JP2019111467A - Electric deionization system - Google Patents

Electric deionization system Download PDF

Info

Publication number
JP2019111467A
JP2019111467A JP2017245187A JP2017245187A JP2019111467A JP 2019111467 A JP2019111467 A JP 2019111467A JP 2017245187 A JP2017245187 A JP 2017245187A JP 2017245187 A JP2017245187 A JP 2017245187A JP 2019111467 A JP2019111467 A JP 2019111467A
Authority
JP
Japan
Prior art keywords
water
chamber
electrodeionization
concentration
deionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017245187A
Other languages
Japanese (ja)
Inventor
加藤 晃久
Akihisa Kato
晃久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017245187A priority Critical patent/JP2019111467A/en
Publication of JP2019111467A publication Critical patent/JP2019111467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide an electric deionization system constituted of a plurality of electric deionization devices connected in series, with a part of product water at least from an electric deionization device on the last stage being made to counter-currently flow to a concentration chamber, which system is capable of reducing a feed water pressure to a desalination chamber of an electric deionization device on the first stage.SOLUTION: Product water of an electric deionization device 1 on the front stage side is introduced into a desalination chamber 16B of an electric deionization device 2 on the rear stage side as water to be treated, and product water from the desalination chamber 16B of the electric deionization device 2 on the last stage is introduced into a tank 22. A part of product water present in the tank 22 is made to flow into a concentration chamber 15B from one side thereof near the outlet of the adjacent desalination chamber and is made to flow out from another side thereof near the inlet of the adjacent desalination chamber, as concentrated water by a pump 23 and a pipe 24.SELECTED DRAWING: Figure 3

Description

本発明は、電気脱イオンシステムに係り、特に電気脱イオン装置を複数段に設けた電気脱イオンシステムに関する。   The present invention relates to an electrodeionization system, and more particularly to an electrodeionization system in which electrodeionization devices are provided in multiple stages.

電気脱イオン装置は、一般に陰極及び陽極間にカチオン交換膜とアニオン交換膜とを交互に配置し、これらカチオン交換膜及びアニオン交換膜により区画形成することで脱塩室及び濃縮室を形成し、この脱塩室及び前記濃縮室にイオン交換樹脂を充填したものである。   The electrodeionization apparatus generally forms a desalting chamber and a concentration chamber by alternately arranging a cation exchange membrane and an anion exchange membrane between the cathode and the anode, and forming a section with the cation exchange membrane and the anion exchange membrane, The deionization chamber and the concentration chamber are filled with an ion exchange resin.

電気脱イオン装置の脱塩室に原水を通過させるとともに濃縮室に濃縮水を通過させ、陰極及び陽極間に電流を流すと、イオンが脱塩室からイオン交換樹脂を介してアニオン交換膜及びカチオン交換膜を通って濃縮室へ移動する。これにより、脱塩室から脱イオン水(純水)が流出する。濃縮室を流れるイオンが濃縮された濃縮水は、廃棄されるか、あるいは部分的にリサイクルされる。このような電気脱イオン装置は、種々の産業、例えば半導体チップの製造、発電所の運転、石油化学用途、医薬品製造などに用いる純水製造装置として利用されている。   When the raw water is passed to the deionization compartment of the electrodeionization apparatus and the concentrated water is passed to the concentration compartment, and an electric current is applied between the cathode and the anode, the ions pass through the ion exchange resin from the demineralization compartment and the anion exchange membrane and cation Transfer to the concentration chamber through the exchange membrane. Thereby, deionized water (pure water) flows out from the deionization chamber. Concentrated water having ions concentrated flowing in the concentration chamber is discarded or partially recycled. Such an electrodeionization apparatus is used as a pure water production apparatus used in various industries, for example, production of semiconductor chips, operation of a power plant, petrochemical applications, pharmaceutical production and the like.

近年、超純水製造技術としては要求レベルが上がり、ホウ素に関しては、たとえば1ppt以下という厳しい水質が求められるようになってきている。   In recent years, the requirement level for ultrapure water production technology has been increased, and for boron, a severe water quality of, for example, 1 ppt or less has been required.

RO膜分離装置と電気脱イオン装置とを組み合わせた、ホウ素除去率の高い電気脱イオン装置(例えば栗田工業(株)製「KCDI−UPz」等)が市販されているが、このような高性能の電気脱イオン装置であっても、そのホウ素除去率は99.9%程度である。このため、例えば、ホウ素濃度20ppb程度の被処理水をRO膜分離装置で処理してホウ素濃度10ppb程度のRO透過水を得、これをホウ素除去率99.9%の電気脱イオン装置で処理しても、得られる処理水(脱イオン水)のホウ素濃度は10pptにしかならず、ホウ素濃度1ppt以下の処理水を得ることはできない。   An electrodeionization device with a high boron removal rate (for example, “KCDI-UPz” manufactured by Kurita Kogyo Co., Ltd., etc.) in which the RO membrane separation device and the electrodeionization device are combined is commercially available. Even in the electrodeionization device of the above, the boron removal rate is about 99.9%. Therefore, for example, treated water with a boron concentration of about 20 ppb is treated with an RO membrane separation device to obtain RO permeated water with a boron concentration of about 10 ppb, which is treated with an electrodeionization device with a boron removal rate of 99.9%. Even then, the boron concentration of the resulting treated water (deionized water) is only 10 ppt, and treated water having a boron concentration of 1 ppt or less can not be obtained.

特許文献1には、処理水水質を向上させるために、濃縮室に脱塩室からの生産水の一部を向流通水する(脱塩室の流れ方向と反対方向に通水する)ことが記載されている。   According to Patent Document 1, in order to improve the quality of treated water, part of the production water from the demineralization chamber may be diverted to the concentration chamber (flow in the opposite direction to the flow direction of the deionization chamber) Have been described.

特許文献2には、電気脱イオン装置を2段直列に通水することで処理水ホウ素濃度1ppt以下を達成させることが記載されている。特許文献2においても、各電気脱イオン装置の濃縮室には、その脱塩室からの生産水の一部を向流通水している。   Patent Document 2 describes that a treated water boron concentration of 1 ppt or less is achieved by passing water through two electrodeionization apparatuses in series. Also in Patent Document 2, in the concentration chamber of each electrodeionization device, part of the production water from the deionization chamber is directed to flow.

特開2002−20506号公報JP 2002-20506 A 特開2006−51423号公報Unexamined-Japanese-Patent No. 2006-51423

複数の電気脱イオン装置を直列に設置した電気脱イオンシステムにおいて、最後段の電気脱イオン装置の濃縮室に生産水の一部を向流通水する場合、該最後段の電気脱イオン装置の脱塩室からの生産水ラインに背圧弁を設けて背圧をかけ、該生産水ラインから生産水の一部を分取して最後段の電気脱イオン装置の濃縮室に導入する。このため、この背圧分だけ、電気脱イオン装置の脱塩室の入口圧力を大きくすることが必要となる。入口圧力を大きくするためには、送水ポンプの揚程を大きくする必要がある。また、入口圧力を大きくすると、電気脱イオン装置に水漏れが生じ易くなる。また、濃縮室に生産水の一部を向流通水した際に、脱塩室入口と、隣り合わせの濃縮室出口との圧力差が大きくなり、イオン交換膜の破断や、脱塩室から濃縮室へのリークの恐れも生じる。   In the electrodeionization system in which a plurality of electrodeionization devices are installed in series, when part of the production water is directed to the concentrating chamber of the electrodeionization device of the last stage, the electrodeionization device of the last stage is dewatered A back pressure valve is provided on the product water line from the salt chamber to apply a back pressure, and a portion of the product water is separated from the product water line and introduced into the concentration chamber of the electrodeionization device at the last stage. For this reason, it is necessary to increase the inlet pressure of the deionization chamber of the electrodeionization apparatus by this back pressure. In order to increase the inlet pressure, it is necessary to increase the head of the water pump. In addition, if the inlet pressure is increased, the electrodeionization device is likely to leak. In addition, when part of the production water is circulated to the concentration chamber, the pressure difference between the inlet of the demineralization chamber and the outlet of the adjacent concentration chamber becomes large, and breakage of the ion exchange membrane, or from the deionization chamber to the concentration chamber There is also a risk of leaks.

本発明は、複数の電気脱イオン装置を直列に接続し、少なくとも最後段の電気脱イオン装置では脱塩室からの生産水の一部を濃縮室に向流通水する電気脱イオンシステムにおいて、第1段目の電気脱イオン装置の脱塩室への給水圧力を低減することができる電気脱イオンシステムを提供することを目的とする。   In the electrodeionization system according to the present invention, a plurality of electrodeionization apparatuses are connected in series, and at least the electrodeonion apparatus in the final stage distributes part of the produced water from the deionization chamber to the concentration chamber. An object of the present invention is to provide an electrodeionization system capable of reducing the feed water pressure to the deionization chamber of the first electrodeionization apparatus.

本発明の電気脱イオンシステムは、陽極と陰極との間がイオン交換膜によって濃縮室と脱塩室とが区画され、濃縮水が該濃縮室に流通され、被処理水が脱塩室に導入されて生産水として取り出される電気脱イオン装置を複数備えてなり、前段側の電気脱イオン装置の生産水が後段側の電気脱イオン装置の脱塩室へ被処理水として導入され、少なくとも最後段の電気脱イオン装置は、その脱塩室からの生産水の一部を供給ラインによって濃縮水としてその濃縮室に対し脱塩室出口に近い側から流入させ、脱塩室入口に近い側から流出させるよう構成されている電気脱イオンシステムにおいて、前記供給ラインにポンプを設けたことを特徴とする。   In the electrodeionization system of the present invention, between the anode and the cathode, a concentration chamber and a desalting chamber are partitioned by an ion exchange membrane, concentrated water is circulated in the concentration chamber, and treated water is introduced into the desalting chamber A plurality of electrodeionization devices to be extracted as production water, and the production water of the electrodeionization device on the front side is introduced as the water to be treated to the deionization chamber of the electrodeionization device on the rear side, In the electrodeionization apparatus, a portion of the product water from the demineralization chamber is made to flow from the side near the outlet of the deionization chamber to the concentration chamber as concentrated water by the supply line, and it flows out from the side near the inlet of the deionization chamber An electrodeionization system that is configured to operate, wherein the supply line is provided with a pump.

本発明の一態様の電気脱イオンシステムは、前記最後段の電気脱イオン装置の脱塩室からの生産水を受け入れるタンクを備えており、前記供給ラインは該タンク内の水を最後段の電気脱イオン装置の濃縮室に供給するように設けられていることを特徴とする。   The electrodeionization system according to one aspect of the present invention comprises a tank for receiving the produced water from the deionization chamber of the last-stage electrodeionization apparatus, and the supply line carries out the water in the tank as the last-stage electricity. It is characterized in that it is provided to be supplied to the concentration chamber of the deionization apparatus.

本発明の一態様の電気脱イオンシステムは、すべての電気脱イオン装置の濃縮室にそれぞれ前記タンク内の水を向流通水するように供給ラインが設けられていることを特徴とする。   The electrodeionization system according to one aspect of the present invention is characterized in that a supply line is provided in each of the concentration chambers of all the electrodeionization devices so as to counterflow the water in the tank.

本発明の電気脱イオンシステムにあっては、生産水の一部を濃縮室へ通水するための背圧をかけることが不要になり、電気脱イオン装置の脱塩室の入口圧力を低減することが可能になる。   In the electrodeionization system of the present invention, it is not necessary to apply a back pressure for passing a part of the production water to the concentration chamber, and the inlet pressure in the deionization chamber of the electrodeionization apparatus is reduced. It becomes possible.

また、脱塩室入口と濃縮室入口の差圧を減少させることができ、膜破断や、脱塩室から濃縮室へのリークを防止することができる。   In addition, the differential pressure between the demineralization chamber inlet and the concentration chamber inlet can be reduced, and the membrane breakage and the leak from the deionization chamber to the concentration chamber can be prevented.

実施の形態に係る電気脱イオンシステムに用いられる電気脱イオン装置の模式的な断面図である。It is a typical sectional view of an electrodeionization device used for an electrodeionization system concerning an embodiment. 実施の形態に係る電気脱イオンシステムの構成図である。It is a block diagram of the electrodeionization system which concerns on embodiment. 実施の形態に係る電気脱イオンシステムの構成図である。It is a block diagram of the electrodeionization system which concerns on embodiment. 実施の形態に係る電気脱イオンシステムの構成図である。It is a block diagram of the electrodeionization system which concerns on embodiment. 従来例に係る電気脱イオンシステムの構成図である。It is a block diagram of the electrodeionization system which concerns on a prior art example.

図1に、実施の形態に係る電気脱イオンシステムに用いられる電気脱イオン装置の構成の一例を示す。なお、この装置で処理される原水としては、RO(逆浸透)処理水等が例示される。   An example of a structure of the electrodeionization apparatus used for the electrodeionization system which concerns on FIG. 1 at embodiment is shown. In addition, RO (reverse osmosis) treated water etc. are illustrated as raw water processed with this apparatus.

この電気脱イオン装置では、電極(陽極11、陰極12)の間に複数のアニオン交換膜(A膜)13及びカチオン交換膜(C膜)14が交互に配列され、濃縮室15と脱塩室16とが交互に形成され、脱塩室16には、イオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体が混合もしくは複層状に充填されている。また、濃縮室15と、陽極室17及び陰極室18にも、イオン交換体、活性炭又は金属等の電気導電体が充填されている。   In this electrodeionization apparatus, a plurality of anion exchange membranes (A membrane) 13 and cation exchange membranes (C membrane) 14 are alternately arranged between the electrodes (anode 11 and cathode 12), and a concentration chamber 15 and a desalting chamber are provided. The deionization chamber 16 is filled with an anion exchanger composed of ion exchange resin, ion exchange fiber, graft exchanger or the like and a cation exchanger in a mixed or multilayered form. Further, the concentration chamber 15, the anode chamber 17 and the cathode chamber 18 are also filled with an electric conductor such as an ion exchanger, activated carbon or metal.

原水は脱塩室16に導入され、脱塩室16からは生産水が取り出される。この生産水の一部は、濃縮室15に脱塩室16の通水方向とは逆方向に向流一過式で通水され、濃縮室15の流出水は系外へ排出される。即ち、この電気脱イオン装置では、濃縮室15と脱塩室16とが交互に並設され、脱塩室16の生産水取り出し側に濃縮室15の流入口が設けられており、脱塩室16の原水流入側に濃縮室15の流出口が設けられている。また、生産水の一部は陽極室17の入口側に送給され、そして、陽極室17の流出水は、陰極室18の入口側へ送給され、陰極室18の流出水は排水として系外へ排出される。   Raw water is introduced into the demineralization chamber 16, from which product water is taken out. A portion of the produced water is passed through the concentration chamber 15 in a countercurrent flow direction opposite to the direction of water flow in the deionization chamber 16, and the outflow water of the concentration chamber 15 is discharged out of the system. That is, in this electrodeionization apparatus, the concentration chamber 15 and the desalting chamber 16 are alternately arranged side by side, and the inlet of the concentration chamber 15 is provided on the product water removal side of the desalting chamber 16 The outlet of the concentration chamber 15 is provided on the raw water inlet side of 16. Also, part of the production water is fed to the inlet side of the anode chamber 17, and the effluent water of the anode chamber 17 is fed to the inlet side of the cathode chamber 18, and the effluent water of the cathode chamber 18 is discharged as drainage. It is discharged outside.

このように、濃縮室15に生産水を脱塩室16と向流一過式で通水することにより、生産水取り出し側ほど濃縮室15内の濃縮水の濃度が低いものとなり、濃度拡散による脱塩室16への影響が小さくなり、ホウ素等のイオンの除去率を高めることができる。   Thus, by passing the production water through the concentration chamber 15 in a countercurrent flow with the deionization chamber 16, the concentration of the concentrated water in the concentration chamber 15 becomes lower toward the production water take-out side, and concentration diffusion is achieved. The influence on the deionization chamber 16 is reduced, and the removal rate of ions such as boron can be increased.

本実施形態の電気脱イオンシステムは、図1に示す電気脱イオン装置を直列に2段設置したものである。この電気脱イオンシステムの一例を図2に示す。図2の電気脱イオンシステムは、第1の電気脱イオン装置1と第2の電気脱イオン装置2とを直列に接続して、原水を多段に脱イオン処理する。この電気脱イオンシステムでは、原水の全量が第1の電気脱イオン装置1の脱塩室16Aに供給されて1次生産水となる。   The electrodeionization system of the present embodiment has two stages of the electrodeionization apparatus shown in FIG. 1 installed in series. An example of this electrodeionization system is shown in FIG. The electrodeionization system of FIG. 2 connects the first electrodeionization device 1 and the second electrodeionization device 2 in series to deionize the raw water in multiple stages. In this electrodeionization system, the entire amount of raw water is supplied to the deionization chamber 16A of the first electrodeionization apparatus 1 to become primary product water.

1次生産水の一部を濃縮室15Aに流すために、脱塩室16Aから脱塩室16Bに生産水を供給するラインに背圧弁20が設けられている。1次生産水の一部は該背圧弁20よりも上流側から分岐して濃縮室15Aに向流一過式にて通水され、濃縮排水として排出される。1次生産水の残部は、第2の電気脱イオン装置2の脱塩室16Bに通水され、2次生産水となる。   A back pressure valve 20 is provided in a line for supplying product water from the deionization chamber 16A to the deionization chamber 16B in order to flow part of primary production water to the concentration chamber 15A. A portion of the primary production water branches from the upstream side of the back pressure valve 20, passes through the concentration chamber 15A in a countercurrent flow manner, and is discharged as concentrated drainage. The remainder of the primary production water is passed through the deionization chamber 16B of the second electrodeionization device 2 to become secondary production water.

この2次生産水は、配管21を介して生産水タンク22に導入される。タンク22内の生産水の一部はポンプ23及び配管24を介して第2の電気脱イオン装置2の濃縮室15Bに供給され、該濃縮室15Bに向流一過式にて通水され、2次濃縮水として流出する。この2次濃縮水は例えば原水に戻される。   The secondary production water is introduced into the production water tank 22 through the pipe 21. A part of the production water in the tank 22 is supplied to the concentration chamber 15B of the second electrodeionization device 2 through the pump 23 and the pipe 24, and is water-flowed in a countercurrent to the concentration chamber 15B. It flows out as secondary concentrated water. The secondary concentrated water is returned to, for example, raw water.

この通水方式によると、第2の電気脱イオン装置2の濃縮室15Bに生産水を通水のための背圧弁27(後述の図5)を配管21に設けることが不要となる。そのため、背圧弁27の圧損分だけ電気脱イオン装置1,2の脱塩室16A,16Bの入口圧力を低くすることができる。   According to this water flow system, it is not necessary to provide the pipe 21 with the back pressure valve 27 (FIG. 5 described later) for passing the produced water in the concentration chamber 15B of the second electrodeionization device 2. Therefore, the inlet pressure of the deionization chambers 16A and 16B of the electrodeionization devices 1 and 2 can be lowered by the pressure loss of the back pressure valve 27.

図2では、第1の電気脱イオン装置1の生産水の一部をその濃縮室15Aに向流通水しているが、図3のように、第1の電気脱イオン装置1の濃縮室にもタンク22内の生産水を配管25によって向流通水してもよい。この場合、脱塩室16A,16B間の配管の背圧弁20は不要である。そのため、背圧弁20の圧損分だけ、第1の電気脱イオン装置1の脱塩室16Aの入口圧をさらに低くすることができる。   In FIG. 2, part of the production water of the first electrodeionization device 1 is circulated to the concentration chamber 15A, but as shown in FIG. 3, the concentration chamber of the first electrodeionization device 1 is Alternatively, the produced water in the tank 22 may be circulated by the pipe 25. In this case, the back pressure valve 20 of the piping between the deionization chambers 16A and 16B is unnecessary. Therefore, the inlet pressure of the deionization chamber 16A of the first electrodeionization device 1 can be further lowered by the pressure loss of the back pressure valve 20.

本発明では、図4のように、第1の電気脱イオン装置1の濃縮室15Aには、原水を脱塩室を並行流にて通水してもよい。   In the present invention, as shown in FIG. 4, raw water may be passed through the concentration chamber 15A of the first electrodeionization device 1 in parallel flow in the deionization chamber.

図5は、後述の比較例1の電気脱イオンシステムを示すものである。この電気脱イオンシステムでは、第2の電気脱イオン装置2の生産水の一部を、配管21から分岐した配管26によって、タンク22を経ることなく直接的に濃縮室15Bに供給して向流一過式に通水している。脱塩室16Bからの生産水の一部を配管21から分取するために、配管21には、配管26の分岐点よりも下流に背圧弁27を設け、背圧をかけている。この背圧弁27で生じる背圧の分だけ、脱塩室16Bの出口部分の圧力が高くなり、その結果として、電気脱イオン装置1,2の脱塩室16A,16Bの入口圧力を高くすることが必要になる。それにより、上記発明が解決しようとする課題の欄に記載の問題が生じ易くなる。   FIG. 5 shows an electrodeionization system of Comparative Example 1 described later. In this electrodeionization system, a part of the production water of the second electrodeionization device 2 is directly supplied to the concentration chamber 15B without passing through the tank 22 by the pipe 26 branched from the pipe 21 and countercurrent Water is flowing in a temporary manner. In order to separate a part of the production water from the deionization chamber 16B from the pipe 21, the pipe 21 is provided with a back pressure valve 27 downstream of the branch point of the pipe 26, and a back pressure is applied. The pressure at the outlet of the deionization chamber 16B is increased by the amount of back pressure generated by the back pressure valve 27, and as a result, the inlet pressure of the deionization chambers 16A and 16B of the electrodeionization devices 1 and 2 is increased. Is required. As a result, the problems described in the section of the problem to be solved by the invention tend to occur.

上記説明では、電気脱イオン装置を直列に2段に設置しているが、直列に3段以上に設置してもよい。   In the above description, the electrodeionization devices are installed in two stages in series, but may be installed in three or more stages in series.

以下、実施例及び比較例について説明する。なお、以下の実施例及び比較例では、原水として、市水をRO処理した水(ホウ素濃度3.5ppt、水温20℃)を用いた。   Hereinafter, Examples and Comparative Examples will be described. In the following examples and comparative examples, water (boron concentration: 3.5 ppt, water temperature: 20 ° C.) obtained by RO treatment of city water was used as raw water.

[実施例1]
電気脱イオン装置(EVOQUA WATER TECHNOLOGIES製IONPURE(登録商標)VNX55EX-2)を図2の通り、2段直列に設置し、表1の条件で運転した。濃縮室流量は、前段電気脱イオン装置1m/Hr、後段電気脱イオン装置0.5m/Hrである。結果(図2の各点P〜Pの圧力)を表2に示す。
Example 1
An electrodeionization apparatus (IONPURE (registered trademark) VNX 55EX-2 manufactured by EVOQUA WATER TECHNOLOGIES) was installed in two stages in series as shown in FIG. Concentrating chamber flow rate is preceding electrodeionization apparatus 1 m 3 / Hr, subsequent electrodeionization apparatus 0.5 m 3 / Hr. The results (pressures at points P 1 to P 4 in FIG. 2) are shown in Table 2.

[比較例1]
フローを図5の通りとしたこと以外は実施例1と同一条件にて電気脱イオンシステムに通水した。結果を表2に示す。
Comparative Example 1
Water was passed through the electrodeionization system under the same conditions as in Example 1 except that the flow was as shown in FIG. The results are shown in Table 2.

Figure 2019111467
Figure 2019111467

Figure 2019111467
Figure 2019111467

<考察>
実施例1では、2段目の電気脱イオン装置2から生産水タンク22まで配管21の圧力損失が0.10MPaであった。濃縮室15Bには生産水をタンク22からポンプ23を介して通水するようにしたため、脱塩室出口の圧力Pは処理水タンク22までの配管分の圧力のみで良い。そのため電気脱イオン装置2の脱塩室出口の圧力Pを0.10MPaと低くでき、電気脱イオン装置1,2の脱塩室入口の圧力P,Pを低くすることができる。脱塩室入口の圧力P,Pを低くすることで、電気脱イオン装置1,2の破損や水漏れのリスクを低減することができる。なお、濃縮室入口圧力Pは原則として脱塩室出口の圧力Pより低くするが、実施例1では、タンク22内の生産水を通水するところから、濃縮室入口圧力Pが脱塩室出口圧力Pよりも若干大きくなっても、電気脱イオン装置2からの生産水の水質面では問題ない。
<Discussion>
In Example 1, the pressure loss of the piping 21 from the second electrodeionization apparatus 2 to the production water tank 22 was 0.10 MPa. Since the concentration compartment 15B was set to passing water through the pump 23 the product water from the tank 22, the pressure P 3 of the desalination chamber outlet may only pressure pipe component to treated water tank 22. Therefore the pressure P 3 of the desalination chamber outlet of electrodeionization apparatus 2 can be lowered and 0.10 MPa, the pressure P 1 of the desalination chamber inlet of electrodeionization apparatus 1, it is possible to lower the P 2. By lowering the pressures P 1 and P 2 at the inlet of the demineralization chamber, the risk of breakage and water leakage of the electrodeionization devices 1 and 2 can be reduced. Although concentrating chamber inlet pressure P 4 is lower than the pressure P 3 of the desalination chamber outlet principle, in Example 1, from where the water flow of product water in the tank 22, the concentration chamber inlet pressure P 4 de even slightly larger than the salt chamber outlet pressure P 3, no problem in quality surface of the product water from the electrodeionization apparatus 2.

一方、比較例1では、2段目の電気脱イオン装置2から生産水タンク22まで配管21及び背圧弁27の合計の圧力損失が0.20MPaであるため、電気脱イオン装置2の脱塩室出口圧力を0.20MPaとする必要があった。そのため電気脱イオン装置1の入口圧力Pは少なくとも0.40MPaを必要とした。接続配管の長さにより、通水の際の圧力損失はさらに大きくなるので、電気脱イオン装置1の入口圧力Pが更に大きくなる。前述の通り、入口圧力Pが大きくなることで、装置破損やそれによる水漏れのリスクが高まる。 On the other hand, in Comparative Example 1, since the total pressure loss of the piping 21 and the back pressure valve 27 from the second-stage electrodeionization device 2 to the production water tank 22 is 0.20 MPa, the deionization chamber of the electrodeionization device 2 The outlet pressure had to be 0.20 MPa. Therefore the inlet pressure P 1 of the electrodeionization apparatus 1 is required at least 0.40 MPa. The pressure loss during water flow is further increased by the length of the connection piping, so the inlet pressure P1 of the electrodeionization device 1 is further increased. As described above, by the inlet pressure P 1 increases, increasing the risk of equipment damage and it by water leakage.

1,2 電気脱イオン装置
15,15A,15B 濃縮室
16,16A,16B 脱塩室
23 配管(供給ライン)
24 ポンプ
1, 2 Electrodeionization equipment 15, 15A, 15B Concentration chamber 16, 16A, 16B Deionization chamber 23 Piping (supply line)
24 pumps

Claims (3)

陽極と陰極との間がイオン交換膜によって濃縮室と脱塩室とが区画され、
濃縮水が該濃縮室に流通され、被処理水が脱塩室に導入されて生産水として取り出される電気脱イオン装置を複数備えてなり、
前段側の電気脱イオン装置の生産水が後段側の電気脱イオン装置の脱塩室へ被処理水として導入され、
少なくとも最後段の電気脱イオン装置は、その脱塩室からの生産水の一部を供給ラインによって濃縮水としてその濃縮室に対し脱塩室出口に近い側から流入させ、脱塩室入口に近い側から流出させるよう構成されている電気脱イオンシステムにおいて、
前記供給ラインにポンプを設けたことを特徴とする電気脱イオンシステム。
Between the anode and the cathode, an ion exchange membrane separates a concentration chamber and a desalting chamber,
A plurality of electrodeionization devices are provided, in which concentrated water is circulated in the concentration chamber and water to be treated is introduced into the deionization chamber and taken out as product water,
Production water of the electrodeionization device on the front side is introduced into the deionization chamber of the electrodeionization device on the rear side as treated water,
At least the last stage of the electrodeionization apparatus allows part of the product water from the demineralization chamber to flow as concentrated water from the side close to the outlet of the deionization chamber as concentrated water by the supply line and is close to the inlet of the deionization chamber In an electrodeionization system configured to flow out of the
An electrodeionization system characterized in that a pump is provided in the supply line.
前記最後段の電気脱イオン装置の脱塩室からの生産水を受け入れるタンクを備えており、
前記供給ラインは該タンク内の水を最後段の電気脱イオン装置の濃縮室に供給するように設けられていることを特徴とする請求項1の電気脱イオンシステム。
A tank for receiving the produced water from the demineralization chamber of the last-stage electrodeionization device,
The electrodeionization system according to claim 1, wherein the supply line is provided to supply the water in the tank to the concentration chamber of the last electrodeionization apparatus.
すべての電気脱イオン装置の濃縮室にそれぞれ前記タンク内の水を向流通水するように供給ラインが設けられていることを特徴とする請求項2の電気脱イオンシステム。   3. The electrodeionization system according to claim 2, wherein a supply line is provided in each of the concentration chambers of all the electrodeionization apparatuses so as to circulate water in the tank.
JP2017245187A 2017-12-21 2017-12-21 Electric deionization system Pending JP2019111467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245187A JP2019111467A (en) 2017-12-21 2017-12-21 Electric deionization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245187A JP2019111467A (en) 2017-12-21 2017-12-21 Electric deionization system

Publications (1)

Publication Number Publication Date
JP2019111467A true JP2019111467A (en) 2019-07-11

Family

ID=67221969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245187A Pending JP2019111467A (en) 2017-12-21 2017-12-21 Electric deionization system

Country Status (1)

Country Link
JP (1) JP2019111467A (en)

Similar Documents

Publication Publication Date Title
US6461512B1 (en) Method of disinfecting a deionized water producing apparatus and method of producing deionized water
US7501064B2 (en) Integrated electro-pressure membrane deionization system
KR100465580B1 (en) Electro-deionization device and method for operating the same
US9393527B2 (en) Membrane separation devices and water treatment plants
WO2015012054A1 (en) Method and device for treating boron-containing water
WO2015151899A1 (en) Method for treating water containing low molecular weight organic substance
KR20190046717A (en) Ultrapure water production equipment
CN105060576A (en) Combined membrane treatment process applied to high-salinity industrial wastewater
KR20190051897A (en) Ultrapure water production equipment
WO2004071968A1 (en) Electric deionization apparatus and method of operating the same
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP2014000575A (en) Apparatus and method for producing purified water
JP2013063372A (en) Desalination system
US8758624B2 (en) Water treatment process, and membrane separation process and water treatment plant suitable therefor
CN113015702B (en) Pure water production apparatus and method for operating same
JP6807250B2 (en) Water treatment equipment
JP2019111467A (en) Electric deionization system
JP7246399B2 (en) Pure water production system and pure water production method
WO2020184044A1 (en) Pure-water production device and pure-water production method
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
CN111346513B (en) Reverse osmosis treatment method and reverse osmosis system for salt-containing water
JP7205576B1 (en) Operation method of pure water production system
KR101810961B1 (en) Multi-Stage Reverse Osmosis Membrane Apparatus with inter-Booster Pump and Water Treating Method Therewith
CN216998016U (en) Multistage bipolar membrane electrodialysis device of high salt waste water of coal chemical industry
JP6720428B1 (en) Pure water production apparatus and operating method thereof