JP2019113232A - heat pipe - Google Patents

heat pipe Download PDF

Info

Publication number
JP2019113232A
JP2019113232A JP2017246103A JP2017246103A JP2019113232A JP 2019113232 A JP2019113232 A JP 2019113232A JP 2017246103 A JP2017246103 A JP 2017246103A JP 2017246103 A JP2017246103 A JP 2017246103A JP 2019113232 A JP2019113232 A JP 2019113232A
Authority
JP
Japan
Prior art keywords
refrigerant
heat pipe
channel
capillary
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017246103A
Other languages
Japanese (ja)
Other versions
JP7386469B2 (en
Inventor
敬 水田
Kei Mizuta
敬 水田
福田 賢司
Kenji Fukuda
賢司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Shikoku Instrumentation Co Ltd
Original Assignee
Kagoshima University NUC
Shikoku Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC, Shikoku Instrumentation Co Ltd filed Critical Kagoshima University NUC
Priority to JP2017246103A priority Critical patent/JP7386469B2/en
Publication of JP2019113232A publication Critical patent/JP2019113232A/en
Application granted granted Critical
Publication of JP7386469B2 publication Critical patent/JP7386469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a heat pipe capable of obtaining a high heat exchange ratio.SOLUTION: A heat pipe 1 has a flat plate shape as a whole. An upper member is a flat plate-shaped member in which a groove part 10c for sending a coolant in an in-plane direction of a bottom face. A lower member has a flat plate shape in which a groove part 11c for sending a coolant in an in-plane direction of a top face is formed. An intermediate member is one or a plurality of members sandwiched between the upper member and the lower member. In the heat pipe 1, the upper member and the lower member are connected via the intermediate member, and an internal space 20 filled with a coolant is formed under reduced pressure. There are formed: a vapor diffusion flow channel 21 for communicating the groove part 10c of the upper member with the groove part 11c of the lower member in a state of forming the internal space 20 by the intermediate member, and allowing an evaporated coolant to pass; and a capillary flow channel 22 for sending a condensed coolant by capillary phenomenon between the groove part 10c of the upper member and the groove part 11c of the lower member. A flow channel cross sectional area of the capillary flow channel 22 is changed in a flow channel direction.SELECTED DRAWING: Figure 10

Description

本発明は、ヒートパイプに関する。   The present invention relates to a heat pipe.

減圧下の密閉空間に冷媒を封入し、熱源から伝えられた熱により蒸気となった冷媒が拡散する蒸気拡散通路と、凝縮した冷媒を毛細管現象により送る毛細管流路(ウィック)が設けられたヒートパイプが開示されている。   A heat is provided with a vapor diffusion passage in which a refrigerant is sealed in a sealed space under reduced pressure and a refrigerant which has become a vapor is diffused by heat transmitted from a heat source, and a capillary channel (wick) which sends condensed refrigerant by capillary action. Pipes are disclosed.

特開2002−039693号公報Japanese Patent Application Publication No. 2002-039693 特開2004−077120号公報Japanese Patent Application Publication No. 2004-077120

上述のようなヒートパイプの熱交換比率において、重要なのは毛細管流路における凝縮した冷媒を送る能力である。この能力が高ければ高いほど、ヒートパイプの性能を向上することができる。   In the heat exchange ratio of the heat pipe as described above, what is important is the ability to deliver the condensed refrigerant in the capillary channel. The higher this capacity, the better the heat pipe performance can be.

本発明は、上記実情に鑑みてなされたものであり、高い熱交換比率を得ることができるヒートパイプを提供することを目的とする。   This invention is made in view of the said situation, and it aims at providing the heat pipe which can obtain a high heat exchange ratio.

本発明の第1の観点に係るヒートパイプは、
全体として平板状のヒートパイプであって、
下面の面内方向に冷媒を送る溝部が形成された平板状の上部材と、
上面の面内方向に前記冷媒を送る溝部が形成された平板状の下部材と、
前記上部材と前記下部材とに挟まれた一又は複数枚の中間部材と、
を備え、
前記中間部材を介して前記上部材と前記下部材とが接合されて減圧下で前記冷媒が封入された内部空間を形成し、
前記中間部材により、
前記内部空間が形成された状態で、前記上部材の溝部と前記下部材の溝部とを連通し、気化した前記冷媒を通過させる蒸気拡散流路と、
前記上部材の溝部と前記下部材の溝部との間で、凝縮した前記冷媒を毛細管現象により送る毛細管流路と、
が構成され、
前記毛細管流路は、その流路方向に流路断面積が変化している。
The heat pipe according to the first aspect of the present invention is
It is a flat heat pipe as a whole,
A flat plate-like upper member in which a groove portion for sending the refrigerant in the in-plane direction of the lower surface is formed;
A flat plate-like lower member in which a groove for feeding the refrigerant is formed in the in-plane direction of the upper surface;
One or more intermediate members sandwiched between the upper member and the lower member;
Equipped with
The upper member and the lower member are joined via the intermediate member to form an internal space in which the refrigerant is sealed under reduced pressure,
By the intermediate member,
A vapor diffusion channel that connects the groove of the upper member and the groove of the lower member in a state in which the internal space is formed, and allows the vaporized refrigerant to pass therethrough;
A capillary channel for sending the condensed refrigerant by capillary action between the groove of the upper member and the groove of the lower member;
Is configured,
In the capillary channel, the channel cross-sectional area changes in the channel direction.

この場合、前記毛細管流路は、凝縮した前記冷媒が進入可能な第1の流路断面積を有する第1の部分と、凝縮した前記冷媒を毛細管現象で送液可能な第2の流路断面積を有する第2の部分と、を有し、
前記第1の部分から前記第2の部分との間に、凝縮した前記冷媒に気液界面振動を生じさせるエッジが設けられている、
こととしてもよい。
In this case, the capillary flow path includes a first portion having a first flow path cross-sectional area to which the condensed refrigerant can enter and a second flow path cut-off capable of liquid transfer of the condensed refrigerant by capillary action And a second portion having an area;
Between the first portion and the second portion, an edge for causing gas-liquid interface vibration to the condensed refrigerant is provided.
You may do it.

また、前記中間部材は、複数積層されて構成され、
前記中間部材それぞれに、
前記蒸気拡散流路と前記毛細管流路との間の冷媒の移動を防止する隔壁が設けられている、
こととしてもよい。
Further, the intermediate member is configured by being stacked in a plurality.
In each of the intermediate members,
A partition is provided to prevent movement of the refrigerant between the vapor diffusion channel and the capillary channel.
You may do it.

前記蒸気拡散流路の断面積が、蒸気の流れる方向に従って均一であるか大きくなっている、
こととしてもよい。
The cross-sectional area of the vapor diffusion channel is uniform or larger according to the flow direction of the vapor,
You may do it.

本発明によれば、毛細管流路は、その流路方向に流路断面積が変化している。このため、凝縮した冷媒が毛細管流路に進入しにくい場所ではその流路の流路断面積を大きくしたり、毛細管現象を発生させるべき場所では、流路の流路断面積を小さくしたりすることができる。この結果、透水性を損なうことなく毛細管力を高めることができるので、高い熱交換比率を得ることができる。   According to the present invention, in the capillary channel, the channel cross-sectional area changes in the channel direction. For this reason, where the condensed refrigerant is difficult to enter the capillary channel, the channel cross-sectional area of the channel is increased, or where the capillary phenomenon should occur, the channel cross-sectional area of the channel is decreased. be able to. As a result, since the capillary force can be increased without impairing the water permeability, a high heat exchange ratio can be obtained.

図1(A)は、本発明の実施の形態に係るヒートパイプの斜視図である。図1(B)は、図1(A)のヒートパイプの側面図である。FIG. 1A is a perspective view of a heat pipe according to an embodiment of the present invention. FIG. 1 (B) is a side view of the heat pipe of FIG. 1 (A). 図1のヒートパイプの分解斜視図である。It is a disassembled perspective view of the heat pipe of FIG. 上部材及び下部材の底面とA−A断面を示す図である。It is a figure which shows the bottom face and AA cross section of an upper member and a lower member. 上部材及び下部材の内部領域の拡大斜視図である。FIG. 5 is an enlarged perspective view of an inner region of the upper and lower members. 中間部材の上面とB−B断面を示す図である。It is a figure which shows the upper surface of an intermediate member, and a BB cross section. 中間部材の毛細管流路形成領域の拡大図である。It is an enlarged view of a capillary channel formation area of an intermediate member. 毛細管流路の上面図である。It is a top view of a capillary channel. 図7のC−C断面図である。It is CC sectional drawing of FIG. 図1のヒートパイプの縦断面図である。It is a longitudinal cross-sectional view of the heat pipe of FIG. 内部空間における冷媒の循環を示す図である。It is a figure which shows circulation of the refrigerant | coolant in internal space. 蒸気拡散流路と毛細管流路との間の隔壁を示す図である。It is a figure which shows the partition between a vapor | steam diffusion channel and a capillary channel. 図12(A)〜図12(C)は、冷媒の封入方法を示す模式図である。12 (A) to 12 (C) are schematic views showing a method of sealing the refrigerant. 図1のヒートパイプの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the heat pipe of FIG.

以下、本発明の実施の形態について図面を参照して詳細に説明する。図中、同一又は対応する部分には同一の符号を付している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, the same or corresponding parts are given the same reference numerals.

図1(A)に示すように、本実施の形態に係るヒートパイプ1は、上下を厚み方向とする全体として矩形平板状の筐体50を有する冷却装置である。ヒートパイプ1の底面中央部には、冷却対象となる熱源体2が取り付けられている。   As shown to FIG. 1 (A), the heat pipe 1 which concerns on this Embodiment is a cooling device which has the housing | casing 50 of rectangular flat form shape as a whole which makes thickness direction the upper and lower sides. The heat source body 2 to be cooled is attached to the bottom center of the heat pipe 1.

熱源体2としては、IC(半導体集積装置)、LSI(大規模集積回路装置)及びCPU(中央処理装置)等が想定される。ヒートパイプ1において、熱源体2が取り付けられた底面中央部を受熱部3ともいう。受熱部3で熱源体2から受けた熱は、ヒートパイプ1全体に伝えられ、放熱される。したがって、ヒートパイプ1としては、熱伝導性の高い材質のものが用いられる。このような材質には、例えば銅がある。   As the heat source body 2, an IC (semiconductor integrated device), an LSI (large scale integrated circuit device), a CPU (central processing unit), and the like are assumed. In the heat pipe 1, the bottom central portion to which the heat source body 2 is attached is also referred to as a heat receiving portion 3. The heat received from the heat source body 2 in the heat receiving portion 3 is transmitted to the entire heat pipe 1 and dissipated. Therefore, as the heat pipe 1, a material having high thermal conductivity is used. Such materials include, for example, copper.

図1(B)に示すように、ヒートパイプ1の筐体50内には、減圧された密閉空間(内部空間)20が設けられている。内部空間20には、冷媒Wが封入されている。受熱部3で受けた熱により、冷媒Wは気化し、内部空間20全体に拡散する。拡散した冷媒Wは、ヒートパイプ1の外面に熱を伝達した後に凝縮し、受熱部3に戻る。熱は、ヒートパイプ1の外面から放熱される。このように、内部空間20内における冷媒Wの循環により、ヒートパイプ1は、全体に熱を分散する。   As shown in FIG. 1B, a sealed space (internal space) 20 which is depressurized is provided in a housing 50 of the heat pipe 1. A refrigerant W is sealed in the internal space 20. The heat received by the heat receiving portion 3 vaporizes the refrigerant W and diffuses it throughout the internal space 20. The diffused refrigerant W transfers heat to the outer surface of the heat pipe 1 and then condenses and returns to the heat receiving unit 3. Heat is dissipated from the outer surface of the heat pipe 1. As described above, due to the circulation of the refrigerant W in the internal space 20, the heat pipe 1 disperses heat throughout.

図2に示すように、ヒートパイプ1は、上部材10と、下部材11と、中間部材12A〜12Dと、で構成される。なお、本実施の形態では、中間部材の数を4枚としたが、本発明はこれには限られない。中間部材は、1枚でも複数枚でもよい。   As shown in FIG. 2, the heat pipe 1 is configured of an upper member 10, a lower member 11, and intermediate members 12A to 12D. Although the number of intermediate members is four in the present embodiment, the present invention is not limited to this. The intermediate member may be one or more.

図3に示すように、上部材10は、最も上側に配置された矩形平板状の部材である。この上部材10の上面(+z面)がヒートパイプ1の上面を構成する。上部材10の下面(−z面)は、その外縁に沿って設けられた外縁部10aと、内部領域10bとに分かれている。外縁部10aは、内部領域10bよりも下側(−z側)に突出した接合用突起を構成する。上部材10は、図2に示すように、この外縁部10aで、中間部材12Aの上面の外縁と拡散接合される。   As shown in FIG. 3, the upper member 10 is a rectangular flat plate disposed on the uppermost side. The upper surface (+ z surface) of the upper member 10 constitutes the upper surface of the heat pipe 1. The lower surface (-z surface) of the upper member 10 is divided into an outer edge portion 10a provided along the outer edge thereof and an inner region 10b. The outer edge portion 10a constitutes a bonding projection that protrudes to the lower side (−z side) than the inner region 10b. The upper member 10 is diffusion-bonded to the outer edge of the upper surface of the intermediate member 12A at the outer edge portion 10a, as shown in FIG.

内部領域10bは、内部空間20の天井を構成する。内部領域10bには、毛細管現象により、その下面の面内方向に冷媒を送る溝部10cが設けられている。図4に示すように内部領域10bには、多数のディンプル10dが設けられており、ディンプル10d間に縦横の溝部10cが形成されている。なお、溝部10cは、内部領域10bが垂直な面となったときであっても、重力に抗して毛細管力により冷媒Wを内部領域10b全面に送ることができるような流路幅及び深さとなっている。   The inner area 10 b constitutes a ceiling of the inner space 20. In the inner region 10b, a groove portion 10c for feeding the refrigerant in the in-plane direction of the lower surface thereof is provided by capillary action. As shown in FIG. 4, a large number of dimples 10d are provided in the inner region 10b, and vertical and horizontal groove portions 10c are formed between the dimples 10d. The groove portion 10c has a channel width and a depth such that the refrigerant W can be sent to the entire surface of the inner region 10b by capillary force against gravity even when the inner region 10b is a vertical surface. It has become.

下部材11は、最も下側に配置された矩形平板状の部材であり、形状及び大きさが上部材10と同じ部材であるため、上部材10と同様に図3を用いて説明する。この下部材11の下面がヒートパイプ1の底面を構成する。この下部材11の下面中央部に受熱部3が設けられている。   The lower member 11 is a rectangular flat plate-like member disposed on the lowermost side and has the same shape and size as the upper member 10, and therefore, will be described using FIG. The lower surface of the lower member 11 constitutes the bottom surface of the heat pipe 1. The heat receiving portion 3 is provided at the center of the lower surface of the lower member 11.

図3に示すように、下部材11の上面は、外縁部11aと、内部領域11bとに分かれている。外縁部11aは、図2に示すように、中間部材12Dの下面の外縁部と接合される。内部領域11bは、内部空間20の底面を構成する。内部領域11bには、毛細管現象により、その下面の面内方向に冷媒Wを送る溝部11cが設けられている。   As shown in FIG. 3, the upper surface of the lower member 11 is divided into an outer edge portion 11 a and an inner region 11 b. The outer edge portion 11a is joined to the outer edge portion of the lower surface of the intermediate member 12D, as shown in FIG. The inner region 11 b constitutes the bottom of the inner space 20. In the inner region 11b, a groove portion 11c for feeding the refrigerant W in the in-plane direction of the lower surface thereof by capillary action is provided.

中間部材12A〜12Dは、上部材10と下部材11との間に配置された矩形平板状の部材である。中間部材12A〜12Dの外縁の形状及び大きさは上部材10及び下部材11と同じである。図5に示すように、中間部材12Aの下面の外縁部12aは、内部領域12bに対して下側に突出する接合用突起を形成し、中間部材12Bの上面の外縁部12aと接合される。また、中間部材12Bの下面の外縁部12aは、内部領域12bに対して下側に突出する接合用突起を形成し、中間部材12Cの上面の外縁部12aと接合される。さらに、中間部材12Cの下面の外縁部12aは、内部領域12bに対して下側に突出する接合用突起を形成し、中間部材12Dの上面の外縁部12aと接合される。中間部材12Dの下面の外縁部12aは、内部領域12bに対して下側に突出する接合用突起を形成し、下部材11の外縁部11aと接合される。   The intermediate members 12A to 12D are rectangular flat members disposed between the upper member 10 and the lower member 11. The shape and size of the outer edge of the intermediate members 12A to 12D are the same as those of the upper member 10 and the lower member 11. As shown in FIG. 5, the outer edge 12a of the lower surface of the intermediate member 12A forms a bonding projection projecting downward with respect to the inner region 12b, and is joined to the outer edge 12a of the upper surface of the intermediate member 12B. Further, the outer edge portion 12a of the lower surface of the intermediate member 12B forms a bonding projection projecting downward with respect to the inner region 12b, and is joined to the outer edge portion 12a of the upper surface of the intermediate member 12C. Further, the outer edge 12a of the lower surface of the intermediate member 12C forms a bonding projection that protrudes downward with respect to the inner region 12b, and is joined to the outer edge 12a of the upper surface of the intermediate member 12D. The outer edge portion 12a of the lower surface of the intermediate member 12D forms a bonding projection projecting downward with respect to the inner region 12b, and is joined to the outer edge portion 11a of the lower member 11.

このように、上部材10の外縁部10a、中間部材12A〜12Dの外縁部12a及び下部材11の外縁部11aは拡散接合される。これにより、ヒートパイプ1の側面が形成され、ヒートパイプ1の内部空間20は密閉空間となる。   Thus, the outer edge portion 10a of the upper member 10, the outer edge portions 12a of the intermediate members 12A to 12D, and the outer edge portion 11a of the lower member 11 are diffusion bonded. Thereby, the side surface of the heat pipe 1 is formed, and the internal space 20 of the heat pipe 1 becomes a sealed space.

図5に示すように、中間部材12A〜12Dには、外縁部12aで囲まれた内部領域12bには、空隙としての蒸気拡散流路形成領域12cと、毛細管流路形成領域12dとが設けられている。中間部材12A〜12Dの中央部には、毛細管流路形成領域12dが配置されている。中間部材12A〜12Dでは、この中心の毛細管流路形成領域12dから、蒸気拡散流路形成領域12cと、毛細管流路形成領域12dとが、放射状に延びている。   As shown in FIG. 5, in the intermediate members 12A to 12D, a vapor diffusion channel forming area 12c as a void and a capillary channel forming area 12d are provided in the inner area 12b surrounded by the outer edge 12a. ing. The capillary channel formation region 12d is disposed at the central portion of the intermediate members 12A to 12D. In the intermediate members 12A to 12D, the vapor diffusion channel forming area 12c and the capillary channel forming area 12d radially extend from the central capillary channel forming area 12d.

中間部材12A〜12Dが接合されると、それぞれの蒸気拡散流路形成領域12cと、毛細管流路形成領域12dとが一致するようになる。内部空間20において、蒸気拡散流路形成領域12cで蒸気拡散流路21が構成され、毛細管流路形成領域12dで毛細管流路22が構成される。   When the intermediate members 12A to 12D are joined, the respective vapor diffusion channel forming regions 12c and the capillary channel forming regions 12d become coincident with each other. In the internal space 20, the vapor diffusion channel 21 is formed by the vapor diffusion channel forming region 12c, and the capillary channel 22 is formed by the capillary channel forming region 12d.

蒸気拡散流路21は、内部空間20が形成された状態で、上部材10の溝部10cと下部材11の溝部11cとを連通する空隙である。蒸気拡散流路21は、気化した冷媒Wを拡散させるために設けられており、気化した冷媒Wを通過させる。受熱部3で受けた熱により冷媒Wは気化し、蒸気拡散流路21を介して内部空間20内に拡散する。   The vapor diffusion channel 21 is a gap that communicates the groove 10 c of the upper member 10 and the groove 11 c of the lower member 11 in a state in which the internal space 20 is formed. The vapor diffusion channel 21 is provided to diffuse the vaporized refrigerant W, and passes the vaporized refrigerant W therethrough. The heat received by the heat receiving portion 3 vaporizes the refrigerant W, and the refrigerant W is diffused into the internal space 20 through the vapor diffusion channel 21.

毛細管流路22は、拡散し凝縮した冷媒Wを熱源体2が取り付けられた受熱部3に戻すために設けられている。毛細管流路22は、凝縮した冷媒Wを、上部材10の溝部10cと下部材11の溝部11cとの間で毛細管現象により送る。   The capillary channel 22 is provided to return the diffused and condensed refrigerant W to the heat receiving unit 3 to which the heat source body 2 is attached. The capillary channel 22 sends the condensed refrigerant W between the groove 10 c of the upper member 10 and the groove 11 c of the lower member 11 by capillary action.

図6に示すように、蒸気拡散流路形成領域12cには、枠24により、大きさが同じ複数の貫通孔(開口部)23が形成されている。貫通孔23の大きさは、冷媒Wによる界面張力・粘性力などの物性値と、表面への塗れ性により決まる接触角とに基づいて、凝縮した冷媒Wが容易に入り込むことができる大きさ(冷媒Wが流入可能な下限値よりも大きな径)となっている。すなわち、貫通孔23の大きさは、冷媒Wに対して毛細管現象が生じない程度の大きさとなっている。中間部材12A〜12Dが接合されたときに、図7及び図8に示すように、上下の貫通孔23の位置は、その貫通孔23の配列ピッチの半分程度ずれるようになっている。これにより、上下に隣接する中間部材12A〜12Dのそれぞれ貫通孔23によって構成される隙間の大きさは、冷媒Wに対して毛細管現象を発生させる大きさとなっている。   As shown in FIG. 6, a plurality of through holes (openings) 23 having the same size are formed by the frame 24 in the vapor diffusion channel formation area 12 c. The size of the through hole 23 is a size that allows the condensed refrigerant W to easily enter based on physical property values such as interfacial tension and viscosity by the refrigerant W and a contact angle determined by the wettability to the surface ( The diameter is larger than the lower limit value to which the refrigerant W can flow. That is, the size of the through hole 23 is such that the capillary phenomenon does not occur in the refrigerant W. When the intermediate members 12A to 12D are joined, as shown in FIG. 7 and FIG. 8, the positions of the upper and lower through holes 23 are shifted by about half of the arrangement pitch of the through holes 23. Thus, the size of the gap formed by the through holes 23 of the intermediate members 12A to 12D adjacent to the upper and lower sides is such that the refrigerant W causes the capillary phenomenon.

言い換えると、図9に示すように、毛細管流路22は、凝縮した冷媒Wが進入可能な第1の流路断面積を有する第1の部分22aと、凝縮した冷媒Wを毛細管現象で送液可能な第2の流路断面積を有する第2の部分22bと、を有している。また、毛細管流路22には、第1の部分22aから第2の部分22bとの間に、凝縮した冷媒Wに気液界面振動を生じさせるエッジ22cが設けられている。このようにすれば、凝縮した冷媒Wは、第1の部分22aに進入して、容易にエッジ22cに到達し、エッジ22cで気液界面振動を生じさせ、第2の部分22bに進入し、毛細管現象によりさらにその下流へ送られ易くなっている。   In other words, as shown in FIG. 9, the capillary channel 22 sends the first portion 22a having the first channel cross-sectional area to which the condensed refrigerant W can enter and the condensed refrigerant W by capillary action. And a second portion 22b having a possible second flow passage cross-sectional area. Further, the capillary channel 22 is provided with an edge 22 c between the first portion 22 a and the second portion 22 b that causes the condensed refrigerant W to cause gas-liquid interface vibration. In this way, the condensed refrigerant W enters the first portion 22a, easily reaches the edge 22c, causes gas-liquid interface vibration at the edge 22c, and enters the second portion 22b, Capillary action makes it easier to be sent downstream.

すなわち、本実施の形態では、毛細管流路22は、上下方向、水平方向及び斜め方向に流路方向を設定した場合、どの方向についても、流路断面積が変化している流路であると言える。   That is, in the present embodiment, when the capillary channel 22 is set to the channel direction in the vertical direction, the horizontal direction and the diagonal direction, it is assumed that the channel cross-sectional area changes in any direction. I can say that.

このような構成を有するヒートパイプ1の動作について説明する。図10に示すように、熱源体2から発せられた熱は受熱部3に伝わり、この熱により、減圧下にある内部空間20の下部材11の内部領域11bに存在する冷媒Wは気化し、蒸気拡散流路21を通って、内部空間20全体に拡散する。そして、気化した冷媒Wの大部分は、上部材10の内部領域10bに到達し、熱を伝達するとともに、凝縮する。   The operation of the heat pipe 1 having such a configuration will be described. As shown in FIG. 10, the heat generated from the heat source body 2 is transferred to the heat receiving portion 3, and the heat evaporates the refrigerant W present in the inner region 11b of the lower member 11 of the inner space 20 under reduced pressure. It diffuses through the vapor diffusion channel 21 to the entire internal space 20. Then, most of the vaporized refrigerant W reaches the inner region 10b of the upper member 10, transfers heat, and condenses.

上部材10の内部領域10bで凝縮した冷媒Wは、内部領域10bの溝部10cで毛細管現象により、毛細管流路22まで送られる。毛細管流路22では、毛細管現象により、凝縮した冷媒Wが、再び下部材11の内部領域11bまで送られる。   The refrigerant W condensed in the inner region 10b of the upper member 10 is fed to the capillary channel 22 by capillary action in the groove 10c of the inner region 10b. In the capillary channel 22, the condensed refrigerant W is sent again to the inner region 11 b of the lower member 11 by capillary action.

下部材11の内部領域10bまで到達した凝縮した冷媒Wは、内部領域10bに形成された溝部10cに入り込み、毛細管現象により、受熱部3に戻る。   The condensed refrigerant W having reached the inner region 10b of the lower member 11 enters the groove 10c formed in the inner region 10b, and returns to the heat receiving portion 3 by capillary action.

以上、この内部空間20内において、上述の冷媒Wの循環サイクルが形成され、これにより、熱源体2の冷却が実現される。   As mentioned above, the circulation cycle of the above-mentioned refrigerant W is formed in this interior space 20, and, thereby, cooling of heat source object 2 is realized.

また、本実施の形態では、図11に示すように、中間部材12A〜12Dそれぞれにおいて、蒸気拡散流路21と毛細管流路22との境界部分に、冷媒Wの移動を防止する隔壁25が設けられている。より具体的には、中間部材12A〜12Dのそれぞれについて、蒸気拡散流路21と毛細管流路22との境界部分に、接合用突起12eが設けられている。この接合用突起12eが相手の中間部材12A〜12Dと拡散接合して、隔壁25が形成される。   Further, in the present embodiment, as shown in FIG. 11, in each of the intermediate members 12A to 12D, the partition wall 25 for preventing the movement of the refrigerant W is provided at the boundary between the vapor diffusion channel 21 and the capillary channel 22. It is done. More specifically, for each of the intermediate members 12A to 12D, a bonding projection 12e is provided at the boundary between the vapor diffusion channel 21 and the capillary channel 22. The bonding projections 12e are diffusion-bonded to the other intermediate members 12A to 12D to form the partition walls 25.

なお、図10に示すように、蒸気拡散流路21の断面積は、冷媒Wの蒸気の流れる方向に従って均一となっている。   As shown in FIG. 10, the cross-sectional area of the vapor diffusion channel 21 is uniform in the flowing direction of the vapor of the refrigerant W.

なお、上部材10の内部領域10bと下部材11の内部領域11bとには、重力に抗して毛細管現象を起こす溝部10c,11cが形成されているので、ヒートパイプ1を水平置きにしても、縦置きにしても、上部材10の内部領域10bと、下部材11の内部領域11bとを凝縮した冷媒Wが移動し易くなる。このため、上述の循環サイクルに従って冷媒Wを効率的に循環させることができる。   Since the grooves 10c and 11c that cause capillary action against gravity are formed in the inner region 10b of the upper member 10 and the inner region 11b of the lower member 11, the heat pipe 1 may be horizontally placed. Even when vertically disposed, the refrigerant W obtained by condensing the inner region 10b of the upper member 10 and the inner region 11b of the lower member 11 can easily move. Therefore, the refrigerant W can be efficiently circulated according to the above-described circulation cycle.

なお、これら中間部材12A〜12D及び下部材11には、熱源体2と対向する中央部分の四辺外郭位置にもそれぞれ突起を設け、周辺部のみならず、熱源体2の周辺領域の位置等においても突起が形成され、それらの突起の直接接合により補強部が形成されている。このように、ヒートパイプ1では、周辺領域等にも補強部を設けて機械的強度を向上させることにより、熱源体から発生する熱で冷媒が熱膨張して略中央部が外方へ膨らもうとする現象(以下、これを「ポップコーン現象」と呼ぶ)が発生するのが防止されている。   In these intermediate members 12A to 12D and lower member 11, projections are respectively provided on the four side outline positions of the central portion facing heat source 2, and not only the peripheral portion but also the position of the peripheral region of heat source 2 The protrusions are also formed, and the reinforcing portion is formed by direct bonding of the protrusions. As described above, in the heat pipe 1, the reinforcement is provided also in the peripheral region and the like to improve the mechanical strength, and the heat generated from the heat source thermally expands the refrigerant and the substantially central portion bulges outward. It is prevented that the phenomenon to be tried (hereinafter referred to as "popcorn phenomenon") occurs.

また、上部材10には、図3等では不図示であるが、図12(A)に示すように、冷媒Wを封入するための冷媒注入孔5及び空気排出孔6が設けられている。この状態では、上部材10に形成された冷媒注入孔5及び空気排出孔6を介してのみ内部空間20と外部とが連通した状態になる。   Further, although not shown in FIG. 3 and the like, the upper member 10 is provided with a refrigerant injection hole 5 and an air discharge hole 6 for sealing the refrigerant W, as shown in FIG. 12 (A). In this state, the internal space 20 and the outside communicate with each other only through the refrigerant injection hole 5 and the air discharge hole 6 formed in the upper member 10.

次に、ヒートパイプの製造方法について説明する。   Next, a method of manufacturing the heat pipe will be described.

図13に示すように、まず、下部材11、中間部材12A〜12D及び上部材10を順番に最適な位置で重ね合わせて積層し、融点以下の温度で加熱しつつプレスして、それぞれに設けられた外縁部10a等の接合用突起12eを直接接合させる(ステップS1)。これにより、一体化したヒートパイプ1が形成される。   As shown in FIG. 13, first, the lower member 11, the intermediate members 12A to 12D, and the upper member 10 are sequentially stacked and stacked at optimal positions, and pressed while being heated at a temperature lower than the melting point. The bonding projections 12e such as the outer edge portion 10a are directly bonded (step S1). Thereby, the heat pipe 1 integrated is formed.

また、このステップにより、ヒートパイプ1の内部空間20には、中間部材12A〜12Dの各蒸気拡散流路形成領域12cが重なり合うことにより蒸気拡散流路21が形成され、各毛細管流路形成領域12dが重なり合うことにより毛細管流路22が複数形成される。すなわちこの工程で、蒸気拡散流路21及び毛細管流路22からなる冷媒Wの循環経路が形成される。   Further, in this step, the vapor diffusion channel 21 is formed in the internal space 20 of the heat pipe 1 by overlapping the vapor diffusion channel forming areas 12c of the intermediate members 12A to 12D, and the capillary channel forming area 12d is formed. As a result, a plurality of capillary flow channels 22 are formed. That is, in this step, a circulation path of the refrigerant W composed of the vapor diffusion channel 21 and the capillary channel 22 is formed.

このとき冷媒注入孔5及び空気排出孔6の周辺領域の下方には、上部材10、中間部材12A〜12D、下部材11に補強部30が設けられ、それらが接合することにより支柱構造が形成される。補強部30には、冷媒注入孔5及び空気排出孔6と内部空間20とを連通する貫通孔31が設けられている。   At this time, reinforcements 30 are provided on the upper member 10, the intermediate members 12A to 12D, and the lower member 11 below the peripheral region of the refrigerant injection hole 5 and the air discharge hole 6, and a pillar structure is formed by joining them. Be done. The reinforcing portion 30 is provided with a through hole 31 communicating the refrigerant injection hole 5 and the air discharge hole 6 with the internal space 20.

続いて、内部空間20には、冷媒注入孔5から不図示のノズルを用いて冷媒W(例えば水)を大気圧下で所定量注入する(ステップS2)。この際、空気排出孔6は、冷媒W供給時における空気の排出口となり、内部空間20への冷媒Wの注入はスムーズに行なわれる。なお、冷媒Wは、例えば水の場合、封入量は貫通孔31の総体積と同等相当とするのが好ましい。また、冷媒Wとしては、ヒートパイプ1の高寿命化のために、特にイオン汚染の無い超純水を用いるのが好ましい。また、この際、空気排出孔6にて真空引きをすれば、より円滑に冷媒Wを注入することができる。   Subsequently, a predetermined amount of refrigerant W (for example, water) is injected into the internal space 20 from the refrigerant injection hole 5 using a nozzle (not shown) under atmospheric pressure (step S2). Under the present circumstances, the air discharge hole 6 becomes an air discharge port at the time of refrigerant | coolant W supply, and injection of the refrigerant | coolant W to the interior space 20 is performed smoothly. In the case of water, for example, the amount of refrigerant W is preferably equivalent to the total volume of the through holes 31. Further, as the coolant W, in order to extend the life of the heat pipe 1, it is preferable to use ultrapure water free from ion contamination. At this time, if the air discharge hole 6 is evacuated, the refrigerant W can be injected more smoothly.

次に、例えば球状体でなる封止部材7を予め所定数用意しておき、図12(B)に示すように、冷媒注入孔5及び空気排出孔6上に封止部材7を載置する(ステップS3)。ここで、冷媒注入孔5及び空気排出孔6と縁と封止部材7との隙間により、ヒートパイプ1の内部空間20と外部とは連通した状態に維持されている。このため、この隙間から内部空間20内のガス抜きを行なうことができる。   Next, a predetermined number of sealing members 7 made of, for example, spherical bodies are prepared in advance, and the sealing members 7 are placed on the refrigerant injection holes 5 and the air discharge holes 6 as shown in FIG. 12 (B) (Step S3). Here, the internal space 20 of the heat pipe 1 and the outside are kept in communication with each other by the gap between the refrigerant injection hole 5 and the air discharge hole 6 and the edge and the sealing member 7. Therefore, degassing in the internal space 20 can be performed from this gap.

そして、この状態のまま隙間を通じて減圧による真空脱気を、例えば10分程度行なう(ステップS4)。この工程では、隙間を介して真空脱気を行なうことで、内部空間20内の空気が抜かれ、当該空気と共に内部空間20内から有害成分を除去することができる。なお、図中の矢印は脱気(ガス抜き)の方向を示す。   Then, in this state, vacuum degassing by pressure reduction is performed, for example, for about 10 minutes through the gap (step S4). In this step, by performing vacuum degassing through a gap, the air in the internal space 20 can be evacuated, and harmful components can be removed from the internal space 20 together with the air. The arrows in the figure indicate the direction of degassing (gas removal).

その後、常温状態のまま、数分間封止部材7を上からプレスして低温加圧変形させる(ステップS5)。このようにして低温真空加圧処理することにより、封止部材7で冷媒注入孔5及び空気排出孔6を仮封止する。このとき冷媒注入孔5及び空気排出孔6が封止部材7で閉塞される。   Thereafter, the sealing member 7 is pressed from above for several minutes in the normal temperature state to cause low-temperature pressure deformation (step S5). By thus performing the low-temperature vacuum pressurization process, the sealing member 7 temporarily seals the refrigerant injection hole 5 and the air discharge hole 6. At this time, the refrigerant injection hole 5 and the air discharge hole 6 are closed by the sealing member 7.

ここで、冷媒注入孔5及び空気排出孔6の周辺領域に対向する部分には、補強部30が密着することにより、支柱構造が形成されていることから、プレスにより封止部材7を加圧する際、当該プレスからの外力を補強部30が受け止め、内部空間20が潰れることなく、プレスによって封止部材7を必要な外力で確実に加圧できる。   Here, since the support structure is formed by closely attaching the reinforcing portion 30 to a portion facing the peripheral region of the refrigerant injection hole 5 and the air discharge hole 6, the sealing member 7 is pressurized by a press. In this case, the reinforcing portion 30 receives the external force from the press, and the sealing member 7 can be reliably pressurized with the necessary external force by the press without the internal space 20 being crushed.

なお、常温より高い温度にして封止部材7を加圧した場合には、冷媒Wの蒸気、例えば水蒸気が外部にリークし易くなるため好ましくない。従って真空脱気が行なわれる温度としては、25℃程度の常温が好ましい。   When the sealing member 7 is pressurized at a temperature higher than normal temperature, the vapor of the refrigerant W, for example, water vapor is likely to leak to the outside, which is not preferable. Therefore, as temperature which vacuum degassing is performed, normal temperature of about 25 ° C is preferred.

次に、低温真空加圧処理が終わると、例えば10分間程度、高温下で真空度を例えば0.5KPaとした後、さらにプレスによって封止部材7を上から加圧する(ステップS6)。これにより、封止部材7が高温加圧変形し、冷媒注入孔5及び空気排出孔6内に深く侵入して封止部材7でさらに強固に圧着され閉塞した状態になる。   Next, when the low temperature vacuum pressure treatment is finished, the degree of vacuum is set to, for example, 0.5 KPa under high temperature for, for example, about 10 minutes, and then the sealing member 7 is pressed from above by a press (step S6). As a result, the sealing member 7 is deformed by high temperature pressurization, deeply intrudes into the refrigerant injection hole 5 and the air discharge hole 6, and is further firmly crimped and closed by the sealing member 7.

すなわち、封止部材7は、主として加圧により塑性変形するとともに、補助的に加熱により塑性変形し、冷媒注入孔5及び空気排出孔6を閉塞する。こうして、球状体であった封止部材7は、図12(C)に示すように、塑性変形により冷媒注入孔5及び空気排出孔6の形となって、当該冷媒注入孔5及び空気排出孔6に圧着して実質的に封止栓となり、ヒートパイプ1の内部空間20を封止する。このようにして冷媒注入孔5及び空気排出孔6を封止部材7で閉塞し終えると、加温停止、真空引き停止及びプレスによる加圧解除を行ない、当該加圧、加熱、真空引き処理を終える。   That is, the sealing member 7 is plastically deformed mainly by pressurization, and is plastically deformed by heating supplementarily to close the refrigerant injection hole 5 and the air discharge hole 6. Thus, as shown in FIG. 12 (C), the sealing member 7 which is a spherical body is formed into the shape of the refrigerant injection hole 5 and the air discharge hole 6 by plastic deformation, and the refrigerant injection hole 5 and the air discharge hole 6. It is crimped to 6 and becomes a sealing plug substantially, and seals the interior space 20 of the heat pipe 1. Thus, when the refrigerant injection hole 5 and the air discharge hole 6 are closed by the sealing member 7, heating stop, vacuum stop and pressure release by press are performed, and the pressure application, heating and vacuum process are performed. Finish.

なお、そのとき封止部材7の外表面は、ヒートパイプ1の外表面と略同一平面上に形成することが好ましい。というのは、ヒートパイプ1の外表面の平坦性を保ち、これによりヒートパイプ1自身とそれに取り付けられる例えばフィン等のラジエータとの密着性を良くし、その間の熱伝導性を支障なく高めることができるからである。   At that time, the outer surface of the sealing member 7 is preferably formed on substantially the same plane as the outer surface of the heat pipe 1. That is, the flatness of the outer surface of the heat pipe 1 is maintained, whereby the adhesion between the heat pipe 1 itself and the radiator attached thereto, such as fins, is improved, and the heat conductivity between the heat pipe 1 is improved without any problem. It is because it can.

その後、ヒートパイプ1の外表面は防錆等のため、ニッケルメッキされる(ステップS7)。ここで仮に半田からなる封止部材7を用いて冷媒注入孔5及び空気排出孔6を閉塞した場合には、半田に対して良好なニッケルメッキをすることは困難を伴うので、冷媒注入孔5及び空気排出孔6を閉塞した部分が良好にニッケルメッキされにくいという不都合が生じる。   Thereafter, the outer surface of the heat pipe 1 is plated with nickel for corrosion prevention and the like (step S7). Here, if the coolant injection hole 5 and the air discharge hole 6 are closed by using the sealing member 7 made of solder, it is difficult to perform good nickel plating on the solder. In addition, there is a disadvantage that the portion where the air discharge hole 6 is closed is not easily plated with nickel.

これに対して本実施の形態では、ヒートパイプ1と同じ銅系金属でなる封止部材7を用いて冷媒注入孔5及び空気排出孔6を閉塞するので、そのような不都合は生ぜず、冷媒注入孔5及び空気排出孔6を閉塞した部分も良好にニッケルメッキすることができる。   On the other hand, in the present embodiment, since the refrigerant injection hole 5 and the air discharge hole 6 are closed using the sealing member 7 made of the same copper-based metal as the heat pipe 1, such a disadvantage does not occur. The portion in which the injection hole 5 and the air discharge hole 6 are closed can also be nickel plated well.

このようなヒートパイプ1の製造方法(冷媒封入方法)によれば、真空下に複数のヒートパイプ1を並べ、各ヒートパイプ1の冷媒注入孔5及び空気排出孔6上に封止部材7を載置し、これら複数のヒートパイプ1に対して一度にガス抜きや、封止部材7の加圧及び加熱をし、全ての封止部材7を塑性変形させて一斉に冷媒Wを密封することができる。かくして冷媒注入孔5毎に個別に行われる従来のカシメ作業や溶接、接着等の面倒な作業を行なう封止方法に比較してヒートパイプ1の量産性を高めることができ、また量産性を高めることでヒートパイプ1の低価格化を図ることもできる。   According to the manufacturing method of the heat pipe 1 (refrigerant sealing method), the heat pipes 1 are arranged in vacuum, and the sealing member 7 is arranged on the refrigerant injection hole 5 and the air discharge hole 6 of each heat pipe 1. Place and degas the plurality of heat pipes 1 at one time, pressurize and heat the sealing member 7, plastically deform all the sealing members 7, and seal the refrigerant W simultaneously. Can. Thus, the mass productivity of the heat pipe 1 can be enhanced, and the mass productivity can be enhanced, as compared with the sealing method in which the troublesome operations such as the conventional caulking operation, welding and adhesion individually performed for each refrigerant injection hole 5 are performed. Thus, the price of the heat pipe 1 can be reduced.

なお、冷媒注入孔5において、封止部材7との隙間の大きさが不十分である場合には、冷媒注入孔5又は封止部材7にガス抜き溝を設けるようにしてもよい。   In the case where the size of the gap with the sealing member 7 in the refrigerant injection hole 5 is insufficient, the gas injection groove may be provided in the refrigerant injection hole 5 or the sealing member 7.

以上詳細に説明したように、本実施の形態によれば、毛細管流路22は、その流路方向に流路断面積が変化している。このため、凝縮した冷媒Wが毛細管流路22に進入しにくい場所ではその流路の流路断面積を大きくしたり、毛細管現象を発生させるべき場所では、流路の流路断面積を小さくしたりすることができる。この結果、透水性を損なうことなく毛細管力を高めることができるので、高い熱交換比率を得ることができる。   As described above in detail, according to the present embodiment, in the capillary channel 22, the channel cross-sectional area changes in the channel direction. For this reason, in a place where the condensed refrigerant W does not easily enter the capillary flow path 22, the flow path cross-sectional area of the flow path is increased, or where the capillary phenomenon should occur, the flow path cross-sectional area of the flow path is decreased. Can be As a result, since the capillary force can be increased without impairing the water permeability, a high heat exchange ratio can be obtained.

また、本実施の形態によれば、第1の部分22aに凝縮した冷媒Wを進入させて気液界面振動を生じさせる第1の部分22aと第2の部分22bとの間にあるエッジ22cに速やかに到達させることができるので、凝縮した冷媒Wを毛細管流路22に進入し易くすることができる。このため、高い熱交換比率を得ることができる。   Further, according to the present embodiment, the edge 22c between the first portion 22a and the second portion 22b which causes the refrigerant W condensed into the first portion 22a to enter the gas-liquid interface vibration is caused to enter. Since it can be made to reach quickly, the condensed refrigerant W can be made easy to approach the capillary channel 22. Therefore, a high heat exchange ratio can be obtained.

また、本実施の形態によれば、蒸気拡散流路21と毛細管流路22との間は、隔壁25で仕切られている。これにより、気化した冷媒Wと凝縮した冷媒Wとの間で交換される熱量を低減することができるので、熱交換効率をさらに高めることができる。   Further, according to the present embodiment, the partition 25 separates the vapor diffusion channel 21 and the capillary channel 22. As a result, the amount of heat exchanged between the vaporized refrigerant W and the condensed refrigerant W can be reduced, so that the heat exchange efficiency can be further enhanced.

また、本実施の形態によれば、蒸気拡散流路21の断面積が、冷媒Wの蒸気の流れる方向に従って均一となっている。これにより、冷媒Wの移動による圧力変化により、蒸気拡散流路21及び毛細管流路22が変形するのを抑制することができる。なお、蒸気拡散流路21の断面積が、冷媒Wの蒸気の流れる方向に従って大きくなるようにしてもよい。このようにすれば、冷媒Wの移動による圧力変化により、蒸気拡散流路21及び毛細管流路22が変形するのを抑制することができる。   Further, according to the present embodiment, the cross-sectional area of the vapor diffusion channel 21 is uniform in the flowing direction of the vapor of the refrigerant W. Thereby, it is possible to suppress the deformation of the vapor diffusion channel 21 and the capillary channel 22 due to the pressure change due to the movement of the refrigerant W. The cross-sectional area of the vapor diffusion channel 21 may be increased in the flow direction of the vapor of the refrigerant W. In this way, it is possible to suppress the deformation of the vapor diffusion channel 21 and the capillary channel 22 due to the pressure change due to the movement of the refrigerant W.

なお、冷媒Wとしては、潜熱の大きな水(純水、蒸留水等)が最適であると言えるが、必ずしも水に限定されず、例えばエタノール、メタノール、アセトン等が好適である。また、ヒートパイプの本体を成す上部材、中間板及び下部材は熱伝導性の良好な銅、銅合
金、アルミニウム、アルミニウム合金、鉄、鉄合金、ステンレス等が好適である。
In addition, although it can be said that water (pure water, distilled water, etc.) with large latent heat is optimal as the refrigerant W, it is not necessarily limited to water, and for example, ethanol, methanol, acetone etc. are preferable. The upper member, middle plate and lower member constituting the main body of the heat pipe are preferably copper, copper alloy, aluminum, aluminum alloy, iron, iron alloy, stainless steel or the like having good thermal conductivity.

なお、各部材の外縁部の割合、補強部の大きさ等は、これらが大きくなれば対応可能な内圧は上がるが、冷却効率は低下する。したがって、必要な内圧や冷却効率に基づいて、それらの設計指標は決定される。   As the ratio of the outer edge portion of each member, the size of the reinforcing portion, etc. increases, the internal pressure that can be handled increases, but the cooling efficiency decreases. Therefore, their design index is determined based on the required internal pressure and cooling efficiency.

また、冷媒注入孔5及び空気排出孔6の大きさ、位置、数などは、排気に要する時間ができるだけ早くなるように定められる。冷媒注入孔5及び空気排出孔6の形状は、初期状態では十分な空隙を有するが、封止部材変形後においては、完全に封止できるような構造であるのが望ましい。   Further, the size, position, number, and the like of the refrigerant injection hole 5 and the air discharge hole 6 are determined so that the time required for exhausting can be as fast as possible. The shapes of the coolant injection hole 5 and the air discharge hole 6 desirably have a structure capable of completely sealing after deformation of the sealing member, although they have sufficient gaps in the initial state.

この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。   The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. In addition, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiments but by the claims. And, various modifications applied within the scope of the claims and the meaning of the invention are considered to be within the scope of the present invention.

本発明は、熱源体を冷却するヒートパイプに適用することができる。   The present invention can be applied to a heat pipe for cooling a heat source body.

1 ヒートパイプ、2 熱源体、3 受熱部、5 冷媒注入孔、6 空気排出孔、7 封止部材、10 上部材、10a 外縁部、10b 内部領域、10c 溝部、10d ディンプル、11 下部材、11a 外縁部、11b 内部領域、11c 溝部、11d ディンプル、12A,12B,12C,12D 中間部材、12a 外縁部、12b 内部領域、12c 蒸気拡散流路形成領域、12d 毛細管流路形成領域、12e 接合用突起、20 内部空間、21 蒸気拡散流路、22 毛細管流路、22a 第1の部分、22b 第2の部分、22c エッジ、23 貫通孔(開口部)、24 枠、25 隔壁、30 補強部、31 貫通孔、50 筐体、W 冷媒   DESCRIPTION OF SYMBOLS 1 heat pipe, 2 heat source body, 3 heat receiving part, 5 refrigerant injection hole, 6 air discharge hole, 7 sealing member, 10 upper member, 10a outer edge portion, 10b inner region, 10c groove portion, 10d dimple, 11 lower member, 11a Outer edge, 11b inner region, 11c groove, 11d dimple, 12A, 12B, 12C, 12D intermediate member, 12a outer edge, 12b inner region, 12c vapor diffusion channel forming region, 12d capillary channel forming region, 12e projection for joining , 20 internal space, 21 vapor diffusion channel, 22 capillary channel, 22a first portion, 22b second portion, 22c edge, 23 through hole (opening), 24 frame, 25 partition, 30 reinforcing portion, 31 Through hole, 50 cases, W refrigerant

Claims (4)

全体として平板状のヒートパイプであって、
下面の面内方向に冷媒を送る溝部が形成された平板状の上部材と、
上面の面内方向に前記冷媒を送る溝部が形成された平板状の下部材と、
前記上部材と前記下部材とに挟まれた一又は複数枚の中間部材と、
を備え、
前記中間部材を介して前記上部材と前記下部材とが接合されて減圧下で前記冷媒が封入された内部空間を形成し、
前記中間部材により、
前記内部空間が形成された状態で、前記上部材の溝部と前記下部材の溝部とを連通し、気化した前記冷媒を通過させる蒸気拡散流路と、
前記上部材の溝部と前記下部材の溝部との間で、凝縮した前記冷媒を毛細管現象により送る毛細管流路と、
が構成され、
前記毛細管流路は、その流路方向に流路断面積が変化している、
ヒートパイプ。
It is a flat heat pipe as a whole,
A flat plate-like upper member in which a groove portion for sending the refrigerant in the in-plane direction of the lower surface is formed;
A flat plate-like lower member in which a groove for feeding the refrigerant is formed in the in-plane direction of the upper surface;
One or more intermediate members sandwiched between the upper member and the lower member;
Equipped with
The upper member and the lower member are joined via the intermediate member to form an internal space in which the refrigerant is sealed under reduced pressure,
By the intermediate member,
A vapor diffusion channel that connects the groove of the upper member and the groove of the lower member in a state in which the internal space is formed, and allows the vaporized refrigerant to pass therethrough;
A capillary channel for sending the condensed refrigerant by capillary action between the groove of the upper member and the groove of the lower member;
Is configured,
In the capillary channel, the channel cross-sectional area changes in the channel direction,
heat pipe.
前記毛細管流路は、凝縮した前記冷媒が進入可能な第1の流路断面積を有する第1の部分と、凝縮した前記冷媒を毛細管現象で送液可能な第2の流路断面積を有する第2の部分と、を有し、
前記第1の部分から前記第2の部分との間に、凝縮した前記冷媒に気液界面振動を生じさせるエッジが設けられている、
請求項1に記載のヒートパイプ。
The capillary channel has a first portion having a first channel cross-sectional area to which the condensed refrigerant can enter and a second channel cross-sectional area capable of transporting the condensed refrigerant by capillary action. And a second part,
Between the first portion and the second portion, an edge for causing gas-liquid interface vibration to the condensed refrigerant is provided.
A heat pipe according to claim 1.
前記中間部材は、複数積層されて構成され、
前記中間部材それぞれに、
前記蒸気拡散流路と前記毛細管流路との間の冷媒の移動を防止する隔壁が設けられている、
請求項1又は2に記載のヒートパイプ。
The intermediate member is configured by being stacked in a plurality.
In each of the intermediate members,
A partition is provided to prevent movement of the refrigerant between the vapor diffusion channel and the capillary channel.
A heat pipe according to claim 1 or 2.
前記蒸気拡散流路の断面積が、蒸気の流れる方向に従って均一であるか大きくなっている、
請求項1から3のいずれか一項に記載のヒートパイプ。
The cross-sectional area of the vapor diffusion channel is uniform or larger according to the flow direction of the vapor,
The heat pipe according to any one of claims 1 to 3.
JP2017246103A 2017-12-22 2017-12-22 heat pipe Active JP7386469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246103A JP7386469B2 (en) 2017-12-22 2017-12-22 heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246103A JP7386469B2 (en) 2017-12-22 2017-12-22 heat pipe

Publications (2)

Publication Number Publication Date
JP2019113232A true JP2019113232A (en) 2019-07-11
JP7386469B2 JP7386469B2 (en) 2023-11-27

Family

ID=67221432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246103A Active JP7386469B2 (en) 2017-12-22 2017-12-22 heat pipe

Country Status (1)

Country Link
JP (1) JP7386469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316355A (en) * 2021-04-20 2021-08-27 江西展耀微电子有限公司 Soaking structure and electronic equipment
WO2022185680A1 (en) * 2021-03-01 2022-09-09 住友重機械工業株式会社 Chemical heat storage reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007905A (en) * 2008-06-25 2010-01-14 Sony Corp Heat transport device and electronic equipment
JP2010028055A (en) * 2008-07-24 2010-02-04 Fuchigami Micro:Kk Heat pipe, electronic apparatus
JP2011038700A (en) * 2009-08-11 2011-02-24 Molex Inc Heat transport unit, and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012960A1 (en) 2006-07-28 2008-01-31 Molex Kiire Co., Ltd. Heat pipe and method of manufacturing it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007905A (en) * 2008-06-25 2010-01-14 Sony Corp Heat transport device and electronic equipment
JP2010028055A (en) * 2008-07-24 2010-02-04 Fuchigami Micro:Kk Heat pipe, electronic apparatus
JP2011038700A (en) * 2009-08-11 2011-02-24 Molex Inc Heat transport unit, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185680A1 (en) * 2021-03-01 2022-09-09 住友重機械工業株式会社 Chemical heat storage reactor
CN113316355A (en) * 2021-04-20 2021-08-27 江西展耀微电子有限公司 Soaking structure and electronic equipment

Also Published As

Publication number Publication date
JP7386469B2 (en) 2023-11-27

Similar Documents

Publication Publication Date Title
US10704838B2 (en) Loop heat pipe
JP4047918B2 (en) Heat pipe and manufacturing method thereof
JP4112602B2 (en) heat pipe
US7019971B2 (en) Thermal management systems for micro-components
JP4035155B1 (en) Heat pipe and manufacturing method thereof
JP6233125B2 (en) Loop-type heat pipe, manufacturing method thereof, and electronic device
WO2015087451A1 (en) Loop-type heat pipe, method for manufacturing same, and electronic equipment
CN110567303A (en) Temperature-equalizing plate structure with convex part and manufacturing method thereof
US9021698B2 (en) Flat plate heat pipe and method for manufacturing the same
CN107421364B (en) Temperature equalizing plate structure and manufacturing method thereof
JP7472947B2 (en) Vapor chambers, electronic devices and metal sheets for vapor chambers
CN104764350A (en) Method for manufacturing uniform-heating plate with foam copper as liquid absorption core
JP2018115858A (en) Cooling device, heat receiving part and ebullition part for use therein, and method for producing the same
CN109724438A (en) Loop-type heat pipe
JP2019113232A (en) heat pipe
TWI409425B (en) Heat pipe
JP3186291U (en) Soaking plate structure
JP6999452B2 (en) Loop type heat pipe and loop type heat pipe manufacturing method
WO2016117342A1 (en) Cooling device and electronic device in which same is installed
TW202202799A (en) Heat exchanger fin and manufacturing method of the same
KR20080076423A (en) Flat plate heat pipe and method for manufacturing the same
CN211630673U (en) Ultra-thin type temperature equalizing plate
JP5701506B2 (en) Cooler
CN112996338A (en) Ultra-thin type temperature equalizing plate and manufacturing method thereof
JP7352872B2 (en) Metal sheet for vapor chamber and vapor chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221014

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221018

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221216

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221220

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230117

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7386469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150