像になってしまう。つまり、3次元モデル化した構造物を背景として扱う場合、前景の位置によっては自然な仮想視点画像とはならない。そこで、構造物モデルを背景として扱う場合には、自然な仮想視点画像を得られるかどうかを事前に判定し、不自然な仮想視点画像となる可能性が高い場合にユーザに対し警告を行なうことが望ましい。
図14は、土俵を真上から見た俯瞰図であり、土俵の周りをA、B、C、Dの4つの領域に分けている。このA、B、C、Dの領域それぞれは、土俵の下(土俵外)の部分を示している。中央の×印は、カメラシステム110a〜110j内の撮像部111a〜111jの注視点である。本変形例では、仮想視点画像の生成指示があった際に、その前景の位置を確かめる。上記の例では、力士の位置が土俵上であるかどうかを、指定された仮想視点(仮想カメラ)からの距離或いは図示していない土俵全体を俯瞰で撮影しているカメラの画像にも基づき判定する。そして、力士のうち少なくとも1人が土俵上におらず、指定された仮想視点の位置と力士の位置とが、A〜Dのいずれか同じ領域内に存在していなければ仮想視点画像の生成不能と判断し、警告を行なうようにする。一方がAの領域内で他方がCの領域内といったように、仮想視点の位置が存在する領域と、力士のいる位置の領域とが異なる場合は、実際とは異なる場所に力士を貼り付けたような、不自然な仮想視点画像が生成される可能性が高いためである。このように、構造物モデルを背景として扱う場合には、留意が必要である。
本実施形態によれば、構造物についてはその3次元モデルを予め作成しておき、他の前景モデルと異なる扱いをする。これによって、仮想視点画像の元になる複数視点画像のデータ伝送量を抑制しつつ、撮影シーン内の構造物が違和感なく表現された仮想視点画像を生成することが可能となる。
実施形態2
実施形態1は、撮影シーン内の構造物を、前景でも背景でもない独自属性のオブジェクトとして切り離し、予め3次元モデル化してサーバに保持しておくことで、データ転送量を抑制する態様であった。次に、撮影シーン内の構造物を前景として扱いつつ、構造物についてはデータを間引いて伝送することで、データ転送量を抑制する態様を実施形態2として説明する。なお、システム構成など実施形態1と共通する内容については説明を省略ないしは簡略化し、以下では差異点を中心に説明するものとする。
本実施形態でも、実施形態1と同じ、サッカーの試合を撮影シーンとする場合を例に説明を行う。すなわち、カメラシステムの配置は前述の図2と同じであるとの前提で、以下説明を行う。この場合において、構造物であるサッカーゴールを、選手やボールとは区別しつつも、前景モデルとして扱う。図15は、本実施形態に係る、撮影シーン内の構造物部分の画像データを間引いて伝送する処理の流を示すフローチャートである。図15のフローは、制御装置130のUIを介してユーザが仮想視点画像の元になる複数視点画像の撮影を指示した場合に、各カメラシステムにおいてその実行を開始する。すなわち、カメラアダプタ内のCPU等が所定のプログラムを実行することで実現される。
ここで、図15のフローの実行開始前には、その準備処理を終えている必要がある。具体的には、各カメラシステム110a〜110jにおいて、フィールド200を構造物がない状態とある状態とで撮影した全景画像(図7(a)及び(b)を参照)をそれぞれ取得し、各カメラアダプタ112a〜112j内のメモリに保持しておく。この準備処理は、例えば試合が始まる前の競技場の設営時点に行っておく。なお、準備処理で得られたこれら画像のデータはサーバ140へも送信され、後述の仮想視点画像の生成処理で参照するためにサーバ140内のメモリに保持される。このような準備処理の完了を前提に、図15のフローが実行可能となる。
まず、ステップ1501では、各カメラアダプタ112a〜112jにおいて、その内部に持つカウンタ(不図示)の値が初期化される。具体的には、初期値として“0”が設定される。続くステップ1502では、各撮像部111a〜111jにおいて、サーバ140から送信されてくる時刻同期信号に従った撮影が開始される。次に、ステップ1503では、現在のカウンタ値が“0”であるか否かによって、以降の処理の切り分けがなされる。カウンタ値が“0”であればステップ1507に進み、“0”以外の値であればステップ1504に進む。
ステップ1504では、カウンタ値が“1”だけ減算(デクリメント)される。続くステップ1505では、各カメラアダプタ112a〜112jにおいて、各撮像部111a〜111jで撮影した画像(フレーム)から前景の領域を抽出する処理が実行される。具体的には、準備処理で取得・保持しておいた2パターンの全景画像のうち構造物ありの全景画像を用いて、撮影画像との差分を求める処理(前景・背景分離処理)を行う。いま、準備処理で取得した2パターンの全景画像のうち構造物ありの全景画像には、構造物としてのサッカーゴール202がフィールド200上に設置された状態で写っている(図7(b))。したがって、サッカーゴールを含まない、選手やボールといった動的オブジェクトのみが写っている領域を切り出した画像が前景データとして得られることになる。そして、ステップ1506では、各カメラアダプタ112a〜112jが、ステップ1505で得られた構造物を含まない前景データをサーバ140に対して送信する。前景データの送信を終えると、ステップ1510に進み、撮影終了かどうかが判定される。サーバ140から撮影終了の指示を受信していなければステップ1503に戻る。
ステップ1507では、各カメラアダプタ112a〜112jにおいて、各撮像部111a〜111jで撮影した画像(フレーム)から前景の領域を抽出する処理が実行される。具体的には、準備処理で取得・保持しておいた2パターンの全景画像のうち構造物なしの全景画像を用いて、撮影画像との差分を求める前景・背景分離処理を行う。いま、準備処理で取得した2パターンの全景画像のうち構造物なしの全景画像には、サッカーゴール202が未設置状態のフィールド200だけが写っている(図7(a))。したがって、選手やボールが写っている領域だけでなくサッカーゴールが写っている領域をも併せて切り出した画像が前景データとして得られることになる。つまり、本ステップにおいては、構造物であるサッカーゴールも前景として抽出される。そして、ステップ1508では、各カメラアダプタ112a〜112jが、ステップ1507で得られた「構造物を含んだ前景データ」をサーバ140に対し送信する。この際、構造物の領域も前景データに含まれていることが受信したサーバ140側でも判るよう、構造物の有無を示す情報(例えば、含む場合を“1”含まない場合を“0”で示す2値フラグ)を付与して送信を行う。続くステップ1509では、カウンタに所定の値N(N>1)が設定される。具体的には、各撮像部111a〜111jによる動画撮影のフレームレートが60fpsの場合、例えば“60”といった値が設定される。ユーザは、カウンタに設定する所定値を任意の値とすることで、構造物を含んだ前景データを送信する頻度(N回に1回)を自由に変更することができる。カウンタに対する所定値の設定を終えた後は、ステップ1510に進み、撮影終了かどうかが判定される。サーバ140から撮影終了の指示を受信していなければステップ1503に戻る。
以上が、撮影シーン内の構造物部分の画像データを間引いて伝送する処理の内容である。このような処理を行う結果、例えば所定値としてフレームレートと同じ値がカウンタに設定された場合は、60回に1回のみ構造物(ここではサッカーゴール)を含む前景の画像データの伝送がサーバ140に対しなされることになる。もちろん、選手やボールといった動的オブジェクトは60回のすべてで(毎フレーム)伝送される。このように、静的オブジェクトである構造物の画像情報に関しては、選手やボールといった動的オブジェクトよりもフレームレートを下げて伝送することができるため、構造物を含む前景の画像データを毎フレーム伝送するよりも伝送効率を格段に上げることができる。また、構造物の画像情報を含む前景画像を構造物の画像情報を含まない前景画像より少ない頻度で送信することで、伝送データを削減することができる。
次に、上述のようにして順次送られてきた前景の画像データを元に、サーバ140で仮想視点画像を生成する際の処理について説明する。図16は、サーバ140における仮想視点画像の生成処理の流れを示すフローチャートである。図16のフローは、カメラシステム110a〜110jで撮影され伝送されてきた全ての前景の画像データの中から、ユーザが指定した特定のタイムフレーム(例えば10秒分)分の前景画像を対象に、フレーム単位で実行されるものである。また、この一連の処理は、制御装置130の指示に基づき、サーバ140内のCPUが所定のプログラムを実行することで実現される。
まず、ステップ1601では、設定されたタイムフレーム分の前景の画像データのうち、処理対象となる注目する前景画像(フレーム)が決定される。続くステップ1602では、注目前景画像に構造物が含まれているかどうかが、前述の2値フラグに基づき判定される。判定の結果、注目前景画像に構造物が含まれる場合はステップ1603へ進み、構造物が含まれない場合はステップ1605に進む。
注目前景画像に構造物が含まれる場合のステップ1603では、注目前景画像から構造物に対応する画像領域を抽出し、構造物を表す画像(以下、「構造物画像」と呼ぶ)が生成される。この生成処理は、以下のような手順で行われる。まず、前述の準備処理で取得され予め保持しておいた構造物ありの状態の撮影画像(全景画像)と注目前景画像との差分を求め、前景に対応する画像領域を取り出す。次に、当該取り出した前景に対応する画像領域と、予め保持しておいた構造物なしの状態の撮影画像(全景画像)とを合成する。そして、当該合成によって得られた合成画像と、注目前景画像との差分を求め、構造物に対応する画像領域のみを表す構造物画像が得られる。そして、ステップ1604にて、ステップ1603で生成された構造物画像のデータが、サーバ140内のメモリに保持される。既に構造物画像のデータが保持されている場合は、新たに生成された構造物画像のデータによって上書き(更新)されることになる。生成された構造物画像のデータをメモリに保存した後は、ステップ1607に進む。
一方、注目前景画像に構造物が含まれない場合のステップ1605では、先行するステップ1603及びステップ1604の処理で生成・保持された構造物画像のデータが読み出される。続くステップ1606では、読み出した構造物画像と、構造物を含まない注目前景画像とが合成され、構造物を含んだ注目前景画像が生成される。
ステップ1607では、構造物を前景の一部とした、撮影シーン内のオブジェクトの3次元モデル(前景モデル)が生成される。この際、注目前景画像に元々構造物を含んでいた場合(ステップ1602でYes)の本ステップでは、当該注目前景画像をそのまま用いて前景モデルが生成される。一方、注目前景画像に元々構造物を含んでいなかった場合(ステップ1602でNo)の本ステップでは、ステップ1606で構造物が合成された注目前景画像を用いて前景モデルが生成される。いずれの場合においても、選手やボールといった動的オブジェクトに加え、構造物(静的オブジェクト)であるサッカーゴールをも含んだ前景モデルが生成されることになる。
ステップ1608では、ユーザによって別途設定された仮想視点の位置情報に基づいて、ステップ1607で生成した前景モデルを当該仮想視点から見た場合の形状推定を行ない、仮想視点画像が生成される。
以上が、本実施形態に係る、サーバ140での仮想視点画像の生成処理の内容である。 本実施形態のように、撮影シーン内の構造物を前景として扱いつつその画像データを間引いて伝送することによっても、実施形態1と同様の効果を得ることができる。
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
110a〜110j カメラシステム
112a〜112j カメラアダプタ
140 サーバ

Claims (26)

  1. 複数の方向から撮影されるオブジェクトに対応する3次元形状データを生成する第1生成手段と、
    複数の方向から撮影される構造物に対応する3次元形状データを取得する第1取得手段と、
    複数の方向から撮影される、少なくとも前記オブジェクト及び前記構造物とは異なる背景に対応する背景データを取得する第2取得手段と、
    指定された視点を示す情報を取得する第3取得手段と、
    前記第1生成手段により生成された前記オブジェクトに対応する3次元形状データと、前記第1取得手段により取得された前記構造物に対応する3次元形状データと、前記第2取得手段により取得された前記背景データと、前記第3取得手段により取得された前記視点を示す情報とに基づいて、画像を生成する第2生成手段と、
    を有し、
    前記第1生成手段は、前記オブジェクトの領域、前記構造物の領域及び前記背景の領域を含む画像と、前記オブジェクトの領域を含まず前記構造物の領域及び前記背景の領域を含む画像とに基づいて、前記オブジェクトに対応する3次元形状データを生成することができることを特徴とするシステム。
  2. 前記第1取得手段は、イベント開始前の撮影により得られた撮影画像に基づいて生成された前記構造物に対応する3次元形状データを取得することを特徴とする請求項1に記載のシステム。
  3. 前記第1取得手段は、イベントの開始前に複数の撮影方向からの撮影により取得された複数の撮影画像に基づく複数の画像であって、前記構造物の領域を他の領域と区別して表す複数の画像に基づいて生成された前記構造物に対応する3次元形状データを取得することを特徴とする請求項1又は2に記載のシステム。
  4. 前記第1取得手段は、イベント開始前の撮影により得られた撮影画像に基づいて、前記構造物に対応する3次元形状データを生成して取得することを特徴とする請求項1乃至3の何れか1項に記載のシステム。
  5. 前記第1取得手段は、イベントの開始前に複数の撮影方向からの撮影により取得された複数の撮影画像に基づく複数の画像であって、前記構造物の領域を他の領域と区別して表す複数の画像に基づいて、前記構造物に対応する3次元形状データを生成して取得することを特徴とする請求項1乃至4のいずれか1項に記載のシステム。
  6. 前記第1取得手段は、イベントの開始前に、前記構造物に対応する3次元形状データを取得することを特徴とする請求項1乃至5のいずれか1項に記載のシステム。
  7. 前記イベントの開始前の撮影により取得された撮影画像は、前記オブジェクトの領域を含まず前記構造物の領域及び背景の領域を含む画像であることを特徴とする請求項2に記載のシステム。
  8. 前記第1生成手段は、イベントの開始後に複数の撮影方向からの撮影により取得された複数の撮影画像に基づいて、前記オブジェクトに対応する3次元形状データを生成することができることを特徴とする請求項1乃至7のいずれか1項に記載のシステム。
  9. 前記第1生成手段は、イベントの開始後に複数の撮影方向からの撮影により取得された複数の撮影画像と、イベントの開始前に複数の撮影方向からの撮影により取得された複数の撮影画像に基づいて、前記オブジェクトに対応する3次元形状データを生成することができることを特徴とする請求項1乃至8のいずれか1項に記載のシステム。
  10. 前記イベントの開始後に複数の撮影方向からの撮影により取得された複数の撮影画像は、前記オブジェクトの領域、前記構造物の領域及び前記背景の領域を含む画像であることを特徴とする請求項8又は9に記載のシステム。
  11. 前記構造物の3次元形状データと、前記背景データと、前記視点を示す情報とは、システムが有する通信手段により取得されることを特徴とする請求項1乃至3のいずれか1項に記載のシステム。
  12. 指定された視点に基づく画像を生成するために用いられるシステムであって、
    撮影画像に基づいて構造物の領域を含む画像を生成する第1生成手段と、
    撮影画像に基づいてオブジェクトの領域を含み前記構造物の領域を含まない画像を生成する第2生成手段と、
    前記第1生成手段により生成された画像と、前記第2生成手段により生成された画像とを送信する送信手段と、を有し、
    前記送信手段は、前記第1生成手段により生成された画像を、前記第2生成手段により生成された画像より低い頻度で送信することができることを特徴とするシステム。
  13. 前記送信手段により送信された前記第1生成手段により生成された画像及び前記第2生成手段により生成された画像に基づいて、前記指定された視点に基づく画像を生成する第3生成手段をさらに有することを特徴とする請求項12に記載のシステム。
  14. 前記送信手段により送信された前記第1生成手段により生成された画像及び前記第2成手段により生成された画像に基づいて、前記構造物の領域を他の領域と区別して表す画像を生成する第4生成手段をさらに有することを特徴とする請求項12又は13に記載のシステム。
  15. 前記送信手段により送信された前記第1生成手段により生成された画像及び前記第2生成手段により生成された画像に基づいて、前記オブジェクトに対応する3次元形状データ及び前記構造物に対応する3次元形状データを取得する第5生成手段をさらに有することを特徴とする請求項12乃至14のいずれか1項に記載のシステム。
  16. 前記オブジェクトは、動体であることを特徴とする請求項1乃至15のいずれか1項に記載のシステム。
  17. 人物とボールのうち少なくとも一方は、前記オブジェクトであることを特徴とする請求項1乃至16のいずれか1項に記載のシステム。
  18. 前記構造物は、静止状態が継続する物体であることを特徴とする請求項1乃至17のいずれか1項に記載のシステム。
  19. サッカーの試合に用いられるサッカーゴール及びコーナーフラッグの少なくとも一方は、前記構造物であることを特徴とする請求項1乃至17のいずれか1項に記載のシステム。
  20. 前記構造物は、所定の位置に設置された物体であることを特徴とする請求項1乃至19のいずれか1項に記載のシステム。
  21. 前記構造物の少なくとも一部は、オブジェクトである人物が競技を行うフィールド上に設置されていることを特徴とする請求項1乃至20のいずれか1項に記載のシステム。
  22. 前記構造物は、指定された物体であることを特徴とする請求項1乃至21のいずれか1項に記載のシステム。
  23. 指定された視点に基づく画像を生成する生成方法であって、
    複数の方向から撮影されるオブジェクトに対応する3次元形状データを生成する第1生成工程と、
    複数の方向から撮影される構造物に対応する3次元形状データを取得する第1取得工程と、
    複数の方向から撮影される、少なくとも前記オブジェクト及び前記構造物とは異なる背景に対応する背景データを取得する第2取得工程と、
    指定された視点を示す情報を取得する第3取得工程と、
    前記第1生成工程により生成された前記オブジェクトに対応する3次元形状データと、前記第1取得工程により取得された前記構造物に対応する3次元形状データと、前記第2取得工程により取得された前記背景データと、前記第3取得工程により取得された前記視点を示す情報とに基づいて、画像を生成する第2生成工程と、
    を有し、
    前記第1生成工程において、前記オブジェクトの領域、前記構造物の領域及び背景の領域を含む画像と、前記オブジェクトの領域を含まず前記構造物の領域及び背景の領域を含む画像とに基づいて、前記オブジェクトに対応する3次元形状データを生成されることを特徴とする生成方法。
  24. 前記第1取得工程において、イベントの開始前の複数の撮影方向からの撮影により取得された、オブジェクトの領域を含まず前記構造物の領域及び背景の領域を含む画像に基づく複数の画像であって、前記構造物の領域を他の領域と区別して表す複数の画像に基づいて、前記構造物に対応する3次元形状データが生成されて取得されることを特徴とする請求項23に記載の生成方法。
  25. 指定された視点に基づく画像を生成する生成方法であって、
    撮影画像に基づいて構造物の領域を含む画像を生成する第1生成工程と、
    撮影画像に基づいてオブジェクトの領域を含み前記構造物の領域を含まない画像を生成する第2生成工程と、
    前記第1生成工程により生成された画像と、前記第2生成工程により生成された画像とを送信する送信工程と、を有し、
    前記送信工程において、前記第1生成工程により生成された画像は、前記第2生成工程により生成された画像より低い頻度で送信されることを特徴とする生成方法。
  26. コンピュータを、請求項1乃至22のいずれか1項に記載のシステムの各手段として動作させるためのプログラム。
JP2019014184A 2019-01-30 2019-01-30 仮想視点画像を生成するシステム、方法及びプログラム Active JP6759375B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014184A JP6759375B2 (ja) 2019-01-30 2019-01-30 仮想視点画像を生成するシステム、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014184A JP6759375B2 (ja) 2019-01-30 2019-01-30 仮想視点画像を生成するシステム、方法及びプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017239888A Division JP6513169B1 (ja) 2017-12-14 2017-12-14 仮想視点画像を生成するシステム、方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2019114269A true JP2019114269A (ja) 2019-07-11
JP6759375B2 JP6759375B2 (ja) 2020-09-23

Family

ID=67221585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014184A Active JP6759375B2 (ja) 2019-01-30 2019-01-30 仮想視点画像を生成するシステム、方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6759375B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506493B2 (ja) 2020-03-16 2024-06-26 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114716A (ja) * 2013-12-09 2015-06-22 シャープ株式会社 画像データ再生装置および画像データ生成装置
JP2017212593A (ja) * 2016-05-25 2017-11-30 キヤノン株式会社 情報処理装置、画像処理システム、情報処理方法、及び、プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114716A (ja) * 2013-12-09 2015-06-22 シャープ株式会社 画像データ再生装置および画像データ生成装置
JP2017212593A (ja) * 2016-05-25 2017-11-30 キヤノン株式会社 情報処理装置、画像処理システム、情報処理方法、及び、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
稲本奈穂,外1名: ""視点位置の内挿に基づく3次元サッカー映像の自由視点観賞システム"", 映像情報メディア学会誌, vol. 第58巻, 第4号, JPN6018022737, 2004, pages 529 - 539, ISSN: 0004208694 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506493B2 (ja) 2020-03-16 2024-06-26 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム

Also Published As

Publication number Publication date
JP6759375B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6513169B1 (ja) 仮想視点画像を生成するシステム、方法及びプログラム
JP6425780B1 (ja) 画像処理システム、画像処理装置、画像処理方法及びプログラム
KR102125293B1 (ko) 생성 장치, 생성 방법, 및 기억 매체
JP7349793B2 (ja) 画像処理装置および画像処理方法、プログラム
US11151787B2 (en) Generation device, generation method and storage medium for three-dimensional model from object images and structure images
US20190132529A1 (en) Image processing apparatus and image processing method
JP7023696B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP2020086983A (ja) 画像処理装置、画像処理方法、及びプログラム
US20220005276A1 (en) Generation device, generation method and storage medium for three-dimensional model
JP2019106145A (ja) 3次元モデルの生成装置、生成方法及びプログラム
JP6812181B2 (ja) 画像処理装置、画像処理方法、及び、プログラム
JP2019103126A (ja) カメラシステム、カメラ制御装置、カメラ制御方法及びプログラム
JP6775669B2 (ja) 情報処理装置
JP7479793B2 (ja) 画像処理装置、仮想視点映像を生成するシステム、画像処理装置の制御方法及びプログラム
WO2022176720A1 (ja) 情報処理装置、情報処理方法、およびプログラム
JP6759375B2 (ja) 仮想視点画像を生成するシステム、方法及びプログラム
JP2020067815A (ja) 画像処理装置、画像処理方法およびプログラム
JP2022110751A (ja) 情報処理装置、情報処理方法及びプログラム
JP2022029239A (ja) 画像処理装置、画像処理方法、およびプログラム
JP2019106170A (ja) 3次元モデルの生成装置、生成方法及びプログラム
JP7044846B2 (ja) 情報処理装置
JP2023026244A (ja) 画像生成装置および画像生成方法、プログラム
JP2021018570A (ja) 画像処理装置、画像処理システム、画像処理方法およびプログラム
JP2019118042A (ja) 画像処理装置、画像処理方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R151 Written notification of patent or utility model registration

Ref document number: 6759375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151