JP2019112719A - Sintered shaft bearing for egr valve - Google Patents

Sintered shaft bearing for egr valve Download PDF

Info

Publication number
JP2019112719A
JP2019112719A JP2019019672A JP2019019672A JP2019112719A JP 2019112719 A JP2019112719 A JP 2019112719A JP 2019019672 A JP2019019672 A JP 2019019672A JP 2019019672 A JP2019019672 A JP 2019019672A JP 2019112719 A JP2019112719 A JP 2019112719A
Authority
JP
Japan
Prior art keywords
powder
aluminum
weight
egr valve
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019019672A
Other languages
Japanese (ja)
Other versions
JP6720362B2 (en
Inventor
容敬 伊藤
Yasutaka Ito
容敬 伊藤
大春 永田
Hiroharu NAGATA
大春 永田
智行 瀬戸
Tomoyuki Seto
智行 瀬戸
隆宏 後藤
Takahiro Goto
隆宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Publication of JP2019112719A publication Critical patent/JP2019112719A/en
Application granted granted Critical
Publication of JP6720362B2 publication Critical patent/JP6720362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide an aluminum bronze-based sintered shaft bearing for EGR valve enhancing abrasion resistance, corrosion resistance and slidability under high temperature dry environment, and achieving compactification and cost saving, and a manufacturing method of the aluminum bronze-based sintered shaft bearing for EGR valve having good productivity and low cost, and suitable for mass production.SOLUTION: There is provided a sintered shaft bearing for EGR valve 1 containing 9 to 12 wt.% of aluminum, 0.1 to 0.6 wt.% of phosphorus, and 3 to 10 wt.% of graphite, and the balance copper with inevitable impurities, having a structure by sintering an aluminum-copper alloy, and free graphite distributed in a pore dispersively formed.SELECTED DRAWING: Figure 2

Description

本発明は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れたEGRバルブ用焼結軸受およびその製造方法に関する。   The present invention relates to a sintered bearing for an EGR valve which is excellent in abrasion resistance, corrosion resistance and slidability in a high temperature dry environment, and a method of manufacturing the same.

一般に、自動車エンジンなどの内燃機関の排ガス対策の一環として、これらの内燃機関には、一度排出されたガスを再び吸入空気と混合させて、燃焼室内の空気の酸素濃度を低下させ燃焼温度を低下させることで、窒素酸化物(NOx)の低減を図る排気ガス再循環装置(以下、EGR装置ともいう)が広く採用されている。EGRとは、「Exhaust Gas Recirculation」の略称とされ、排気ガス再循環を意味する。このEGR装置では、排出される排気ガスの一部を再循環排ガス(以下、EGRガスともいう)として吸気側へ再循環させるが、そのEGRガスの流量を調節するために、再循環排ガス流量制御弁(以下、EGRバルブともいう)が使用されている。   Generally, as part of exhaust gas countermeasures for internal combustion engines such as automobile engines, these internal combustion engines again mix the gas once discharged with intake air to reduce the oxygen concentration of the air in the combustion chamber and lower the combustion temperature. An exhaust gas recirculation device (hereinafter, also referred to as an EGR device) for reducing nitrogen oxides (NOx) is widely adopted. EGR is an abbreviation of "Exhaust Gas Recirculation" and means exhaust gas recirculation. In this EGR device, part of the exhaust gas discharged is recirculated to the intake side as recirculated exhaust gas (hereinafter also referred to as EGR gas), but in order to adjust the flow rate of the EGR gas, the recirculation exhaust gas flow rate control A valve (hereinafter also referred to as an EGR valve) is used.

近年の内燃機関の高出力化や低燃費化はめざましく、かつ軽量化およびコンパクト化に対する要求も強く、EGRバルブもこれらの要求に答える必要がある。さらに、EGRバルブは、エンジンの燃焼室の近傍に配置されるようになってきた結果、高出力化に伴うエンジン発熱量の増大と相俟って、300℃以上にも達する高温環境に曝される場合がある。このような使用条件、環境のため、EGRバルブの弁を作動させる往復動シャフトを摺動自在に支持する軸受には、耐摩耗性、耐腐食性および高温ドライ(無含油)環境下での摺動性が要求される。   In recent years, high output and low fuel consumption of internal combustion engines have been remarkable, and demands for weight reduction and downsizing have also been strong, and EGR valves also have to meet these demands. Furthermore, as the EGR valve has come to be placed near the combustion chamber of the engine, it is exposed to a high temperature environment that reaches 300 ° C. or more, combined with the increase in the amount of heat generated by the engine as the output increases. May be Under these conditions of use and environment, the bearings that slidably support the reciprocating shaft that operates the valve of the EGR valve are not resistant to abrasion, corrosion and high temperature dry (oil-free) environments. Mobility is required.

このような用途に使用する焼結軸受として、例えば、特許文献1には、Cu−Ni−Sn−C−P系の焼結軸受が公開されている。   As a sintered bearing used for such an application, for example, Patent Document 1 discloses a Cu-Ni-Sn-C-P-based sintered bearing.

一方、機械的特性と耐食性に優れた焼結軸受として、アルミニウム青銅系の焼結軸受が知られている。この焼結軸受では、焼結時に昇温する過程で表面に酸化アルミニウム膜が生成しアルミニウムの拡散を阻害するために十分な耐腐食性と強度を有する焼結体を容易に得ることができないという問題がある。特許文献2には、前記問題を改良するために、焼結アルミニウム含有銅合金用混合粉末およびその製造方法に関する技術が公開されている。   On the other hand, an aluminum bronze-based sintered bearing is known as a sintered bearing excellent in mechanical properties and corrosion resistance. In this sintered bearing, it is said that an aluminum oxide film is formed on the surface in the process of raising the temperature during sintering, and a sintered body having sufficient corrosion resistance and strength to inhibit the diffusion of aluminum can not be easily obtained. There's a problem. Patent Document 2 discloses a technology relating to a mixed powder of a sintered aluminum-containing copper alloy and a method for producing the same in order to ameliorate the above problems.

特開2006−63398号公報JP, 2006-63398, A 特開2009−7650号公報JP, 2009-7650, A

特許文献1に記載されたCu−Ni−Sn−C−P系の焼結軸受では、強度や耐摩耗性は向上するが、耐食性の面では十分なものとはいえない。また、希少金属であるNiを含有するので、コスト面でも問題がある。   In the sintered bearing of the Cu-Ni-Sn-C-P system described in Patent Document 1, although the strength and the wear resistance are improved, it can not be said that it is sufficient in terms of corrosion resistance. Moreover, since it contains Ni which is a rare metal, there is also a problem in terms of cost.

特許文献2に記載されたアルミニウム含有銅合金粉末は成形性および焼結性に優れたものであるが、当該アルミニウム含有銅合金粉末を用いたアルミニウム青銅系焼結軸受として、安定した耐腐食性、機械的特性、コンパクト化、低コスト化を満たす多量生産に適した製品を得るためには、更なる検討が必要である。   Although the aluminum-containing copper alloy powder described in Patent Document 2 is excellent in formability and sinterability, stable corrosion resistance as an aluminum bronze-based sintered bearing using the aluminum-containing copper alloy powder, Further studies are needed to obtain a product suitable for mass production that meets mechanical characteristics, compactness, and cost reduction.

従来の問題に鑑み、本発明は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性を向上させると共に、コンパクト化、低コスト化を図ったEGRバルブ用アルミニウム青銅系焼結軸受を提供すること、および生産性がよく、低コストで、多量生産に好適なEGRバルブ用アルミニウム青銅系焼結軸受の製造方法を提供することを目的とする。   In view of the conventional problems, the present invention improves the wear resistance, the corrosion resistance, and the slidability in a high-temperature dry environment, as well as the aluminum bronze-based sintered bearing for an EGR valve, which achieves downsizing and cost reduction. It is an object of the present invention to provide a method for producing an aluminum bronze-based sintered bearing for an EGR valve which is good in productivity, low in cost and suitable for mass production.

本発明者らは、アルミニウム青銅系焼結軸受およびその製造方法において、軸受機能の向上と共に、コンパクト化、低コスト化、生産性の向上を図るために、焼結による膨張を有効利用するという新規な着想を前提条件として、前述したような高温ドライ環境下にあるEGRバルブ用焼結軸受おいて、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性等の性能を確保するために、種々の検討と試験評価を行い、以下の知見を得たことにより本発明に至った。
(1)EGRバルブ用焼結軸受の高温ドライ環境下での摺動性については、初期なじみの問題がないので、アルミニウム青銅焼結軸受としての通常のアルミニウム配合量が適用できることに着目した。
(2)ドライ環境下において、黒鉛の添加量を増やすほど摩擦係数が低く、摺動性に優れることが分かった。反面、黒鉛の添加量を増量すると、アルミニウムの銅への拡散が阻害されるので、考慮が必要である。
(3)耐摩耗性については、黒鉛の添加量を増量すると耐摩耗性が向上するが、黒鉛添加量10重量%から摩耗量が若干多くなり、材料強度の低下が原因と思われる。
(4)黒鉛の添加量を増量すると、有機酸腐食による重量変化率が少なく、長時間放置後も重量変化率がほとんど変化しない。
(5)アルミニウムの配合量とアルミニウム青銅組織の関係では、アルミニウムの配合量は多くなるほどβ相の割合が多くなる。β相は565℃で共析変態し、α相とγ相になり、アルミニウム配合量が多くなるほどγ相の割合が多くなる。γ相は、EGRバルブ用焼結軸受においては、耐有機酸腐食性を低下させるので、銅源として、アルミニウム−銅合金粉末を用い、銅単体の粉末を添加しない場合は、γ相とα相との比を、0≦γ相/α相≦0.10とする。
(6)焼結温度と耐腐食性の関係では、焼結温度を高くするとアルミニウムの拡散が増進し耐腐食性が向上する。
(7)添加剤である燐は、焼結過程でのアルミニウムの拡散の促進で、アルミニウム量を減らすことができ耐腐食性を劣化するアルミニウム組織のγ相の析出を削減できることが考えられる。
The present inventors are a new aluminum bronze-based sintered bearing and a method of manufacturing the same, in which expansion due to sintering is effectively used in order to achieve compactness, cost reduction, and improvement in productivity while improving the bearing function. In order to secure performances such as wear resistance, corrosion resistance and slidability under high temperature dry environment in sintered bearings for EGR valve in high temperature dry environment as described above, assuming that the idea is a precondition In the present invention, various studies and test evaluations were conducted, and the following findings were obtained.
(1) As for the slidability in a high temperature dry environment of a sintered bearing for an EGR valve, attention was paid to the fact that the usual aluminum blending amount as an aluminum bronze sintered bearing can be applied since there is no problem of initial conformity.
(2) It was found that the coefficient of friction is lower and the slidability is excellent as the addition amount of graphite is increased in a dry environment. On the other hand, if the amount of addition of graphite is increased, the diffusion of aluminum into copper is inhibited, so it is necessary to consider.
(3) With respect to wear resistance, although the wear resistance is improved by increasing the addition amount of graphite, the wear amount is slightly increased from the addition amount of graphite of 10% by weight, which is considered to be a decrease in material strength.
(4) When the added amount of graphite is increased, the weight change rate due to organic acid corrosion is small, and the weight change rate hardly changes even after being left for a long time.
(5) In the relation between the compounding amount of aluminum and the aluminum bronze structure, as the compounding amount of aluminum increases, the proportion of the β phase increases. The β phase undergoes eutectoid transformation at 565 ° C. to become an α phase and a γ phase, and the proportion of the γ phase increases as the aluminum content increases. The γ phase lowers the resistance to organic acid corrosion in a sintered bearing for an EGR valve. Therefore, when aluminum-copper alloy powder is used as a copper source and the powder of copper alone is not added, the γ phase and the α phase are used. The ratio of
(6) In relation to the sintering temperature and the corrosion resistance, when the sintering temperature is increased, the diffusion of aluminum is enhanced and the corrosion resistance is improved.
(7) Phosphorus, which is an additive, is considered to promote the diffusion of aluminum in the sintering process to reduce the amount of aluminum and to reduce the precipitation of the γ phase of the aluminum structure which deteriorates the corrosion resistance.

前述の目的を達成するための技術的手段として、本発明は、9〜12重量%のアルミニウムと0.1〜0.6重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受であって、この焼結軸受は、アルミニウム−銅合金が焼結された組織を有し、分散して形成された気孔内に遊離黒鉛が分布していることを特徴とする。これにより、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ったEGRバルブ用アルミニウム青銅系焼結軸受を実現できる。   As technical means for achieving the above objects, the present invention comprises 9 to 12% by weight of aluminum, 0.1 to 0.6% by weight of phosphorus and 3 to 10% by weight of graphite, with the balance being A sintered bearing for an EGR valve containing copper as the main component and containing inevitable impurities, the sintered bearing has a structure in which an aluminum-copper alloy is sintered, and is formed in dispersed pores Is characterized by the distribution of free graphite. As a result, it is possible to realize an aluminum bronze-based sintered bearing for an EGR valve which is excellent in wear resistance, corrosion resistance, and slidability in a high-temperature dry environment, and is made compact and cost-reduced.

また、EGRバルブ用焼結軸受の製造方法としての本発明は、9〜12重量%のアルミニウムと0.1〜0.6重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受の製造方法であって、この製造方法は、原料粉末としてアルミニウム−銅合金粉、電解銅粉、燐−銅合金粉および黒鉛粉を用い、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する成形工程と、前記圧粉体からアルミニウム−銅合金組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とする。これにより、生産性がよく、低コストで、多量生産に好適なEGRバルブ用アルミニウム青銅系焼結軸受の製造方法を実現することができる。これに基づき製造されたEGRバルブ用焼結軸受は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ることができる。   Further, the present invention as a method for producing a sintered bearing for an EGR valve contains 9 to 12% by weight of aluminum, 0.1 to 0.6% by weight of phosphorus and 3 to 10% by weight of graphite, A method for producing a sintered bearing for an EGR valve, the main component of which is copper and which contains unavoidable impurities, which comprises aluminum-copper alloy powder, electrolytic copper powder, phosphorus-copper alloy powder and graphite as raw material powders. A forming step of forming a green compact in which a sintering aid is added to the raw material powder using at least a powder, a sintering step of obtaining a sintered body having an aluminum-copper alloy structure from the green compact, and And a sizing step of dimensioning the sintered body. As a result, it is possible to realize a method for producing an aluminum bronze-based sintered bearing for an EGR valve which is excellent in productivity, low in cost, and suitable for mass production. The sintered bearing for an EGR valve manufactured based on this is excellent in abrasion resistance, corrosion resistance and slidability in a high temperature dry environment, and can be made compact and cost reduction.

上記のアルミニウム−銅合金の組織は、α相を有していることが好ましい。α相は、耐有機酸腐食性に対して有効なものである。   The structure of the above-described aluminum-copper alloy preferably has an α phase. The α phase is effective for organic acid corrosion resistance.

上記のアルミニウム−銅合金の組織(以下、アルミニウム青銅組織ともいう)は、銅源として、アルミニウム−銅合金粉末を用い、銅単体の粉末を添加しない場合は、γ相とα相との比γ相/α相を、0≦γ相/α相≦0.10とすることが好ましい。0≦γ相/α相≦0.10の範囲であれば、耐有機酸腐食性に優れる。   The structure of the above-mentioned aluminum-copper alloy (hereinafter also referred to as aluminum bronze structure) uses aluminum-copper alloy powder as a copper source, and does not add powder of copper alone, the ratio γ of γ phase to α phase It is preferable to set the phase / α phase to 0 ≦ γ phase / α phase ≦ 0.10. If it is the range of 0 <= (gamma) phase / (alpha) phase <= 0.10, it is excellent in organic acid-proof corrosion resistance.

上記のEGRバルブ用焼結軸受には、焼結助剤としての錫を添加しないことが好ましい。錫はアルミニウムの拡散を妨げるので好ましくない。   It is preferable not to add tin as a sintering aid to the above-described sintered bearing for an EGR valve. Tin is not preferable because it interferes with the diffusion of aluminum.

上記のEGRバルブ用焼結軸受の製造方法において、焼結助剤として、前記アルミニウム−銅合金粉、電解銅粉、燐−銅合金粉および黒鉛粉からなる原料粉末の合計100重量%に対して、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量%添加することが好ましい。0.05重量%未満では、焼結助剤としての効果が不十分となり、緻密で適宜の強度を有する焼結体が得られない。一方、0.2重量%を超えると、それ以上添加しても焼結助剤としての効果は頭打ちとなり、コスト的な観点から0.2重量%以下に止めることが好ましい。   In the above-described method for manufacturing a sintered bearing for an EGR valve, a total of 100% by weight of the raw material powder comprising the aluminum-copper alloy powder, electrolytic copper powder, phosphorus-copper alloy powder and graphite powder as a sintering aid Preferably, aluminum fluoride and calcium fluoride are added in a total amount of 0.05 to 0.2% by weight. When the amount is less than 0.05% by weight, the effect as a sintering aid is insufficient, and a compact sintered body having appropriate strength can not be obtained. On the other hand, if it exceeds 0.2% by weight, the effect as a sintering aid will be plateaued even if it is added more than 0.2% by weight from the viewpoint of cost.

上記のアルミニウム−銅合金粉の平均粒径d1と電解銅粉の平均粒径d2との比d2/d1を2〜3とすることが好ましい。比d2/d1がこの範囲にあると、アルミニウムを銅に十分拡散させることができ、耐腐食性に優れる。   It is preferable to set ratio d2 / d1 of the average particle diameter d1 of said aluminum-copper alloy powder and the average particle diameter d2 of electrolytic copper powder to 2-3. When the ratio d2 / d1 is in this range, aluminum can be sufficiently diffused in copper, and the corrosion resistance is excellent.

上記の電解銅粉は、粉末形状が異なるもので構成され、アスペクト比が2以上の電解銅粉の割合W1と2未満の電解銅粉の割合W2との比W2/W1を3〜9とすることが好ましい。アスペクト比が2以上の電解銅粉は、アルミニウムの拡散のためには有効であるが、成形性が悪い。比W2/W1が、3未満であると成形性の面から好ましくなく、一方、9を超えるとアルミニウムの拡散が不十分となるので好ましくない。ここで、アスペクト比とは、粉末の長軸長さを粉末の厚みで除した比を意味する。   The above-mentioned electrolytic copper powder is composed of different powder shapes, and the ratio W2 / W1 of the ratio W1 of electrolytic copper powder having an aspect ratio of 2 or more to the ratio W2 of electrolytic copper powder less than 2 is 3 to 9 Is preferred. Electrolytic copper powder having an aspect ratio of 2 or more is effective for the diffusion of aluminum, but has poor formability. If the ratio W2 / W1 is less than 3, it is not preferable from the viewpoint of formability. On the other hand, if it exceeds 9, the diffusion of aluminum becomes insufficient, which is not preferable. Here, the aspect ratio means the ratio of the major axis length of the powder divided by the thickness of the powder.

上記の前記黒鉛粉は、天然黒鉛、又は人造黒鉛の微粉を樹脂バインダで造粒後粉砕し、粒径145メッシュ以下の黒鉛粉末にしたものが好ましい。一般的に黒鉛を4重量%以上添加すると成形することができないが、造粒黒鉛を使用することで成形を可能にした。   The above-mentioned graphite powder is preferably prepared by granulating fine powder of natural graphite or artificial graphite with a resin binder and then grinding it into a graphite powder having a particle size of 145 mesh or less. Generally, when 4% by weight or more of graphite is added, it can not be molded, but by using granulated graphite, molding was made possible.

EGRバルブ用焼結軸受の製造方法としての第2の発明は、9〜12重量%のアルミニウムと0.1〜0.6重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受の製造方法であって、この製造方法は、原料粉末として、銅単体の粉末を添加せず、アルミニウム−銅合金粉、燐−銅合金粉および黒鉛粉を用い、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する成形工程と、前記圧粉体からアルミニウム−銅合金組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とする。ここで、原料粉末としての銅単体の粉末を添加せずとは、製造現場において不可避的に含まれる銅単体の粉末は許容する意味で用いる。   The second invention as a method for producing a sintered bearing for an EGR valve contains 9 to 12% by weight of aluminum, 0.1 to 0.6% by weight of phosphorus and 3 to 10% by weight of graphite, with the remainder being A method for producing a sintered bearing for an EGR valve, the main component of which is copper and which contains unavoidable impurities, wherein the method does not add powder of copper alone as a raw material powder, aluminum-copper alloy powder, phosphorus -Obtaining a sintered body having an aluminum-copper alloy structure from the green compact by using a copper alloy powder and a graphite powder and molding at least a green compact having a sintering aid added to the raw material powder The method is characterized by including a sintering step and a sizing step of dimensioning the sintered body. Here, not adding the powder of copper alone as the raw material powder means that the powder of copper alone which is inevitably contained in the manufacturing site is acceptable.

上記の製造方法としての第2の発明も、生産性がよく、低コストで、多量生産に好適なEGRバルブ用アルミニウム青銅系焼結軸受の製造方法を実現することができる。また、これにより製造されたEGRバルブ用焼結軸受は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ることができる。さらに、銅単体の粉末が添加されていないので、銅単体が偏った部分が略無くなり、この部分による腐食の発生が回避されると共に、アルミニウム−銅合金粉の粒一つ一つの耐腐食性が向上することにより、さらに厳しい使用環境に対しても耐腐食性を確保することができる。   The second invention described above as the manufacturing method can also realize the manufacturing method of the aluminum bronze-based sintered bearing for an EGR valve, which has high productivity, is low cost, and is suitable for mass production. Moreover, the sintered bearing for an EGR valve manufactured by this is excellent in abrasion resistance, corrosion resistance, and slidability in a high-temperature dry environment, and can achieve downsizing and cost reduction. Furthermore, since the powder of copper alone is not added, the portion where copper alone is biased is almost eliminated, the occurrence of corrosion due to this portion is avoided, and the corrosion resistance of each grain of the aluminum-copper alloy powder is By the improvement, it is possible to secure corrosion resistance even in a more severe use environment.

上記の原料粉末としてのアルミニウム−銅合金粉が、7〜11重量%アルミニウム−銅合金粉末であることが好ましく、例えば8〜10重量%アルミニウム−銅合金粉末であることがより好ましい。これらの場合、アルミニウム−銅合金粉の粒一つ一つの耐腐食性が向上し、EGRバルブ用焼結軸受全体の耐腐食性が向上する。   It is preferable that it is 7-11 weight% aluminum-copper alloy powder as said aluminum-copper alloy powder as a raw material powder, for example, it is more preferable that it is 8-10 weight% aluminum-copper alloy powder. In these cases, the corrosion resistance of each grain of the aluminum-copper alloy powder is improved, and the corrosion resistance of the entire sintered bearing for an EGR valve is improved.

本発明によるEGRバルブ用焼結軸受は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ることができる。また、本発明によるEGRバルブ用焼結軸受の製造方法は、生産性がよく、低コストで、多量生産に好適なEGRバルブ用アルミニウム青銅系焼結軸受の製造方法を実現することができる。   The sintered bearing for an EGR valve according to the present invention is excellent in wear resistance, corrosion resistance, and slidability in a high temperature dry environment, and can be made compact and cost reduction. Further, the method for manufacturing a sintered bearing for an EGR valve according to the present invention can realize a method for manufacturing an aluminum bronze-based sintered bearing for an EGR valve suitable for mass production with good productivity and at low cost.

さらに、銅単体の粉末を添加せず、アルミニウム−銅合金粉を用いた製造方法としての第2の発明によれば、銅単体が偏った部分が略無くなり、この部分による腐食の発生が回避されると共に、アルミニウム−銅合金粉の粒一つ一つの耐腐食性が向上することにより、さらに厳しい使用環境に対しても耐腐食性を確保することができる。   Furthermore, according to the second invention as a manufacturing method using aluminum-copper alloy powder without adding powder of copper alone, a portion where copper alone is biased is substantially eliminated, and occurrence of corrosion due to this portion is avoided. By improving the corrosion resistance of each grain of the aluminum-copper alloy powder, it is possible to secure the corrosion resistance to even more severe use environments.

本発明の第1の実施形態に係るEGRバルブ用焼結軸受が使用されるEGRバルブの概要を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the outline | summary of the EGR valve in which the sintered bearing for EGR valves which concerns on the 1st Embodiment of this invention is used. 本発明の第1の実施形態に係るEGRバルブ用焼結軸受および本発明の第1の実施形態に係る製造方法に基づくEGRバルブ用焼結軸受の縦断面図である。1 is a longitudinal sectional view of a sintered bearing for an EGR valve according to a first embodiment of the present invention and a sintered bearing for an EGR valve based on a manufacturing method according to the first embodiment of the present invention. トルク試験の結果を示すグラフである。It is a graph which shows the result of a torque test. トルク試験の結果を示すグラフである。It is a graph which shows the result of a torque test. 耐摩耗性の試験結果を示すグラフである。It is a graph which shows the test result of abrasion resistance. 耐腐食性の試験結果を示すグラフである。It is a graph which shows the test result of corrosion resistance. 耐腐食性の試験結果を示すグラフである。It is a graph which shows the test result of corrosion resistance. 図2のEGRバルブ用焼結軸受の製造工程を説明する図である。It is a figure explaining the manufacturing process of the sintering bearing for EGR valves of FIG. 原料粉末の混合機の概要図である。It is a schematic diagram of a mixer of raw material powder. メッシュベルト式連続炉の概要図である。It is a schematic diagram of a mesh belt type continuous furnace. サイジング工程を説明する図であり、(a)は焼結体をサイジング加工の金型にセットした状態を示し、(b)はコアが下降した状態を示し、(c)はサイジング加工が終了した状態を示す。It is a figure explaining a sizing process, (a) shows a state where a sintered compact was set to a mold for sizing, (b) shows a state where the core is lowered, and (c) shows that sizing is completed. Indicates the status.

以下、本発明のEGRバルブ用焼結軸受についての第1の実施形態およびその製造方法についての第1の実施形態を添付図面に基づいて説明する。EGRバルブ用焼結軸受についての第1の実施形態を図1〜7に示し、製造方法についての第1の実施形態を図8〜11に示す。   Hereinafter, a first embodiment of a sintered bearing for an EGR valve of the present invention and a first embodiment of a method of manufacturing the same will be described based on the attached drawings. A first embodiment of a sintered bearing for an EGR valve is shown in FIGS. 1-7, and a first embodiment of a manufacturing method is shown in FIGS.

図1は、本実施形態に係る焼結軸受が使用されるEGRバルブの概要を示す縦断面図である。EGR装置(図示省略)では、排出される排気ガスの一部をEGRガスとして吸気系へ再循環させるが、そのEGRガスの流量を調節するために、EGRバルブ31が使用されている。   FIG. 1 is a longitudinal sectional view showing an outline of an EGR valve in which a sintered bearing according to the present embodiment is used. In the EGR device (not shown), a part of the exhaust gas to be discharged is recirculated to the intake system as the EGR gas, but the EGR valve 31 is used to adjust the flow rate of the EGR gas.

EGRバルブ31は、ハウジング43と、ハウジング43に形成されたEGRガス流路44と、EGRガス流路44の途中に設けられた弁座50と、弁座50に当接可能に設けられた弁体45と、弁体45と一体的に設けられ、弁体45から延びるシャフト46と、弁体45と共にシャフト46をその軸方向へ移動させるためのステップモータ32とを備える。   The EGR valve 31 includes a housing 43, an EGR gas passage 44 formed in the housing 43, a valve seat 50 provided in the middle of the EGR gas passage 44, and a valve provided to be able to abut on the valve seat 50. It comprises a body 45, a shaft 46 integrally provided with the valve body 45 and extending from the valve body 45, and a step motor 32 for moving the shaft 46 together with the valve body 45 in its axial direction.

ハウジング43に形成されたEGRガス流路44の両端は、EGRガスが導入される入口41と、EGRガスが導出される出口42となっている。弁座50は、EGRガス流路44の途中に設けられ、EGRガス流路44を連通する弁孔50aを有する。   Both ends of the EGR gas flow path 44 formed in the housing 43 are an inlet 41 into which the EGR gas is introduced, and an outlet 42 from which the EGR gas is drawn out. The valve seat 50 is provided in the middle of the EGR gas passage 44 and has a valve hole 50 a communicating with the EGR gas passage 44.

シャフト46は、ステップモータ32と弁体45との間に設けられ、ハウジング43を図面上下方向に貫通して配置される。弁体45は、シャフト46の下端に固定され、円錐形状をなし、その円錐面が弁座50に対して当接又は離間するようになっている。シャフト46の上端には、ばね受け48が固定されている。このばね受け48とハウジング43に設けたばね受け部43aとの間に圧縮コイルばね49が装着されている。圧縮コイルばね49は、弁45が弁座50に当接してEGR流路44が閉じる方向に付勢する。   The shaft 46 is provided between the step motor 32 and the valve body 45, and is disposed penetrating the housing 43 in the vertical direction in the drawing. The valve body 45 is fixed to the lower end of the shaft 46 and has a conical shape such that the conical surface abuts or is separated from the valve seat 50. A spring receiver 48 is fixed to the upper end of the shaft 46. A compression coil spring 49 is mounted between the spring bearing 48 and a spring bearing 43 a provided on the housing 43. The compression coil spring 49 urges the valve 45 in contact with the valve seat 50 to close the EGR passage 44.

シャフト46は、すべり軸受1により上下方向に摺動自在に支持されている。すべり軸受1は、ハウジング43に設けられた内径孔に組み込まれ、シャフト46の外径面と摺動自在に嵌合している。このすべり軸受1が本実施形態のEGRバルブ用焼結軸受である。詳細は後述する。   The shaft 46 is supported slidably by the slide bearing 1 in the vertical direction. The slide bearing 1 is incorporated in an inner diameter hole provided in the housing 43 and slidably fitted with the outer diameter surface of the shaft 46. The slide bearing 1 is a sintered bearing for an EGR valve according to the present embodiment. Details will be described later.

ステップモータ32は、励磁コイル33をスロットに装着したステータ34の内径側に円筒形のロータ35を配置した構成であり、ロータ35の外周には、N極とS極が交互に着磁された円筒形のマグネットが装着されている。ロータ35は、上端部のピボット軸受39と下端部のラジアル軸受40とによって回転自在に支持されている。ロータ35の内径には雌ねじ36が形成されており、ロータ35の内径側には雌ねじ36と螺合する雄ねじ38が形成された出力シャフト37が設けられている。ロータ35の回転運動が、雌ねじ36、雄ねじ38を介して出力シャフト37の上下運動に変換されるように構成されている。ステップモータ32のケーシング51には、横へ突出したコネクタ52が一体に形成され、励磁コイルから延びる端子53が設けられている。   The step motor 32 has a configuration in which the cylindrical rotor 35 is disposed on the inner diameter side of the stator 34 in which the exciting coil 33 is mounted in the slot, and N pole and S pole are alternately magnetized on the outer periphery of the rotor 35 A cylindrical magnet is mounted. The rotor 35 is rotatably supported by a pivot bearing 39 at the upper end and a radial bearing 40 at the lower end. An inner diameter of the rotor 35 is formed with a female screw 36, and an inner diameter side of the rotor 35 is provided with an output shaft 37 in which a male screw 38 to be screwed with the female screw 36 is formed. The rotational movement of the rotor 35 is configured to be converted to the up and down movement of the output shaft 37 via the female screw 36 and the male screw 38. A connector 52 projecting laterally is integrally formed on the casing 51 of the step motor 32, and a terminal 53 extending from the exciting coil is provided.

エンジン側の電子制御部がステップモータ32に制御信号を送り、この制御信号に対応するステップモータ32の作動量により、シャフト46を圧縮コイルばね49の付勢力に抗して下降させて弁体45を開き、流量が調節されたEGRガスがEGRガス流路44を通してエンジン側の吸気側に戻される(図示省略)。   The electronic control unit on the engine side sends a control signal to the step motor 32, and the operation amount of the step motor 32 corresponding to the control signal causes the shaft 46 to be lowered against the biasing force of the compression coil spring 49 to And the EGR gas whose flow rate is adjusted is returned to the intake side on the engine side through the EGR gas passage 44 (not shown).

EGRバルブ31は、エンジンの燃焼室の近傍に配置され、高出力化に伴うエンジン発熱量の増大と相俟って、300℃以上にも達する高温環境に曝される場合がある。このような使用条件、環境のため、シャフト46を図面上下方向に摺動自在に支持する本実施形態のEGRバルブ用焼結軸受1は、耐腐食性や耐摩耗性、高温ドライ環境下での摺動性が要求される。   The EGR valve 31 is disposed in the vicinity of the combustion chamber of the engine, and may be exposed to a high-temperature environment reaching 300 ° C. or more, in combination with an increase in the amount of heat generated by the engine. The sintered bearing 1 for an EGR valve of the present embodiment, which supports the shaft 46 slidably in the vertical direction in the drawing, under such conditions of use and environment, has corrosion resistance, wear resistance, and high temperature dry environment. Slidability is required.

本実施形態のEGRバルブ用焼結軸受の縦断面図を図2に示す。EGRバルブ用焼結軸受(以下、単に焼結軸受ともいう)1は、内周に軸受面1aを有する円筒状に形成される。焼結軸受1の内周に弁体45を有するシャフト46(図1参照)を挿入する。高温ドライ環境下でシャフト46が軸受1によって軸方向に摺動自在に支持される。   The longitudinal cross-sectional view of the sintered bearing for EGR valve | bulbs of this embodiment is shown in FIG. The EGR valve sintered bearing (hereinafter, also simply referred to as a sintered bearing) 1 is formed in a cylindrical shape having a bearing surface 1 a on the inner periphery. A shaft 46 (see FIG. 1) having a valve body 45 is inserted into the inner periphery of the sintered bearing 1. The shaft 46 is axially slidably supported by the bearing 1 in a high temperature dry environment.

本実施形態のEGRバルブ用焼結軸受1は、各種粉末を混合した原料粉末を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。   The sintered bearing 1 for an EGR valve according to the present embodiment is formed by filling raw material powder in which various powders are mixed into a mold, compressing it to form a green compact, and then sintering the green compact. Be done.

原料粉末は、アルミニウム−銅合金粉末、銅粉末、燐−銅合金粉末、黒鉛粉末と焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムを混合した混合粉末である。各粉末の詳細を以下に述べる。   The raw material powder is a mixed powder of aluminum-copper alloy powder, copper powder, phosphorus-copper alloy powder, graphite powder, and aluminum fluoride and calcium fluoride as a sintering aid. Details of each powder are described below.

[アルミニウム−銅合金粉末]
40〜60重量%アルミニウム−銅合金粉末を粉砕し、粒度調整した。アルミニウム−銅合金粉末の粒径は100μm以下で、平均粒径は35μmである。ここで、本明細書において、平均粒径とは、レーザ回析により測定した粒径の平均値を意味する。具体的には、(株)島津製作所製SALD−3100により、5000粉末をレーザ回析で測定したときの粒径の平均値とする。
[Aluminum-Copper Alloy Powder]
The 40 to 60% by weight aluminum-copper alloy powder was ground and particle size adjusted. The particle size of the aluminum-copper alloy powder is 100 μm or less, and the average particle size is 35 μm. Here, in the present specification, the average particle diameter means an average value of particle diameters measured by laser diffraction. Specifically, 5000 powder is measured by laser diffraction using SALD-3100 manufactured by Shimadzu Corporation as an average value of particle diameters.

アルミニウム−銅合金粉末を用いることで、黒鉛、燐等の添加剤の効果を引き出し、焼結軸受材として耐腐食性、強度、摺動特性等に優れる。また、合金化されているので、比重の小さいアルミニウム単体粉体の飛散に伴う取り扱い上の問題はない。   By using the aluminum-copper alloy powder, the effects of additives such as graphite and phosphorus are derived, and the sintered bearing material is excellent in corrosion resistance, strength, sliding characteristics and the like. Moreover, since it is alloyed, there is no problem in handling associated with the scattering of a single powder of aluminum having a small specific gravity.

アルミニウム青銅組織は、α相が最も硫化腐食、有機酸腐食に対する耐腐食性に優れる。40〜60重量%アルミニウム−銅合金粉末を用いることで、黒鉛が添加されても強度が得られ焼結軸受が製造可能となる。組織がγ相になると、耐摩耗性には優れるが、耐有機酸腐食性が劣化する。アルミニウム青銅組織は、γ相とα相との比γ相/α相を、0.10≦γ相/α相≦0.25とすることが好ましい。γ相/α相の比が0.10未満では耐摩耗性が低下し好ましくなく、一方、0.25を超えると耐有機酸腐食性が低下するので、好ましくない。   In the aluminum bronze structure, the alpha phase is most excellent in corrosion resistance against sulfidation corrosion and organic acid corrosion. By using a 40 to 60% by weight aluminum-copper alloy powder, even if graphite is added, strength is obtained and a sintered bearing can be manufactured. When the structure is in the γ phase, although the wear resistance is excellent, the organic acid corrosion resistance is deteriorated. In the aluminum bronze structure, it is preferable to set the ratio γ phase / α phase of the γ phase to the α phase to 0.10 ≦ γ phase / α phase ≦ 0.25. If the ratio of the γ phase / α phase is less than 0.10, the abrasion resistance is unfavorably reduced, while if it exceeds 0.25, the organic acid corrosion resistance is unfavorably reduced.

[銅粉末]
銅粉末は、アトマイズ粉、電解粉、粉砕粉があるが、銅にアルミニウムを十分に拡散させるには、樹枝状の電解粉が有効であり、成形性、焼結性、摺動特性に優れる。そのため、本実施形態では、銅粉として電解粉を用いた。また、アルミニウムを銅へ十分に拡散させるためには、粉末形状が異なる電解銅粉を2種類用い、アスペクト比が2以上の電解銅粉の割合W1と2未満の電解銅粉の割合W2との比W2/W1を3〜9とすることが好ましい。アスペクト比が2以上の電解銅粉は、アルミニウムの拡散のためには有効であるが、成形性が悪い。比W2/W1が、3未満であると成形性の面から好ましくなく、一方、9を超えるとアルミニウムの拡散が不十分となるので好ましくない。
[Copper powder]
The copper powder includes atomized powder, electrolytic powder and pulverized powder, but in order to sufficiently diffuse aluminum into copper, dendritic electrolytic powder is effective and is excellent in moldability, sinterability and sliding property. Therefore, in the present embodiment, an electrolytic powder is used as the copper powder. Also, in order to sufficiently diffuse aluminum into copper, using two types of electrolytic copper powder having different powder shapes, the ratio W1 of electrolytic copper powder having an aspect ratio of 2 or more and the ratio W2 of electrolytic copper powder having an aspect ratio less than 2 It is preferable to set the ratio W2 / W1 to 3 to 9. Electrolytic copper powder having an aspect ratio of 2 or more is effective for the diffusion of aluminum, but has poor formability. If the ratio W2 / W1 is less than 3, it is not preferable from the viewpoint of formability. On the other hand, if it exceeds 9, the diffusion of aluminum becomes insufficient, which is not preferable.

本実施形態では、電解銅粉の平均粒径は85μmのものを用いた。前述したアルミニウム−銅合金粉の平均粒径d1と電解銅粉の平均粒径d2との比d2/d1を2〜3とすることが好ましい。比d2/d1がこの範囲にあると、アルミニウムを銅に十分拡散させることができ、耐腐食性に優れる。このため、本実施形態では、アルミニウム−銅合金粉の平均粒径d1を35μm、電解銅粉の平均粒径d2を85μmとした。ただし、これに限ることなく、アルミニウム−銅合金粉末の平均粒径は20〜65μm程度のものが使用可能であり、電解銅粉の粒径は200μm以下で、平均粒径は60〜120μm程度のものが使用可能である。   In the present embodiment, the average particle diameter of the electrolytic copper powder is 85 μm. It is preferable to set ratio d2 / d1 of the average particle diameter d1 of aluminum-copper alloy powder mentioned above and the average particle diameter d2 of electrolytic copper powder to 2-3. When the ratio d2 / d1 is in this range, aluminum can be sufficiently diffused in copper, and the corrosion resistance is excellent. For this reason, in the present embodiment, the average particle diameter d1 of the aluminum-copper alloy powder is 35 μm, and the average particle diameter d2 of the electrolytic copper powder is 85 μm. However, the average particle diameter of the aluminum-copper alloy powder is not limited to this, and those of about 20 to 65 μm can be used, the particle diameter of the electrolytic copper powder is 200 μm or less, and the average particle diameter is about 60 to 120 μm Are available.

[燐合金粉末]
燐合金粉末は、7〜10重量%燐−銅合金粉末を用いた。燐は、焼結時の固液相間の濡れ性を高める効果がある。燐の配合量は、0.1〜0.6重量%、具体的には0.1〜0.4重量%が好ましい。0.1重量%未満では固液相間の焼結促進効果が乏しく、一方、06重量%、好ましい値とされる0.4重量%を超えると、焼結が進み過ぎてアルミニウムが偏析しγ相の析出が増え焼結体が脆くなる。
[Phosphorus alloy powder]
As a phosphorus alloy powder, 7 to 10% by weight of phosphorus-copper alloy powder was used. Phosphorus has the effect of enhancing the wettability between solid and liquid phases at the time of sintering. The blending amount of phosphorus is preferably 0.1 to 0.6% by weight, specifically 0.1 to 0.4% by weight. If it is less than 0.1% by weight, the sintering promoting effect between the solid and liquid phases is poor, while if it exceeds 06% by weight, which is a preferable value, 0.4% by weight, sintering proceeds too much and aluminum segregates. The precipitation of the phase increases and the sintered body becomes brittle.

[黒鉛粉末]
黒鉛は、主として素地に分散分布する気孔内に遊離黒鉛として存在し、焼結軸受に優れた潤滑性を付与し、耐摩耗性の向上に寄与する。黒鉛の配合量は3〜10重量%が好ましく、6〜10重量%がより好ましい。6重量%未満では、高温ドライ環境下となるEGRバルブ用焼結軸受として、黒鉛添加による潤滑性、耐摩耗性の向上効果が得られ難くなる。3重量%未満では、高温ドライ環境下となるEGRバルブ用焼結軸受として、黒鉛添加による潤滑性、耐摩耗性の向上効果が得られない。一方、10重量%を超えると、材料強度が低下し、アルミニウムの銅への拡散を阻害するので好ましくない。一般的に黒鉛を4重量%以上添加すると成形することができないが、造粒黒鉛を使用することで成形を可能にした。本実施形態では、黒鉛粉末は、天然黒鉛、又は人造黒鉛の微粉を樹脂バインダで造粒後粉砕し、粒径145メッシュ以下の黒鉛粉末を用いた。
[Graphite powder]
Graphite exists as free graphite mainly in pores dispersed and distributed in a matrix, imparts excellent lubricity to a sintered bearing, and contributes to the improvement of wear resistance. 3 to 10 weight% is preferable and, as for the compounding quantity of graphite, 6 to 10 weight% is more preferable. If the amount is less than 6% by weight, it is difficult to obtain the effect of improving the lubricity and wear resistance by the addition of graphite as a sintered bearing for an EGR valve, which is in a high temperature dry environment. If it is less than 3% by weight, the effect of improving the lubricity and the abrasion resistance by the addition of graphite can not be obtained as a sintered bearing for an EGR valve which is in a high temperature dry environment. On the other hand, if it exceeds 10% by weight, the material strength is lowered and the diffusion of aluminum into copper is not preferable. Generally, when 4% by weight or more of graphite is added, it can not be molded, but by using granulated graphite, molding was made possible. In the present embodiment, as the graphite powder, fine powder of natural graphite or artificial graphite is granulated with a resin binder and then crushed, and graphite powder having a particle size of 145 mesh or less is used.

[フッ化アルミニウムおよびフッ化カルシウム]
アルミニウム−銅合金粉末は、焼結時にその表面に生成する酸化アルミニウムの皮膜が焼結を著しく阻害するが、焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムは、アルミニウム−銅合金粉末の焼結温度である850〜900℃で溶融しながら徐々に蒸発し、アルミニウム−銅合金粉末の表面を保護して酸化アルミニウムの生成を抑制することにより、焼結を促進しアルミニウムの拡散を増進させる。フッ化アルミニウムおよびフッ化カルシウムは、焼結時に蒸発、揮散するので、焼結軸受の完成品には殆ど残らない。
[Aluminum fluoride and calcium fluoride]
In aluminum-copper alloy powder, a film of aluminum oxide formed on the surface at the time of sintering significantly inhibits sintering, but aluminum fluoride and calcium fluoride as a sintering aid cause sintering of aluminum-copper alloy powder. Sintering is promoted and diffusion of aluminum is promoted by gradually evaporating while melting at a sintering temperature of 850 to 900 ° C. to protect the surface of the aluminum-copper alloy powder to suppress the formation of aluminum oxide. Aluminum fluoride and calcium fluoride evaporate and volatilize during sintering, so they hardly remain in the finished product of the sintered bearing.

焼結助剤としてのフッ化アルミニウムおよびフッ化カルシウムは、アルミニウム、燐、黒鉛、残部の主成分を銅とする原料粉末および不可避不純物の合計100重量%に対して、合計で0.05〜0.2重量%程度で添加することが好ましい。0.05重量%未満では、焼結助剤としての効果が不十分となり、緻密で適宜の強度を有する焼結体が得られない。一方、0.2重量%を超えると、それ以上添加しても焼結助剤としての効果は頭打ちとなり、コスト的な観点から0.2重量%以下に止めることが好ましい。   Aluminum fluoride and calcium fluoride as sintering aids are 0.05 to 0 in total with respect to a total of 100% by weight of aluminum powder, phosphorus, graphite, raw material powder containing copper as the main component of the balance and unavoidable impurities It is preferable to add at about 2% by weight. When the amount is less than 0.05% by weight, the effect as a sintering aid is insufficient, and a compact sintered body having appropriate strength can not be obtained. On the other hand, if it exceeds 0.2% by weight, the effect as a sintering aid will be plateaued even if it is added more than 0.2% by weight from the viewpoint of cost.

本実施形態のEGRバルブ用焼結軸受および後述する製造方法では、アルミニウム含有量が9〜12重量%、燐が0.1〜0.4重量%、黒鉛が6〜10重量%で、残部の主成分が銅となるような割合で、アルミニウム−銅合金粉末、電解銅粉末、燐合金粉末および黒鉛粉末を混合して原料粉末とした。この合計100重量%に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量%、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.1〜1重量%添加した。   In the sintered bearing for an EGR valve of the present embodiment and the manufacturing method to be described later, the aluminum content is 9 to 12% by weight, the phosphorus is 0.1 to 0.4% by weight, the graphite is 6 to 10% by weight, Aluminum-copper alloy powder, electrolytic copper powder, phosphorus alloy powder and graphite powder were mixed at a ratio such that the main component was copper, to obtain a raw material powder. A total of 0.05 to 0.2% by weight of aluminum fluoride and calcium fluoride as a sintering aid with respect to 100% by weight of this total, zinc stearate, calcium stearate and the like to facilitate formability 0.1 to 1% by weight of the lubricant was added.

詳しく説明すると、例えば、本実施形態のEGRバルブ用焼結軸受および後述する製造方法では、アルミニウム含有量が9〜12重量部、燐が0.1〜0.4重量部、黒鉛が6〜10重量部で、残部の主成分が銅となるような割合で、アルミニウム−銅合金粉末、電解銅粉末、燐合金粉末および黒鉛粉末を混合して原料粉末とした。この合計100重量部に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量部、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.1〜1重量部添加した。   Specifically, for example, in the sintered bearing for an EGR valve according to the present embodiment and the manufacturing method described later, the aluminum content is 9 to 12 parts by weight, the phosphorus is 0.1 to 0.4 parts by weight, and the graphite is 6 to 10 The aluminum-copper alloy powder, the electrolytic copper powder, the phosphorus alloy powder and the graphite powder are mixed to give a raw material powder in a proportion such that the main component of the remaining part is copper in parts by weight. A total of 0.05 to 0.2 parts by weight of aluminum fluoride and calcium fluoride as a sintering aid with respect to 100 parts by weight of the total, zinc stearate, calcium stearate and the like to facilitate formability 0.1 to 1 part by weight of the lubricant was added.

燐の配合量は、0.1〜0.6重量部、具体的には0.1〜0.4重量部が好ましい。0.1重量部未満では固液相間の焼結促進効果が乏しく、一方、0.6重量部、好ましい値とされる0.4重量部を超えると、焼結が進み過ぎてアルミニウムが偏析しγ相の析出が増え焼結体が脆くなる。   The blending amount of phosphorus is preferably 0.1 to 0.6 parts by weight, specifically 0.1 to 0.4 parts by weight. If the amount is less than 0.1 part by weight, the sintering promoting effect between the solid and liquid phases is poor, while if it exceeds 0.6 part by weight, the preferable value is 0.4 parts by weight, the sintering progresses too much and aluminum segregates The precipitation of the γ phase increases and the sintered body becomes brittle.

黒鉛の配合量は3〜10重量部が好ましく、6〜10重量部がより好ましい。6重量部未満では、高温ドライ環境下となるEGRバルブ用焼結軸受として、黒鉛添加による潤滑性、耐摩耗性の向上効果が得られ難くなる。3重量部未満では、高温ドライ環境下となるEGRバルブ用焼結軸受として、黒鉛添加による潤滑性、耐摩耗性の向上効果が得られない。一方、10重量部を超えると、材料強度が低下し、アルミニウムの銅への拡散を阻害するので好ましくない。一般的に黒鉛を4重量部以上添加すると成形することができないが、造粒黒鉛を使用することで成形を可能にした。   The blending amount of graphite is preferably 3 to 10 parts by weight, and more preferably 6 to 10 parts by weight. If the amount is less than 6 parts by weight, it is difficult to obtain the effect of improving the lubricity and the abrasion resistance by the addition of graphite as a sintered bearing for an EGR valve which is in a high temperature dry environment. If the amount is less than 3 parts by weight, the effect of improving the lubricity and the wear resistance by the addition of graphite can not be obtained as a sintered bearing for an EGR valve which is in a high temperature dry environment. On the other hand, if it exceeds 10 parts by weight, the strength of the material is lowered, and the diffusion of aluminum into copper is not preferable. Generally, when 4 parts by weight or more of graphite is added, it can not be molded, but by using granulated graphite, molding was made possible.

焼結軸受1は、後述する製造方法において、焼結後に軸受の外径面1bと内径側の軸受面1aの両方がサイジング加工されている。そのため、内径、外径は矯正させ精度向上する。また、内径面の面粗度が良くなり摺動性が向上する。   In the sintered bearing 1, in the manufacturing method described later, both the outer diameter surface 1 b of the bearing and the bearing surface 1 a on the inner diameter side are subjected to sizing after sintering. Therefore, the inner diameter and the outer diameter are corrected to improve the accuracy. In addition, the surface roughness of the inner diameter surface is improved, and the slidability is improved.

図2に焼結軸受1の表層の圧縮層をハッチングで示す。ハッチングは、軸受1の半径方向の上側半分にだけに付して、下側半分は図示を省略する。焼結軸受1の表層は圧縮層を有する。外径面1b側の表層の圧縮層Poの密度比αoおよび軸受面1a側の表層の圧縮層Pbの密度比αbは、いずれも内部の密度比αiより高く、密度比αo、αbのいずれもが80%≦αoおよびαb≦95%の範囲に設定されている。密度比αoおよびαbが80%未満では軸受強度が不十分となり、一方、95%を超えると矯正による残留応力が大きくなり、高温で応力開放され歪が生じる可能性があるため好ましくない。   The compression layer of the surface layer of the sintered bearing 1 is shown by hatching in FIG. Hatching is applied only to the upper half of the bearing 1 in the radial direction, and the lower half is not shown. The surface layer of the sintered bearing 1 has a compression layer. The density ratio αo of the compression layer Po of the surface layer on the outer diameter surface 1b side and the density ratio αb of the compression layer Pb of the surface layer on the bearing surface 1a are both higher than the density ratio αi inside, and both of the density ratios αo and αb Is set in the range of 80% ≦ αo and αb ≦ 95%. If the density ratios αo and αb are less than 80%, the bearing strength is insufficient, while if it exceeds 95%, the residual stress due to the correction becomes large and the stress may be released at high temperature, which is not preferable.

そして、外径面1b側の表層の圧縮層Poの深さの平均値をTo、軸受面1a側の表層の圧縮層Pbの深さの平均値をTbとし、軸受面の内径寸法D1との比をそれぞれTo/D1およびTb/D1とすると、1/100≦To/D1およびTb/D1≦1/15に設定することが好ましい。ここで、密度比αは次式で表される。
α(%)=(ρ1/ρ0)×100
ただし、ρ1:多孔質体の密度、ρ0:その多孔質体に細孔がないと仮定した場合の密度
To/D1およびTb/D1が1/100未満では気孔のつぶれが不十分となり、一方、1/15を超えると気孔がつぶれ過ぎて好ましくない。
The average value of the depth of the compressed layer Po of the surface layer on the outer diameter surface 1b side is To, and the average of the depth of the compressed layer Pb of the surface layer on the bearing surface 1a is Tb. Assuming that the ratios are To / D1 and Tb / D1, respectively, it is preferable to set 1/100 ≦ To / D1 and Tb / D1 ≦ 1/15. Here, the density ratio α is expressed by the following equation.
α (%) = (ρ1 / ρ0) × 100
However, if ρ1: density of porous body, ρ0: density To / D1 and Tb / D1 assuming that there is no pore in the porous body is less than 1/100, pore crush is insufficient, while If it exceeds 1/15, the pores will be crushed too much, which is not preferable.

次に、本実施形態に至るまでの検証結果を図3〜7に基づいて説明する。図3〜7における従来の青銅系標準品および本実施形態に係る試作品1〜3の材料配合仕様を表1に示す。

Figure 2019112719
Next, verification results up to the present embodiment will be described based on FIGS. Material combination specifications of the conventional bronze-based standard products in FIGS. 3 to 7 and the prototypes 1 to 3 according to the present embodiment are shown in Table 1.
Figure 2019112719

図3および図4に青銅系標準品と試作品のトルク試験の結果を示す。図3はトルク試験(1)の結果を示し、図4はトルク試験(2)の結果を示す。トルク試験(1)、(2)は、いずれも無給油無含油(ドライ)の状態で行った。雰囲気温度は常温とした。ドライ環境で、EGRバルブの高温環境(350℃程度)における摺動特性と常温における摺動特性の傾向は同様とみなされる。また、ドライ環境での使用条件では、アルミニウム青銅焼結軸受として通常のアルミニウム配合量(9〜11重量%)が適用できることに着目し、試作品1〜3ではアルミニウムの配合量を中央値の10重量%に固定して、黒鉛の添加量を変化させて、各試験を行った。   Figures 3 and 4 show the results of torque tests of bronze-based standard products and prototypes. FIG. 3 shows the result of the torque test (1), and FIG. 4 shows the result of the torque test (2). The torque tests (1) and (2) were all performed in the state of no oil and no oil (dry). The ambient temperature was normal temperature. In a dry environment, the tendency of the sliding characteristics of the EGR valve in a high temperature environment (about 350 ° C.) and the sliding characteristics at normal temperature are considered to be the same. In addition, focusing on the fact that the usual aluminum blending amount (9 to 11 wt%) can be applied as an aluminum bronze sintered bearing under the use conditions in a dry environment, the trial amount 1 to 3 has a median aluminum blending amount of 10 Each test was carried out by fixing the weight percentage and changing the addition amount of graphite.

[トルク試験(1)]
回転数を固定し、5分毎に荷重を追加した。具体的な試験条件は次のとおりである。

Figure 2019112719
図3に示すトルク試験結果より、ドライ環境下において、試作品1〜3は、いずれも青銅系標準品よりも摩擦係数が低く、摺動性に優れている。また、黒鉛の添加量を増やすほど摩擦係数が低くなる傾向があることが分かった。 [Torque test (1)]
The speed was fixed and a load was added every 5 minutes. The specific test conditions are as follows.
Figure 2019112719
From the torque test results shown in FIG. 3, in the dry environment, all of the prototypes 1 to 3 have a lower coefficient of friction than the bronze-based standard product, and are excellent in slidability. It was also found that the coefficient of friction tends to be lower as the amount of addition of graphite is increased.

[トルク試験(2)]
トルク試験(2)は、前述したトルク試験(1)で荷重60Nを負荷した後、その荷重および回転数のままで約90分トルク試験を継続した。トルク試験(1)と同様、図4に示すように、試作品1〜3は、いずれも青銅系標準品よりも摩擦係数が低く、摺動性に優れている。特に、黒鉛の添加量を8重量%以上とした試作品1および試作品2は、試験時間が経過しても摩擦係数の上昇が抑えられていることが分かった。
[Torque test (2)]
In the torque test (2), after applying a load of 60 N in the above-mentioned torque test (1), the torque test was continued for about 90 minutes with the load and the number of revolutions remaining. Similar to the torque test (1), as shown in FIG. 4, all of the prototypes 1 to 3 have a lower coefficient of friction than the standard bronze-based product, and are excellent in slidability. In particular, it was found that in the prototypes 1 and 2 in which the additive amount of graphite was 8% by weight or more, the increase in the coefficient of friction was suppressed even after the test time elapsed.

[ブロックオンリング試験]
青銅系標準品および試作品1〜3の材料配合仕様でブロック状の試験片を製作し、ブロックオンリング試験機を用いて、耐摩耗性を評価した。
<試験条件>
・試験機:ブロックオンリング試験機〔(株)NTN製〕
・荷重:14.7N
・回転速度:430rpm(54.0m/min)
・試験時間:60min
・潤滑方法:無給油無含油(ドライ)
・相手材:材質:SUS420J2 ずぶ焼入れ(硬度HV550〜650)、回転径(外径)と幅:外径φ40mm×幅4mm、表面粗さ:0.02μmRa狙い
[Block on ring test]
Test pieces in the form of blocks were prepared using material combination specifications of bronze-based standard products and prototypes 1 to 3, and the wear resistance was evaluated using a block-on-ring tester.
<Test conditions>
Test machine: Block on ring test machine (manufactured by NTN Co., Ltd.)
・ Load: 14.7N
・ Rotational speed: 430 rpm (54.0 m / min)
Test time: 60 min
· Lubrication method: No oil, no oil (dry)
-Counterpart material: Material: SUS420J2 Soaking (hardness HV 550-650), rotational diameter (outer diameter) and width: Outer diameter 40 mm × width 4 mm, surface roughness: 0.02 μm Ra

ブロックオンリング試験の結果を図5に示す。この試験も雰囲気温度は常温としたが、EGRバルブの高温ドライ環境における耐摩耗性と傾向は同様とみなされる。試験結果より、試作品1〜3は、いずれも青銅系標準品よりも摩耗が少なく、耐摩耗性に優れていることが分かった。黒鉛の添加量を8重量%とした試作品2が、最も耐摩耗性に優れている。黒鉛添加量を10重量%とした試作品3の摩耗量が多くなったが、これは、黒鉛添加量が多いために、材料強度が若干低下し、削れ易かったものと思われる。この試験結果より、EGRバルブ用軸受として使用可能な黒鉛の添加量は3〜10重量%、好ましくは6〜10重量%であることが分かった。   The results of the block on ring test are shown in FIG. In this test also, the ambient temperature is normal temperature, but the wear resistance and tendency in the high temperature dry environment of the EGR valve are considered to be the same. From the test results, it is found that all of the prototypes 1 to 3 have less wear than the bronze-based standard and are excellent in wear resistance. The prototype 2 in which the additive amount of graphite is 8% by weight is the most excellent in wear resistance. Although the wear amount of the trial product 3 in which the amount of added graphite was 10% by weight was increased, it seems that the strength of the material was slightly decreased and it was easy to scrape because the amount of added graphite was large. From this test result, it was found that the additive amount of graphite usable as the bearing for the EGR valve is 3 to 10% by weight, preferably 6 to 10% by weight.

[有機酸腐食試験]
青銅系標準品および試作品1〜3の材料配合仕様で試験片を製作し、有機酸腐食試験を行った。評価方法は、各試験片を腐食溶液に浸漬し、60℃の高温槽で所定の時間放置する。放置後、各試験片を溶液から取り出し1時間乾燥させる。乾燥後、試験片の重量を測定し、測定値から算出した重量変化率を比較した。重量変化率の比較は、試験片5個の重量変化率の平均値と共に最大値、最小値も比較した。具体的な試験条件は次のとおりである。
<試験条件>
・試験片サイズ:内径φ6mm×外径φ12mm×幅6mm
・試験片個数:5個
・腐食溶液:蟻酸1%+酢酸1%の水溶液
・雰囲気温度:60℃
[Organic acid corrosion test]
Test pieces were manufactured with material combination specifications of bronze-based standard product and prototype products 1 to 3 and an organic acid corrosion test was performed. The evaluation method is to immerse each test piece in a corrosive solution and leave it in a 60 ° C. high temperature bath for a predetermined time. After standing, each test piece is removed from the solution and allowed to dry for 1 hour. After drying, the weight of the test piece was measured, and the weight change rates calculated from the measured values were compared. In the comparison of weight change rates, the maximum value and the minimum value were also compared with the average value of the weight change rates of the five test pieces. The specific test conditions are as follows.
<Test conditions>
Test specimen size: Inner diameter φ 6 mm × outer diameter φ 12 mm × width 6 mm
· Number of test pieces: 5 · Corrosion solution: 1% aqueous solution of formic acid + 1% acetic acid · Ambient temperature: 60 ° C

図6に24時間放置後の重量変化率を示す。試作品1〜3は、いずれも青銅系標準品よりの重量変化率が少なかった。特に黒鉛の添加量を10重量%とした試作品3が、最も重量変化率が少なかった。   FIG. 6 shows the weight change rate after leaving for 24 hours. The prototypes 1 to 3 all had a smaller weight change rate than the bronze standard. In particular, Prototype 3 in which the additive amount of graphite was 10% by weight had the smallest weight change rate.

図7に72時間放置後の重量変化率を示す。試作品1〜3は、いずれも青銅系標準品よりの重量変化率が少ない。黒鉛の添加量を10重量%とした試作品3が、最も重量変化率が少なく、24時間放置後の結果と比べるとほとんど変化がなかった。   FIG. 7 shows the weight change rate after leaving for 72 hours. All of prototypes 1 to 3 have a smaller weight change rate than the bronze-based standard product. The prototype 3 in which the additive amount of graphite was 10% by weight had the smallest weight change rate, and there was almost no change as compared with the result after leaving for 24 hours.

図3〜7に示す試験結果より、高温ドライ環境下で使用されるEGRバルブ用焼結軸受として黒鉛の添加量は3〜10重量%、好ましくは6〜10重量%が使用可能な範囲であることを確認した。また、黒鉛の添加量が10重量%を超えると、アルミニウムの銅への拡散が阻害されるので、焼結面でも好ましくない。   From the test results shown in FIGS. 3 to 7, it is possible to use 3 to 10% by weight, preferably 6 to 10% by weight, of the additive amount of graphite as a sintered bearing for an EGR valve used in a high temperature dry environment It was confirmed. Further, if the addition amount of graphite exceeds 10% by weight, the diffusion of aluminum to copper is inhibited, which is not preferable also in the sintering surface.

前述したように、アルミニウムの配合量は9〜11重量%に設定したが、EGRバルブ用焼結軸受として、図3〜7の試験結果と共に、黒鉛の増量によるアルミニウムの銅への拡散が阻害されることを総合的に考慮して、アルミニウムの配合量の上限は12重量%が好ましいことが分かった。   As described above, although the compounding amount of aluminum was set to 9 to 11% by weight, as the sintered bearing for an EGR valve, the diffusion of aluminum to copper due to the increase of the graphite is inhibited with the test results of FIGS. In consideration of the above, it was found that the upper limit of the blending amount of aluminum is preferably 12% by weight.

表3に第1の実施形態におけるEGRバルブ用焼結軸受の硬さを測定した結果を示す。表3に示す硬さの値は、試験荷重25gにおけるビッカース硬さ(Hv:Vickers hardness)に基づいて評価した値である。以下、硬さの値については、ビッカース硬さ(Hv)に基づく値として説明する。また、比較として銅系焼結軸受の硬さを比較例1として併記した。

Figure 2019112719
The result of having measured the hardness of the sintering bearing for EGR valves in 1st Embodiment in Table 3 is shown. The hardness values shown in Table 3 are values evaluated based on Vickers hardness (Hv) at a test load of 25 g. Hereinafter, the hardness value will be described as a value based on the Vickers hardness (Hv). In addition, the hardness of the copper-based sintered bearing is also described as Comparative Example 1 as a comparison.
Figure 2019112719

表3の如く、銅系焼結軸受の硬さが略70〜80であるのに対し、第1の実施形態におけるEGRバルブ用焼結軸受の硬さは、例えば略120〜220であり、この結果から、第1の実施形態におけるEGRバルブ用焼結軸受は、銅系焼結軸受よりも耐摩耗性に優れた焼結軸受であると判定できる。これは、柔らかい相であるα相の硬さが略120〜140であり、硬い相であるγ相の硬さが略200〜220であり、第1の実施形態におけるEGRバルブ用焼結軸受のいずれの相の硬さも、銅系焼結軸受の硬さより硬いことによる。   As shown in Table 3, while the hardness of the copper-based sintered bearing is approximately 70 to 80, the hardness of the sintered bearing for an EGR valve in the first embodiment is approximately 120 to 220, for example. From the results, it can be determined that the sintered bearing for an EGR valve in the first embodiment is a sintered bearing having better wear resistance than a copper-based sintered bearing. This is because the hardness of the soft phase α phase is approximately 120 to 140, and the hardness of the hard phase γ phase is approximately 200 to 220, and the sintered bearing for the EGR valve in the first embodiment The hardness of either phase is also harder than the hardness of the copper-based sintered bearing.

次に、EGRバルブ用焼結軸受の製造方法についての第1の実施形態を説明する。図8に示すような原料粉末準備工程S1、混合工程S2、成形工程S3、焼結工程S4、サイジング工程S5を経て製造される。   Next, a first embodiment of a method of manufacturing a sintered bearing for an EGR valve will be described. It manufactures through the raw material powder preparation process S1 as shown in FIG. 8, the mixing process S2, the shaping | molding process S3, the sintering process S4, and the sizing process S5.

[原料粉末準備工程S1]
原料粉末準備工程S1では、焼結軸受1の原料粉末が準備・生成される。原料粉末は、40〜60重量%アルミニウム−銅合金粉末を18〜24重量%、7〜10重量%燐−銅合金粉末を2〜4重量%、黒鉛粉末を6〜10重量%、電解銅粉末を残重量%とする合計100重量%に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量%、黒鉛粉末成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.1〜1重量%添加した。潤滑剤を添加することにより、後述する圧粉体をスムーズに離型することができ、離型に伴う圧粉体の形状の崩れを回避することができる。
[Raw material powder preparation step S1]
In the raw material powder preparation step S1, the raw material powder of the sintered bearing 1 is prepared and generated. Raw material powder: 18 to 24% by weight of 40 to 60% by weight of aluminum-copper alloy powder, 2 to 4% by weight of 7 to 10% by weight of phosphorus-copper alloy powder, 6 to 10% by weight of graphite powder, electrolytic copper powder The total amount of aluminum fluoride and calcium fluoride as a sintering aid is 0.05 to 0.2% by weight to facilitate the formability of the graphite powder, with respect to the total 100% by weight. A lubricant such as zinc stearate or calcium stearate was added in an amount of 0.1 to 1% by weight. By adding a lubricant, it is possible to smoothly release the green compact described later, and it is possible to avoid the collapse of the shape of the green compact caused by the release.

例えば、40〜60重量%アルミニウム−銅合金粉末を18〜24重量%、7〜10重量%燐−銅合金粉末を2〜4重量%、黒鉛粉末を6〜10重量%、電解銅粉末を残重量%とする合計100重量%に対し、アルミニウムの含有量が、例えば8.5重量%以上10重量%以下、具体的には9重量%以上9.5重量%以下となるようにする。   For example, 18 to 24 wt% of 40 to 60 wt% aluminum-copper alloy powder, 2 to 4 wt% of 7 to 10 wt% phosphorous-copper alloy powder, 6 to 10 wt% of graphite powder, and remaining electrolytic copper powder The content of aluminum is, for example, 8.5% by weight or more and 10% by weight or less, and specifically 9% by weight or more and 9.5% by weight or less, based on 100% by weight of the total weight%.

例えば、原料粉末は、40〜60重量%アルミニウム−銅合金粉末を18〜24重量部、7〜10重量%燐−銅合金粉末を2〜4重量部、黒鉛粉末を3〜10重量部、好ましくは6〜10重量部、電解銅粉末を残重量部とする合計100重量部に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量部、黒鉛粉末成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.1〜1重量部添加したものが使用可能である。   For example, the raw material powder is 18 to 24 parts by weight of 40 to 60% by weight of aluminum-copper alloy powder, 2 to 4 parts by weight of 7 to 10% by weight of phosphorus-copper alloy powder, and 3 to 10 parts by weight of graphite powder. Is 6 to 10 parts by weight, and 0.05 to 0.2 parts by weight in total of aluminum fluoride and calcium fluoride as a sintering aid with respect to a total of 100 parts by weight containing the electrolytic copper powder as the remaining part by weight, In order to make the graphite powder formability easy, 0.1 to 1 part by weight of a lubricant such as zinc stearate or calcium stearate can be used.

例えば、40〜60重量%アルミニウム−銅合金粉末を18〜24重量部、7〜10重量%燐−銅合金粉末を2〜4重量部、黒鉛粉末を6〜10重量部、電解銅粉末を残重量部とする合計100重量部に対し、アルミニウムの含有量が、例えば8.5重量部以上10重量部以下、具体的には9重量部以上9.5重量部以下となるようにする。   For example, 18 to 24 parts by weight of 40 to 60% by weight of aluminum-copper alloy powder, 2 to 4 parts by weight of 7 to 10% by weight of phosphorus-copper alloy powder, 6 to 10 parts by weight of graphite powder, and electrolytic copper powder The content of aluminum is, for example, 8.5 parts by weight or more and 10 parts by weight or less, specifically 9 parts by weight or more and 9.5 parts by weight or less based on 100 parts by weight in total as parts by weight.

[混合工程S2]
上記の原料粉末Mを、例えば、図9に示すV型混合機10の缶体11に投入し、缶体11を回転させて均一に混合する。
[Mixing step S2]
The raw material powder M described above is introduced into, for example, the can 11 of the V-type mixer 10 shown in FIG. 9, and the can 11 is rotated to be uniformly mixed.

[成形工程S3]
成形工程S3では、上記の原料粉末を圧粉することにより、焼結軸受1の形状をなした圧粉体を形成する。圧粉体は、焼結温度以上で加熱することにより形成される焼結体の密度比αが70%以上で80%以下となるように圧縮成形される。
[Forming step S3]
In the forming step S3, a green compact having the shape of the sintered bearing 1 is formed by compacting the above-mentioned raw material powder. The green compact is compression molded so that the density ratio α of the sintered body formed by heating at a sintering temperature or higher is 70% or more and 80% or less.

具体的には、例えばサーボモータを駆動源としたCNCプレス機に圧粉体形状に倣ったキャビティを画成してなる成形金型をセットし、キャビティ内に充填した上記の原料粉末を200〜700MPaの加圧力で圧縮することにより圧粉体を成形する。圧粉体の成形時において、成形金型は70℃以上に加温してもよい。   Specifically, for example, a molding die having a cavity according to a green compact shape is set in a CNC press using a servomotor as a drive source, and the above-mentioned raw material powder filled in the cavity is 200 to 200 A green compact is formed by compression at a pressure of 700 MPa. During molding of the green compact, the molding die may be heated to 70 ° C. or higher.

本実施形態のEGRバルブ用焼結軸受1の製造方法では、アルミニウム源として、アルミニウム−銅合金粉末を用いることにより、流動性に起因する成形性の低下による圧粉体の強度不足の問題が改善され、比重の小さいアルミニウム単体粒子の飛散に伴う取り扱い上の問題はない。また、生産効率がよく多量生産に好適である。   In the method of manufacturing the sintered bearing 1 for an EGR valve according to the present embodiment, the problem of insufficient strength of the green compact due to the decrease in formability due to the flowability is improved by using the aluminum-copper alloy powder as the aluminum source. There are no handling problems associated with the scattering of single particles of aluminum having a low specific gravity. In addition, the production efficiency is good and suitable for mass production.

[焼結工程S4]
焼結工程S4では、圧粉体を焼結温度で加熱し、隣接する原料粉末同士を焼結結合させることによって焼結体を形成する。図10に示すメッシュベルト式連続炉15を使用し、メッシュベルト16に圧粉体1’を多量に投入し、焼結体を形成する。これにより、安定した品質、製造方法を実現することができる。
[Sintering step S4]
In the sintering step S4, the green compact is heated at a sintering temperature to sinter and bond adjacent raw material powders to form a sintered body. Using a mesh belt type continuous furnace 15 shown in FIG. 10, a large amount of green compact 1 ′ is introduced into the mesh belt 16 to form a sintered body. Thus, stable quality and manufacturing method can be realized.

焼結工程において重要なことは、銅にアルミニウムを十分拡散させ耐腐食性を向上させることと、アルミニウム青銅組織をα相にすることで、耐腐食性と軸受性能を向上させることである。γ相になると硬くなり、耐摩耗性には優れるが、耐有機酸腐食性は低下する。そのため、できる限りγ相の析出は抑えるようにアルミニウム量を減らすことが必要であることが判明した。   What is important in the sintering step is to sufficiently diffuse aluminum into copper to improve corrosion resistance, and to improve the corrosion resistance and bearing performance by making the aluminum bronze structure into an α phase. When it becomes the γ phase, it becomes hard and has excellent abrasion resistance, but the organic acid corrosion resistance decreases. Therefore, it was found that it is necessary to reduce the amount of aluminum so as to suppress the precipitation of the γ phase as much as possible.

さらに、アルミニウム組織は、γ相とα相との比γ相/α相を、0.10≦γ相/α相≦0.25とすることが好ましいことが判明した。γ相/α相の比が0.10未満では耐摩耗性が低下し好ましくなく、一方、0.25を超えると耐有機酸腐食性が低下するので、好ましくない。   Furthermore, it has been found that the aluminum structure preferably has a ratio of γ phase to α phase of γ phase / α phase of 0.10 ≦ γ phase / α phase ≦ 0.25. If the ratio of the γ phase / α phase is less than 0.10, the abrasion resistance is unfavorably reduced, while if it exceeds 0.25, the organic acid corrosion resistance is unfavorably reduced.

上記を満足する焼結条件として、焼結温度は900〜950℃が好ましく、さらに、900〜920℃(例えば、920℃)が好ましい。また、雰囲気ガスは、水素ガス、窒素ガスあるいはこれらの混合ガスとし、焼結時間は、長くした方が耐腐食性に良く、EGRバルブ用焼結軸受では20〜60分(例えば、30分)が好ましい。   As sintering conditions satisfying the above, the sintering temperature is preferably 900 to 950 ° C., and more preferably 900 to 920 ° C. (eg, 920 ° C.). The atmosphere gas is hydrogen gas, nitrogen gas or a mixed gas of these, and the longer the sintering time, the better the corrosion resistance, and the sintered bearing for an EGR valve for 20 to 60 minutes (for example, 30 minutes) Is preferred.

アルミニウム−銅合金粉末は、共晶温度548℃以上になると様々な液相が発生する。液相が発生すると膨張し、発生した液相により焼結ネックが形成され、緻密化に至り、寸法が収縮していく。本実施形態では、メッシュベルト式連続炉15で焼結することにより、焼結体の表面が酸化され、焼結が阻害されることにより緻密化に至らず、寸法が膨張したままとなる。ただし、焼結体の内部は、酸化されず焼結されるため、焼結体の強度は十分確保することができる。メッシュベルト式連続炉15を使用したので、圧粉体1’の投入から取出しまで焼結時間を短く多量生産でき、コスト低減を図ることができる。また、焼結軸受の機能面では、強度は十分確保することができる。   Various liquid phases are generated in the aluminum-copper alloy powder when the eutectic temperature is 548 ° C. or higher. When the liquid phase is generated, it expands, and the generated liquid phase forms a sintering neck, which leads to densification and shrinks in size. In the present embodiment, by sintering in the mesh belt type continuous furnace 15, the surface of the sintered body is oxidized and the sintering is inhibited, so densification is not achieved, and the dimension remains expanded. However, since the inside of the sintered body is sintered without being oxidized, the strength of the sintered body can be sufficiently secured. Since the mesh belt type continuous furnace 15 is used, the sintering time from input to extraction of the green compact 1 'can be short and mass-produced, and cost reduction can be achieved. In addition, in terms of the function of the sintered bearing, sufficient strength can be secured.

上記の焼結工程においては、添加された燐合金粉末が効果を発揮することにより、良質の焼結体を形成することができる。燐により、焼結時の固液相間の濡れ性を高め、良好な焼結体が得られる。燐の配合量としては、0.1〜0.6重量%、具体的には0.1〜0.4重量%が好ましい。0.1重量%未満では固液相間の焼結促進効果が乏しく、一方、0.6重量%、好ましい値とされる0.4重量%を超えると、得られた焼結体が偏析し脆くなる。   In the above-mentioned sintering process, a sintered body of good quality can be formed by the effect of the added phosphorus alloy powder. Phosphorus improves the wettability between solid and liquid phases during sintering, and a good sintered body can be obtained. As a compounding quantity of phosphorus, 0.1 to 0.6 weight%, specifically 0.1 to 0.4 weight% is preferable. If it is less than 0.1% by weight, the effect of promoting sintering between solid and liquid phases is poor, while if it exceeds 0.6% by weight, which is a preferable value, 0.4% by weight, the obtained sintered body is segregated. It becomes brittle.

さらに、黒鉛は、主として素地に分散分布する気孔内に遊離黒鉛として存在し、焼結軸受に優れた潤滑性を付与し、耐摩耗性の向上に寄与する。黒鉛の配合量は3〜10重量%が好ましく、6〜10重量%がより好ましい。6重量%未満では、高温ドライ環境下となるEGRバルブ用焼結軸受として、黒鉛添加による潤滑性、耐摩耗性の向上効果が得られ難くなる。3重量%未満では、高温ドライ環境下となるEGRバルブ用焼結軸受として、黒鉛添加による潤滑性、耐摩耗性の向上効果が得られない。一方、10重量%を超えると、材料強度が低下し、アルミニウムの銅への拡散を阻害するので好ましくない。   Furthermore, graphite exists as free graphite mainly in pores dispersed and distributed in a matrix, imparts excellent lubricity to a sintered bearing, and contributes to the improvement of wear resistance. 3 to 10 weight% is preferable and, as for the compounding quantity of graphite, 6 to 10 weight% is more preferable. If the amount is less than 6% by weight, it is difficult to obtain the effect of improving the lubricity and wear resistance by the addition of graphite as a sintered bearing for an EGR valve, which is in a high temperature dry environment. If it is less than 3% by weight, the effect of improving the lubricity and the abrasion resistance by the addition of graphite can not be obtained as a sintered bearing for an EGR valve which is in a high temperature dry environment. On the other hand, if it exceeds 10% by weight, the material strength is lowered and the diffusion of aluminum into copper is not preferable.

[サイジング工程S5]
サイジング工程S5では、焼結により圧粉体と比較して膨張した焼結体を寸法整形する。図11にサイジング工程S5の詳細を示す。サイジング加工の金型は、ダイス20、上パンチ21、下パンチ22およびコア23とからなる。図11(a)に示すように、コア23と上パンチ21が上方に後退した状態で、下パンチ22上に焼結体1”をセットする。図11(b)に示すように、最初にコア23が焼結体1”の内径に入り、その後、図11(c)に示すように、上パンチ21により焼結体1”がダイス20に押し込まれ、上下パンチ21、22により圧縮される。これにより、焼結体1”の表面が寸法整形される。
[Sizing step S5]
In the sizing step S5, the expanded sintered body is dimensioned in comparison with the green compact by sintering. The detail of sizing process S5 is shown in FIG. The mold for sizing processing is composed of a die 20, an upper punch 21, a lower punch 22 and a core 23. With the core 23 and the upper punch 21 retracted upward as shown in FIG. 11 (a), the sintered body 1 '' is set on the lower punch 22. As shown in FIG. 11 (b), first, as shown in FIG. The core 23 enters the inner diameter of the sintered body 1 ′ ′, and then the sintered body 1 ′ ′ is pressed into the die 20 by the upper punch 21 and compressed by the upper and lower punches 21 and 22 as shown in FIG. Thereby, the surface of the sintered body 1 ′ ′ is dimensioned.

上記のサイジング工程の金型をダイス20、一対のパンチ21、22およびコア23から構成し、パンチ21、22とダイス20により焼結体1”の軸方向両側と外径側から圧縮することにより、焼結体1”の内径側をコア23により整形することにより、アルミニウム青銅系焼結軸受の焼結による膨張を有効利用し、焼結軸受1の寸法整形と共に所望の気孔を形成することができる。気孔内には遊離黒鉛が分布しているので、摺動性に優れる。   The mold of the above-mentioned sizing process is constituted by a die 20, a pair of punches 21 and 22 and a core 23, and compressed from both sides in the axial direction of the sintered body 1 ′ ′ and the outer diameter side by the punches 21 and 22 and the die 20 By forming the inner diameter side of the sintered body 1 ′ ′ with the core 23, the expansion due to sintering of the aluminum bronze-based sintered bearing is effectively used to form the desired pores together with the dimensioning of the sintered bearing 1. it can. Since free graphite is distributed in the pores, the slidability is excellent.

以上のような工程で製造された本実施形態のEGRバルブ用焼結軸受1は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ることができる。   The sintered bearing 1 for an EGR valve according to the present embodiment manufactured by the above-described steps is excellent in wear resistance, corrosion resistance, and slidability in a high temperature dry environment, thereby achieving compactness and cost reduction. be able to.

次に、本発明に係るEGRバルブ用焼結軸受についての第2の実施形態および製造方法についての第2の実施形態を説明する。第1の実施形態のEGRバルブ用焼結軸受および製造方法では、アルミニウム源および銅源となる原料粉末として、アルミニウム−銅合金粉末と電解銅粉を用いたが、第2の実施形態では、銅単体の電解銅粉を添加せず、アルミニウム−銅合金粉末を用いた点が第1の実施形態と異なる。   Next, a second embodiment of the sintered bearing for an EGR valve according to the present invention and a second embodiment of the manufacturing method will be described. In the sintered bearing for an EGR valve and the manufacturing method according to the first embodiment, aluminum-copper alloy powder and electrolytic copper powder are used as raw material powders to be an aluminum source and a copper source, but in the second embodiment, copper is used. This embodiment differs from the first embodiment in that aluminum-copper alloy powder is used without adding a single electrolytic copper powder.

さらに厳しい使用環境に対しては、銅単体の粉末を添加すると、銅単体が偏った部分が生じることにより、耐腐食性に問題があるという知見を得た。この知見を基に種々検討の結果、アルミニウム源および銅源となる原料粉末として、アルミニウム−銅合金粉末を用い、銅単体の粉末を添加しないという着想により、本実施形態に至った。   In a more severe use environment, it was found that when adding powder of copper alone, there is a problem of corrosion resistance due to the occurrence of a portion where copper alone is biased. As a result of various studies based on this finding, the present embodiment has been made based on the idea that aluminum-copper alloy powder is used as a raw material powder to be an aluminum source and a copper source, and no powder of copper alone is added.

本実施形態のRGR用バルブ用焼結軸受および製造方法における、アルミニウム含有量が9〜12重量%、燐が0.1〜0.4重量%、黒鉛が6〜10重量%で、残部の主成分が銅とする組成は、第1の実施形態と同じである。しかし、原料粉末は次のように異なる。すなわち、銅単体の電解銅粉を添加せずに、前記組成になるような割合で、アルミニウム−銅合金粉末、燐合金粉末および黒鉛を混合し、この合計100重量%に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量%、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.1〜1重量%添加した。   In the sintered bearing for an RGR valve and the manufacturing method of the present embodiment, the aluminum content is 9 to 12% by weight, the phosphorus is 0.1 to 0.4% by weight, the graphite is 6 to 10% by weight, and the remaining portion is mainly The composition of which the component is copper is the same as that of the first embodiment. However, the raw material powder is different as follows. That is, the aluminum-copper alloy powder, the phosphorus alloy powder and the graphite are mixed in such a ratio that the above composition can be obtained without adding electrolytic copper powder of copper alone, and the sintering aid is added to the total of 100% by weight. Added aluminum fluoride and calcium fluoride in total 0.05 to 0.2% by weight, and lubricants such as zinc stearate and calcium stearate 0.1 to 1% by weight to facilitate formability did.

例えば、RGR用バルブ用焼結軸受および製造方法における、アルミニウム含有量が9〜12重量部、燐が0.1〜0.4重量部、黒鉛が6〜10重量部で、残部の主成分が銅とする組成のものが使用可能である。この場合、例えば原料粉末は次のようになる。すなわち、銅単体の電解銅粉を添加せずに、前記組成になるような割合で、アルミニウム−銅合金粉末、燐合金粉末および黒鉛を混合し、この合計100重量部に対して、焼結助剤として、フッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量部、成形性を容易にするためにステアリン酸亜鉛、ステアリン酸カルシウム等の潤滑剤を0.1〜1重量部添加した。   For example, in a sintered bearing for an RGR valve and a manufacturing method, the aluminum content is 9 to 12 parts by weight, phosphorus is 0.1 to 0.4 parts by weight, graphite is 6 to 10 parts by weight, and the remaining main components are The composition of copper can be used. In this case, for example, the raw material powder is as follows. That is, the aluminum-copper alloy powder, the phosphorus alloy powder and the graphite are mixed in such a ratio that the above composition can be obtained without adding electrolytic copper powder of copper alone, and the sintering aid is added to the total 100 parts by weight. Add 0.05 to 0.2 parts by weight of aluminum fluoride and calcium fluoride in total, and 0.1 to 1 part by weight of a lubricant such as zinc stearate and calcium stearate to facilitate formability did.

燐の配合量に関する説明、黒鉛の配合量に関する説明については、第1の実施形態と同様であるので、ここでは重複説明を省略する。   The description of the blending amount of phosphorus and the description of the blending amount of graphite are the same as those of the first embodiment, and thus the redundant description will be omitted here.

また、本実施形態の焼結軸受1の表層の圧縮層の状態も、図2に示す第1の実施形態の焼結軸受と同様であるので、図2について前述した内容を準用し、重複説明を省略する。   In addition, since the state of the compression layer of the surface layer of the sintered bearing 1 of the present embodiment is also the same as that of the sintered bearing of the first embodiment shown in FIG. 2, the contents described above with reference to FIG. Omit.

また、図示は省略するが、耐有機酸腐食性については、第1の実施形態における焼結軸受よりも第2の実施形態における焼結軸受のほうに良好な結果が確認された。また、摩擦係数の関係については、第1の実施形態における焼結軸受の試験結果と、第2の実施形態における焼結軸受の試験結果とは、略同等の結果とされたことから、ここではその詳細な説明を省略する。   Moreover, although illustration is abbreviate | omitted, about the organic acid-corrosion resistance, a favorable result was confirmed by the sintered bearing in 2nd Embodiment rather than the sintered bearing in 1st Embodiment. Further, with regard to the relationship of the coefficient of friction, the test results of the sintered bearing in the first embodiment and the test results of the sintered bearing in the second embodiment are substantially equivalent to each other. The detailed description is omitted.

銅源として、アルミニウム−銅合金粉末を用い、銅単体の粉末を添加しない本実施形態のアルミニウム青銅組織は、γ相とα相との比γ相/α相を、0≦γ相/α相≦0.10とすることが好ましい。0≦γ相/α相≦0.10の範囲であれば、耐有機酸腐食性に優れる。   The aluminum bronze structure of the present embodiment using aluminum-copper alloy powder as a copper source and not adding powder of copper alone has a ratio of γ phase to α phase, γ phase / α phase, 0 ≦ γ phase / α phase It is preferable to set it as ≦ 0.10. If it is the range of 0 <= (gamma) phase / (alpha) phase <= 0.10, it is excellent in organic acid-proof corrosion resistance.

表4に第2の実施形態におけるEGRバルブ用焼結軸受の硬さを測定した結果を示す。表4に示す硬さの評価の仕方等と表3に示す硬さの評価の仕方等とは同じとされていることから、ここではその詳細な説明を省略する。

Figure 2019112719
Table 4 shows the results of measuring the hardness of the sintered bearing for an EGR valve in the second embodiment. Since the method of evaluation of hardness shown in Table 4 and the method of evaluation of hardness shown in Table 3 are the same, the detailed description thereof is omitted here.
Figure 2019112719

表4の如く、銅系焼結軸受の硬さが略70〜80であるのに対し、第2の実施形態におけるEGRバルブ用焼結軸受の硬さは、例えば略100〜240であり、この結果から、第2の実施形態におけるEGRバルブ用焼結軸受は、銅系焼結軸受よりも耐摩耗性に優れた焼結軸受であると判定できる。これは、柔らかい相であるα相の硬さが略100〜140であり、硬い相であるγ相の硬さが略200〜240であり、第2の実施形態におけるEGRバルブ用焼結軸受のいずれの相の硬さも、銅系焼結軸受の硬さより硬いことによる。   As shown in Table 4, while the hardness of the copper-based sintered bearing is approximately 70 to 80, the hardness of the sintered bearing for an EGR valve in the second embodiment is approximately 100 to 240, for example. From the results, it can be determined that the sintered bearing for an EGR valve in the second embodiment is a sintered bearing having better wear resistance than a copper-based sintered bearing. This is because the hardness of the soft phase α phase is approximately 100 to 140, and the hardness of the hard phase γ phase is approximately 200 to 240, and the sintered bearing for an EGR valve in the second embodiment The hardness of either phase is also harder than the hardness of the copper-based sintered bearing.

本実施形態のEGRバルブ用焼結軸受は、さらに厳しい使用環境に対しても耐腐食性を確保できる。   The sintered bearing for an EGR valve according to the present embodiment can ensure corrosion resistance even in a more severe use environment.

次に、製造方法についての第2の実施形態について説明する。この第2の実施形態の製造方法も、第1の実施形態の焼結軸受の製造方法と同様であるので、前述した内容を準用し、原料粉末準備工程S1および成形工程S2の相違するところのみを説明する。   Next, a second embodiment of the manufacturing method will be described. The manufacturing method of the second embodiment is also the same as the manufacturing method of the sintered bearing of the first embodiment, so the contents described above are applied mutatis mutandis, and only the difference between the raw material powder preparation step S1 and the forming step S2 is Explain.

[原料粉末準備工程S1]
原料粉末準備工程S1では、焼結軸受1の原料粉末が準備される。原料粉末は、7〜11重量%アルミニウム−銅合金粉末、好ましくは8〜10重量%アルミニウム−銅合金粉末)を85〜93重量%、7〜10重量%燐−銅合金粉末を1〜5重量%、黒鉛粉末を6〜10重量%とする合計100重量%に対して、焼結助剤としてフッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量%、成形性を容易にするための潤滑剤としてステアリン酸亜鉛を0.1〜1重量%添加した。7〜11重量%アルミニウム−銅合金粉末は、粉砕して粒度調整したものを用いた。第1の実施形態と同様、上記の原料粉末を、例えば、図9に示すV型混合器10の缶体11に投入し、缶体11を回転させて均一に混合する。
[Raw material powder preparation step S1]
In the raw material powder preparation step S1, the raw material powder of the sintered bearing 1 is prepared. Raw material powder is 85 to 93% by weight of 7 to 11% by weight of aluminum-copper alloy powder, preferably 8 to 10% by weight of aluminum to copper alloy powder, and 1 to 5% of 7 to 10% by weight of phosphorus-copper alloy powder. % And total of 0.05% to 0.2% by weight of aluminum fluoride and calcium fluoride as a sintering aid, with respect to 100% by weight of the total of 6 to 10% by weight of graphite powder 0.1 to 1% by weight of zinc stearate was added as a lubricant for this purpose. The 7 to 11 wt% aluminum-copper alloy powder was used after being ground and adjusted in particle size. As in the first embodiment, for example, the raw material powder described above is introduced into the can 11 of the V-shaped mixer 10 shown in FIG. 9, and the can 11 is rotated and uniformly mixed.

例えば、7〜11重量%アルミニウム−銅合金粉末を85〜93重量%、7〜10重量%燐−銅合金粉末を1〜5重量%、黒鉛粉末を6〜10重量%とする合計100重量%を合計100重量部とし、この合計100重量部に対し、アルミニウムの含有量が、例えば8.5重量部以上10重量部以下、具体的には9重量部以上9.5重量部以下となるようにする。   For example, 85 to 93% by weight of 7 to 11% by weight of aluminum-copper alloy powder, 1 to 5% by weight of 7 to 10% by weight of phosphorus-copper alloy powder, and 6 to 10% by weight of graphite powder Content of aluminum is, for example, 8.5 parts by weight or more and 10 parts by weight or less, specifically 9 parts by weight or more and 9.5 parts by weight or less with respect to 100 parts by weight in total. Make it

例えば、原料粉末は、7〜11重量%アルミニウム−銅合金粉末、好ましくは8〜10重量%アルミニウム−銅合金粉末を85〜93重量部、7〜10重量%燐−銅合金粉末を1〜5重量部、黒鉛粉末を3〜10重量部、好ましくは6〜10重量部とする合計100重量部に対して、焼結助剤としてフッ化アルミニウムおよびフッ化カルシウムを合計で0.05〜0.2重量部、成形性を容易にするための潤滑剤としてステアリン酸亜鉛を0.1〜1重量部添加したものが使用可能である。   For example, as the raw material powder, 7 to 11 wt% aluminum-copper alloy powder, preferably 8 to 10 wt% aluminum-copper alloy powder 85 to 93 parts by weight, 7 to 10 wt% phosphorus-copper alloy powder 1 to 5 Aluminum fluoride and calcium fluoride as a sintering aid in total of 0.05 to 0. 5 parts by weight with respect to 100 parts by weight in total of 3 to 10 parts by weight, preferably 6 to 10 parts by weight of graphite powder. It is possible to use 2 parts by weight and 0.1 to 1 part by weight of zinc stearate added as a lubricant for facilitating moldability.

本実施形態の焼結軸受は、例えば、EGRバルブの種類等により、潤滑油等の油類が含まれていないEGRバルブ用焼結軸受、少量の潤滑油が含まれたEGRバルブ用焼結軸受が使用可能である。   The sintered bearing according to the present embodiment is, for example, a sintered bearing for an EGR valve which does not contain an oil such as lubricating oil depending on the type of the EGR valve, a sintered bearing for an EGR valve containing a small amount of lubricating oil. Is available.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the embodiment described above, and it is needless to say that the present invention can be practiced in various forms without departing from the scope of the present invention, and the scope of the present invention is not limited to the patent The scope of the present invention is defined by the claims, and further includes the meaning of equivalents described in the claims, and all changes within the scope.

1 EGRバルブ用焼結軸受
1’ 圧粉体
1” 焼結体
1a 軸受面
1b 外径面
1c 端面
15 メッシュベルト式連続炉
20 ダイス
21 上パンチ
22 下パンチ
23 コア
31 EGRバルブ
46 シャフト
D1 軸受面の内径寸法
Ti 圧縮層
To 圧縮層
DESCRIPTION OF SYMBOLS 1 Sintering bearing for EGR valve 1 'Compacted powder 1 "Sintered body 1a Bearing surface 1b Outer diameter surface 1c End surface 15 Mesh belt type continuous furnace 20 Die 21 Upper punch 22 Lower punch 23 Core 31 EGR valve 46 Shaft D1 Bearing surface Inner diameter dimension of Ti compression layer To compression layer

本発明は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れたEGRバルブ用焼結軸受に関する。 The present invention, abrasion resistance, relates to the sliding excellent in EGR valve for sintering bearings under corrosion resistance and high-temperature dry environment.

従来の問題に鑑み、本発明は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性を向上させると共に、コンパクト化、低コスト化を図ったEGRバルブ用アルミニウム青銅系焼結軸受を提供することを目的とする。 In view of the conventional problems, the present invention improves the wear resistance, the corrosion resistance, and the slidability in a high-temperature dry environment, as well as the aluminum bronze-based sintered bearing for an EGR valve, which achieves downsizing and cost reduction. an object of the present invention and provide child a.

前述の目的を達成するための技術的手段として、本発明は、9〜12重量%のアルミニウムと0.1〜0.4重量%の燐と3〜10重量%の黒鉛を含有し、残部が銅と不可避的不純物からなるEGRバルブ用焼結軸受であって、前記焼結軸受の全体に、アルミニウム−銅合金粉末が焼結された組織が分散しており前記焼結軸受の全体に銅単体の偏った部分がなく、分散して形成された気孔内に遊離黒鉛が分布していることを特徴とする。また、9〜12重量%のアルミニウムと0.1〜0.4重量%の燐と3〜10重量%の黒鉛を含有し、残部が、銅、フッ化アルミニウムおよびフッ化カルシウム、並びに不可避的不純物からなるEGRバルブ用焼結軸受であって、前記焼結軸受の全体に、アルミニウム−銅合金粉末が焼結された組織が分散しており、前記焼結軸受の全体に銅単体の偏った部分がなく、分散して形成された気孔内に遊離黒鉛が分布していることを特徴とする。これにより、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ったEGRバルブ用アルミニウム青銅系焼結軸受を実現できる。 As technical means for achieving the foregoing objects, the present invention contain 9-12% by weight of aluminum and 0.1 to 0.4% by weight of phosphorus and from 3 to 10% by weight of graphite, the remaining portion there a EGR sintered bearing valve made of copper and not avoidable impurities, the entirety of the sintered bearing, aluminum - tissue copper alloy powder is sintered is dispersed, the sintered bearing It is characterized in that there is no biased part of copper alone in the whole, and free graphite is distributed in the pores formed by dispersion. Also, it contains 9 to 12% by weight of aluminum, 0.1 to 0.4% by weight of phosphorus and 3 to 10% by weight of graphite, with the balance being copper, aluminum fluoride and calcium fluoride, and unavoidable impurities A sintered bearing for an EGR valve, comprising: a structure in which an aluminum-copper alloy powder is sintered is dispersed in the whole of the sintered bearing; And free graphite distributed in pores formed by dispersion. As a result, it is possible to realize an aluminum bronze-based sintered bearing for an EGR valve which is excellent in wear resistance, corrosion resistance, and slidability in a high-temperature dry environment, and is made compact and cost-reduced.

EGRバルブ用焼結軸受の製造方法としては、9〜12重量%のアルミニウムと0.1〜0.6重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受の製造方法であって、この製造方法は、原料粉末として、銅単体の粉末を添加せず、アルミニウム−銅合金粉、燐−銅合金粉および黒鉛粉を用い、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する成形工程と、前記圧粉体からアルミニウム−銅合金組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とする。ここで、原料粉末としての銅単体の粉末を添加せずとは、製造現場において不可避的に含まれる銅単体の粉末は許容する意味で用いる。 It is a method for producing a sintered bearing EGR valve, contains 9-12% by weight of aluminum and 0.1 to 0.6% by weight of phosphorus and from 3 to 10% by weight of graphite, copper main component of the balance And a method of manufacturing a sintered bearing for an EGR valve containing unavoidable impurities, wherein the manufacturing method does not add powder of copper alone as raw material powder, aluminum-copper alloy powder, phosphorus-copper alloy powder And forming at least a green compact having a sintering aid added to the raw material powder using graphite powder, and a sintering process for obtaining a sintered body having an aluminum-copper alloy structure from the green compact. And a sizing step of dimensioning the sintered body. Here, not adding the powder of copper alone as the raw material powder means that the powder of copper alone which is inevitably contained in the manufacturing site is acceptable.

上記の製造方法は、生産性がよく、低コストで、多量生産に好適なEGRバルブ用アルミニウム青銅系焼結軸受の製造方法を実現することができる。また、これにより製造されたEGRバルブ用焼結軸受は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ることができる。さらに、銅単体の粉末が添加されていないので、銅単体が偏った部分が略無くなり、この部分による腐食の発生が回避されると共に、アルミニウム−銅合金粉の粒一つ一つの耐腐食性が向上することにより、さらに厳しい使用環境に対しても耐腐食性を確保することができる。 Above production how the productivity is good, at low cost, it is possible to realize a manufacturing method of a preferred EGR aluminum bronze based sintered bearing valve mass production. Moreover, the sintered bearing for an EGR valve manufactured by this is excellent in abrasion resistance, corrosion resistance, and slidability in a high-temperature dry environment, and can achieve downsizing and cost reduction. Furthermore, since the powder of copper alone is not added, the portion where copper alone is biased is almost eliminated, the occurrence of corrosion due to this portion is avoided, and the corrosion resistance of each grain of the aluminum-copper alloy powder is By the improvement, it is possible to secure corrosion resistance even in a more severe use environment.

本発明によるEGRバルブ用焼結軸受は、耐摩耗性、耐腐食性および高温ドライ環境下での摺動性に優れ、コンパクト化、低コスト化を図ることができる。 Sintered bearing EGR valve according to the present invention, wear resistance, corrosion resistance and excellent sliding properties in a high-temperature dry environment, compact, Ru can be reduced in cost.

さらに、銅単体の粉末を添加せず、アルミニウム−銅合金粉を用いた製造方法によれば、銅単体が偏った部分が略無くなり、この部分による腐食の発生が回避されると共に、アルミニウム−銅合金粉の粒一つ一つの耐腐食性が向上することにより、さらに厳しい使用環境に対しても耐腐食性を確保することができる。 Moreover, without the addition of pure copper powder, aluminum - with According to the copper alloy powder prepared how using eliminates substantially the portion of copper alone is biased, the occurrence of corrosion due to this portion is avoided, aluminum - By improving the corrosion resistance of each particle of the copper alloy powder, the corrosion resistance can be ensured even in a more severe use environment.

Claims (11)

9〜12重量%のアルミニウムと0.1〜0.4重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受であって、この焼結軸受は、アルミニウム−銅合金が焼結された組織を有し、分散して形成された気孔内に遊離黒鉛が分布していることを特徴とするEGRバルブ用焼結軸受。   Sintered for an EGR valve containing 9 to 12% by weight of aluminum, 0.1 to 0.4% by weight of phosphorus and 3 to 10% by weight of graphite, with the balance being copper as the main component and unavoidable impurities A sintered bearing having a structure in which an aluminum-copper alloy is sintered, wherein free graphite is distributed in pores formed by dispersion, which is a sintered bearing for an EGR valve. Bearing. 前記アルミニウム−銅合金の組織は、α相を有することを特徴とする請求項1に記載のEGRバルブ用焼結軸受。   The sintered bearing for an EGR valve according to claim 1, wherein the structure of the aluminum-copper alloy has an alpha phase. 前記アルミニウム−銅合金の組織は、γ相とα相との比γ相/α相を、0≦γ相/α相≦0.10としたことを特徴とする請求項1又は請求項2に記載のEGRバルブ用焼結軸受。   The structure of the aluminum-copper alloy is characterized in that the ratio γ phase / α phase of the γ phase and the α phase is 0 ≦ γ phase / α phase ≦ 0.10. The sintered bearing for an EGR valve as described above. 前記EGRバルブ用焼結軸受は、焼結助剤としての錫が添加されていないことを特徴とする請求項1〜3のいずれか一項に記載のEGRバルブ用焼結軸受。   The sintered bearing for an EGR valve according to any one of claims 1 to 3, wherein tin as a sintering aid is not added to the sintered bearing for an EGR valve. 9〜12重量%のアルミニウムと0.1〜0.4重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受の製造方法であって、この製造方法は、原料粉末としてアルミニウム−銅合金粉、電解銅粉、燐−銅合金粉および黒鉛粉を用い、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する成形工程と、前記圧粉体からアルミニウム−銅合金組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とするEGRバルブ用焼結軸受の製造方法。   Sintered for an EGR valve containing 9 to 12% by weight of aluminum, 0.1 to 0.4% by weight of phosphorus and 3 to 10% by weight of graphite, with the balance being copper as the main component and unavoidable impurities A manufacturing method of a bearing, which uses aluminum-copper alloy powder, electrolytic copper powder, phosphorus-copper alloy powder and graphite powder as raw material powder, and at least a sintering aid is added to the raw material powder. It is characterized by including a forming step of forming a green compact, a sintering step of obtaining a sintered body having an aluminum-copper alloy structure from the green compact, and a sizing step of dimensioning the sintered body. Method for producing a sintered bearing for an EGR valve. 前記焼結助剤として、前記アルミニウム−銅合金粉、電解銅粉、燐−銅合金粉、黒鉛粉からなる原料粉末の合計100重量%に対して、フッ化アルミニウムおよびフッ化カルシウムが合計で0.05〜0.2重量%添加されていることを特徴とする請求項5に記載のEGRバルブ用焼結軸受の製造方法。   The total amount of aluminum fluoride and calcium fluoride is 0 as a total of 100% by weight of the raw material powder consisting of the aluminum-copper alloy powder, electrolytic copper powder, phosphorus-copper alloy powder and graphite powder as the sintering aid. The method of manufacturing a sintered bearing for an EGR valve according to claim 5, wherein 0.5 to 0.2% by weight is added. 前記アルミニウム−銅合金粉の平均粒径d1と電解銅粉の平均粒径d2との比d2/d1を2〜3としたことを特徴とする請求項5又は請求項6に記載のEGRバルブ用焼結軸受の製造方法。   7. The EGR valve according to claim 5, wherein a ratio d2 / d1 of the average particle diameter d1 of the aluminum-copper alloy powder and the average particle diameter d2 of the electrolytic copper powder is set to 2 to 3. Manufacturing method of sintered bearing. 前記電解銅粉は、粉末形状が異なるもので構成され、アスペクト比が2以上の電解銅粉の割合W1と2未満の電解銅粉の割合W2との比W2/W1を3〜9としたことを特徴とする請求項5〜7のいずれか一項に記載のEGRバルブ用焼結軸受の製造方法。   The electrolytic copper powder has different powder shapes, and the ratio W2 / W1 of the ratio W1 of the electrolytic copper powder having an aspect ratio of 2 to 2 and the ratio W2 of the electrolytic copper powder less than 2 is 3 to 9 The manufacturing method of the sintered bearing for EGR valves as described in any one of the Claims 5-7 characterized by these. 前記黒鉛粉は、天然黒鉛、又は人造黒鉛の微粉を樹脂バインダで造粒後粉砕し、粒径145メッシュ以下の黒鉛粉末にしたことを特徴とする請求項5〜8のいずれか一項に記載のEGRバルブ用焼結軸受の製造方法。   The said graphite powder granulated the fine powder of natural graphite or artificial graphite with a resin binder and then ground it to a graphite powder having a particle size of 145 mesh or less. Of manufacturing a sintered bearing for an EGR valve. 9〜12重量%のアルミニウムと0.1〜0.6重量%の燐と3〜10重量%の黒鉛を含有し、残部の主成分を銅とし、不可避的不純物を含んだEGRバルブ用焼結軸受の製造方法であって、この製造方法は、原料粉末として、銅単体の粉末を添加せず、アルミニウム−銅合金粉、燐−銅合金粉および黒鉛粉を用い、少なくとも、原料粉末に焼結助剤が添加された圧粉体を成形する成形工程と、前記圧粉体からアルミニウム−銅合金組織を有する焼結体を得る焼結工程と、前記焼結体を寸法整形するサイジング工程とを含んでいることを特徴とするEGRバルブ用焼結軸受の製造方法。   Sintering for an EGR valve containing 9 to 12% by weight of aluminum, 0.1 to 0.6% by weight of phosphorus and 3 to 10% by weight of graphite, with the balance being copper as the main component and unavoidable impurities A manufacturing method of a bearing, wherein the manufacturing method does not add powder of copper alone as raw material powder, but uses aluminum-copper alloy powder, phosphorus-copper alloy powder and graphite powder, and at least sintered to the raw material powder A forming step of forming a green compact to which an auxiliary agent is added, a sintering step of obtaining a sintered body having an aluminum-copper alloy structure from the green compact, and a sizing step of dimensioning the sintered body A method of manufacturing a sintered bearing for an EGR valve, comprising: 前記原料粉末としてのアルミニウム−銅合金粉が、7〜11重量%アルミニウム−銅合金粉末であることを特徴とする請求項10に記載のEGRバルブ用焼結軸受の製造方法。   The method for producing a sintered bearing for an EGR valve according to claim 10, wherein the aluminum-copper alloy powder as the raw material powder is 7 to 11 wt% aluminum-copper alloy powder.
JP2019019672A 2013-09-13 2019-02-06 Sintered bearing for EGR valve Active JP6720362B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013190880 2013-09-13
JP2013190880 2013-09-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014180529A Division JP6522301B2 (en) 2013-09-13 2014-09-04 Sintered bearing for EGR valve and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2019112719A true JP2019112719A (en) 2019-07-11
JP6720362B2 JP6720362B2 (en) 2020-07-08

Family

ID=67223059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019672A Active JP6720362B2 (en) 2013-09-13 2019-02-06 Sintered bearing for EGR valve

Country Status (1)

Country Link
JP (1) JP6720362B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138328A (en) * 2001-10-31 2003-05-14 Oiles Ind Co Ltd Method of producing graphite-containing aluminum alloy, and sliding member
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
JP2009007650A (en) * 2007-06-29 2009-01-15 Fukuda Metal Foil & Powder Co Ltd Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
JP2009114486A (en) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP2013023732A (en) * 2011-07-21 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Al BRONZE SINTERED ALLOY-SLIDING MATERIAL AND METHOD FOR PRODUCING THE SAME
WO2013137347A1 (en) * 2012-03-13 2013-09-19 Ntn株式会社 Sintered bearing and manufacturing method for same
JP2013216972A (en) * 2012-03-13 2013-10-24 Ntn Corp Method for manufacturing sintered bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138328A (en) * 2001-10-31 2003-05-14 Oiles Ind Co Ltd Method of producing graphite-containing aluminum alloy, and sliding member
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
JP2009007650A (en) * 2007-06-29 2009-01-15 Fukuda Metal Foil & Powder Co Ltd Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
JP2009114486A (en) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP2013023732A (en) * 2011-07-21 2013-02-04 Fukuda Metal Foil & Powder Co Ltd Al BRONZE SINTERED ALLOY-SLIDING MATERIAL AND METHOD FOR PRODUCING THE SAME
WO2013137347A1 (en) * 2012-03-13 2013-09-19 Ntn株式会社 Sintered bearing and manufacturing method for same
JP2013216972A (en) * 2012-03-13 2013-10-24 Ntn Corp Method for manufacturing sintered bearing

Also Published As

Publication number Publication date
JP6720362B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US11351608B2 (en) Sintered bearing and manufacturing method for same
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
JP6425943B2 (en) Sintered bearing for fuel pump and method of manufacturing the same
JP6026319B2 (en) Manufacturing method of sintered bearing
JP2013217493A (en) Sintered bearing
JP6522301B2 (en) Sintered bearing for EGR valve and method of manufacturing the same
WO2016104067A1 (en) Sintered bearing
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
JP2001192754A (en) BEARING MADE OF GRAPHITE DISPERSION TYPE Cu BASE SINTERED ALLOY OF MOTOR TYPE FUEL PUMP EXHIBITING EXCELLENT WEAR RESISTANCE UNDER HIGH PRESSURE-HIGH SPEED CIRCULATION OF CASOLINE AND MOTOR TYPE FUEL PUMP USING SAME
JP6720362B2 (en) Sintered bearing for EGR valve
JP6513767B2 (en) Sintered bearing for fuel pump and method of manufacturing the same
CN110914009B (en) Valve guide tube made of iron-based sintered alloy and method for producing same
JP2018146112A (en) Sintered bearing for supercharger
JP2019173970A (en) Sintered bearing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200617

R150 Certificate of patent or registration of utility model

Ref document number: 6720362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250