JP2019112566A - Conductive adhesive - Google Patents

Conductive adhesive Download PDF

Info

Publication number
JP2019112566A
JP2019112566A JP2017248322A JP2017248322A JP2019112566A JP 2019112566 A JP2019112566 A JP 2019112566A JP 2017248322 A JP2017248322 A JP 2017248322A JP 2017248322 A JP2017248322 A JP 2017248322A JP 2019112566 A JP2019112566 A JP 2019112566A
Authority
JP
Japan
Prior art keywords
conductive adhesive
group
silver
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017248322A
Other languages
Japanese (ja)
Inventor
祐輔 岡部
Yusuke Okabe
祐輔 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cemedine Co Ltd
Original Assignee
Cemedine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cemedine Co Ltd filed Critical Cemedine Co Ltd
Priority to JP2017248322A priority Critical patent/JP2019112566A/en
Publication of JP2019112566A publication Critical patent/JP2019112566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a conductive adhesive good in sharpness of the conductive adhesive even when discharged by using a dispenser, having proper thixotropy after discharge, and capable of being cured at low temperature.SOLUTION: A conductive adhesive is a conductive adhesive capable of application by using a dispenser at high speed, and being cured at low temperature, and having a Structural Viscosity Index (SVI) value of 2.5 to 6, and viscosity at 23°C of 1 Pa s to 20 Pa s.SELECTED DRAWING: Figure 1

Description

本発明は、導電性接着剤に関する。特に、本発明は、ディスペンサから吐出させやすくキレが良い導電性接着剤に関する。   The present invention relates to a conductive adhesive. In particular, the present invention relates to a conductive adhesive which is easy to discharge from a dispenser and has a good sharpness.

従来、(A)融点が210℃以下である金属で構成される導電性粒子、(B)熱硬化性樹脂及び(C)フラックス活性剤を含有する導電性接着剤組成物であって、導電性接着剤組成物の粘度が5〜30Pa・sであり、かつ(A)導電性粒子の含有量が導電性接着剤組成物の全量に対して70〜90質量%であり、非接触型ディスペンサで使用するための導電性接着剤組成物が知られている(例えば、特許文献1参照。)。特許文献1に係る導電性接着剤組成物によれば、非接触型ディスペンサで塗布することができる。   A conductive adhesive composition comprising (A) a conductive particle composed of a metal having a melting point of 210 ° C. or less, (B) a thermosetting resin and (C) a flux activator, The viscosity of the adhesive composition is 5 to 30 Pa · s, and the content of the (A) conductive particles is 70 to 90% by mass with respect to the total amount of the conductive adhesive composition, and the non-contact type dispenser Conductive adhesive compositions for use are known (see, for example, Patent Document 1). According to the conductive adhesive composition which concerns on patent document 1, it can apply with a non-contact-type dispenser.

特許第6144048号Patent No. 6144048

しかし、特許文献1に記載されている導電性接着剤組成物においては、ディスペンサを用いて連続して導電性接着剤組成物を吐出した場合に、導電性接着剤組成物のキレと、所定の基材上に吐出された導電性接着剤組成物が吐出された状態を実質的に保つこととを両立させる点については解決されていない。   However, in the case of the conductive adhesive composition described in Patent Document 1, when the conductive adhesive composition is continuously discharged using a dispenser, the conductive adhesive composition may be softened and the predetermined It has not been solved about the point made compatible with keeping the state where the electroconductive adhesive composition discharged on the base material was discharged substantially.

ところで、近年、柔軟性基材に対して回路を形成するために、ディスペンサを用いた導電性接着剤組成物の塗布が求められている。しかし、柔軟性基材には熱に弱い基材があり、例えば特許文献1に記載されている導電性接着剤組成物は、硬化のために140℃以上の高温での加熱が必要となるため、熱に脆弱な基材に対して適用することができなかった。   By the way, in recent years, in order to form a circuit on a flexible substrate, application of a conductive adhesive composition using a dispenser is required. However, the flexible substrate has a substrate which is weak to heat, and the conductive adhesive composition described in, for example, Patent Document 1 requires heating at a high temperature of 140 ° C. or higher for curing. , Could not be applied to heat-sensitive substrates.

したがって、本発明の目的は、ディスペンサを用いて吐出した場合であっても、導電性接着剤のキレが良く、かつ、吐出後に意図した形状を保持する性能を有し、低温で硬化可能な導電性接着剤を提供することを目的とする。   Therefore, it is an object of the present invention to provide a conductive adhesive which is well-knitted even when discharged using a dispenser, and which has the ability to maintain the intended shape after discharge and which can be cured at a low temperature Purpose is to provide an adhesive.

本発明は、上記目的を達成するため、ディスペンサを用いて高速で塗布することができ、低温での硬化が可能な導電性接着剤であって、Structural Viscosity Index(SVI)値が、2.5以上6以下であり、23℃における粘度が、1Pa・s以上20Pa・s以下である導電性接着剤が提供される。   In order to achieve the above object, the present invention is a conductive adhesive which can be applied at high speed using a dispenser and which can be cured at a low temperature, and has a Structural Viscosity Index (SVI) value of 2.5. A conductive adhesive having a viscosity of 6 Pa or more and a viscosity at 23 ° C. of 1 Pa · s or more and 20 Pa · s or less is provided.

上記導電性接着剤において、導電性接着剤が、(A)架橋性ケイ素基含有有機重合体と、(B)導電性フィラーと、(C)チクソ性付与剤とを含有することが好ましい。   In the conductive adhesive, the conductive adhesive preferably contains (A) a crosslinkable silicon group-containing organic polymer, (B) a conductive filler, and (C) a thixotropic agent.

上記導電性接着剤において、(A)架橋性ケイ素基含有有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、及び(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であり、(B)導電性フィラーが、(b1)第一の銀粉及び銀メッキ粉と、(b2)第二の銀粉及び銀メッキ粉とを含み、(C)チクソ性付与剤が、シリカ系化合物、又はアマイドワックス系化合物であることが好ましい。   In the above conductive adhesive, the main chain skeleton of the (A) crosslinkable silicon group-containing organic polymer is composed of a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth) acrylate polymer. (B) The conductive filler comprises (b1) a first silver powder and a silver-plated powder, and (b2) a second silver powder and a silver-plated powder, and (C) The thixotropic agent is preferably a silica-based compound or an amide wax-based compound.

上記導電性接着剤において、(b1)第一の銀粉及び銀メッキ粉の比表面積が0.5m/g以上2.0m/g未満、タップ密度が2.5〜6.0g/cmであり、(b2)第二の銀粉及び銀メッキ粉の比表面積が2.0m/g以上7.0m/g以下、タップ密度が1.0〜3.0g/cmであり、(b1)と(b2)との混合割合[(b1)/(b2)]が質量比で1/10以上10/1以下であり、(C)チクソ性付与剤であるシリカ系化合物が、表面処理剤により疎水化処理された疎水性シリカ、及び表面にシラノール基が存在するヒュームドシリカである親水性シリカからなる群から選択される1種以上のシリカであってもよい。 In the above conductive adhesive, the specific surface area of the (b1) first silver powder and silver plated powder is 0.5 m 2 / g or more and less than 2.0 m 2 / g, and the tap density is 2.5 to 6.0 g / cm 3 (B2) The specific surface area of the second silver powder and the silver-plated powder is 2.0 m 2 / g or more and 7.0 m 2 / g or less, and the tap density is 1.0 to 3.0 g / cm 3 ( The mixing ratio [(b1) / (b2)] of b1) and (b2) is 1/10 or more and 10/1 or less by mass ratio, and the silica-based compound which is the (C) thixotropy-imparting agent has a surface treatment It may be one or more silicas selected from the group consisting of hydrophobic silica hydrophobized by an agent, and hydrophilic silica which is fumed silica having silanol groups on the surface.

上記導電性接着剤において、(B)導電性フィラーが、全含有量の65質量%以上85質量%以下であり、表面処理剤が、ジメチルジクロロシラン、ヘキサメチルジシラザン、(メタ)アクリルシラン、オクチルシラン、及びアミノシランからなる群から選択される1種以上であってもよい。   In the above conductive adhesive, the (B) conductive filler is 65% by mass or more and 85% by mass or less of the total content, and the surface treatment agent is dimethyldichlorosilane, hexamethyldisilazane, (meth) acrylsilane, It may be one or more selected from the group consisting of octylsilane and aminosilane.

上記導電性接着剤において、導電性接着剤が希釈剤を更に含有することが好ましい。   In the conductive adhesive, the conductive adhesive preferably further contains a diluent.

また、本発明は、上記目的を達成するため、上記のいずれか1つに記載の導電性接着剤の硬化物を有する製品が提供される。   Moreover, in order to achieve the said objective, this invention provides the product which has a hardened | cured material of the electroconductive adhesive as described in any one of said.

また、本発明は、上記目的を達成するため、上記のいずれか1つに記載の導電性接着剤を基材の所定の箇所に塗布する塗布工程と、基材上の導電性接着剤の上に素子をマウントするマウント工程と、導電性接着剤を介して基材上にマウントされた素子を有する基材を加熱する加熱工程とを備えるデバイス製造方法が提供される。   Moreover, in order to achieve the said objective, this invention apply | coats the electroconductive adhesive as described in any one of said to the predetermined location of a base material, and on the electroconductive adhesive on a base material A device manufacturing method is provided comprising: a mounting step of mounting a device; and a heating step of heating a substrate having the device mounted on the substrate via a conductive adhesive.

本発明に係る導電性接着剤によれば、ディスペンサを用いて吐出した場合であっても、導電性接着剤のキレが良く、かつ、吐出後に意図した形状を保持する性能を有し、低温で硬化可能な導電性接着剤を提供できる。また、ディスペンサからの導電性接着剤の吐出を高速でできるため、導電性パターンの形成に要する時間を短縮することができる。   According to the conductive adhesive according to the present invention, the conductive adhesive has a good sharpness even when discharged using a dispenser, and has the ability to maintain the intended shape after discharge, and at low temperature. A curable conductive adhesive can be provided. In addition, since the conductive adhesive can be discharged from the dispenser at a high speed, the time required for forming the conductive pattern can be shortened.

実施例1及び比較例1に係る導電性接着剤について、ディスペンス精度試験に用いた試験フィルムの図である。It is a figure of the test film used for the dispensing precision test about the electroconductive adhesive which concerns on Example 1 and Comparative Example 1. FIG.

[導電性接着剤の概要]
導電性パターン(配線パターン)を有する所定の基材上に所定の電子素子等を搭載する場合、電子素子等は導電性接着剤を介して導電性パターンに固定される。複数の電子素子等を基材上に搭載する場合や複数の基材を製造する場合、製造コスト低下等の観点から、電子素子等の搭載スピードを向上させることが要求される。この場合において、ディスペンサを用いて基材上に高速で次々と導電性接着剤を吐出、塗布することで、電子素子等の搭載スピードを向上させることができる。
[Overview of conductive adhesive]
When a predetermined electronic element or the like is mounted on a predetermined base having a conductive pattern (wiring pattern), the electronic element or the like is fixed to the conductive pattern via a conductive adhesive. In the case of mounting a plurality of electronic elements and the like on a base material and in the case of manufacturing a plurality of base materials, it is required to improve the mounting speed of the electronic elements and the like from the viewpoint of reduction in manufacturing cost. In this case, the mounting speed of the electronic element or the like can be improved by discharging and applying the conductive adhesive successively one after another at high speed using a dispenser.

ここで、導電性接着剤が適切な粘度を有していない場合(例えば、粘度が高すぎる場合等)、ディスペンサのノズルから導電性接着剤を吐出できない場合がある。また、ディスペンサを用いて導電性接着剤を基材上のある位置(第1の位置)に吐出し、次に導電性接着剤を吐出させるべき位置(第2の位置)にディスペンサのノズルを移動させると、導電性接着剤のキレが悪く、第1の位置の導電性接着剤と第2の位置の導電性接着剤とが導電性接着剤によりつながることもある。更に、導電性接着剤のキレを良好にする観点から導電性接着剤のSVI値を適切に調整しない場合、基材上に吐出された導電性接着剤が基材上で拡がってしまい、隣接する他の導電性接着剤に接触する場合がある。これらの課題は、ディスペンサが高速ディスペンサである場合に、より顕著に発生し得る。例えば、導電性接着剤として粘度が100Pa・sを超えるような導電性接着剤を用いた場合、通常のノズル(ニードル型)を有するディスペンサを用いると、1点への導電性接着剤の塗布に5秒程度もかかり、場合によってはノズルから導電性接着剤が吐出しないことがある。なお、本発明における高速ディスペンサとは、例えば、1ショット1秒以下の速さで組成物を吐出できるディスペンサである。   Here, when the conductive adhesive does not have an appropriate viscosity (e.g., when the viscosity is too high, etc.), the conductive adhesive may not be able to be discharged from the nozzle of the dispenser. Also, the conductive adhesive is discharged to a certain position (first position) on the substrate using a dispenser, and then the nozzle of the dispenser is moved to the position (second position) where the conductive adhesive should be discharged. Then, the conductive adhesive may not be well-knitted, and the conductive adhesive at the first position and the conductive adhesive at the second position may be connected by the conductive adhesive. Furthermore, if the SVI value of the conductive adhesive is not properly adjusted from the viewpoint of improving the shrinkage of the conductive adhesive, the conductive adhesive discharged onto the substrate spreads on the substrate and is adjacent It may come in contact with other conductive adhesives. These challenges can occur more prominently if the dispenser is a high speed dispenser. For example, when a conductive adhesive having a viscosity exceeding 100 Pa · s is used as the conductive adhesive, using a dispenser having a normal nozzle (needle type), the conductive adhesive is applied to one point. It takes about 5 seconds, and in some cases, the conductive adhesive may not be discharged from the nozzle. In addition, the high-speed dispenser in this invention is a dispenser which can discharge a composition, for example at the speed of 1 shot 1 second or less.

そこで、本発明者は、導電性接着剤の特性を様々な観点から検討した結果、導電性接着剤の粘度だけではなく、導電性接着剤のチクソ性に関連するStructural Viscosity Index(SVI)値と粘度とのバランスを適正な範囲にすることが、上記複数の課題を同時に解決する点から有効であることを見出した。なお、本発明において粘度は、B型粘度計を用いて、JIS K6833−1に準拠し、23℃の温度条件下、回転数20r/minで測定することができる。また、SVI値は、B型粘度計を用い、JIS K6833−1に準拠し、23℃の温度条件下での測定において、低回転速度(回転数2r/min)時の粘度Aと高回転速度(回転数20r/min)時の粘度Bとの比(A/B)で表される値である。   Therefore, as a result of examining the characteristics of the conductive adhesive from various points of view, the present inventors found that the structural viscosity index (SVI) value related not only to the viscosity of the conductive adhesive but also to the thixotropy of the conductive adhesive. It has been found that setting the balance with the viscosity in an appropriate range is effective in terms of simultaneously solving the above-mentioned multiple problems. In the present invention, the viscosity can be measured at a rotation speed of 20 r / min under a temperature condition of 23 ° C. in accordance with JIS K 6833-1 using a B-type viscometer. The SVI value is measured using a B-type viscometer according to JIS K6833-1, under the temperature condition of 23 ° C, viscosity A at high rotational speed (rotation number 2 r / min) and high rotational speed It is a value represented by the ratio (A / B) to the viscosity B at the time of (rotational speed 20 r / min).

すなわち、本発明に係る導電性接着剤は、高速ディスペンサで用いることができ、低温での硬化が可能な導電性接着剤であって、Structural Viscosity Index(SVI)値が、2.5以上6以下であり、23℃における粘度が、1Pa・s以上20Pa・s以下である導電性接着剤である。なお、本発明に係る導電性接着剤のSVI値は3以上5以下がより好ましく、粘度は、1Pa・s以上15Pa・s以下がより好ましい。また、「低温」とは、例えば、80℃程度の温度であるが、少なくとも、ハンダ等で用いるリフロー炉における温度(約250℃)より低い温度である。   That is, the conductive adhesive according to the present invention is a conductive adhesive which can be used in a high-speed dispenser and can be cured at a low temperature, and has a Structural Viscosity Index (SVI) value of 2.5 or more and 6 or less. It is an electroconductive adhesive whose viscosity in 23 degreeC is 1 Pa.s or more and 20 Pa.s or less. The SVI value of the conductive adhesive according to the present invention is more preferably 3 or more and 5 or less, and the viscosity is more preferably 1 Pa · s or more and 15 Pa · s or less. Further, “low temperature” is, for example, a temperature of about 80 ° C., but at least a temperature lower than a temperature (about 250 ° C.) in a reflow furnace used for solder or the like.

なお、導電性接着剤としては、粘度及びSVI値が上記の範囲を満たすものであれば特に限定されず従来公知の導電性接着剤を用いることができる。導電性接着剤のバインダー樹脂としては、例えば湿気硬化型、水分散型、溶剤揮散型、加熱硬化型のバインダー樹脂を用いることができる。湿気硬化型のバインダー樹脂としては、例えばシリコーン系、変成シリコーン系等が挙げられ、水分散型のバインダー樹脂としては、PVA系やウレタン系、アクリル系等が挙げられ、溶剤揮散型としては、ゴム系やアクリル樹脂系等が挙げられ、加熱硬化型のバインダー樹脂としては、エポキシ樹脂等を挙げることができる。   The conductive adhesive is not particularly limited as long as the viscosity and the SVI value satisfy the above-mentioned ranges, and a conventionally known conductive adhesive can be used. As a binder resin of the conductive adhesive, for example, a binder resin of moisture curing type, water dispersion type, solvent evaporation type, or heat curing type can be used. Examples of the moisture-curable binder resin include silicone resins and modified silicone resins. Examples of the water-dispersible binder resin include PVA resins, urethane resins, acrylic resins, and the like. A system, an acrylic resin system, etc. are mentioned, An epoxy resin etc. can be mentioned as a binder resin of heat-hardening type.

より具体的に、本発明の導電性接着剤は、(A)架橋性ケイ素基含有有機重合体と、(B)導電性フィラーと、(C)チクソ性付与剤とを含有する湿気硬化型の変成シリコーン系導電性接着剤であることが好ましい。また、(A)架橋性ケイ素基含有有機重合体の主鎖骨格は、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、及び(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であることが好ましく、(B)導電性フィラーは、(b1)第一の銀粉及び銀メッキ粉と、(b2)第二の銀粉及び銀メッキ粉とを含むことが好ましい。そして、(C)チクソ性付与剤は、シリカ系化合物、又はアマイドワックス系化合物であることが好ましい。また、(C)チクソ性付与剤であるシリカ系化合物が、表面処理剤により疎水化処理された疎水性シリカ、及び表面にシラノール基が存在するヒュームドシリカである親水性シリカからなる群から選択される1種以上のシリカであることがより好ましい。   More specifically, the conductive adhesive of the present invention is a moisture-curable type containing (A) a crosslinkable silicon group-containing organic polymer, (B) a conductive filler, and (C) a thixotropic agent. It is preferable that it is a modified silicone type conductive adhesive. The main chain skeleton of the crosslinkable silicon group-containing organic polymer (A) is selected from the group consisting of polyoxyalkylene polymers, saturated hydrocarbon polymers, and (meth) acrylic acid ester polymers It is preferable that it is 1 or more types, and it is preferable that (B) electroconductive filler contains (b1) 1st silver powder and silver plating powder, and (b2) 2nd silver powder and silver plating powder. The (C) thixotropic agent is preferably a silica-based compound or an amide wax-based compound. In addition, the silica-based compound (C) which is a thixotropy-imparting agent is selected from the group consisting of hydrophobic silica hydrophobized by a surface treatment agent and hydrophilic silica which is fumed silica having silanol groups on the surface. More preferably, it is one or more kinds of silica.

[(A)架橋性ケイ素基含有有機重合体]
(A)架橋性ケイ素基含有有機重合体としては、架橋性ケイ素基を有する有機重合体であれば特に制限はなく、例えば、変成シリコーン系樹脂が挙げられる(以下、(A)架橋性ケイ素基含有有機重合体を「(A)成分」という場合がある。)。
[(A) Crosslinkable Silicon Group-Containing Organic Polymer]
The crosslinkable silicon group-containing organic polymer (A) is not particularly limited as long as it is an organic polymer having a crosslinkable silicon group, and examples thereof include modified silicone resins (hereinafter, (A) crosslinkable silicon group A contained organic polymer may be called "(A) component."

架橋性ケイ素基含有有機重合体の架橋性ケイ素基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。架橋性ケイ素基としては、例えば、一般式(1)で示される基が好ましい。   The crosslinkable silicon group of the crosslinkable silicon group-containing organic polymer is a group which has a hydroxyl group or a hydrolyzable group bonded to a silicon atom and can be crosslinked by forming a siloxane bond. As the crosslinkable silicon group, for example, a group represented by the general formula (1) is preferable.

Figure 2019112566
Figure 2019112566

式(1)中、Rは、有機基を示す。なお、Rは、炭素数が1〜20の炭化水素基が好ましい。これらの中でRは、特にメチル基が好ましい。Rは、置換基を有していてもよい。Xは水酸基、又は加水分解性基を示し、Xが2個以上存在する場合、複数のXは同一であっても、異なっていてもよい。aは1、2又は3の整数のいずれかである。なお、硬化性の観点からは、aは2以上が好ましく、aが3であることがより好ましい。 In Formula (1), R 1 represents an organic group. R 1 is preferably a hydrocarbon group having 1 to 20 carbon atoms. Among these, R 1 is particularly preferably a methyl group. R 1 may have a substituent. X represents a hydroxyl group or a hydrolyzable group, and when two or more X are present, a plurality of X may be the same or different. a is an integer of 1, 2 or 3; From the viewpoint of curability, a is preferably 2 or more, and more preferably a is 3.

Xで示される加水分解性基としては、F原子以外であれば特に限定されない。例えば、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノオキシ基、アルケニルオキシ基等が挙げられる。これらの中では、加水分解性が穏やかで取扱やすいという観点からアルコキシ基が好ましい。アルコキシ基の中では炭素数の少ない基の方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが、通常、メトキシ基やエトキシ基が用いられる。   The hydrolyzable group represented by X is not particularly limited as long as it is other than F atom. For example, an alkoxy group, an acyloxy group, a ketoxime group, an aminooxy group, an alkenyloxy group and the like can be mentioned. Among these, an alkoxy group is preferable in view of mild hydrolyzability and easy handling. Among the alkoxy groups, a group having a smaller number of carbon atoms is more reactive, and the reactivity becomes lower as the number of carbon atoms increases, as in the order of methoxy group> ethoxy group> propoxy group. Although it can be selected according to the purpose and application, usually, a methoxy group or an ethoxy group is used.

架橋性ケイ素基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基、−Si(OR)、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基、−SiR(OR)が挙げられる。ここでRはメチル基やエチル基等のアルキル基である。また、架橋性ケイ素基は1種で用いても、2種以上併用してもよい。架橋性ケイ素基は、主鎖又は側鎖、若しくはいずれに結合していてもよい。架橋性ケイ素基含有有機重合体において、架橋性ケイ素基は、架橋性ケイ素基含有有機重合体1分子中に平均して1.0個以上5個以下存在することが好ましく、1.1〜3個存在することがより好ましい。 As the crosslinkable silicon group, for example, trialkoxysilyl groups such as trimethoxysilyl group and triethoxysilyl group, -Si (OR) 3 , dialkoxysilyl groups such as methyldimethoxysilyl group and methyldiethoxysilyl group,- SiR 1 (OR) 2 is mentioned. Here, R is an alkyl group such as a methyl group or an ethyl group. The crosslinkable silicon group may be used alone or in combination of two or more. The crosslinkable silicon group may be bonded to the main chain or side chain, or to either. In the crosslinkable silicon group-containing organic polymer, the crosslinkable silicon group is preferably present in an average of 1.0 or more and 5 or less in one molecule of the crosslinkable silicon group-containing organic polymer, and 1.1 to 3 More preferably, one is present.

架橋性ケイ素基含有有機重合体の主鎖骨格としては、具体的には、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエン、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、又は、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体等が挙げられる。これらの骨格は、架橋性ケイ素基含有有機重合体の中に単独で含まれていても、2種類以上がブロック若しくはランダムに含まれていてもよい。   Specific examples of the main chain skeleton of the crosslinkable silicon group-containing organic polymer include polyoxyalkylene polymers such as polyoxypropylene, polyoxytetramethylene and polyoxyethylene-polyoxypropylene copolymer; ethylene- Hydrocarbon-based polymers such as propylene-based copolymers, polyisobutylenes, polyisoprenes, polybutadienes and hydrogenated polyolefin-based polymers obtained by hydrogenating these polyolefin-based polymers; Dibasic acids such as adipic acid and glycols Polyester polymers obtained by ring-opening polymerization of lactones, or (meth) acrylic acid ester polymers obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate (Meth) acrylic acid ester monomers, vinyl acetate, acrylonitrile Vinyl polymers obtained by radical polymerization of monomers such as styrene; graft polymers obtained by polymerizing vinyl monomers in organic polymers; polysulfide polymers; polyamide polymers; polycarbonate polymers; Examples include diallyl phthalate polymers and the like. These skeletons may be contained alone in the crosslinkable silicon group-containing organic polymer, or two or more types may be contained in blocks or randomly.

更に、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体、及び(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから特に好ましい。   Furthermore, saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylate polymers can be obtained with a relatively low glass transition temperature. The cured product is preferable because it is excellent in cold resistance. In addition, polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferable because they have high moisture permeability and are excellent in deep-part curability when made into a one-pack composition.

なお、比較的ガラス転移温度が低く、得られる接着剤が耐寒性に優れていると共に、低分子環状シロキサンを含有しておらず、シロキサンフリーであり、接点障害を防止する観点から、主鎖骨格は、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、及び(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上を含有することが好ましい。   In addition, the glass transition temperature is relatively low, and the obtained adhesive is excellent in cold resistance, and contains no low molecular weight cyclic siloxane, is free from siloxane, and from the viewpoint of preventing contact failure, the main chain skeleton It is preferable to contain at least one selected from the group consisting of polyoxyalkylene polymers, saturated hydrocarbon polymers, and (meth) acrylate polymers.

(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては、各種のモノマーを用いることができる。例えば、(メタ)アクリル酸系モノマー;(メタ)アクリル酸n−ブチル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系モノマー;脂環式(メタ)アクリル酸エステル系モノマー;芳香族(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸2−メトキシエチル等の(メタ)アクリル酸エステル系モノマー;γ−(メタクリロイルオキシプロピル)トリメトキシシラン等のシリル基含有(メタ)アクリル酸エステル系モノマー等が挙げられる。   Various monomers can be used as the (meth) acrylic acid ester-based monomer that constitutes the main chain of the (meth) acrylic acid ester-based polymer. For example, (meth) acrylic acid type monomers; (meth) acrylic acid alkyl ester type monomers such as (meth) acrylic acid n-butyl, (meth) acrylic acid stearyl etc; alicyclic (meth) acrylic acid ester type monomers; Group (meth) acrylic acid ester monomers; (meth) acrylic acid ester monomers such as (meth) acrylic acid 2-methoxyethyl; silyl group-containing (meth) acrylic acids such as γ- (methacryloyloxypropyl) trimethoxysilane An ester monomer etc. are mentioned.

(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーと共に、以下のビニル系モノマーを共重合することもできる。ビニル系モノマーを例示すると、スチレン、無水マレイン酸、酢酸ビニル等が挙げられる。また、単量体単位(以下、他の単量体単位とも称する。)として、これら以外にアクリル酸、グリシジルアクリレートを含有してもよい。   In the (meth) acrylic acid ester-based polymer, the following vinyl-based monomers can be copolymerized together with the (meth) acrylic acid ester-based monomer. Examples of vinyl monomers include styrene, maleic anhydride, vinyl acetate and the like. Moreover, you may contain acrylic acid and glycidyl acrylate other than these as a monomer unit (Hereafter, it is also called other monomer units.).

これらは、単独で用いても、複数を共重合させてもよい。生成物の物性等の観点からは、(メタ)アクリル酸系モノマーからなる重合体が好ましい。また、1種又は2種以上の(メタ)アクリル酸アルキルエステルモノマーを用い、必要に応じて他の(メタ)アクリル酸モノマーを併用した(メタ)アクリル酸エステル系重合体がより好ましい。更に、シリル基含有(メタ)アクリル酸エステル系モノマーを併用することで、(メタ)アクリル酸エステル系重合体中のケイ素基の数を制御できる。接着性が良いことからメタクリル酸エステルモノマーからなるメタクリル酸エステル系重合体が特に好ましい。また、低粘度化、柔軟性を付与する場合、アクリル酸エステルモノマーを適宜用いることが好ましい。なお、本発明において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を表す。   These may be used alone or in combination of two or more. From the viewpoint of physical properties and the like of the product, a polymer comprising a (meth) acrylic acid-based monomer is preferred. Moreover, the (meth) acrylic-ester type polymer which used together the other (meth) acrylic acid monomer as needed using 1 type, or 2 or more types of (meth) acrylic-acid alkylester monomers is more preferable. Furthermore, the number of silicon groups in the (meth) acrylic acid ester-based polymer can be controlled by using a silyl group-containing (meth) acrylic acid ester-based monomer in combination. Particularly preferred is a methacrylic acid ester-based polymer comprising a methacrylic acid ester monomer because of its good adhesion. In order to lower the viscosity and impart flexibility, it is preferable to appropriately use an acrylic ester monomer. In the present invention, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.

(メタ)アクリル酸エステル系重合体の製造方法は、例えば、ラジカル重合反応を用いたラジカル重合法を用いることができる。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端等の制御された位置に反応性シリル基を導入できる制御ラジカル重合法が挙げられる。ただし、重合開始剤としてアゾ系化合物、過酸化物等を用いるフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなる。したがって、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得る場合には、制御ラジカル重合法を用いることが好ましい。   For example, a radical polymerization method using a radical polymerization reaction can be used as a method for producing the (meth) acrylate polymer. As a radical polymerization method, a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator, or a controlled radical capable of introducing a reactive silyl group at a controlled position such as an end. The polymerization method is mentioned. However, the polymer obtained by the free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a molecular weight distribution value as large as 2 or more, and the viscosity becomes high. Therefore, in the case of obtaining a (meth) acrylic acid ester polymer having a narrow molecular weight distribution and a low viscosity (meth) acrylic acid ester polymer and having a crosslinkable functional group at the molecular chain terminal at a high rate. Preferably, controlled radical polymerization is used.

制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられる。原子移動ラジカル重合法(Atom Transfer Radical Polymerization;ATRP)等のリビングラジカル重合法を採用することが好ましい。なお、主鎖骨格が(メタ)アクリル酸エステル系重合体であって、その一部がテレケリックポリマーである重合体(以下、「疑似テレケリックポリマー」という。)を合成する反応として、反応性シリル基を有するチオール化合物を用いた反応や、反応性シリル基を有するチオール化合物、及びメタロセン化合物を用いた反応が挙げられる。   As the controlled radical polymerization method, a free radical polymerization method or a living radical polymerization method using a chain transfer agent having a specific functional group may be mentioned. It is preferable to adopt a living radical polymerization method such as atom transfer radical polymerization (ATRP). In addition, a main chain skeleton is a (meth) acrylic acid ester type polymer, and the one part is the reactivity as a reaction which synthesizes a polymer which is a telechelic polymer (henceforth "pseudo telechelic polymer"). A reaction using a thiol compound having a silyl group, a reaction using a thiol compound having a reactive silyl group, and a metallocene compound can be mentioned.

これらの架橋性ケイ素基含有有機重合体は、単独で用いても、2種以上を併用してもよい。具体的には、架橋性ケイ素基を有するポリオキシアルキレン系重合体、架橋性ケイ素基を有する飽和炭化水素系重合体、並びに架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体からなる群から選択される2種以上をブレンドした架橋性ケイ素基含有有機重合体を用いることができる。特に、架橋性ケイ素基を有するポリオキシアルキレン系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体とをブレンドした架橋性ケイ素基含有有機重合体が優れた特性を有する。   These crosslinkable silicon group-containing organic polymers may be used alone or in combination of two or more. Specifically, a group comprising a polyoxyalkylene polymer having a crosslinkable silicon group, a saturated hydrocarbon polymer having a crosslinkable silicon group, and a (meth) acrylic acid ester polymer having a crosslinkable silicon group The crosslinkable silicon group-containing organic polymer which blended 2 or more types selected from can be used. In particular, a crosslinkable silicon group-containing organic polymer in which a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group are blended has excellent properties.

架橋性ケイ素基を有するポリオキシアルキレン系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体とをブレンドした架橋性ケイ素基含有有機重合体の製造方法としては、様々な方法が挙げられる。例えば、架橋性ケイ素基を有し、分子鎖が実質的に、一般式(2):
−CH−C(R)(COOR)− ・・・(2)
(式中、Rは水素原子又はメチル基、Rは炭素数が1〜6のアルキル基を示す。好ましくは、炭素数が1〜2のアルキル基が挙げられる。なお、Rは単独でもよく、2種以上混合していてもよい。)で表される(メタ)アクリル酸エステル単量体単位と、一般式(3):
−CH−C(R)(COOR)− ・・・(3)
(式中、Rは前記に同じ、Rは炭素数が8以上のアルキル基を示す。好ましくは2−エチルヘキシル基、ステアリル基等の炭素数が8〜20の長鎖のアルキル基が挙げられる。なお、Rは単独でもよく、2種以上混合していてもよい。)で表される(メタ)アクリル酸エステル単量体単位からなる共重合体に、架橋性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法が挙げられる。
There are various methods for producing a crosslinkable silicon group-containing organic polymer in which a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylate polymer having a crosslinkable silicon group are blended. It can be mentioned. For example, it has a crosslinkable silicon group, and the molecular chain substantially has a general formula (2):
-CH 2 -C (R 2) ( COOR 3) - ··· (2)
(Wherein, R 2 represents a hydrogen atom or a methyl group, and R 3 represents an alkyl group having 1 to 6 carbon atoms. Preferably, an alkyl group having 1 to 2 carbon atoms is mentioned. In addition, R 3 is an individual). And (meth) acrylic acid ester monomer unit represented by the formula (3):
-CH 2 -C (R 2) ( COOR 4) - ··· (3)
(Wherein, R 2 is the same as above, and R 4 is an alkyl group having 8 or more carbon atoms. Preferably, long-chain alkyl groups having 8 to 20 carbon atoms such as 2-ethylhexyl group, stearyl group, etc.) In addition, R 4 may be a single one, or two or more types may be mixed.) A copolymer comprising a (meth) acrylic acid ester monomer unit represented by The method of blending and manufacturing an oxyalkylene type polymer is mentioned.

(メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(2)及び式(3)の単量体単位からなる。ここで、「実質的に」とは、共重合体中に存在する式(2)及び式(3)の単量体単位の合計が50質量%を越えることを意味する。式(2)及び式(3)の単量体単位の合計は好ましくは70質量%以上である。また、式(2)の単量体単位と式(3)の単量体単位との存在比は、質量比で95:5〜40:60が好ましく、90:10〜60:40が更に好ましい。   The molecular chain of the (meth) acrylic acid ester copolymer substantially consists of the monomer units of the formulas (2) and (3). Here, "substantially" means that the total of the monomer units of the formulas (2) and (3) present in the copolymer exceeds 50% by mass. The total of the monomer units of the formulas (2) and (3) is preferably 70% by mass or more. The mass ratio of the monomer unit of formula (2) to the monomer unit of formula (3) is preferably 95: 5 to 40:60, and more preferably 90:10 to 60:40. .

(メタ)アクリル酸エステル系重合体の数平均分子量は、600以上10,000以下が好ましく、1,000以上5,000以下がより好ましく、1,000以上4,500以下が更に好ましい。数平均分子量をこの範囲にすることにより、架橋性ケイ素基を有するポリオキシアルキレン系重合体との相溶性が向上する。(メタ)アクリル酸エステル系重合体は、単独で用いても、2種以上を併用してもよい。架橋性ケイ素基を有するポリオキシアルキレン系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系重合体との配合比に特に制限はないが、(メタ)アクリル酸エステル系重合体とポリオキシアルキレン系重合体との合計100質量部に対して、(メタ)アクリル酸エステル系重合体が10〜60質量部の範囲内であることが好ましく、20〜50質量部の範囲内がより好ましく、25〜45質量部の範囲内が更に好ましい。(メタ)アクリル酸エステル系重合体が60質量部より多いと粘度が高くなり、作業性が悪化するため好ましくない。   The number average molecular weight of the (meth) acrylate polymer is preferably 600 or more and 10,000 or less, more preferably 1,000 or more and 5,000 or less, and still more preferably 1,000 or more and 4,500 or less. By setting the number average molecular weight in this range, the compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group is improved. The (meth) acrylate polymers may be used alone or in combination of two or more. There are no particular restrictions on the compounding ratio of the crosslinkable silicon group-containing polyoxyalkylene polymer to the crosslinkable silicon group-containing (meth) acrylate polymer, but the (meth) acrylate polymer and the poly It is preferable that a (meth) acrylic-ester type polymer exists in the range of 10-60 mass parts with respect to a total of 100 mass parts with an oxyalkylene type polymer, The inside of the range which is 20-50 mass parts is more preferable The range of 25 to 45 parts by mass is more preferable. When the amount of the (meth) acrylic acid ester-based polymer is more than 60 parts by mass, the viscosity becomes high and the workability is deteriorated.

更に、本発明においては架橋性ケイ素基を有する飽和炭化水素系重合体と架橋性ケイ素基を有する(メタ)アクリル酸エステル系共重合体とをブレンドした有機重合体も用いることができる。架橋性ケイ素基を有する(メタ)アクリル酸エステル系共重合体をブレンドして得られる有機重合体の製造方法としては、他にも、架橋性ケイ素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体を重合する方法を利用できる。   Furthermore, in the present invention, an organic polymer in which a saturated hydrocarbon polymer having a crosslinkable silicon group and a (meth) acrylic acid ester copolymer having a crosslinkable silicon group can be used. As another method of producing an organic polymer obtained by blending a (meth) acrylic acid ester copolymer having a crosslinkable silicon group, in the presence of an organic polymer having a crosslinkable silicon group (Meta ) A method of polymerizing acrylic acid ester type monomer can be used.

主鎖骨格がオキシアルキレン系重合体であり末端に加水分解性基等の官能基を有するポリマー(以下、「ポリオキシアルキレン系重合体」という。)は、本質的に一般式(4)で示される繰り返し単位を有する重合体である。
−R−O− ・・・(4)
一般式(4)中、Rは炭素数が1〜14の直鎖状若しくは分岐アルキレン基であり、炭素数が2〜4の直鎖状若しくは分岐アルキレン基が好ましい。
A polymer having a main chain skeleton of an oxyalkylene polymer and having a functional group such as a hydrolyzable group at its end (hereinafter referred to as "polyoxyalkylene polymer") is essentially represented by the general formula (4) Polymers having repeating units.
-R 5 -O- (4)
In the general formula (4), R 5 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 2 to 4 carbon atoms.

一般式(4)で示される繰り返し単位の具体例としては、−CHCHO−、−CHCH(CH)O−、−CHCHCHCHO−等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にオキシプロピレンを主成分とする重合体からなる主鎖骨格が好ましい。 Specific examples of the repeating unit represented by the general formula (4), -CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH 2 CH 2 CH 2 O- and the like . The main chain skeleton of the polyoxyalkylene polymer may consist of only one type of repeating unit, or may consist of two or more types of repeating units. In particular, a main chain skeleton composed of a polymer containing oxypropylene as a main component is preferable.

架橋性ケイ素基を有するポリオキシアルキレン系重合体の分子量は、硬化物の初期の引張特性である引張モジュラスを小さくし、破断時伸びを大きくするため高い分子量が好ましい。本発明においては、ポリオキシアルキレン系重合体の数平均分子量の下限としては15,000が好ましく、18,000以上が更に好ましく、20,000以上がより好ましい。また、数平均分子量の上限は50,000、更には40,000が好ましい。なお、本発明に係る数平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算分子量である。数平均分子量が15,000未満の場合、引張モジュラスや破断時伸びが十分でない場合があり、50,000を超えると組成物の粘度が大きくなり作業性が低下することがある。   The molecular weight of the polyoxyalkylene polymer having a crosslinkable silicon group is preferably a high molecular weight in order to reduce the tensile modulus, which is the initial tensile properties of the cured product, and increase the elongation at break. In the present invention, the lower limit of the number average molecular weight of the polyoxyalkylene polymer is preferably 15,000, more preferably 18,000 or more, and more preferably 20,000 or more. The upper limit of the number average molecular weight is preferably 50,000, more preferably 40,000. In addition, the number average molecular weight concerning this invention is a polystyrene conversion molecular weight by gel permeation chromatography. If the number average molecular weight is less than 15,000, the tensile modulus and the elongation at break may not be sufficient, and if it exceeds 50,000, the viscosity of the composition may be increased to lower the workability.

ポリオキシアルキレン系重合体において架橋性ケイ素基の含有量を適度に低下させると、硬化物における架橋密度が低下するので、初期においてより柔軟な硬化物になり、モジュラス特性が小さくなると共に破断時伸び特性が大きくなる。ポリオキシアルキレン系重合体において架橋性ケイ素基は、重合体1分子中に平均して1.2個以上2.8個以下存在することが好ましく、1.3個以上2.6個以下存在することがより好ましく、1.4個以上2.4個以下存在することが更に好ましい。分子中に含まれる架橋性ケイ素基の数が1個未満になると硬化性が不十分になり、また、多すぎると網目構造があまりに密になるため良好な機械特性を示さなくなる。そして、主鎖骨格が直鎖である2官能の重合体の場合、当該重合体の架橋性ケイ素基は、重合体1分子中に平均して1.2個以上1.9個未満存在することが好ましく、1.25個以上1.8個以下存在することがより好ましく、1.3個以上1.7個未満存在することが更に好ましい。   When the content of the crosslinkable silicon group in the polyoxyalkylene polymer is appropriately reduced, the crosslink density in the cured product is reduced, so that the cured product becomes softer at the initial stage, and the modulus characteristics become smaller and the elongation at break becomes The characteristics are increased. In the polyoxyalkylene polymer, the crosslinkable silicon group is preferably present in an average of 1.2 or more and 2.8 or less in one polymer molecule, and is 1.3 or more and 2.6 or less. More preferably, the number is 1.4 or more and 2.4 or less. If the number of crosslinkable silicon groups contained in the molecule is less than one, the curability will be insufficient, and if too large, the network structure will be too dense to show good mechanical properties. And in the case of a bifunctional polymer whose main chain skeleton is a straight chain, the crosslinkable silicon group of the polymer is present in an average of 1.2 or more and less than 1.9 in one polymer molecule. Is more preferably 1.25 or more and 1.8 or less, still more preferably 1.3 or more and less than 1.7.

架橋性ケイ素基を有するポリオキシアルキレン系重合体は直鎖状でも分岐を有してもよい。引張モジュラスを小さくする観点からは、架橋性ケイ素基を有するポリオキシアルキレン系重合体は直鎖状の重合体が好ましい。   The polyoxyalkylene polymer having a crosslinkable silicon group may be linear or branched. From the viewpoint of reducing the tensile modulus, the polyoxyalkylene polymer having a crosslinkable silicon group is preferably a linear polymer.

ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法や複金属シアン化物錯体触媒による重合法等が挙げられるが、特に限定されない。複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw(重量平均分子量)/Mn(数平均分子量)が1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。   Examples of the synthesis method of the polyoxyalkylene polymer include, but not particularly limited to, a polymerization method by an alkali catalyst such as KOH and a polymerization method by a double metal cyanide complex catalyst. According to a double metal cyanide complex catalyst polymerization method, a polyoxyalkylene type having a high molecular weight with a number average molecular weight of 6,000 or more and Mw (weight average molecular weight) / Mn (number average molecular weight) of 1.6 or less and a narrow molecular weight distribution Polymers can be obtained.

ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、例えば、トルエンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られる成分を挙げることができる。   The main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component. Examples of the urethane bond component include aromatic polyisocyanates such as toluene diisocyanate; and components obtained from the reaction of aliphatic polyisocyanates such as isophorone diisocyanate with polyoxyalkylene polymers having a hydroxyl group. .

分子中に不飽和基、水酸基、エポキシ基、又はイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を有する官能基、及び架橋性ケイ素基を有する化合物を反応させることで、ポリオキシアルキレン系重合体へ架橋性ケイ素基を導入できる(以下、高分子反応法という。)。   A polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group, or an isocyanate group in a molecule, and a compound having a functional group having reactivity with this functional group and a crosslinkable silicon group The crosslinkable silicon group can be introduced into the polyoxyalkylene polymer by reacting (hereinafter referred to as a polymer reaction method).

高分子反応法の例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性ケイ素基を有するヒドロシランや、架橋性ケイ素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性ケイ素基を有するポリオキシアルキレン系重合体を得る方法を挙げることができる。不飽和基含有ポリオキシアルキレン系重合体は、水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させることで得ることができる。   As an example of the polymer reaction method, a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group is allowed to act on an unsaturated group-containing polyoxyalkylene polymer to hydrosilylate or mercapitize, and the crosslinkable silicon group The method of obtaining the polyoxyalkylene type polymer which has these can be mentioned. An unsaturated group-containing polyoxyalkylene polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group having reactivity with the functional group. be able to.

また、高分子反応法の他の例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基、並びに架橋性ケイ素基を有する化合物とを反応させる方法や、末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基、並びに架橋性ケイ素基を有する化合物とを反応させる方法を挙げることができる。イソシアネート化合物を用いると、架橋性ケイ素基を有するポリオキシアルキレン系重合体を容易に得ることができる。   Further, as another example of the polymer reaction method, a method of reacting a polyoxyalkylene polymer having a hydroxyl group at an end with an isocyanate group and a compound having a crosslinkable silicon group, a polyoxy having an isocyanate group at an end A method of reacting an alkylene polymer with a compound having an active hydrogen group such as a hydroxyl group or an amino group and a crosslinkable silicon group can be mentioned. When an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group can be easily obtained.

なお、架橋性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用しても、2種以上を併用してもよい。   The polyoxyalkylene polymer having a crosslinkable silicon group may be used alone or in combination of two or more.

[(B)導電性フィラー]
(B)導電性フィラーは、電気導電性を有する材料を用いて形成される。導電性フィラーとしては、例えば、銀粉、銅粉、ニッケル粉、アルミ粉、及びこれらの銀メッキ粉や、銀コートガラス、銀コートシリカ、銀コートプラスチック等の金属粉;酸化亜鉛、酸化チタン、ITO、ATO、カーボンブラック等が挙げられる。体積抵抗率を低下させる観点から、導電性フィラーは、銀粉又は銀メッキ粉が好ましく、導電性の信頼性及びコストの観点から、銀粉及び銀メッキ粉を併用することがより好ましい(以下、(B)導電性フィラーを「(B)成分」という場合がある。)。
[(B) conductive filler]
(B) The conductive filler is formed using a material having electrical conductivity. As the conductive filler, for example, silver powder, copper powder, nickel powder, aluminum powder, and silver plated powder thereof, metal powder such as silver coated glass, silver coated silica, silver coated plastic, etc .; zinc oxide, titanium oxide, ITO , ATO, carbon black and the like. From the viewpoint of reducing the volume resistivity, the conductive filler is preferably silver powder or silver plating powder, and from the viewpoint of conductivity reliability and cost, it is more preferable to use silver powder and silver plating powder in combination (below, (B A conductive filler may be called "(B) component".

(B)導電性フィラーの形状としては、種々の形状(例えば、粒状、球形状、楕円、円筒形、フレーク状、平板状、又は粒塊等)を採用できる。導電性フィラーは、やや粗いか、又はぎざぎざの表面を有することもできる。導電性フィラーの粒子形状、大きさ、及び/又は硬度を組み合わせて本発明の導電性接着剤に用いることができる。また、導電性接着剤の硬化物の導電性をより向上させることを目的として、(B)導電性フィラーの粒子形状、大きさ、及び/又は硬度が互いに異なる複数の導電性フィラーを組み合わせることもできる。なお、組み合わせる導電性フィラーは2種類に限られず、3種類以上であってもよい。本発明においては、フレーク状の導電性フィラーと、粒状等の導電性フィラーとを併用することが好ましい。   (B) As the shape of the conductive filler, various shapes (for example, granular, spherical, elliptical, cylindrical, flake, flat, or agglomerates) can be adopted. The conductive filler can also have a somewhat rough or jagged surface. The particle shape, size, and / or hardness of the conductive filler can be combined and used in the conductive adhesive of the present invention. In addition, in order to further improve the conductivity of the cured product of the conductive adhesive, it is also possible to combine a plurality of conductive fillers having different particle shapes, sizes and / or hardness of (B) conductive filler. it can. In addition, the conductive filler to be combined is not limited to two types, and may be three or more types. In the present invention, it is preferable to use a flaky conductive filler and a conductive filler such as particles in combination.

ここで、フレーク状とは、扁平状、薄片状、若しくは鱗片状等の形状を含み、球状や塊状等の立体形状の銀粉を一方向に押し潰した形状を含む。また、粒状とは、フレーク状を有さない全ての導電性フィラーの形状を意味する。例えば、粒状としては、ブドウの房状に粉体が凝集した形状、球状、略球状、塊状、樹枝状、またこれらの形状を有する銀粉の混合物等が挙げられる。   Here, the flake shape includes a flat shape, a flaky shape, or a scaly shape, and includes a shape obtained by crushing silver powder having a three-dimensional shape such as a spherical shape or a massive shape in one direction. Moreover, a granular form means the shape of all the electroconductive fillers which do not have flake shape. For example, as the granular form, there may be mentioned a shape in which powder is aggregated into a bunch of grapes, a spherical shape, a substantially spherical shape, a massive shape, a dendritic shape, or a mixture of silver powder having these shapes.

また、(B)導電性フィラーとして銀粉及び銀メッキ粉を用いる場合、この導電性フィラーは様々な方法により製造できる。例えば、フレーク状の銀粉を導電性フィラーとして用いる場合、球状銀粉、塊状銀粉、及び/又は粒状銀粉等の銀粉をジェットミル、ロールミル若しくはボールミル等の装置を用いて機械的に粉砕等することで製造できる。また、粒状の銀粉を導電性フィラーとして用いる場合、電解法、粉砕法、熱処理法、アトマイズ法、又は還元法等により製造できる。これらの中では、還元方法をコントロールすることによりタップ密度の小さい粉末が得やすいため、還元法が好ましい。   Moreover, when using silver powder and silver plating powder as (B) electroconductive filler, this electroconductive filler can be manufactured by various methods. For example, when flake-like silver powder is used as a conductive filler, it is manufactured by mechanically pulverizing silver powder such as spherical silver powder, massive silver powder, and / or granular silver powder using an apparatus such as a jet mill, roll mill or ball mill. it can. When granular silver powder is used as a conductive filler, it can be produced by an electrolytic method, a pulverizing method, a heat treatment method, an atomizing method, a reduction method or the like. Among these, the reduction method is preferable because a powder with a low tap density can be easily obtained by controlling the reduction method.

(B)導電性フィラーに用いられる銀粉及び銀メッキ粉は、公知の銀粉及び銀メッキ粉を広く用いることができる。また、銀粉及び銀メッキ粉は、それぞれ所定の比表面積及びタップ密度を有する(b1)第一の銀粉及び銀メッキ粉と(b2)第二の銀粉及び銀メッキ粉とを含むことが好ましい。(b1)と(b2)との混合割合[(b1)/(b2)]は、質量比で1/10以上10/1以下であり、1/4以上4/1以下が好ましく、3/2以上4/1以下がより好ましい。また、(b1)成分において、第一の銀粉と銀メッキ粉との混合割合は1/10以上10/1以下であり、(b2)成分において、第二の銀粉と銀メッキ粉との混合割合は1/10以上10/1以下である。   (B) As silver powder and silver plating powder used for a conductive filler, well-known silver powder and silver plating powder can be used widely. The silver powder and the silver-plated powder preferably include (b1) the first silver powder and the silver-plated powder and (b2) the second silver powder and the silver-plated powder, which have predetermined specific surface areas and tap densities, respectively. The mixing ratio [(b1) / (b2)] of (b1) and (b2) is 1/10 or more and 10/1 or less in mass ratio, preferably 1⁄4 or more and 4/1 or less, and 3/2 More than 4/1 is more preferable. Moreover, in the component (b1), the mixing ratio of the first silver powder and the silver plating powder is 1/10 or more and 10/1 or less, and in the component (b2), the mixing ratio of the second silver powder and the silver plating powder Is 1/10 or more and 10/1 or less.

(b1)第一の銀粉及び銀メッキ粉の比表面積は0.5m/g以上2.0m/g未満が好ましく、1.0m/g以上2.0m/g未満がより好ましい。また、(b1)第一の銀粉及び銀メッキ粉のタップ密度は2.5g/cm以上6.0g/cm以下が好ましく、3.0g/cm以上5.0g/cm以下がより好ましい。また、(b1)第一の銀粉の50%平均粒径は、0.5μm以上15μm以下が好ましい。なお、(b1)第一の銀粉及び銀メッキ粉の形状は様々な形状であってよく、フレーク状、粒状等の種々の形状を用いることができる。中でも、フレーク状の銀粉及び銀メッキ粉が好ましい。 (B1) a specific surface area of the first silver powder and silver-plated powder preferably is less than 0.5 m 2 / g or more 2.0 m 2 / g, more preferably less than 1.0 m 2 / g or more 2.0 m 2 / g. The tap density of the first silver powder and silver-plated powder (b1) is preferably 2.5 g / cm 3 or more and 6.0 g / cm 3 or less, more preferably 3.0 g / cm 3 or more and 5.0 g / cm 3 or less preferable. Moreover, as for the 50-% average particle diameter of (b1) 1st silver powder, 0.5 micrometer or more and 15 micrometers or less are preferable. The shape of the (b1) first silver powder and the silver-plated powder may be various shapes, and various shapes such as flakes and particles can be used. Among them, flake-like silver powder and silver-plated powder are preferable.

なお、本発明において、銀粉及び銀メッキ粉のタップ密度は、JIS K5101−1991の20.2タップ法に準じた方法により測定できる。また、50%平均粒径は、レーザー回析散乱式粒度分布測定法により測定される体積累積50%における粒径である。   In addition, in this invention, the tap density of silver powder and silver plating powder can be measured by the method according to the 20.2 tap method of JISK5101-1991. Moreover, 50% average particle diameter is a particle diameter in 50% of the volume accumulation measured by laser diffraction scattering type particle size distribution measuring method.

(b2)第二の銀粉及び銀メッキ粉の比表面積は2.0m/g以上7.0m/g以下が好ましく、2.0m/g以上3.0m/g以下がより好ましい。また、(b2)第二の銀粉及び銀メッキ粉のタップ密度は1.0g/cm以上3.0g/cm以下であることが好ましい。また、(b2)第二の銀粉及び銀メッキ粉の50%平均粒径は、0.5μm以上20μm以下が好ましい。なお、(b2)第二の銀粉及び銀メッキ粉の形状は様々な形状であってよく、フレーク状、粒状等の種々の形状を用いることができる。中でも、粒状の銀粉及び銀メッキ粉が好ましい。 (B2) a specific surface area of the second silver powder and silver-plated powder preferably 2.0 m 2 / g or more 7.0 m 2 / g or less, more preferably 2.0 m 2 / g or more 3.0 m 2 / g. The tap density of the (b2) second silver powder and the silver-plated powder is preferably 1.0 g / cm 3 or more and 3.0 g / cm 3 or less. Moreover, as for the 50% average particle diameter of (b2) 2nd silver powder and silver plating powder, 0.5 micrometer or more and 20 micrometers or less are preferable. In addition, the shapes of (b2) 2nd silver powder and silver plating powder may be various shapes, and various shapes, such as flake shape and a granular form, can be used. Among them, granular silver powder and silver plated powder are preferable.

本発明において、(B)導電性フィラーの含有率は、導電性接着剤の全含有量の50質量%以上85質量%以下であり、65質量%以上85質量%以下が好ましく、70質量%以上80質量%以下がより好ましい。十分な導電性を得る観点から、含有率は50質量%以上が好ましく、優れた導電性と共に接着性及び作業性を確保する観点から85質量%以下が好ましい。特に、接着性や作業性を確保する観点から、(b2)第二の銀粉及び銀メッキ粉の含有率が増加しすぎないようにすることが好ましい。   In the present invention, the content of the (B) conductive filler is 50% by mass or more and 85% by mass or less, preferably 65% by mass or more and 85% by mass or less, and 70% by mass or more of the total content of the conductive adhesive. 80 mass% or less is more preferable. From the viewpoint of obtaining sufficient conductivity, the content is preferably 50% by mass or more, and from the viewpoint of securing adhesiveness and workability together with excellent conductivity, it is preferably 85% by mass or less. In particular, from the viewpoint of securing adhesiveness and workability, it is preferable that the content of the (b2) second silver powder and the silver-plated powder is not excessively increased.

(b1)成分、及び(b2)成分のタップ密度が上記の範囲内であることで、銀粉及び銀メッキ粉を多量に添加することなく、十分な導電性を発揮することができる。コスト抑制の観点からは、特に、(b1)成分と(b2)成分のうち、一方がフレーク状の銀粉及び/又は銀メッキ粉であり、もう一方が粒状の銀粉及び/又は銀メッキ粉を組み合わせて用いることが好ましい。   When the tap density of the components (b1) and (b2) is within the above range, sufficient conductivity can be exhibited without adding a large amount of silver powder and silver plating powder. From the viewpoint of cost control, in particular, one of the components (b1) and (b2) is a flake-like silver powder and / or a silver-plated powder, and the other is a combination of granular silver powder and / or a silver-plated powder. It is preferable to use it.

[(C)チクソ性付与剤]
本発明の導電性接着剤は、(C)チクソ性付与剤を用いることにより、チクソ性を確保することができる。(C)チクソ性付与剤としては、シリカ系化合物、及び/又はアマイドワックス系化合物等が挙げられる(以下、(C)チクソ性付与剤を「(C)成分」という場合がある。)。
[(C) Thixotropic agent]
The conductive adhesive of the present invention can secure thixotropy by using a (C) thixotropy-imparting agent. Examples of the (C) thixotropy-imparting agent include a silica-based compound and / or an amide wax-based compound (hereinafter, the (C) thixotropy-imparting agent may be referred to as "(C) component").

本発明では、(A)成分及び(B)成分と共に、特定の表面処理剤により疎水化処理された疎水性シリカ及び親水性シリカからなる群から選択される1種以上のシリカを用いることが好ましく、この場合、特に導電性の安定性に優れた導電性接着剤を得ることができる。(C)成分としてのシリカの粒径は特に制限はないが、シリカ微粉末が好ましく、平均粒径7nm以上16nm以下のシリカ微粉末がより好ましく、平均粒径7nm以上14nm以下のシリカ微粉末が最も好ましい。   In the present invention, it is preferable to use, together with the (A) component and the (B) component, at least one silica selected from the group consisting of hydrophobic silica and hydrophobic silica hydrophobized by a specific surface treatment agent. In this case, it is possible to obtain a conductive adhesive which is particularly excellent in the stability of the conductivity. The particle size of silica as the component (C) is not particularly limited, but is preferably a fine silica powder, more preferably a fine silica powder having an average particle size of 7 to 16 nm, and a fine silica powder having an average particle size of 7 to 14 nm. Most preferred.

親水性シリカとしては、公知の親水性シリカを広く用いることができ、中でも表面にシラノール基(Si−OH基)が存在するヒュームドシリカが好ましい。親水性シリカを用いることにより、粘度を上げずフロー性を確保しながらブリードを防止することができる。フロー性を有する導電性接着剤は、フロー性を要求される用途、例えば、スクリーン印刷方式で基板へ塗布し、50μm程度の薄膜でパターンを作成する用途等への応用に適している。   Well-known hydrophilic silica can be used widely as hydrophilic silica, and fumed silica in which a silanol group (Si-OH group) exists in the surface among them is preferred. By using hydrophilic silica, it is possible to prevent bleeding while securing flowability without increasing viscosity. The conductive adhesive having flowability is suitable for applications requiring flowability, for example, application to a substrate by screen printing and formation of a pattern with a thin film of about 50 μm.

疎水性シリカとしては、ジメチルジクロロシラン、ヘキサメチルジシラザン、(メタ)アクリルシラン、オクチルシラン(例えば、トリメトキシオクチルシラン等)、及びアミノシランからなる群から選択される1種以上の表面処理剤により疎水化処理された疎水性シリカが用いられる。このような特定の表面処理剤により疎水化処理された疎水性シリカを用いることにより、吐出性や形状保持を確保しながらブリードを防止することができる。本発明において、形状保持性を有する導電性接着剤は、形状保持性を要求される用途、例えば、スクリーン印刷方式で基板へ塗布しパターンを作製する場合において、100μm以上の膜厚が要求される場合やハンダによる接続部分を本発明の導電性接着剤で代替する用途等への応用に適している。   As hydrophobic silica, one or more surface treatment agents selected from the group consisting of dimethyldichlorosilane, hexamethyldisilazane, (meth) acrylsilane, octylsilane (eg, trimethoxyoctylsilane etc.), and aminosilane Hydrophobicized hydrophobic silica is used. By using hydrophobic silica hydrophobized with such a specific surface treatment agent, it is possible to prevent bleeding while ensuring dischargeability and shape retention. In the present invention, the conductive adhesive having shape retention property is required to have a film thickness of 100 μm or more in the application where the shape retention property is required, for example, when applying to a substrate by screen printing method to produce a pattern. The present invention is suitable for applications where the conductive adhesive of the present invention is substituted for the case or solder connection portion.

表面処理剤を用いたシリカの疎水化処理方法は公知の方法を選択可能であり、例えば、未処理のシリカに前述した表面処理剤を噴霧し、又は気化した表面処理剤を混合し、加熱処理する方法が挙げられる。なお、この疎水化は窒素雰囲気下の乾式で処理することが好ましい。   The hydrophobization treatment method of the silica using a surface treatment agent can select a well-known method, for example, the surface treatment agent mentioned above is sprayed on untreated silica, or the surface treatment agent which vaporized is mixed, and heat treatment is carried out. Methods are included. In addition, it is preferable to process this hydrophobization by the dry condition under nitrogen atmosphere.

(C)成分の配合割合は特に制限はないが、(A)成分100質量部に対して3質量部以上20質量部以下用いることが好ましく、5質量部以上10質量部以下用いることがより好ましい。(C)成分であるシリカは、単独で用いることも、2種以上を併用することもできる。   Although the compounding ratio of (C) component does not have a restriction | limiting in particular, It is preferable to use 3 mass parts or more and 20 mass parts or less with respect to 100 mass parts of (A) component, and it is more preferable to use 5 mass parts or more and 10 mass parts or less . The silica which is the component (C) can be used alone or in combination of two or more.

[(D1)アミン化合物、(D2)アミン化合物を生成する化合物]
本発明の導電性接着剤は、(D1)一分子中に少なくとも一個のアルコキシシリル基を有するアミン化合物や、(D2)水と反応して(D1)アミン化合物を生成する化合物を更に含むこともできる(以下、D1)一分子中に少なくとも一個のアルコキシシリル基を有するアミン化合物を「(D1)成分」と、(D2)水と反応して(D1)アミン化合物を生成する化合物を「(D2)成分」という場合がある。)。導電性接着剤が(D1)成分及び/又は(D2)成分を含有することにより、接着性をより向上させることができる。(D1)化合物の製造方法は特に限定されず、公知の方法を用いることができる。
[(D1) Amine Compound, (D2) Compound Producing Amine Compound]
The conductive adhesive of the present invention further includes (D1) an amine compound having at least one alkoxysilyl group in one molecule, and (D2) a compound which reacts with water to form (D1) an amine compound. Amine compounds having at least one alkoxysilyl group in one molecule (hereinafter, D1) are reacted with "(D1) component" and (D2) water to form (D1) amine compounds as "(D2) In some cases. ). Adhesiveness can be further improved by the conductive adhesive containing the (D1) component and / or the (D2) component. The method for producing the compound (D1) is not particularly limited, and known methods can be used.

(D1)一分子中に少なくとも一個のアルコキシシリル基を有するアミン化合物としては、例えば、一般式(5)で示される化合物が挙げられる。   Examples of the amine compound having at least one alkoxysilyl group in one molecule (D1) include a compound represented by General Formula (5).

Figure 2019112566
Figure 2019112566

一般式(5)において、0≦n≦2(ただし、nは整数)を満たし、nは0又は1が好ましい。また、R及びRは、互いに同一、若しくは異なる官能基であってよい。例えば、R及びRはそれぞれ、炭素数が1個以上4個以下の炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基等のアルケニル基等が好ましく、特にアルキル基が好ましい。Rは炭素数が1個以上10個以下の炭化水素基であり、メチレン基、エチレン基、プロピレン基、ブチレン基等のアルキレン基、フェニレン基等のアリーレン基、アルキレンアリーレン基等が好ましく、特にアルキレン基が好ましい。Zは、水素原子、又は炭素数が1個以上4個以下のアミノアルキル基である。 In the general formula (5), 0 ≦ n ≦ 2 (where n is an integer) is satisfied, and n is preferably 0 or 1. Also, R 6 and R 7 may be the same or different functional groups. For example, each of R 6 and R 7 is a hydrocarbon group having 1 to 4 carbon atoms, and is an alkyl group such as methyl group, ethyl group, propyl group or butyl group, vinyl group, allyl group, propenyl group And alkenyl groups such as butenyl group are preferable, and alkyl groups are particularly preferable. R 8 is a hydrocarbon group having 1 to 10 carbon atoms, and is preferably an alkylene group such as methylene, ethylene, propylene or butylene, an arylene group such as phenylene, an alkylene arylene group, etc. Alkylene is preferred. Z is a hydrogen atom or an aminoalkyl group having 1 or more and 4 or less carbon atoms.

(D1)一分子中に少なくとも一個のアルコキシシリル基を有するアミン化合物としては、一例として、下記式(6)〜(13)で示される化合物や、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のアミノシラン類等を挙げることができる。これらの中では、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン等が、導電性接着剤の接着性を向上させる観点から特に好ましい。   (D1) Examples of the amine compound having at least one alkoxysilyl group in one molecule include compounds represented by the following formulas (6) to (13), N- (β-aminoethyl) -γ-amino Aminosilanes such as propyltrimethoxysilane and N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane can be exemplified. Among these, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, etc. are electrically conductive. It is particularly preferable from the viewpoint of improving the adhesion of the adhesive.

Figure 2019112566
Figure 2019112566

(D2)水と反応して一般式(5)で示されるアミン化合物を生成する化合物としては、具体的には、原料入手の容易性、貯蔵安定性の良好性、水との反応性等の観点から、一分子中に少なくとも1個のアルコキシシリル基を有するアミン化合物のケチミン化合物、エナミン化合物、及び/又はアルジミン化合物等が挙げられる。ケチミン化合物、エナミン化合物及びアルジミン化合物はそれぞれ、一分子中に少なくとも1個のアルコキシシリル基を有する一般式(5)で示されるアミン化合物とカルボニル化合物との脱水反応により製造できる。   (D2) As a compound which reacts with water to form an amine compound represented by the general formula (5), specifically, easiness of obtaining raw materials, good storage stability, reactivity with water, etc. From the viewpoint, ketimine compounds of an amine compound having at least one alkoxysilyl group in one molecule, enamine compounds, and / or aldimine compounds and the like can be mentioned. The ketimine compound, the enamine compound and the aldimine compound can each be produced by the dehydration reaction of an amine compound represented by the general formula (5) having at least one alkoxysilyl group in one molecule and a carbonyl compound.

このようなカルボニル化合物としては、例えば、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、n−アミルアルデヒド、イソヘキシルアルデヒド、ジエチルアセトアルデヒド、グリオキサール、ベンズアルデヒド、フェニルアセトアルデヒド等のアルデヒド類;シクロペンタノン、トリメチルシクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、トリメチルシクロヘキサノン等の環状ケトン類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチル−tert−ブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソブチルケトン等の脂肪族ケトン類;アセトフェノン、ベンゾフェノン、プロピオフェノン等の芳香族ケトン;アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、マロン酸メチルエチル、ジベンゾイルメタン等の下記一般式(14)で示されるβ−ジカルボニル化合物等が挙げられる。これらのうち、メチルイソブチルケトン、ジプロピルケトン、フェニルアセトアルデヒド、及び/又は活性メチレン基を有するβ−ジカルボニル化合物がより好ましい。   As such a carbonyl compound, for example, aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-amyl aldehyde, isohexyl aldehyde, diethylacetaldehyde, glyoxal, benzaldehyde, phenylacetaldehyde and the like; cyclopentanone, Cyclic ketones such as trimethylcyclopentanone, cyclohexanone, methylcyclohexanone and trimethylcyclohexanone; acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl tert-butyl ketone, diethyl ketone, dipropyl ketone, diisopropyl ketone, Aliphatic ketones such as dibutyl ketone and diisobutyl ketone; acetophenone Aromatic ketones such as benzophenone and propiophenone; β- represented by the following general formula (14) such as acetylacetone, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, diethyl malonate, methyl ethyl malonate, dibenzoylmethane and the like Dicarbonyl compounds and the like can be mentioned. Among these, methyl isobutyl ketone, dipropyl ketone, phenylacetaldehyde and / or β-dicarbonyl compounds having an active methylene group are more preferable.

Figure 2019112566
Figure 2019112566

一般式(14)において、R及びR10は、互いに同一、若しくは異なる官能基であってよい。例えば、R及びR10はそれぞれ、炭素数が1個以上16個以下のアルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ヘキサデシル基等)、炭素数が6個以上12個以下のアリール基(例えば、フェニル基、トリル基、ヘキシル基、ナフチル基等)、又は炭素数が1個以上4個以下のアルコキシ基(例えば、メトキシ基、エトキシ基、プロキシ基、プトキシ基等)である。 In the general formula (14), R 9 and R 10 may be the same or different functional groups. For example, each of R 9 and R 10 is an alkyl group having 1 to 16 carbon atoms (eg, methyl, ethyl, propyl, butyl, heptyl, hexyl, octyl, nonyl, decyl) Group, undecyl group, hexadecyl group, etc., an aryl group having 6 to 12 carbon atoms (eg, phenyl group, tolyl group, hexyl group, naphthyl group, etc.), or 1 to 4 carbon atoms It is an alkoxy group (eg, methoxy group, ethoxy group, proxy group, ptoxy group, etc.).

上述した(D2)水と反応することにより一般式(5)で示されるアミン化合物を生成する化合物は特に限定されない。例えば、本発明においては、一般式(5)で示されるアミン化合物を生成する化合物として、モノマー純度が50%以上95%以下、好ましくは70%以上95%以下、更に好ましくは80%以上95%以下で、かつ、アミノ基封鎖率が90%以上、好ましくは95%以上の化合物を用いることが好ましい。なお、係る化合物は、公知の製法により製造できる。   The compound which produces | generates the amine compound shown by General formula (5) by reacting with (D2) water mentioned above is not specifically limited. For example, in the present invention, as a compound for producing an amine compound represented by the general formula (5), the monomer purity is 50% to 95%, preferably 70% to 95%, and more preferably 80% to 95%. In the following, it is preferable to use a compound having an amino group blocking ratio of 90% or more, preferably 95% or more. In addition, the compound which concerns can be manufactured by a well-known manufacturing method.

(D1)一般式(5)で示されるアミン化合物、及び(D2)一般式(5)で示されるアミン化合物を生成する化合物の配合割合に特に制限はない。本発明では、(A)架橋性ケイ素基含有有機重合体100質量部に対してこれらのアミン化合物を1質量部以上20質量部以下添加することが好ましい。なお、(D1)一般式(5)で示されるアミン化合物、及び(D2)水と反応することにより一般式(5)で示されるアミン化合物を生成する化合物は、導電性接着剤に1種類のみ添加することも、2種類以上添加することもできる。   There are no particular limitations on the blending ratio of the compound (D1) represented by the general formula (5) and the compound (D2) that produces the amine compound represented by the general formula (5). In the present invention, it is preferable to add 1 to 20 parts by mass of these amine compounds to 100 parts by mass of the crosslinkable silicon group-containing organic polymer (A). In addition, the compound which produces | generates the amine compound shown by General formula (5) by reacting with the amine compound shown by (D1) General formula (5), and water (D2) is only 1 type in a conductive adhesive. It can be added or two or more kinds can be added.

[希釈剤]
本発明の導電性接着剤は、粘度を調整する観点から希釈剤を含むこともできる。希釈剤を含有することにより、粘度等の物性を調整できる。希釈剤としては、様々な希釈剤を用いることができる。希釈剤としては、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤、リニアレンダイマー(出光興産株式会社商品名)等のα−オレフィン誘導体、芳香族炭化水素系溶剤、アルコール系溶剤、エステル系溶剤、クエン酸アセチルトリエチル等のクエン酸エステル系溶剤、ケトン系溶剤等の各種溶剤が挙げられる。
[Diluent]
The conductive adhesive of the present invention can also contain a diluent from the viewpoint of adjusting the viscosity. Physical properties such as viscosity can be adjusted by containing a diluent. As the diluent, various diluents can be used. As the diluent, for example, saturated hydrocarbon solvents such as normal paraffin and isoparaffin, α-olefin derivatives such as Linearn dimer (trade name of Idemitsu Kosan Co., Ltd.), aromatic hydrocarbon solvents, alcohol solvents, ester solvents Examples thereof include various solvents such as solvents, citric acid ester solvents such as acetyl triethyl citrate, and ketone solvents.

本発明の導電性接着剤の安全性、希釈効果の双方を考慮する場合、希釈剤としては、飽和炭化水素系溶剤が好ましく、ノルマルパラフィン、イソパラフィンがより好ましい。ノルマルパラフィン、イソパラフィンの炭素数は10〜16であることが好ましい。   In consideration of both the safety and the dilution effect of the conductive adhesive of the present invention, as the diluent, a saturated hydrocarbon solvent is preferable, and normal paraffin and isoparaffin are more preferable. The carbon number of normal paraffins and isoparaffins is preferably 10 to 16.

希釈剤の配合割合は、(A)成分100質量部に対して、0〜50質量部の範囲で配合することが好ましく、0.1〜40質量部の範囲で配合することがより好ましく、0.1〜30質量部の範囲で配合することが更に好ましい。希釈剤は単独で用いることも、2種以上を併用することもできる。   The compounding ratio of the diluent is preferably in the range of 0 to 50 parts by mass with respect to 100 parts by mass of the component (A), and more preferably in the range of 0.1 to 40 parts by mass, 0 It is further preferable to blend in the range of 1 to 30 parts by mass. The diluent may be used alone or in combination of two or more.

[その他の添加剤]
本発明に係る導電性接着剤には、導電性接着剤の導電性や粘度、及びチクソ性等の機能を損なわない範囲で物性等を調整する観点から、必要に応じ、硬化触媒、充填剤、可塑剤、接着付与剤、安定剤、着色剤、物性調整剤、揺変剤、脱水剤(保存安定性改良剤)、粘着付与剤、垂れ防止剤、紫外線吸収剤、酸化防止剤、難燃剤、ラジカル重合開始剤等の物質やトルエンやアルコール等の各種溶剤を配合してもよい。また、相溶する他の重合体をブレンドしてもよい。
[Other additives]
In the conductive adhesive according to the present invention, a curing catalyst, a filler, and the like, as needed, from the viewpoint of adjusting physical properties and the like within the range that does not impair the functions such as conductivity and viscosity and thixotropy of the conductive adhesive. Plasticizer, adhesion promoter, stabilizer, coloring agent, physical property modifier, thixotropic agent, dehydrating agent (storage stability improver), tackifier, anti-sagging agent, ultraviolet absorber, antioxidant, flame retardant, A substance such as a radical polymerization initiator or various solvents such as toluene and alcohol may be blended. Also, other polymers compatible may be blended.

(硬化触媒)
硬化触媒としては、例えば、テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジアセテート、オクチル酸錫、ナフテン酸錫等の有機錫化合物:オクチル酸鉛;ブチルアミン、オクチルアミン、ラウリルアミン、ジブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノール、モルホリン、N−メチルモルホリン、1,8−ジアザビシクロ(5.4.0)ウンデセン−7(DBU)等のアミン系化合物、又はこれらとカルボン酸等との塩;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物;r−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン等のアミノ基を有するシランカップリング剤等のシラノール複合触媒等が挙げられる。これらの触媒は、単独で用いても、2種以上を併用してもよい。また、変成シリコーン樹脂末端をフッ素で置換してフルオロシリル基としたポリマーも硬化触媒として有用である。
(Curing catalyst)
Examples of curing catalysts include titanates such as tetrabutyl titanate and tetrapropyl titanate; organotin compounds such as dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, tin octylate and tin naphthenate: lead octylate Butylamine, octylamine, laurylamine, dibutylamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, cyclohexylamine, benzylamine, diethylaminopropylamine, xylylenediamine, triethylenediamine, guanidine, diphenyl Guanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholine, N-methylmorpholine, 1,8-diazabicycline (5. 4.0) Amine compounds such as undecene-7 (DBU) or salts of these with carboxylic acids, etc .; low molecular weight polyamide resins obtained from excess polyamines and polybasic acids; excess polyamines and epoxy Examples thereof include reaction products with compounds; silanol complex catalysts such as silane coupling agents having an amino group such as r-aminopropyltrimethoxysilane and N- (β-aminoethyl) aminopropylmethyldimethoxysilane. These catalysts may be used alone or in combination of two or more. In addition, polymers having fluorosilicone groups substituted with the end of the modified silicone resin by fluorine are also useful as curing catalysts.

(可塑剤)
可塑剤としては、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類を挙げることができる。
(Plasticizer)
As the plasticizer, phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, butyl benzyl phthalate, etc .; Basic acid esters; Aliphatic esters such as butyl oleate and methyl acetyl ricinoleate; Phosphoric esters such as tricresyl phosphate and tributyl phosphate; Trimellitic esters; Chlorinated paraffins; Hydrocarbon-based oils such as hydrogenated terphenyl; process oils; epoxy plasticizers such as epoxidized soybean oil and epoxystearic acid benzyl ester.

また、高分子可塑剤を用いてもよい。高分子可塑剤を用いると、重合体成分を分子中に含まない可塑剤である低分子可塑剤を用いた場合に比較して、初期の物性を長期にわたり維持する。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;分子量500以上、更には1,000以上のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール若しくはこれらポリエーテルポリオールの水酸基をエステル基、エーテル基等に変換した誘導体等のポリエーテル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン等が挙げられる。   In addition, a polymer plasticizer may be used. When a polymer plasticizer is used, the initial physical properties are maintained over a long period of time, as compared with the case where a low molecular plasticizer which is a plasticizer containing no polymer component in the molecule is used. Specific examples of the polymer plasticizer include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate and pentaerythritol ester; Polyester based plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid, phthalic acid and ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, etc .; Is a polyether polyol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol or more having a hydroxyl group of 1,000 or more, or such polyether polyol, and Polyethers such as derivatives obtained by converting the group or the like; polystyrene and poly -α- polystyrenes methyl styrene and the like; polybutadiene, polybutene, polyisobutylene, butadiene - acrylonitrile, polychloroprene, and the like.

これらの高分子可塑剤のうちで、(A)成分と相溶する可塑剤が好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として用いると、表面硬化性及び深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性、耐候性、及び耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体及び/又はメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステル等のアクリル系重合体が更に好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化ができることからリビングラジカル重合法が好ましく、原子移動ラジカル重合法が更に好ましい。また、アクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得られる、いわゆるSGOプロセスによる重合体を用いることが好ましい。   Among these polymer plasticizers, plasticizers compatible with the component (A) are preferable. From this point, polyethers and vinyl polymers are preferred. The use of polyethers as a plasticizer is preferable because surface curability and deep-part curability are improved, and curing delay after storage does not occur, and polypropylene glycol is more preferable. In addition, vinyl polymers are preferable in terms of compatibility, weather resistance, and heat resistance. Among vinyl polymers, acrylic polymers and / or methacrylic polymers are preferable, and acrylic polymers such as polyacrylic acid alkyl ester are more preferable. The polymer synthesis method is preferably living radical polymerization, since molecular weight distribution is narrow and viscosity can be reduced, and atom transfer radical polymerization is more preferable. Moreover, it is preferable to use the polymer by the so-called SGO process obtained by continuous bulk polymerization of an acrylic acid alkyl ester type monomer at high temperature and pressure.

高分子可塑剤の数平均分子量は、500〜15,000が好ましく、800〜10,000がより好ましく、1,000〜8,000が更に好ましく、1,000〜5,000が特に好ましく、1,000〜3,000が最も好ましい。分子量が低すぎると熱等により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましい。1.70以下がより好ましく、1.60以下がなお好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。数平均分子量はビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定できる。また、分子量分布(Mw(重量平均分子量)/Mn(数平均分子量))は、GPC法(ポリスチレン換算)で測定できる。   The number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, still more preferably 1,000 to 8,000, and particularly preferably 1,000 to 5,000. And 3,000 to 3,000 are most preferable. If the molecular weight is too low, the plasticizer will flow out over time due to heat and the like, and the initial physical properties can not be maintained for a long time. On the other hand, if the molecular weight is too high, the viscosity is high and the workability is deteriorated. The molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow and preferably less than 1.80. 1.70 or less is more preferable, 1.60 or less is more preferable, 1.50 or less is more preferable, 1.40 or less is particularly preferable, and 1.30 or less is most preferable. The number average molecular weight can be measured by GPC in the case of vinyl polymers and by end group analysis in the case of polyether polymers. Moreover, molecular weight distribution (Mw (weight average molecular weight) / Mn (number average molecular weight)) can be measured by GPC method (polystyrene conversion).

また、高分子可塑剤は、架橋性ケイ素基を有さない可塑剤を用いることもできるものの、架橋性ケイ素基を有してもよい。架橋性ケイ素基を有する場合、反応性可塑剤として作用し、硬化物からの可塑剤の移行を防止できる。架橋性ケイ素基を有する場合、1分子あたり平均して1個以下、更には0.8個以下が好ましい。架橋性ケイ素基を有する可塑剤、特に架橋性ケイ素基を有するオキシアルキレン重合体を用いる場合、その数平均分子量は(A)成分より低いことを要する。   Moreover, although a polymer plasticizer can also use the plasticizer which does not have a crosslinkable silicon group, you may have a crosslinkable silicon group. When having a crosslinkable silicon group, it acts as a reactive plasticizer and can prevent migration of the plasticizer from the cured product. When it has a crosslinkable silicon group, it is preferable that the average per molecule is 1 or less, more preferably 0.8 or less. When using a plasticizer having a crosslinkable silicon group, particularly an oxyalkylene polymer having a crosslinkable silicon group, its number average molecular weight needs to be lower than that of the component (A).

可塑剤は、単独で用いることも、2種以上を併用することもできる。また、低分子可塑剤と高分子可塑剤とを併用してもよい。なお、これらの可塑剤は、導電性接着剤の製造時に配合することもできる。可塑剤の使用量は、(A)成分100質量部に対して5〜150質量部、好ましくは10〜120質量部、更に好ましくは20〜100質量部である。5質量部未満では可塑剤としての効果が発現しなくなり、150質量部を越えると硬化物の機械強度が不足する。   The plasticizer may be used alone or in combination of two or more. In addition, a low molecular plasticizer and a high molecular plasticizer may be used in combination. In addition, these plasticizers can also be mix | blended at the time of manufacture of a conductive adhesive. The amount of the plasticizer used is 5 to 150 parts by mass, preferably 10 to 120 parts by mass, and more preferably 20 to 100 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 5 parts by mass, the effect as a plasticizer can not be exhibited, and if it exceeds 150 parts by mass, the mechanical strength of the cured product is insufficient.

(充填剤)
充填剤としては、ヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、及びカーボンブラック等の補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末等の樹脂粉末等の充填剤;石綿、ガラス繊維、及びフィラメント等の繊維状充填剤等が挙げられる。
(filler)
Reinforcing fillers such as fume silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black as fillers; heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate Diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc flower, shirasu balloon, glass micro balloon, phenolic resin and vinylidene chloride Fillers such as resin organic micro balloon, resin powder such as PVC powder, PMMA powder and the like; fibrous fillers such as asbestos, glass fibers and filaments and the like.

充填剤を用いる場合、その使用量は(A)成分100質量部に対して1〜250質量部であり、10〜200質量部が好ましい。これらの充填剤は、単独で用いることも、2種類以上を混合して用いることもできる。   When using a filler, the usage-amount is 1-250 mass parts with respect to 100 mass parts of (A) component, and 10-200 mass parts is preferable. These fillers may be used alone or in combination of two or more.

充填剤は、酸化カルシウム等の脱水剤と均一に混合した後、気密性素材で構成された袋に封入し、適当な時間放置することにより、予め脱水乾燥することもできる。この低水分量充填剤を用いることにより、特に、一液型組成物とする場合、貯蔵安定性を改良することができる。   The filler may be uniformly mixed with a dehydrating agent such as calcium oxide, sealed in a bag made of a gas-tight material, and left in an appropriate time for dehydration drying. By using this low water content filler, especially when it is set as a one-pack type composition, storage stability can be improved.

これら充填剤を用いることにより強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、カーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、及び活性亜鉛華等から選ばれる充填剤が好ましく、(A)架橋性ケイ素基含有有機重合体100質量部に対し、1〜200質量部の範囲で用いることで好ましい結果が得られる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウム等の炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、及びシラスバルーン等から選ばれる充填剤を、(A)架橋性ケイ素基含有有機重合体100質量部に対して5〜200質量部の範囲で用いることで好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果が大きくなる。炭酸カルシウムを用いる場合、表面処理微細炭酸カルシウムと重質炭酸カルシウム等の粒径が大きい炭酸カルシウムとを併用することが好ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で施すことが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく、表面処理されていない炭酸カルシウムを用いることもできる。   When it is desired to obtain a hardened product of high strength by using these fillers, mainly fume silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid, carbon black, surface treatment A filler selected from fine calcium carbonate, calcined clay, clay, active zinc flower and the like is preferable, and by using in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the crosslinkable silicon group-containing organic polymer (A). Favorable results are obtained. In addition, when it is desired to obtain a cured product having low strength and high breaking elongation, mainly calcium oxide such as titanium oxide and calcium carbonate with calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide and shirasu balloon Preferred results can be obtained by using a filler selected from the following in a range of 5 to 200 parts by mass with respect to 100 parts by mass of the crosslinkable silicon group-containing organic polymer (A). In general, calcium carbonate has an effect of improving the breaking strength, breaking elongation and adhesion of the cured product as the value of the specific surface area increases. When calcium carbonate is used, it is preferable to use surface-treated fine calcium carbonate in combination with calcium carbonate having a large particle size such as ground calcium carbonate. The particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 μm or less, and the surface treatment is preferably performed with a fatty acid or a fatty acid salt. In addition, the particle diameter of calcium carbonate having a large particle diameter is preferably 1 μm or more, and calcium carbonate not subjected to surface treatment can also be used.

組成物の作業性(キレ等)向上や硬化物表面を艶消し状にする観点から、有機バルーン、無機バルーンを添加することが好ましい。これらの充填剤に表面処理を施すこともでき、単独で用いることも、2種類以上を混合して用いることもできる。作業性(キレ等)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にする観点からは、5〜300μmが好ましい。   It is preferable to add an organic balloon and an inorganic balloon from the viewpoint of improving the workability (e.g., peeling) of the composition and making the surface of the cured product matte. These fillers may be subjected to surface treatment, may be used alone, or may be used as a mixture of two or more. The particle diameter of the balloon is preferably 0.1 mm or less in order to improve workability (such as squeezing). From a viewpoint of making hardened | cured material surface matt, 5-300 micrometers is preferable.

(接着付与剤、安定剤、着色剤)
接着付与剤としてシランカップリング剤等、安定剤としてヒンダードフェノール系化合物、トリアゾール系化合物等を用いることができる。着色剤としては、チタンホワイト、カーボンブラック、ベンガラ等が挙げられる。
(Adhesive agent, stabilizer, coloring agent)
A silane coupling agent and the like can be used as an adhesion promoter, and hindered phenol compounds and triazole compounds can be used as a stabilizer. As a coloring agent, titanium white, carbon black, bengala etc. are mentioned.

[導電性接着剤の製造方法]
導電性接着剤は、以下の手順により製造できる。まず、(A)架橋性ケイ素基含有有機重合体、(B)導電性フィラー、(C)チクソ性付与剤、及び/又はその他の添加剤のそれぞれを所定量秤量し、準備する(準備工程)。次に、準備した化合物を所定の容器に投入し、所定時間撹拌する(混合工程)。これにより、本発明に係る導電性接着剤を製造できる。なお、各工程、若しくはいずれかの工程において、他の添加物を適宜添加してもよい。
[Method of producing conductive adhesive]
The conductive adhesive can be produced by the following procedure. First, a predetermined amount of each of (A) crosslinkable silicon group-containing organic polymer, (B) conductive filler, (C) thixotropic agent, and / or other additives is weighed and prepared (preparation step) . Next, the prepared compound is put into a predetermined container and stirred for a predetermined time (mixing step). Thereby, the conductive adhesive concerning the present invention can be manufactured. In addition, in each process or any process, you may add another additive suitably.

本発明の導電性接着剤は、必要に応じて1液型とすることができ、また、2液型にすることもできる。本発明の導電性接着剤は、特に1液型として用いることに適している。また、本発明の導電性接着剤は、大気中の湿気により常温で硬化するので常温湿気硬化型導電性接着剤として用いることに適している。なお、導電性接着剤の硬化において、必要に応じて、適宜、加熱(例えば、80℃〜100℃程度の低温での加熱)により硬化を促進させてもよい。   The conductive adhesive of the present invention can be made into a one-component type, if necessary, or a two-component type. The conductive adhesive of the present invention is particularly suitable for use as a one-component type. In addition, the conductive adhesive of the present invention is suitable for use as a normal temperature moisture-curable conductive adhesive because it hardens at normal temperature by moisture in the air. In the curing of the conductive adhesive, the curing may be promoted by heating (for example, heating at a low temperature of about 80 ° C. to 100 ° C.) as appropriate.

本発明の導電性接着剤は、基材に塗布又は印刷して硬化させることにより、高い導電性を有し、ハンダの代わりに用いることができる。したがって、導電性接着剤の硬化物を有する製品を提供できる。また、導電性接着剤は、半導体素子チップ部品、ディスクリート部品等の電子部品の接合や実装、回路接続、水晶振動子や圧電素子の接着・固定、パッケージのシーリング等の用途に用いることに適している。導電性接着剤を用いて、半導体素子(発光ダイオードやレーザーダイオード等の発光素子を含む)、チップ部品、ディスクリート部品等の電子部品の1種又は2種以上を接合させた回路を、基材表面に形成させることができる。   The conductive adhesive of the present invention has high conductivity by being applied or printed on a substrate and cured, and can be used instead of solder. Therefore, a product having a cured product of the conductive adhesive can be provided. In addition, the conductive adhesive is suitable for use in bonding and mounting of electronic components such as semiconductor element chip components and discrete components, circuit connection, bonding / fixing of crystal oscillators and piezoelectric elements, sealing of packages, etc. There is. The surface of the substrate is a circuit in which one or more kinds of electronic components such as semiconductor elements (including light emitting elements such as light emitting diodes and laser diodes), chip parts, discrete parts are joined using a conductive adhesive. Can be formed into

また、本発明の導電性接着剤は、粘性とチクソ性とのバランスを、粘度とSVI値とを所定の範囲にすることで良好にすることができるので、高速ディスペンサを用いて複数個所に高速で吐出したとしても、複数個所同士が導電性接着剤でつながることを防止できる。また、本発明の導電性接着剤はチクソ性が所定の範囲内であるので、所定の基材に塗布した場合に導電性接着剤が拡がることを抑制できることから、狭小ピッチ(例えば、0.5mmピッチ)で導電性接着剤を塗布できる。更に、本発明の導電性接着剤は、例えば、80℃での低温で硬化させることができるので、ハンダのリフロー炉での温度(例えば、250℃程度の温度)に耐えることができない基材(例えば、ポリエチレンテレフタレート等の樹脂フィルム)を用いることもできる。したがって、本発明の導電性接着剤は、IOT等に用いるフィルムデバイスに用いることに適している。   In addition, the conductive adhesive of the present invention can be made to have a good balance between viscosity and thixotropy by setting the viscosity and SVI value within a predetermined range, so high-speed dispensers can be used at high speeds at multiple locations. Even if it discharges by this, it can prevent that several places are connected by a conductive adhesive. In addition, since the conductive adhesive of the present invention has a thixotropy within a predetermined range, the conductive adhesive can be prevented from spreading when it is applied to a predetermined base material, so a narrow pitch (for example, 0.5 mm) Conductive adhesive can be applied at the pitch). Furthermore, since the conductive adhesive of the present invention can be cured, for example, at a low temperature of 80 ° C., a substrate (for example, a temperature of about 250 ° C.) which can not withstand the temperature of the solder reflow furnace ( For example, a resin film such as polyethylene terephthalate can also be used. Therefore, the conductive adhesive of the present invention is suitable for use in film devices used for IOT and the like.

[デバイスの製造方法]
本発明の導電性接着剤を用いたデバイスの製造方法の一例としては、以下の工程が挙げられる。まず、本発明の導電性接着剤を、所定の基材の所定の箇所に塗布する(塗布工程)。塗布工程においては、高速ディスペンサを用いることができる。ディスペンサの吐出速度に特に制限はないが、例えば、1ショット1秒以下の速さで組成物を吐出できるディスペンサであればよく、製造コスト低減等の観点から、吐出速さは1ショット0.85秒以下であることがより好ましく、1ショット0.75秒以下であることが更に好ましい。
[Device manufacturing method]
The following process is mentioned as an example of the manufacturing method of the device using the conductive adhesive of this invention. First, the conductive adhesive of the present invention is applied to a predetermined position of a predetermined base (coating step). A high speed dispenser can be used in the coating process. Although the discharge speed of the dispenser is not particularly limited, for example, it may be a dispenser which can discharge the composition at a speed of 1 shot or less, and the discharge speed is 1 shot 0.85 from the viewpoint of manufacturing cost reduction and the like. It is more preferable that the time is second or less, and further preferably one shot or 0.75 seconds or less.

また、ディスペンサによる導電性接着剤の塗布間隔に特に制限はなく、製造するデバイスに応じ、塗布間隔は適宜設定することができる。例えば、塗布間隔は、0.8mmピッチにすることができ、0.5mmピッチにすることもできる。更に、ディスペンサが備えるノズルの内径は、所定の基材に接着すべき部材の平面視におけるサイズ以下程度の領域に導電性接着剤が塗布されるのであれば特に制限はなく、例えば、ノズル内径は、0.1mm以上0.4mm以下が好ましく、0.2mm以上0.4mm以下にすることもできる。   Moreover, there is no restriction | limiting in particular in the application | coating space | interval of the electroconductive adhesive by a dispenser, According to the device to manufacture, an application | coating space | interval can be set suitably. For example, the application interval may be 0.8 mm pitch or 0.5 mm pitch. Furthermore, the inner diameter of the nozzle included in the dispenser is not particularly limited as long as the conductive adhesive is applied to an area of about the size or less in plan view of a member to be bonded to a predetermined substrate. 0.1 mm or more and 0.4 mm or less are preferable, and 0.2 mm or more and 0.4 mm or less can also be used.

所定の基材としては特に制限はなく、プリント基板やフィルム基材等、様々な基板・基材を用いることができる。なお、本発明の導電性接着剤は低温・短時間で硬化可能であることから、本発明のデバイス製造方法は、耐熱性に劣る樹脂フィルム等のフィルム基材を用いた場合に好適に用いることもできる。   The predetermined substrate is not particularly limited, and various substrates and substrates such as a printed substrate and a film substrate can be used. In addition, since the conductive adhesive of the present invention can be cured at a low temperature for a short time, the device manufacturing method of the present invention should be suitably used when using a film substrate such as a resin film having poor heat resistance. You can also.

次に、基材上の導電性接着剤の上に所定の素子をマウントする(マウント工程)。所定の素子としては、例えば、半導体素子、チップ部品、及び/又はディスクリート部品等が挙げられる。素子のマウントには、各種の自動マウンター等を用いることができる。   Next, the predetermined element is mounted on the conductive adhesive on the substrate (mounting step). Examples of the predetermined element include semiconductor elements, chip parts, and / or discrete parts. Various automatic mounters and the like can be used to mount the elements.

そして、導電性接着剤を介して基材上にマウントされた素子を有する基材を加熱する(加熱工程)。例えば、80℃で所定時間(一例として、5分)の加熱処理を施すことで、導電性接着剤が硬化する。これにより、所定の基材の所定箇所に所定の素子が搭載されたデバイスが製造される。なお、空気中の湿気により本発明の導電性接着剤は硬化することから、導電性接着剤を介して基材上にマウントされた素子は加熱工程を経なくても、時間の経過に応じ、基材上に徐々に強固に固定される。   And the base material which has the element mounted on the base material via a conductive adhesive is heated (heating process). For example, the conductive adhesive is cured by heat treatment at 80 ° C. for a predetermined time (for example, 5 minutes). Thus, a device is manufactured in which a predetermined element is mounted at a predetermined position of a predetermined base material. In addition, since the conductive adhesive of the present invention is cured by the moisture in the air, the element mounted on the substrate via the conductive adhesive does not need to be subjected to the heating process, but according to the passage of time, It is gradually fixed firmly on the substrate.

<実施の形態の効果>
本発明に係る導電性接着剤は、粘度とSVI値とを所定の範囲にすることで、粘性及びチクソ性のバランスを良好にすることができるので、高速ディスペンサで導電性接着剤を複数個所に連続して塗布した場合であっても、塗布された導電性接着剤同士がつながることを防止できると共に、基材上に塗布された導電性接着剤が拡がることを抑制できる。すなわち、本発明に係る導電性接着剤は、高速ディスペンサのノズルから吐出させやすく、かつ、キレが良いという特性を有すると共に、塗布後に適切なチクソ性を発揮し、意図した形状を保持する接着剤である。
<Effect of the embodiment>
The conductive adhesive according to the present invention can achieve a good balance of viscosity and thixotropy by setting the viscosity and the SVI value in a predetermined range, so the conductive adhesive can be placed at a plurality of locations with a high-speed dispenser. Even when applied continuously, the conductive adhesives applied can be prevented from being connected to each other, and the spread of the conductive adhesive applied on the substrate can be suppressed. That is, the conductive adhesive according to the present invention is easy to discharge from the nozzle of the high-speed dispenser, and has the characteristics of good sharpness, and an adhesive which exhibits appropriate thixotropy after application and holds the intended shape. It is.

更に、本発明の導電性接着剤は、80℃等の低温で短時間(例えば、5分間)で硬化するので、耐熱性に乏しい基材に対しても、電子素子等を搭載することができる。また、本発明の導電性接着剤の硬化物は柔軟性を発揮するだけでなく、耐熱性にも優れている(例えば、本発明に係る導電性接着剤の硬化物は、120℃程度の温度下であっても適切な導電性、強度等を発揮する)という、優れた効果を発揮する。これらの効果は、特に(A)成分として変成シリコーン系樹脂を用いた場合に、より良好に発揮される。   Furthermore, since the conductive adhesive of the present invention cures at a low temperature such as 80 ° C. in a short time (for example, 5 minutes), electronic elements and the like can be mounted even on a substrate having poor heat resistance. . Moreover, the cured product of the conductive adhesive of the present invention not only exhibits flexibility but is also excellent in heat resistance (for example, the cured product of the conductive adhesive according to the present invention has a temperature of about 120 ° C.) It exerts an excellent effect of exerting appropriate conductivity, strength and the like even under the following conditions. These effects are exhibited better, particularly when a modified silicone resin is used as the component (A).

以下に実施例を挙げて更に具体的に説明する。なお、これらの実施例は例示であり、限定的に解釈されるべきでないことはいうまでもない。   Hereinafter, the present invention will be described in more detail by way of examples. Needless to say, these examples are illustrative and should not be construed as limiting.

(合成例1)
フラスコに溶剤である酢酸エチル40質量部、メチルメタクリレート59質量部、2−エチルヘキシルメタクリレート25質量部、γ−メタクリロキシプロピルトリメトキシシラン22質量部、及び金属触媒としてルテノセンジクロライド0.1質量部を仕込み、窒素ガスを導入しながら80℃に加熱した。次いで、3−メルカプトプロピルトリメトキシシラン8質量部をフラスコ内に添加し、80℃で6時間反応させた。室温に冷却後、ベンゾキノン溶液(95%THF溶液)を20質量部添加して重合を停止した。溶剤及び未反応物を留去し、ポリスチレン換算の質量平均分子量が約6,000であり、ガラス転移点(Tg)が61.2℃であるトリメトキシシリル基を有するアクリル酸エステル系重合体を得た。
Synthesis Example 1
In a flask, 40 parts by mass of ethyl acetate as a solvent, 59 parts by mass of methyl methacrylate, 25 parts by mass of 2-ethylhexyl methacrylate, 22 parts by mass of γ-methacryloxypropyltrimethoxysilane, and 0.1 parts by mass of ruthenocene dichloride as a metal catalyst Charge and heat to 80 ° C. while introducing nitrogen gas. Then, 8 parts by mass of 3-mercaptopropyltrimethoxysilane was added into the flask and reacted at 80 ° C. for 6 hours. After cooling to room temperature, 20 parts by mass of a benzoquinone solution (95% THF solution) was added to terminate the polymerization. A solvent and an unreacted material are distilled off, and an acrylic ester polymer having a trimethoxysilyl group having a polystyrene equivalent weight average molecular weight of about 6,000 and a glass transition point (Tg) of 61.2 ° C. Obtained.

(実施例1〜2、比較例1〜2)
表1に示す配合割合で各配合物質をそれぞれ添加し、上記「導電性接着剤の製造方法」の説明に則り、導電性接着剤を調製した。具体的に、表1に示す配合割合になるように、A成分、B成分、C成分、及びその他の添加剤のそれぞれを秤量して準備した。次に、これらを混合して撹拌した。これにより、実施例1〜2、及び比較例1〜2に係る導電性接着剤を得た。
(Examples 1-2, comparative examples 1-2)
Each compounded material was added at a blending ratio shown in Table 1 to prepare a conductive adhesive in accordance with the description of the above-mentioned "Method of Manufacturing Conductive Adhesive". Specifically, each of the component A, the component B, the component C, and the other additives was weighed and prepared so as to obtain the mixture ratio shown in Table 1. Next, they were mixed and stirred. Thereby, the conductive adhesive concerning Example 1-2 and Comparative Examples 1-2 was obtained.

Figure 2019112566
Figure 2019112566

表1において、各配合物質の配合量の単位は「質量部」である。また、配合物質の詳細は下記のとおりである。なお、A成分のアクリル酸エステル系重合体は、上記合成例1で合成した重合体を用いた。
(A成分)
SPUR+1050MM(モメンティブ社製)
サイリルMA440((株)カネカ製)
(B成分)
シルコートAgC−B(福田金属箔粉工業社製)
シルコートAgC−G(福田金属箔粉工業社製)
(C成分)
アエロジルR972(日本アエロジル社製)
(酸化防止剤)
イルガノックス245(BASF社製)
(希釈剤)
ノルマルパラフィンN−11(JX日鋼日石社製)
イソプロパノール(和光純薬社製)
ジメトキシエタン(日本乳化剤社製)
(脱水剤)
シリコーンKBM−1003(信越化学社製)
(接着性付与剤)
シリコーンKBM−903(信越化学社製)
(硬化触媒)
ネオスタンU−830(日東化成社製)
ネオスタンS−1(日東化成社製)
In Table 1, the unit of the compounding amount of each compounding substance is "mass part". Moreover, the details of the compounding substance are as follows. In addition, the polymer synthesize | combined by the said synthesis example 1 was used for the acrylic acid ester type polymer of A component.
(A component)
SPUR + 1050MM (manufactured by Momentive)
Cyril MA 440 (manufactured by Kaneka Corporation)
(B component)
Sil coat AgC-B (Fukuda metal foil powder industrial company make)
Sil coat AgC-G (Fukuda metal foil powder industrial company make)
(C ingredient)
Aerosil R 972 (made by Nippon Aerosil)
(Antioxidant)
Irganox 245 (manufactured by BASF)
(Diluent)
Normal paraffin N-11 (JX Nippon Steel Corporation)
Isopropanol (manufactured by Wako Pure Chemical Industries, Ltd.)
Dimethoxyethane (manufactured by Nippon Emulsifier)
(Dehydrating agent)
Silicone KBM-1003 (Shin-Etsu Chemical Co., Ltd.)
(Adhesive agent)
Silicone KBM-903 (Shin-Etsu Chemical Co., Ltd.)
(Curing catalyst)
Neostan U-830 (manufactured by Nitto Kasei Co., Ltd.)
Neostan S-1 (manufactured by Nitto Kasei Co., Ltd.)

(粘度測定)
実施例1に係る導電性接着剤の粘度は、BH型回転粘度計(No.7)を用いて、JIS K6833−1に準拠し、23℃の温度条件下、回転数20r/minで測定した。実施例2、及び比較例1〜2についても同様に測定した。
(Viscosity measurement)
The viscosity of the conductive adhesive according to Example 1 was measured using a BH rotational viscometer (No. 7) at a rotational speed of 20 r / min under a temperature condition of 23 ° C. in accordance with JIS K 6833-1. . It measured similarly about Example 2 and Comparative Examples 1-2.

(SVI値測定)
実施例1に係る導電性接着剤について、B型粘度計を用いて、JIS K6833−1に準拠し、23℃の温度条件下での測定において、低回転速度(回転数2r/min)時の粘度Aと高回転速度(回転数20r/min)時の粘度Bとを測定し、それらの比(A/B)をSVI値として算出した。実施例2、及び比較例1〜2についても同様にSVI値を算出した。
(SVI value measurement)
The conductive adhesive according to Example 1 was measured using a B-type viscometer in accordance with JIS K 6833-1, at a temperature of 23 ° C., at a low rotation speed (rotation speed 2 r / min). The viscosity A and the viscosity B at a high rotation speed (rotational speed 20 r / min) were measured, and their ratio (A / B) was calculated as the SVI value. The SVI values were similarly calculated for Example 2 and Comparative Examples 1 and 2.

(体積抵抗率の測定)
実施例1に係る導電性接着剤を、厚さ100μmのマスキングテープをスペーサーとし、ガラス板上に70mm×100mmのサイズで塗布し、80℃20分間乾燥させた。その後、室温まで冷却し、乾燥した導電性接着剤のテストピースを得た。そして、ロレスターMCP−T360(三菱アナリテック製)を用い、このテストピースの体積抵抗率(乾燥直後の体積抵抗率)を測定した。実施例2、及び比較例1〜2についても同様に体積抵抗率を測定した。
(Measurement of volume resistivity)
The conductive adhesive according to Example 1 was coated on a glass plate at a size of 70 mm × 100 mm using a masking tape having a thickness of 100 μm as a spacer, and dried at 80 ° C. for 20 minutes. Then, it cooled to room temperature and obtained the test piece of the dried conductive adhesive. And the volume resistivity (volume resistivity immediately after drying) of this test piece was measured using Lorester MCP-T360 (made by Mitsubishi Analytech Co., Ltd.). The volume resistivity was similarly measured for Example 2 and Comparative Examples 1 and 2.

(ディスペンス精度試験)
ヤマハ発動機製のオートマティックディスペンサー YGDを用い、ノズル径を1.0mmとし、吐出圧力を0.1MPa、flow 10の条件でディスペンス速度が0.5秒/箇所になるよう装置を調整し、インクジェットでLED(発光ダイオード)の回路を印刷したPETフィルム(以下、「試験フィルム」という。)の各電極へ実施例1に係る導電性接着剤を吐出した。吐出後、目視にて電極間のブリッジがない場合を「〇」、ブリッジがある場合を「×」と評価した。実施例2、及び比較例1〜2についても同様に評価した。なお、比較例2に係る導電性接着剤については、上記のディスペンス条件では1点も塗布することができなかったので、評価は「×」とした。
(Dispense accuracy test)
Using an automatic dispenser YDG manufactured by Yamaha Motor, the nozzle diameter is 1.0 mm, the discharge pressure is 0.1 MPa, the flow speed is adjusted to 0.5 sec / point under flow 10 conditions, and the device is adjusted by inkjet. The conductive adhesive according to Example 1 was discharged onto each electrode of a PET film (hereinafter referred to as a "test film") printed with a circuit of (a light emitting diode). After discharge, the case where there was no bridge between the electrodes by visual observation was evaluated as "o", and the case where there was a bridge was evaluated as "x". It evaluated similarly about Example 2 and Comparative Examples 1-2. In addition, about the electroconductive adhesive which concerns on the comparative example 2, since one point was not able to apply | coat also on said dispensing conditions, evaluation was made into "x".

図1は、ディスペンス精度試験に用いた試験フィルムを示す。具体的に、図1(a)は、実施例1に係る導電性接着剤を用いた場合の試験フィルムの裏面の一部を示し、図1(b)は比較例1に係る導電性接着剤を用いた場合の試験フィルムの表面の一部を示す。   FIG. 1 shows the test film used for the dispensing accuracy test. Specifically, FIG. 1 (a) shows a part of the back surface of a test film when the conductive adhesive according to Example 1 is used, and FIG. 1 (b) shows the conductive adhesive according to Comparative Example 1. Shows a part of the surface of the test film when using.

図1(a)に示すように、実施例1に係る導電性接着剤20を用いた場合、電極10から導電性接着剤20がはみ出ないこと、及び電極間にブリッジが生じないことが確認された。すなわち、図1(a)の試験フィルムの裏から観察した状態において、LEDチップ60の裏面(図1(a)中、十字状の目印がついている部分)が電極10間に観察されていることから、導電性接着剤20が試験フィルム表面の電極10上の領域に適切に塗布されており、電極10間におけるブリッジの発生や電極10からのはみ出しの発生がないと判断できた。なお、図1(a)においてLEDチップ60の周囲に観察される略円形状若しくは略楕円状の領域50は、PETフィルムの表面側に搭載したLEDチップ60を封止する封止樹脂が透けて見えているものである。一方、図1(b)に示すように、比較例1に係る導電性接着剤30を用いた場合、電極10から導電性接着剤30がはみ出たり、電極間にブリッジ40が生じることが確認された。   As shown in FIG. 1A, when the conductive adhesive 20 according to Example 1 is used, it is confirmed that the conductive adhesive 20 does not protrude from the electrode 10 and that no bridge is generated between the electrodes. The That is, in the state observed from the back of the test film of FIG. 1 (a), the back of the LED chip 60 (the part with the cross mark in FIG. 1 (a)) is observed between the electrodes 10. From the above, it was determined that the conductive adhesive 20 was appropriately applied to the region on the surface of the test film on the electrodes 10, and that there was no occurrence of bridging between the electrodes 10 or occurrence of protrusion from the electrodes 10. In FIG. 1A, the substantially circular or elliptical area 50 observed around the LED chip 60 is transparent to the sealing resin for sealing the LED chip 60 mounted on the surface side of the PET film. It is what you see. On the other hand, as shown in FIG. 1B, when the conductive adhesive 30 according to Comparative Example 1 is used, it is confirmed that the conductive adhesive 30 protrudes from the electrode 10 and a bridge 40 is generated between the electrodes. The

以上より、実施例に係る導電性接着剤はいずれも、粘度とSVI値とが適切な値の範囲内であると共に、良好な体積抵抗率を有し、かつ、ディスペンサによる高速塗布でも、塗布後に所定の形状を保ち、適切に塗布できることが示された。なお、図1(a)の実施例1においては、LEDの点灯も確認された。   From the above, all of the conductive adhesives according to the examples have suitable viscosity and SVI values and have good volume resistivity, and even after high-speed application with a dispenser, after application It has been shown that the prescribed shape can be maintained and applied properly. In addition, in Example 1 of Fig.1 (a), lighting of LED was also confirmed.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点、及び本発明の技術思想から逸脱しない限り種々の変形が可能である点に留意すべきである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. In addition, not all combinations of features described in the embodiments and examples are essential to the means for solving the problems of the invention, and various combinations without departing from the technical concept of the invention. It should be noted that variations are possible.

10 電極
20 導電性接着剤
30 導電性接着剤
40 ブリッジ
50 領域
60 LEDチップ
10 electrode 20 conductive adhesive 30 conductive adhesive 40 bridge 50 area 60 LED chip

Claims (8)

ディスペンサを用いて高速で塗布することができ、低温での硬化が可能な導電性接着剤であって、
Structural Viscosity Index(SVI)値が、2.5以上6以下であり、
23℃における粘度が、1Pa・s以上20Pa・s以下である導電性接着剤。
A conductive adhesive that can be applied at high speed using a dispenser and can be cured at low temperatures,
Structural Viscosity Index (SVI) value is 2.5 or more and 6 or less,
The conductive adhesive whose viscosity in 23 degreeC is 1 Pa.s or more and 20 Pa.s or less.
前記導電性接着剤が、
(A)架橋性ケイ素基含有有機重合体と、
(B)導電性フィラーと、
(C)チクソ性付与剤と
を含有する請求項1に記載の導電性接着剤。
The conductive adhesive is
(A) a crosslinkable silicon group-containing organic polymer,
(B) conductive filler,
The conductive adhesive according to claim 1, containing (C) a thixotropic agent.
前記(A)架橋性ケイ素基含有有機重合体の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、及び(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であり、
前記(B)導電性フィラーが、(b1)第一の銀粉及び銀メッキ粉と、(b2)第二の銀粉及び銀メッキ粉とを含み、
前記(C)チクソ性付与剤が、シリカ系化合物、又はアマイドワックス系化合物である請求項2に記載の導電性接着剤。
The main chain skeleton of the crosslinkable silicon group-containing organic polymer (A) is selected from the group consisting of polyoxyalkylene polymers, saturated hydrocarbon polymers, and (meth) acrylic acid ester polymers 1 More than species,
The (B) conductive filler includes (b1) a first silver powder and a silver-plated powder, and (b2) a second silver powder and a silver-plated powder.
The conductive adhesive according to claim 2, wherein the (C) thixotropic agent is a silica-based compound or an amide wax-based compound.
前記(b1)第一の銀粉及び銀メッキ粉の比表面積が0.5m/g以上2.0m/g未満、タップ密度が2.5〜6.0g/cmであり、
前記(b2)第二の銀粉及び銀メッキ粉の比表面積が2.0m/g以上7.0m/g以下、タップ密度が1.0〜3.0g/cmであり、
前記(b1)と前記(b2)との混合割合[(b1)/(b2)]が質量比で1/10以上10/1以下であり、
前記(C)チクソ性付与剤である前記シリカ系化合物が、表面処理剤により疎水化処理された疎水性シリカ、及び表面にシラノール基が存在するヒュームドシリカである親水性シリカからなる群から選択される1種以上のシリカである請求項3に記載の導電性接着剤。
The specific surface area of the first silver powder and the silver-plated powder (b1) is 0.5 m 2 / g or more and less than 2.0 m 2 / g, and the tap density is 2.5 to 6.0 g / cm 3 ,
The specific surface area of the (b2) second silver powder and silver-plated powder is 2.0 m 2 / g or more and 7.0 m 2 / g or less, and the tap density is 1.0 to 3.0 g / cm 3 ,
The mixing ratio [(b1) / (b2)] of (b1) to (b2) is 1/10 or more and 10/1 or less in mass ratio,
The silica-based compound which is the (C) thixotropy-imparting agent is selected from the group consisting of hydrophobic silica hydrophobized by a surface treatment agent and hydrophilic silica which is fumed silica having a silanol group on the surface. The conductive adhesive according to claim 3, wherein the conductive adhesive is one or more kinds of silica.
前記(B)導電性フィラーが、全含有量の65質量%以上85質量%以下であり、
前記表面処理剤が、ジメチルジクロロシラン、ヘキサメチルジシラザン、(メタ)アクリルシラン、オクチルシラン、及びアミノシランからなる群から選択される1種以上である請求項4に記載の導電性接着剤。
The (B) conductive filler is 65% by mass or more and 85% by mass or less of the total content,
The conductive adhesive according to claim 4, wherein the surface treatment agent is one or more selected from the group consisting of dimethyldichlorosilane, hexamethyldisilazane, (meth) acrylsilane, octylsilane, and aminosilane.
希釈剤を更に含有する請求項1〜5のいずれか1項に記載の導電性接着剤。   The conductive adhesive according to any one of claims 1 to 5, further comprising a diluent. 請求項1〜6のいずれか1項に記載の導電性接着剤の硬化物を有する製品。   An article having a cured product of the conductive adhesive according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の導電性接着剤を基材の所定の箇所に塗布する塗布工程と、
前記基材上の前記導電性接着剤の上に素子をマウントするマウント工程と、
前記導電性接着剤を介して前記基材上にマウントされた前記素子を有する前記基材を加熱する加熱工程と
を備えるデバイス製造方法。
An application step of applying the conductive adhesive according to any one of claims 1 to 6 to a predetermined place of a substrate,
Mounting a device on the conductive adhesive on the substrate;
Heating the substrate having the element mounted on the substrate via the conductive adhesive.
JP2017248322A 2017-12-25 2017-12-25 Conductive adhesive Pending JP2019112566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248322A JP2019112566A (en) 2017-12-25 2017-12-25 Conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248322A JP2019112566A (en) 2017-12-25 2017-12-25 Conductive adhesive

Publications (1)

Publication Number Publication Date
JP2019112566A true JP2019112566A (en) 2019-07-11

Family

ID=67222995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248322A Pending JP2019112566A (en) 2017-12-25 2017-12-25 Conductive adhesive

Country Status (1)

Country Link
JP (1) JP2019112566A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086588A1 (en) * 2010-12-20 2012-06-28 セメダイン株式会社 Electroconductive adhesive
JP2014141636A (en) * 2012-12-25 2014-08-07 Cemedine Co Ltd Conductive composition, structure and junction device
WO2015005220A1 (en) * 2013-07-11 2015-01-15 セメダイン株式会社 Production method for electrically conductive cured article, electrically conductive cured article, curing method for pulsed light curing composition, and pulsed light curing composition
JP2015110759A (en) * 2013-10-31 2015-06-18 セメダイン株式会社 Conductive adhesive
WO2016204162A1 (en) * 2015-06-18 2016-12-22 セメダイン株式会社 Electrically conductive adhesive agent, electrically conductive structure, and electronic part
JP2017197686A (en) * 2016-04-28 2017-11-02 セメダイン株式会社 Electric connection structure of transparent resin plate having conductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086588A1 (en) * 2010-12-20 2012-06-28 セメダイン株式会社 Electroconductive adhesive
JP2014141636A (en) * 2012-12-25 2014-08-07 Cemedine Co Ltd Conductive composition, structure and junction device
WO2015005220A1 (en) * 2013-07-11 2015-01-15 セメダイン株式会社 Production method for electrically conductive cured article, electrically conductive cured article, curing method for pulsed light curing composition, and pulsed light curing composition
JP2015110759A (en) * 2013-10-31 2015-06-18 セメダイン株式会社 Conductive adhesive
WO2016204162A1 (en) * 2015-06-18 2016-12-22 セメダイン株式会社 Electrically conductive adhesive agent, electrically conductive structure, and electronic part
JP2017197686A (en) * 2016-04-28 2017-11-02 セメダイン株式会社 Electric connection structure of transparent resin plate having conductor

Similar Documents

Publication Publication Date Title
JP5915541B2 (en) Conductive adhesive
JP6489441B2 (en) Method for producing conductive cured product and method for curing pulsed light curable composition
JP6791137B2 (en) Conductive adhesives, conductive structures, and electronic components
WO2007123167A1 (en) Curable composition
JP2014026968A (en) Conductive paste
KR101832336B1 (en) Thermally conductive moisture curable resin composition
WO2018003688A1 (en) Two-pack type epoxy resin composition
JP2013127034A (en) Epoxy resin composition for sealing sheet-like electronic parts and electronic part device using the same
KR102672352B1 (en) Heat conductive moisture curable resin composition and cured product thereof
WO2019131311A1 (en) Wiring board, wiring board manufacturing method, and conductive curable composition
JP6413635B2 (en) Conductive adhesive
JP5971522B2 (en) Curable composition
JP7256944B2 (en) Moisture-curable resin composition and cured product
JP2014141636A (en) Conductive composition, structure and junction device
JP2014185227A (en) Electroconductive adhesive composition
JP2019112566A (en) Conductive adhesive
JP2001302936A (en) Heat-conductive resin composition
JP2016216636A (en) Conductive composition, and conductive structure
JP5621343B2 (en) Moisture curable resin composition
JP7421713B2 (en) Adhesion method and adhesive
JP2008174611A (en) Curable composition
JP5488242B2 (en) Moisture curable resin composition
JP2005206791A (en) Curable composition
JP2016216687A (en) One-liquid-type curable composition excellent in storage stability
JP2009149737A (en) Curable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301