JP2019110525A - Imaging device and method of controlling the same, program, and storage medium - Google Patents

Imaging device and method of controlling the same, program, and storage medium Download PDF

Info

Publication number
JP2019110525A
JP2019110525A JP2018217522A JP2018217522A JP2019110525A JP 2019110525 A JP2019110525 A JP 2019110525A JP 2018217522 A JP2018217522 A JP 2018217522A JP 2018217522 A JP2018217522 A JP 2018217522A JP 2019110525 A JP2019110525 A JP 2019110525A
Authority
JP
Japan
Prior art keywords
image
imaging
subject
information
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018217522A
Other languages
Japanese (ja)
Other versions
JP7403218B2 (en
Inventor
将浩 高山
Masahiro Takayama
将浩 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to PCT/JP2018/044547 priority Critical patent/WO2019124055A1/en
Publication of JP2019110525A publication Critical patent/JP2019110525A/en
Priority to US16/901,741 priority patent/US11303802B2/en
Application granted granted Critical
Publication of JP7403218B2 publication Critical patent/JP7403218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/617Upgrading or updating of programs or applications for camera control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Details Of Cameras Including Film Mechanisms (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

To suppress that recording of a video which a user wants to photograph is missed as much as possible, in an imaging device that performs automatic photographing.SOLUTION: An imaging device comprises: an imaging unit that images a subject image and outputs image data; a controller that controls whether or not a photographing operation of recording the image data outputted by the imaging unit is executed; and an acquisition unit that acquires information on a frequency of the photographing operation. The controller changes a threshold for deciding whether or not the photographing operation is executed depending on the information on the frequency.SELECTED DRAWING: Figure 2

Description

本発明は、撮像装置における自動撮影技術に関するものである。   The present invention relates to an automatic imaging technique in an imaging device.

カメラ等の撮像装置による静止画・動画撮影においては、ユーザがファインダー等を通して撮影対象を決定し、撮影状況を自ら確認して撮影画像のフレーミングを調整して、画像を撮影するのが一般的である。このような撮像装置では、ユーザの操作ミスや外部環境の検知を行い、撮影に適していない場合にはユーザに通知したり、撮影に適した状態になるようにカメラを制御する仕組みが従来から備えられている。   In still image / moving image shooting with an imaging device such as a camera, it is common for the user to determine the shooting target through the finder etc., check the shooting situation by himself, adjust the framing of the shot image, and shoot the image. is there. Conventionally, such an imaging apparatus detects a user operation error or an external environment, notifies the user when it is not suitable for photographing, or controls a camera so as to be in a state suitable for photographing. It is equipped.

このようなユーザの操作により撮影を実行する撮像装置に対し、ユーザが撮影指示を与えることなく定期的および継続的に撮影を行うライフログカメラ(特許文献1)が知られている。ライフログカメラは、ストラップ等でユーザの身体に装着された状態で用いられ、ユーザが日常生活で目にする光景を一定時間間隔で映像として記録する。ライフログカメラによる撮影では、ユーザがシャッターを切るなどの意図したタイミングで撮影するのではなく、一定の時間間隔で撮影が行われるため、普段撮影しないような不意な瞬間を映像として残すことができる。   A life log camera (Patent Document 1) is known which periodically and continuously captures an image without performing a shooting instruction by the user for an imaging device that performs shooting by such a user operation. The life log camera is used in a state of being attached to the user's body by a strap or the like, and records a scene that the user sees in daily life as an image at regular time intervals. In life log camera shooting, shooting is performed at a fixed time interval, instead of shooting at the intended timing such as when the user releases the shutter, so unexpected moments that are not normally shot can be left as images. .

特表2016−536868号公報Japanese Patent Publication No. 2016-536868 Publication

しかしながら、ライフログカメラをユーザが身に着けた状態において、定期的に自動撮影を行った場合、以下のような問題が発生する。   However, when the user wears the life log camera, if the automatic shooting is performed periodically, the following problems occur.

1つは、ユーザの意思に関係なく一定時間間隔で撮影が行われるため、ユーザが本当に撮影したい瞬間の映像を撮り逃す可能性があることである。また、もう1つは、撮り逃しを回避するために撮影間隔を短くすると、撮影による消費電力が大きくなり、撮影可能時間が短くなってしまうことである。   One is that shooting is performed at a constant time interval regardless of the user's intention, so that there is a possibility that the user may miss a picture of the moment when he really wants to shoot. The other is that if the shooting interval is shortened to avoid missed shooting, the power consumption for shooting increases and the available shooting time decreases.

本発明は上述した課題に鑑みてなされたものであり、その目的は、自動撮影を行う撮像装置において、ユーザが撮影したい映像の撮り逃しを極力抑制できるようにすることである。   The present invention has been made in view of the above-mentioned problems, and an object thereof is to make it possible to minimize missed shooting of a video that a user desires to shoot in an imaging device that performs automatic shooting.

本発明に係わる撮像装置は、被写体像を撮像して画像データを出力する撮像手段と、前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御手段と、前記撮影動作の頻度に関する情報を取得する取得手段と、を備え、前記制御手段は、前記頻度に関する情報に応じて、前記撮影動作を実施するか否かを決定するための閾値を変更することを特徴とする。   An image pickup apparatus according to the present invention comprises an image pickup means for picking up an object image and outputting image data, a control means for controlling whether or not to carry out a photographing operation for recording image data outputted by the image pickup means, Acquisition means for acquiring information on the frequency of the photographing operation, wherein the control means changes a threshold for determining whether to perform the photographing operation according to the information on the frequency I assume.

本発明によれば、自動撮影を行う撮像装置において、自動撮影を行う撮像装置において、ユーザが撮影したい映像の撮り逃しを極力抑制できるようにすることが可能となる。   According to the present invention, in an imaging apparatus that performs automatic imaging, in an imaging apparatus that performs automatic imaging, it is possible to minimize missed shooting of a video that the user wants to capture.

本発明の撮像装置の一実施形態であるカメラの外観を模式的に示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows typically the external appearance of the camera which is one Embodiment of the imaging device of this invention. 一実施形態のカメラの全体構成を示すブロック図。FIG. 1 is a block diagram showing an overall configuration of a camera of an embodiment. カメラと外部装置との無線通信システムの構成例を示す図。FIG. 2 is a diagram showing an example of the configuration of a wireless communication system of a camera and an external device. 外部装置の構成を示す図。FIG. 2 shows the configuration of an external device. カメラと外部装置の構成を示す図。FIG. 2 is a diagram showing the configuration of a camera and an external device. 外部装置の構成を示す図。FIG. 2 shows the configuration of an external device. 第1制御部の動作を説明するフローチャート。6 is a flowchart illustrating the operation of a first control unit. 第2制御部の動作を説明するフローチャート。6 is a flowchart illustrating the operation of a second control unit. 撮影モード処理の動作を説明するフローチャート。6 is a flowchart for explaining the operation of shooting mode processing. 撮影画像内のエリア分割を説明するための図。The figure for demonstrating area division in a photography picture. 撮影頻度の制御を説明するための図。The figure for demonstrating control of imaging frequency. ニューラルネットワークを説明する図。The figure explaining a neural network. 外部装置で画像を閲覧している様子を示す図。FIG. 6 is a diagram showing a state in which an image is browsed by an external device. 学習モード判定を説明するフローチャート。6 is a flowchart illustrating learning mode determination. 学習処理を説明するフローチャート。6 is a flowchart illustrating learning processing.

以下、本発明の一実施形態について、添付図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the attached drawings.

<カメラの構成>
図1は、本発明の撮像装置の一実施形態であるカメラの外観を模式的に示す図である。図1(a)に示すカメラ101には、電源スイッチ、カメラ操作を行うことができる操作部材などが設けられている。被写体像の撮像を行う撮像光学系としての撮影レンズ群や撮像素子を一体的に含む鏡筒102は、カメラ101の固定部103に対して移動可能に取り付けられている。具体的には、鏡筒102は、固定部103に対して回転駆動できる機構であるチルト回転ユニット104とパン回転ユニット105とを介して固定部103に取り付けられている。
<Configuration of camera>
FIG. 1 is a view schematically showing the appearance of a camera which is an embodiment of the imaging apparatus of the present invention. The camera 101 shown in FIG. 1A is provided with a power switch, an operation member capable of performing a camera operation, and the like. A lens barrel 102 integrally including an imaging lens group and an imaging element as an imaging optical system for imaging a subject image is movably attached to a fixed unit 103 of the camera 101. Specifically, the lens barrel 102 is attached to the fixing unit 103 via the tilt rotation unit 104 and the pan rotation unit 105, which are mechanisms capable of rotationally driving the fixing unit 103.

チルト回転ユニット104は、鏡筒102を図1(b)に示すピッチ方向に回転駆動することができるモーター駆動機構を備え、パン回転ユニット105は、鏡筒102を図1(b)に示すヨー方向に回転駆動することができるモーター駆動機構を備える。すなわちカメラ101は、鏡筒102を2軸方向に回転駆動する機構を有する。図1(b)に示す各軸は、固定部103の位置に対してそれぞれ定義されている。角速度計106及び加速度計107は、カメラ101の固定部103に配置されている。そして、角速度計106や加速度計107の出力信号に基づいて、カメラ101の振動を検出し、チルト回転ユニット104とパン回転ユニット105を回転駆動することにより、鏡筒102の振れを補正したり、傾きを補正したりすることができる。また、角速度計106や加速度計107は、一定の期間の計測結果に基づいて、カメラの移動検出も行う。   The tilt rotation unit 104 has a motor drive mechanism capable of rotationally driving the lens barrel 102 in the pitch direction shown in FIG. 1B, and the pan rotation unit 105 has a yaw shown in FIG. 1B. It has a motor drive mechanism that can be rotationally driven in a direction. That is, the camera 101 has a mechanism for rotationally driving the lens barrel 102 in two axial directions. Each axis shown in FIG. 1B is defined with respect to the position of the fixing unit 103. The angular velocity meter 106 and the accelerometer 107 are disposed at the fixed portion 103 of the camera 101. The vibration of the camera 101 is detected based on the output signals of the angular velocity meter 106 and the accelerometer 107, and the tilt rotation unit 104 and the pan rotation unit 105 are rotationally driven to correct the shake of the lens barrel 102, The inclination can be corrected. The angular velocity meter 106 and the accelerometer 107 also detect the movement of the camera based on the measurement result of a fixed period.

図2は本実施形態のカメラ101の全体構成を示すブロック図である。図2において、第1制御部223は、例えばCPU(MPU)、メモリ(DRAM、SRAM)などを備える。そして、不揮発性メモリ(EEPROM)216に記憶されたプログラムに従って、各種処理を実行してカメラ101の各ブロックを制御したり、各ブロック間でのデータ転送を制御したりする。不揮発性メモリ216は、電気的に消去・記録可能なメモリであり、上記のように第1制御部223の動作用の定数、プログラム等が記憶される。   FIG. 2 is a block diagram showing the overall configuration of the camera 101 of the present embodiment. In FIG. 2, the first control unit 223 includes, for example, a CPU (MPU), a memory (DRAM, SRAM), and the like. Then, according to the program stored in the non-volatile memory (EEPROM) 216, various processes are executed to control each block of the camera 101 or to control data transfer between each block. The non-volatile memory 216 is an electrically erasable / recordable memory, and as described above, stores constants, programs and the like for the operation of the first control unit 223.

図2において、ズームユニット201は、変倍(結像された被写体像の拡大・縮小)を行うズームレンズを含む。ズーム駆動制御部202は、ズームユニット201を駆動制御するとともに、そのときの焦点距離を検出する。フォーカスユニット203は、ピント調整(焦点調節)を行うフォーカスレンズを含む。フォーカス駆動制御部204は、フォーカスユニット203を駆動制御する。撮像部206は撮像素子を備え、各レンズ群を通して入射する光を受け、その光量に応じた電荷の情報をアナログ画像信号として画像処理部207に出力する。なお、ズームユニット201、フォーカスユニット203、撮像部206は、鏡筒102内に配置されている。   In FIG. 2, the zoom unit 201 includes a zoom lens that performs magnification change (enlargement / reduction of the formed object image). The zoom drive control unit 202 drives and controls the zoom unit 201 and detects the focal length at that time. The focus unit 203 includes a focus lens that performs focus adjustment (focus adjustment). The focus drive control unit 204 drives and controls the focus unit 203. The imaging unit 206 includes an imaging element, receives light incident through each lens group, and outputs information of charge corresponding to the light amount to the image processing unit 207 as an analog image signal. The zoom unit 201, the focus unit 203, and the imaging unit 206 are disposed in the lens barrel 102.

画像処理部207はアナログ画像信号をA/D変換して得られたデジタル画像データに対して、歪曲補正、ホワイトバランス調整、色補間処理等の画像処理を適用し、適用後のデジタル画像データを出力する。画像処理部207から出力されたデジタル画像データは、画像記録部208でJPEG形式等の記録用フォーマットに変換され、メモリ215に記憶されたり後述する映像出力部217に送信される。   An image processing unit 207 applies image processing such as distortion correction, white balance adjustment, and color interpolation processing to digital image data obtained by A / D converting an analog image signal, and applies the digital image data after application. Output. The digital image data output from the image processing unit 207 is converted into a recording format such as JPEG format by the image recording unit 208, stored in the memory 215, and transmitted to the video output unit 217 described later.

鏡筒回転駆動部205は、チルト回転ユニット104、パン回転ユニット105を駆動し、鏡筒102をチルト方向とパン方向に回動させる。装置揺れ検出部209は、カメラ101の3軸方向の角速度を検出する角速度計(ジャイロセンサ)106や、カメラ101の3軸方向の加速度を検出する加速度計(加速度センサ)107を備える。そして、それらのセンサにより検出された信号に基づいて、装置の回転角度や装置のシフト量などが算出される。   The lens barrel rotation drive unit 205 drives the tilt rotation unit 104 and the pan rotation unit 105 to rotate the lens barrel 102 in the tilt direction and the pan direction. The apparatus shake detection unit 209 includes an angular velocity meter (gyro sensor) 106 that detects angular velocities in the three axis directions of the camera 101, and an accelerometer (acceleration sensor) 107 that detects acceleration in the three axis directions of the camera 101. Then, based on the signals detected by those sensors, the rotation angle of the device, the shift amount of the device, and the like are calculated.

音声入力部213は、カメラ101に設けられたマイクによりカメラ101の周辺の音声信号を取得し、デジタル音声信号に変換して音声処理部214に送信する。音声処理部214は、入力されたデジタル音声信号の適正化処理等の音声に関する処理を行う。そして、音声処理部214で処理された音声信号は、第1制御部223によりメモリ215に送信される。メモリ215は、画像処理部207、音声処理部214により得られた画像信号及び音声信号を一時的に記憶する。   The audio input unit 213 acquires an audio signal around the camera 101 by a microphone provided in the camera 101, converts the audio signal into a digital audio signal, and transmits the digital audio signal to the audio processing unit 214. The audio processing unit 214 performs processing related to audio such as optimization processing of the input digital audio signal. Then, the first control unit 223 transmits the audio signal processed by the audio processing unit 214 to the memory 215. The memory 215 temporarily stores the image signal and the audio signal obtained by the image processing unit 207 and the audio processing unit 214.

画像処理部207及び音声処理部214は、メモリ215に一時的に記憶された画像信号や音声信号を読み出して画像信号の符号化、音声信号の符号化などを行い、圧縮画像信号、圧縮音声信号を生成する。第1制御部223は、これらの圧縮画像信号、圧縮音声信号を、記録再生部220に送信する。   An image processing unit 207 and an audio processing unit 214 read out an image signal and an audio signal temporarily stored in the memory 215 and perform encoding of the image signal, encoding of the audio signal, and the like, and a compressed image signal and a compressed audio signal. Generate The first control unit 223 transmits the compressed image signal and the compressed audio signal to the recording and reproducing unit 220.

記録再生部220は、記録媒体221に対して画像処理部207及び音声処理部214で生成された圧縮画像信号、圧縮音声信号、その他撮影に関する制御データ等を記録する。また、音声信号を圧縮符号化しない場合には、第1制御部223は、音声処理部214により生成された音声信号と画像処理部207により生成された圧縮画像信号とを、記録再生部220に送信し記録媒体221に記録させる。   The recording and reproducing unit 220 records, on the recording medium 221, the compressed image signal and the compressed sound signal generated by the image processing unit 207 and the sound processing unit 214, and other control data related to photographing. When the audio signal is not compressed and encoded, the first control unit 223 causes the recording / reproducing unit 220 to transmit the audio signal generated by the audio processing unit 214 and the compressed image signal generated by the image processing unit 207. It transmits and makes the recording medium 221 record.

記録媒体221は、カメラ101に内蔵された記録媒体でも、取外し可能な記録媒体でもよく、カメラ101で生成した圧縮画像信号、圧縮音声信号、音声信号などの各種データを記録することができる。一般的には、記録媒体221には不揮発性メモリ216よりも大容量な媒体が使用される。例えば、記録媒体221は、ハードディスク、光ディスク、光磁気ディスク、CD−R、DVD−R、磁気テープ、不揮発性の半導体メモリ、フラッシュメモリ、などのあらゆる方式の記録媒体を含む。   The recording medium 221 may be a recording medium built in the camera 101 or a removable recording medium, and can record various data such as a compressed image signal generated by the camera 101, a compressed audio signal, and an audio signal. In general, a medium having a larger capacity than the non-volatile memory 216 is used as the recording medium 221. For example, the recording medium 221 includes a recording medium of any type such as a hard disk, an optical disk, a magneto-optical disk, a CD-R, a DVD-R, a magnetic tape, a non-volatile semiconductor memory, and a flash memory.

記録再生部220は、記録媒体221に記録された圧縮画像信号、圧縮音声信号、音声信号、各種データ、プログラムを読み出す(再生する)。そして、第1制御部223は、読み出された圧縮画像信号、圧縮音声信号を、画像処理部207及び音声処理部214に送信する。画像処理部207及び音声処理部214は、圧縮画像信号、圧縮音声信号を一時的にメモリ215に記憶させ、所定の手順で復号し、復号した信号を映像出力部217に送信する。   The recording and reproducing unit 220 reads (reproduces) the compressed image signal, the compressed audio signal, the audio signal, various data, and the program recorded on the recording medium 221. Then, the first control unit 223 transmits the read compressed image signal and compressed audio signal to the image processing unit 207 and the audio processing unit 214. The image processing unit 207 and the audio processing unit 214 temporarily store the compressed image signal and the compressed audio signal in the memory 215, decode the signal according to a predetermined procedure, and transmit the decoded signal to the video output unit 217.

音声入力部213には複数のマイクが配置されており、音声処理部214は複数のマイクが設置された平面に対する音の方向を検出することができ、後述する被写体の探索や自動撮影に用いられる。さらに、音声処理部214では、特定の音声コマンドを検出する。音声コマンドは事前に登録されたいくつかのコマンドの他、ユーザが特定音声をカメラに登録できる構成にしてもよい。また、音シーン認識も行う。音シーン認識では、予め大量の音声データに基づいて機械学習により学習させたネットワークにより音シーンの判定を行う。例えば、「歓声が上がっている」、「拍手している」、「声を発している」などの特定シーンを検出するためのネットワークが音声処理部214に設定されており、特定音シーンや特定音声コマンドを検出する。音声処理部214が特定音シーンや特定音声コマンドを検出すると、第1制御部223や第2制御部211に、検出トリガー信号を出力する。   A plurality of microphones are disposed in the voice input unit 213, and the voice processing unit 214 can detect the direction of sound with respect to the plane on which the plurality of microphones are installed, and is used for searching for subjects and automatic photographing described later. . Further, the voice processing unit 214 detects a specific voice command. The voice command may be configured so that the user can register a specific voice to the camera in addition to some commands registered in advance. It also performs sound scene recognition. In sound scene recognition, a sound scene is determined by a network learned by machine learning in advance based on a large amount of audio data. For example, a network for detecting a specific scene, such as “Cheering,” “Applause,” “Speaking,” is set in the audio processing unit 214, and a specific sound scene or a specific sound is specified. Detect voice commands. When the voice processing unit 214 detects a specific sound scene or a specific voice command, it outputs a detection trigger signal to the first control unit 223 or the second control unit 211.

カメラ101のメインシステム全体を制御する第1制御部223とは別に、この第1制御部223の供給電源を制御する第2制御部211が設けられている。第1電源部210と第2電源部212は、第1制御部223と第2制御部211を動作させるための電力をそれぞれ供給する。カメラ101に設けられた電源ボタンの押下により、まず第1制御部223と第2制御部211の両方に電源が供給されるが、後述するように、第1制御部223は、第1電源部210へ自らの電源供給をOFFする制御も行う。第1制御部223が動作していない間も、第2制御部211は動作しており、装置揺れ検出部209や音声処理部214からの情報が入力される。第2制御部211は、各種入力情報に基づいて、第1制御部223を起動するか否かの判定を行い、起動することが判定されると、第1電源部210に第1制御部223へ電力を供給するように指示する。   In addition to the first control unit 223 that controls the entire main system of the camera 101, a second control unit 211 that controls the power supply of the first control unit 223 is provided. The first power supply unit 210 and the second power supply unit 212 respectively supply power for operating the first control unit 223 and the second control unit 211. By pressing the power button provided on the camera 101, power is first supplied to both the first control unit 223 and the second control unit 211. However, as described later, the first control unit 223 controls the first power supply unit. It also performs control to turn off its own power supply to 210. Even while the first control unit 223 is not in operation, the second control unit 211 is in operation, and information from the device shake detection unit 209 and the audio processing unit 214 is input. The second control unit 211 determines whether or not to start the first control unit 223 based on various input information, and when it is determined that the first control unit 223 is to be started, the first control unit 223 is used as the first control unit 223. To supply power to

音声出力部218は、例えば撮影時などにカメラ101に内蔵されたスピーカーから予め設定された音声パターンを出力する。LED制御部224は、例えば撮影時などに、カメラ101に設けられたLEDを、予め設定された点灯パターンや点滅パターンに基づいて点灯させる。映像出力部217は、例えば映像出力端子からなり、接続された外部ディスプレイ等に映像を表示させるために画像信号を出力する。また、音声出力部218、映像出力部217は、結合された1つの端子、例えばHDMI(登録商標:High−Definition Multimedia Interface)端子のような端子であってもよい。   The audio output unit 218 outputs an audio pattern set in advance from a speaker incorporated in the camera 101, for example, at the time of shooting. The LED control unit 224 turns on an LED provided in the camera 101 based on a preset lighting pattern or blinking pattern, for example, at the time of photographing or the like. The video output unit 217 includes, for example, a video output terminal, and outputs an image signal to display a video on a connected external display or the like. Further, the audio output unit 218 and the video output unit 217 may be one combined terminal, for example, a terminal such as an HDMI (registered trademark: High-Definition Multimedia Interface) terminal.

通信部222は、カメラ101と外部装置との間で通信を行う部分であり、例えば、音声信号、画像信号、圧縮音声信号、圧縮画像信号などのデータを送信したり受信したりする。また、撮影開始や終了のコマンド、パン・チルト、ズーム駆動等の撮影にかかわる制御信号を受信して、外部装置の指示に基づいてカメラ101を駆動する。また、カメラ101と外部装置との間で、後述する学習処理部219で処理される学習にかかわる各種パラメータなどの情報を送信したり受信したりする。通信部222は、例えば、赤外線通信モジュール、Bluetooth(登録商標)通信モジュール、無線LAN通信モジュール、WirelessUSB(登録商標)、GPS受信機等の無線通信モジュールを備える。   The communication unit 222 is a unit that performs communication between the camera 101 and an external device, and transmits and receives data such as an audio signal, an image signal, a compressed audio signal, and a compressed image signal, for example. Also, the camera 101 is driven based on an instruction from the external apparatus by receiving a command for start and end of shooting, and control signals related to shooting such as pan / tilt and zoom driving. Further, information such as various parameters related to learning processed by a learning processing unit 219 described later is transmitted and received between the camera 101 and an external device. The communication unit 222 includes, for example, a wireless communication module such as an infrared communication module, a Bluetooth (registered trademark) communication module, a wireless LAN communication module, a wireless USB (registered trademark), or a GPS receiver.

環境センサ226は、所定の周期でカメラ101の周辺の環境の状態を検出する。環境センサ226は、カメラ101周辺の温度を検出する温度センサ、カメラ101周辺の気圧の変化を検出する気圧センサ、カメラ101周辺の明るさを検出する照度センサを有する。さらに、カメラ101周辺の湿度を検出する湿度センサ、カメラ101周辺の紫外線量を検出するUVセンサ等も有する。検出した温度情報や気圧情報や明るさ情報や湿度情報やUV情報に加え、検出した各種情報から所定時間間隔での変化率を算出した温度変化量や気圧変化量や明るさ変化量や湿度変化量や紫外線変化量などを後述する自動撮影などの判定に使用する。   The environment sensor 226 detects the state of the environment around the camera 101 at a predetermined cycle. The environment sensor 226 includes a temperature sensor that detects a temperature around the camera 101, an air pressure sensor that detects a change in air pressure around the camera 101, and an illuminance sensor that detects brightness around the camera 101. Furthermore, it has a humidity sensor that detects the humidity around the camera 101, a UV sensor that detects the amount of ultraviolet light around the camera 101, and the like. In addition to the detected temperature information, barometric pressure information, brightness information, humidity information, and UV information, the temperature change amount, pressure change amount, brightness change amount, humidity change, etc. are calculated by calculating the change rate at predetermined time intervals from the detected various information. It is used for determination of automatic photographing etc. which mention the amount and the amount of change of ultraviolet rays later.

<外部装置との通信>
図3は、カメラ101と外部装置301との無線通信システムの構成例を示す図である。カメラ101は撮影機能を有するデジタルカメラであり、外部装置301はBluetooth通信モジュール、無線LAN通信モジュールを含むスマートデバイスである。
<Communication with external device>
FIG. 3 is a view showing a configuration example of a wireless communication system of the camera 101 and the external device 301. As shown in FIG. The camera 101 is a digital camera having a photographing function, and the external device 301 is a smart device including a Bluetooth communication module and a wireless LAN communication module.

カメラ101と外部装置301は、例えばIEEE802.11規格シリーズに準拠した無線LANによる第1の通信302と、例えばBluetooth Low Energy(以下、「BLE」と呼ぶ)などの、制御局と従属局などの主従関係を有する第2の通信303とによって通信可能である。なお、無線LAN及びBLEは通信手法の一例であり、各通信装置は、2つ以上の通信機能を有し、例えば制御局と従属局との関係の中で通信を行う一方の通信機能によって、他方の通信機能の制御を行うことが可能であれば、他の通信手法が用いられてもよい。ただし、無線LANなどの第1の通信302は、BLEなどの第2の通信303より高速な通信が可能であり、また、第2の通信303は、第1の通信302よりも消費電力が少ないか通信可能距離が短いかの少なくともいずれかであるものとする。   The camera 101 and the external device 301 are, for example, a first communication 302 based on a wireless LAN conforming to the IEEE 802.11 standard series, and a control station and a dependent station such as Bluetooth Low Energy (hereinafter, referred to as “BLE”). Communication is possible with a second communication 303 having a master-slave relationship. The wireless LAN and BLE are an example of a communication method, and each communication apparatus has two or more communication functions, for example, one communication function that performs communication in the relationship between the control station and the dependent station. Other communication methods may be used as long as control of the other communication function can be performed. However, the first communication 302 such as a wireless LAN can perform higher-speed communication than the second communication 303 such as BLE, and the second communication 303 consumes less power than the first communication 302. And / or the communicable distance is short.

外部装置301の構成を図4を用いて説明する。外部装置301は、例えば、無線LAN用の無線LAN制御部401、及び、BLE用のBLE制御部402に加え、公衆無線通信用の公衆無線制御部406を有する。また、外部装置301は、パケット送受信部403をさらに有する。無線LAN制御部401は、無線LANのRF制御、通信処理、IEEE802.11規格シリーズに準拠した無線LANによる通信の各種制御を行うドライバ処理や無線LANによる通信に関するプロトコル処理を行う。BLE制御部402は、BLEのRF制御、通信処理、BLEによる通信の各種制御を行うドライバ処理やBLEによる通信に関するプロトコル処理を行う。公衆無線制御部406は、公衆無線通信のRF制御、通信処理、公衆無線通信の各種制御を行うドライバ処理や公衆無線通信関連のプロトコル処理を行う。公衆無線通信は例えばIMT(International Multimedia Telecommunications)規格やLTE(Long Term Evolution)規格などに準拠したものである。パケット送受信部403は、無線LAN並びにBLEによる通信及び公衆無線通信に関するパケットの送信と受信との少なくともいずれかを実行するための処理を行う。なお、本実施形態では、外部装置301は、通信においてパケットの送信と受信との少なくともいずれかを行うものとして説明するが、パケット交換以外に、例えば回線交換など、他の通信形式が用いられてもよい。   The configuration of the external device 301 will be described with reference to FIG. The external apparatus 301 includes, for example, a public wireless control unit 406 for public wireless communication in addition to the wireless LAN control unit 401 for wireless LAN and the BLE control unit 402 for BLE. In addition, the external device 301 further includes a packet transmission / reception unit 403. The wireless LAN control unit 401 performs RF control of wireless LAN, communication processing, driver processing for performing various control of communication by wireless LAN conforming to the IEEE 802.11 standard series, and protocol processing regarding communication by wireless LAN. The BLE control unit 402 performs RF control of BLE, communication processing, driver processing for performing various controls of communication by BLE, and protocol processing regarding communication by BLE. The public wireless control unit 406 performs RF control of public wireless communication, communication processing, driver processing for performing various controls of public wireless communication, and protocol processing related to public wireless communication. The public wireless communication conforms to, for example, the International Multimedia Telecommunications (IMT) standard or the Long Term Evolution (LTE) standard. The packet transmission / reception unit 403 performs processing for performing transmission and / or reception of packets related to communication by wireless LAN and BLE and public wireless communication. In the present embodiment, the external device 301 is described as performing at least one of transmission and reception of packets in communication, but other communication formats such as circuit switching may be used other than packet switching. It is also good.

外部装置301は、例えば、制御部411、記憶部404、GPS受信部405、表示部407、操作部408、音声入力音声処理部409、電源部410をさらに有する。制御部411は、例えば、記憶部404に記憶された制御プログラムを実行することにより、外部装置301全体を制御する。記憶部404は、例えば制御部411が実行する制御プログラムと、通信に必要なパラメータ等の各種情報とを記憶する。後述する各種動作は、記憶部404に記憶された制御プログラムを制御部411が実行することにより、実現される。   The external device 301 further includes, for example, a control unit 411, a storage unit 404, a GPS reception unit 405, a display unit 407, an operation unit 408, a voice input voice processing unit 409, and a power supply unit 410. The control unit 411 controls the entire external device 301, for example, by executing a control program stored in the storage unit 404. The storage unit 404 stores, for example, a control program executed by the control unit 411 and various information such as parameters required for communication. Various operations described later are realized by the control unit 411 executing a control program stored in the storage unit 404.

電源部410は、外部装置301に電力を供給する。表示部407は、例えば、LCDやLEDのように視覚で認知可能な情報の出力、又はスピーカー等の音出力が可能な機能を有し、各種情報の表示を行う。操作部408は、例えばユーザによる外部装置301の操作を受け付けるボタン等を含む。なお、表示部407及び操作部408は、例えばタッチパネルなどの共通する部材によって構成されていてもよい。   The power supply unit 410 supplies power to the external device 301. The display unit 407 has a function capable of outputting visually recognizable information, such as an LCD or an LED, or a sound output such as a speaker, and displays various information. The operation unit 408 includes, for example, a button for receiving an operation of the external device 301 by the user. The display unit 407 and the operation unit 408 may be configured by a common member such as a touch panel, for example.

音声入力音声処理部409は、例えば外部装置301に内蔵された汎用的なマイクにより、ユーザが発した音声を取得し、音声認識処理により、ユーザの操作命令を識別する構成にしてもよい。また、外部装置301内の専用のアプリケーションを用いて、ユーザの発音により音声コマンドを取得し、無線LANによる第1の通信302を介して、カメラ101の音声処理部214に認識させるための特定音声コマンドとして登録することもできる。   The voice input voice processing unit 409 may be configured to obtain a voice uttered by the user using, for example, a general-purpose microphone built in the external device 301, and identify a user's operation command by voice recognition processing. Also, using a dedicated application in the external device 301, a voice command is acquired by the user's pronunciation, and a specific voice for causing the voice processing unit 214 of the camera 101 to recognize via the first communication 302 by wireless LAN It can also be registered as a command.

GPS(Global positioning system)受信部405は、衛星から通知されるGPS信号を受信し、GPS信号を解析し、外部装置301の現在位置(経度・緯度情報)を推定する。もしくは、WPS(Wi−Fi Positioning System)等を利用して、周囲に存在する無線ネットワークの情報に基づいて、外部装置301の現在位置を推定するようにしてもよい。取得した現在のGPS位置情報が予め事前に設定されている位置範囲(検出位置を中心といて所定半径の範囲以内)に位置している場合や、GPS位置情報に所定以上の位置変化があった場合に、BLE制御部402を介してカメラ101へ移動情報を通知する。そして、後述する自動撮影や自動編集のためのパラメータとして使用する。   A GPS (Global Positioning System) reception unit 405 receives a GPS signal notified from a satellite, analyzes the GPS signal, and estimates the current position (longitude / latitude information) of the external device 301. Alternatively, the current position of the external device 301 may be estimated based on information of a wireless network existing in the vicinity using a Wi-Fi Positioning System (WPS) or the like. When the acquired current GPS position information is located in the position range (within the range of the predetermined radius centering on the detection position) which is set in advance in advance, or the GPS position information changes in position more than the predetermined position In this case, the movement information is notified to the camera 101 via the BLE control unit 402. Then, it is used as a parameter for automatic shooting and automatic editing described later.

上記のようにカメラ101と外部装置301は、無線LAN制御部401、及び、BLE制御部402を用いた通信により、データのやりとりを行う。例えば、音声信号、画像信号、圧縮音声信号、圧縮画像信号などのデータを送信したり受信したりする。また、外部装置301からカメラ101への撮影指示などの送信、音声コマンド登録データの送信、GPS位置情報に基づいた所定位置検出通知の送信、場所移動通知の送信等を行う。また、外部装置301内の専用のアプリケーションを用いての学習用データの送受信も行う。   As described above, the camera 101 and the external device 301 exchange data by communication using the wireless LAN control unit 401 and the BLE control unit 402. For example, it transmits and receives data such as an audio signal, an image signal, a compressed audio signal, and a compressed image signal. In addition, transmission of a photographing instruction from the external device 301 to the camera 101, transmission of voice command registration data, transmission of a predetermined position detection notification based on GPS position information, transmission of a location movement notification, and the like are performed. Also, it performs transmission and reception of learning data using a dedicated application in the external device 301.

<アクセサリ類の構成>
図5は、カメラ101と通信可能である外部装置501の構成例を示す図である。カメラ101は撮影機能を有するデジタルカメラであり、外部装置501は、例えばBluetooth通信モジュールなどによりカメラ101と通信可能である各種センシング部を含むウエアラブルデバイスである。
<Configuration of accessories>
FIG. 5 is a view showing an example of the arrangement of an external apparatus 501 capable of communicating with the camera 101. As shown in FIG. The camera 101 is a digital camera having a photographing function, and the external apparatus 501 is a wearable device including various sensing units capable of communicating with the camera 101 by, for example, a Bluetooth communication module.

外部装置501は、例えばユーザの腕などに装着できるように構成されており、所定の周期でユーザの脈拍、心拍、血流等の生体情報を検出するセンサやユーザの運動状態を検出できる加速度センサ等が搭載されている。   The external device 501 is configured to be worn on, for example, the arm of the user, and is a sensor that detects biological information such as the pulse, heart rate, blood flow, etc. of the user at a predetermined cycle, and an acceleration sensor that can detect the motion state of the user. Etc. are mounted.

生体情報検出部602は、例えば、脈拍を検出する脈拍センサ、心拍を検出する心拍センサ、血流を検出する血流センサ、導電性高分子を用いた皮膚の接触によって電位の変化を検出するセンサを含む。本実施形態では、生体情報検出部602として心拍センサを用いて説明する。心拍センサは、例えばLED等を用いて皮膚に赤外光を照射し、体組織を透過した赤外光を受光センサで検出して信号処理することによりユーザの心拍を検出する。生体情報検出部602は、検出した生体情報を信号として制御部607(図6参照)へ出力する。   The biological information detection unit 602 is, for example, a pulse sensor that detects a pulse, a heart rate sensor that detects a heart rate, a blood flow sensor that detects a blood flow, a sensor that detects a change in potential by contact of skin using a conductive polymer. including. The present embodiment will be described using a heart rate sensor as the living body information detection unit 602. The heart rate sensor irradiates the skin with infrared light using, for example, an LED or the like, and detects the heart rate of the user by detecting the infrared light transmitted through the body tissue with a light receiving sensor and processing the signal. The biological information detection unit 602 outputs the detected biological information as a signal to the control unit 607 (see FIG. 6).

ユーザの運動状態を検出する揺れ検出部603は、例えば、加速度センサやジャイロセンサを備えており、加速度の情報に基づきユーザが移動しているか、腕を振り回してアクションをしているかなどのモーションを検出することができる。また、ユーザによる外部装置501の操作を受け付ける操作部605や、LCDやLEDのように視覚で認知可能な情報を出力するモニタなどの表示部604が搭載されている。   The shake detection unit 603 that detects the user's motion state includes, for example, an acceleration sensor or a gyro sensor, and performs motion such as whether the user is moving or swings an arm based on acceleration information. It can be detected. In addition, an operation unit 605 for receiving an operation of the external apparatus 501 by the user, and a display unit 604 such as a monitor for outputting visually recognizable information such as an LCD or LED are mounted.

図6は、外部装置501の構成を示す図である。上述したように、外部装置501は、例えば、制御部607、通信部601、生体情報検出部602、揺れ検出部603、表示部604、操作部605、電源部606、記憶部608を有する。   FIG. 6 is a diagram showing the configuration of the external device 501. As shown in FIG. As described above, the external device 501 includes, for example, the control unit 607, the communication unit 601, the biological information detection unit 602, the shake detection unit 603, the display unit 604, the operation unit 605, the power supply unit 606, and the storage unit 608.

制御部607は、例えば、記憶部608に記憶された制御プログラムを実行することにより、外部装置501全体を制御する。記憶部608は、例えば制御部607が実行する制御プログラムと、通信に必要なパラメータ等の各種情報とを記憶している。後述する各種動作は、例えば記憶部608に記憶された制御プログラムを制御部607が実行することにより、実現される。   The control unit 607 controls the entire external device 501, for example, by executing a control program stored in the storage unit 608. The storage unit 608 stores, for example, a control program executed by the control unit 607 and various information such as parameters required for communication. Various operations described later are realized, for example, by the control unit 607 executing a control program stored in the storage unit 608.

電源部606は、外部装置501に電力を供給する。表示部604は、例えば、LCDやLEDのように視覚で認知可能な情報の出力部、又はスピーカー等の音出力が可能な出力部を有し、各種情報の表示を行う。操作部605は、例えばユーザによる外部装置501の操作を受け付けるボタン等を備える。なお、表示部604及び操作部605は、例えばタッチパネルなどの共通する部材によって構成されていてもよい。また、操作部605は、例えば外部装置501に内蔵された汎用的なマイクによりユーザが発した音声を取得し、音声認識処理により、ユーザの操作命令を識別するように構成されていてもよい。   The power supply unit 606 supplies power to the external device 501. The display unit 604 includes, for example, an output unit of visually recognizable information such as an LCD or an LED, or an output unit capable of sound output such as a speaker, and displays various information. The operation unit 605 includes, for example, a button for receiving an operation of the external device 501 by the user. The display unit 604 and the operation unit 605 may be configured by a common member such as a touch panel, for example. In addition, the operation unit 605 may be configured to acquire, for example, voice uttered by the user using a general-purpose microphone built in the external device 501, and to identify a user's manipulation instruction by voice recognition processing.

生体情報検出部602や揺れ検出部603により取得され制御部607で処理された各種検出情報は、通信部601により、カメラ101へ送信される。例えば、ユーザの心拍の変化を検出したタイミングで検出情報をカメラ101に送信したり、歩行移動/走行移動/立ち止まりなどの移動状態の変化のタイミングで検出情報を送信したりすることができる。また、予め設定された腕ふりのモーションを検出したタイミングで検出情報を送信したり、予め設定された距離の移動を検出したタイミングで検出情報を送信したりすることもできる。   The communication unit 601 transmits the various detection information acquired by the biological information detection unit 602 and the shaking detection unit 603 and processed by the control unit 607 to the camera 101. For example, detection information can be transmitted to the camera 101 at the timing at which a change in the user's heartbeat is detected, or detection information can be transmitted at the timing of a change in moving state such as walking movement / running movement / stop. Further, detection information can be transmitted at a timing at which a pre-set arm-like motion is detected, or detection information can be transmitted at a timing at which movement of a preset distance is detected.

<カメラの動作シーケンス>
図7は、本実施形態におけるカメラ101の第1制御部223が受け持つ動作の例を説明するフローチャートである。
<Operation sequence of camera>
FIG. 7 is a flow chart for explaining an example of the operation of the first control unit 223 of the camera 101 in the present embodiment.

ユーザがカメラ101に設けられた電源ボタンを操作すると、第1電源部210から第1制御部223及びカメラ101の各ブロックに電力が供給される。また、同様に、第2電源部212から第2制御部211に電力が供給される。第2制御部211の動作の詳細については、図8のフローチャートを用いて後述する。   When the user operates a power button provided on the camera 101, power is supplied from the first power supply unit 210 to each block of the first control unit 223 and the camera 101. Similarly, power is supplied from the second power supply unit 212 to the second control unit 211. The details of the operation of the second control unit 211 will be described later using the flowchart of FIG.

電力が供給されると、図7の処理がスタートする。ステップS701では、起動条件の読み込みが行われる。本実施形態においては、電源が起動される条件には以下の3つの場合がある。
(1)電源ボタンが手動で押下されて電源が起動される
(2)外部装置(例えば外部装置301)から外部通信(例えばBLE通信)により起動指示が送られ、電源が起動される
(3)第2制御部211の指示により、電源が起動される
ここで、(3)の第2制御部211の指示により電源が起動される場合は、第2制御部211内で演算された起動条件が読み込まれることになるが、詳細は図8を用いて後述する。また、ここで読み込まれた起動条件は、被写体探索や自動撮影時の1つのパラメータ要素として用いられるが、それについても後述する。起動条件読み込みが終了するとステップS702に進む。
When power is supplied, the process of FIG. 7 starts. In step S701, the start condition is read. In the present embodiment, there are the following three cases where the power is turned on.
(1) The power button is manually pressed to activate the power (2) An external device (for example, the external device 301) sends an activation instruction by external communication (for example, BLE communication) to activate the power (3) The power is activated by the instruction of the second control unit 211. Here, when the power is activated by the instruction of the second control unit 211 of (3), the activation condition calculated in the second control unit 211 is Although it will be read, the details will be described later with reference to FIG. Further, although the start condition read in here is used as one parameter element at the time of subject search and automatic photographing, this will also be described later. When the start condition reading is completed, the process proceeds to step S702.

ステップS702では、各種センサの検出信号の読み込みが行われる。ここで読み込まれるセンサの信号は、1つは、装置揺れ検出部209におけるジャイロセンサや加速度センサなどの振動を検出するセンサの信号である。また、チルト回転ユニット104やパン回転ユニット105の回転位置の信号である。さらには、音声処理部214で検出される音声信号、特定音声認識の検出トリガー信号、音方向検出信号、環境センサ226で検出される環境情報の検出信号などである。ステップS702で各種センサの検出信号の読み込みが行われると、ステップS703に進む。   In step S702, the detection signals of various sensors are read. One of the sensor signals read in here is a sensor signal for detecting vibration of a gyro sensor, an acceleration sensor, or the like in the device shake detection unit 209. In addition, it is a signal of the rotational position of the tilt rotation unit 104 or the pan rotation unit 105. Further, it includes an audio signal detected by the audio processing unit 214, a detection trigger signal of specific speech recognition, a sound direction detection signal, a detection signal of environmental information detected by the environmental sensor 226, and the like. When the detection signals of various sensors are read in step S702, the process proceeds to step S703.

ステップS703では、外部装置から通信指示が送信されているかを検出し、通信指示があった場合、外部装置との通信を行う。例えば、外部装置301からの、無線LANやBLEを介したリモート操作、音声信号、画像信号、圧縮音声信号、圧縮画像信号などの送受信、外部装置301からの撮影などの操作指示、音声コマンド登録データの送信、GPS位置情報に基づいた所定位置検出通知、場所移動通知、学習用データの送受信等の読み込みを行う。また、外部装置501から、ユーザの運動情報、腕のアクション情報、心拍などの生体情報の更新がある場合、BLEを介した情報の読み込みを行う。なお、上述した環境センサ226は、カメラ101に搭載されていてもよいが、外部装置301或いは外部装置501に搭載されていてもよい。その場合、ステップS703では、BLEを介した環境情報の読み込みも行う。ステップS703で外部装置からの通信読み込みが行われると、ステップS704に進む。   In step S703, it is detected whether a communication instruction has been transmitted from the external device, and when there is a communication instruction, communication with the external device is performed. For example, remote operation via wireless LAN or BLE from external device 301, transmission / reception of audio signal, image signal, compressed audio signal, compressed image signal, etc., operation instruction for imaging from external device 301, voice command registration data , Notification of predetermined position detection based on GPS position information, notification of location movement, transmission / reception of learning data, etc. Also, when there is an update of biological information such as user's exercise information, arm action information, and heartbeat from the external device 501, information is read via BLE. The environment sensor 226 described above may be mounted on the camera 101, but may be mounted on the external device 301 or the external device 501. In that case, in step S703, environmental information is also read via BLE. When communication reading from the external device is performed in step S703, the process proceeds to step S704.

ステップS704では、モード設定判定が行われ、ステップS705に進む。ステップS705ではステップS704で動作モードが低消費電力モードに設定されているか否かを判定する。後述する「自動撮影モード」、「自動編集モード」、「画像自動転送モード」、「学習モード」、「ファイル自動削除モード」、の何れのモードでもない場合は、低消費電力モードになるように判定される。ステップS705で、低消費電力モードであると判定されると、ステップS706に進む。   In step S704, mode setting determination is performed, and the process proceeds to step S705. In step S705, it is determined in step S704 whether the operation mode is set to the low power consumption mode. If the mode is not one of "automatic shooting mode", "automatic editing mode", "automatic image transfer mode", "learning mode", and "automatic file deletion mode" described later, the low power consumption mode is set. It is judged. If it is determined in step S705 that the low power consumption mode is set, the process proceeds to step S706.

ステップS706では、第2制御部211(SubCPU)へ、第2制御部211内で判定する起動要因に係る各種パラメータ(揺れ検出判定用パラメータ、音検出用パラメータ、時間経過検出パラメータ)を通知する。各種パラメータは後述する学習処理で学習されることによって値が変化する。ステップS706の処理を終了すると、ステップS707に進み、第1制御部223(MainCPU)の電源をOFFして、処理を終了する。   In step S706, the second control unit 211 (SubCPU) is notified of various parameters (the shake detection determination parameter, the sound detection parameter, and the time lapse detection parameter) related to the activation factor determined in the second control unit 211. The values of the various parameters change as they are learned in a learning process described later. When the process of step S706 is finished, the process proceeds to step S707, the power supply of the first control unit 223 (Main CPU) is turned off, and the process is finished.

ステップS705で、低消費電力モードでないと判定されると、ステップS704におけるモード設定が自動撮影モードか否かを判定する。ここで、ステップS704でのモード設定判定の処理について説明する。判定されるモードは、以下の中から選択される。   If it is determined in step S705 that the mode is not the low power consumption mode, it is determined whether the mode setting in step S704 is the automatic shooting mode. Here, the process of mode setting determination in step S704 will be described. The mode to be determined is selected from the following.

(1)自動撮影モード
<モード判定条件>
学習設定された各検出情報(画像、音、時間、振動、場所、身体の変化、環境変化)、自動撮影モードに移行してからの経過時間、過去の撮影情報・撮影枚数などの情報から、自動撮影を行うべきと判定されると、自動撮影モードに設定される。
(1) Automatic shooting mode <mode judgment condition>
From each detection information (image, sound, time, vibration, place, physical change, environmental change) that has been set for learning, elapsed time since transition to automatic shooting mode, information such as past shooting information and number of shots, When it is determined that the automatic shooting should be performed, the automatic shooting mode is set.

<モード内処理>
自動撮影モード処理(ステップS710)では、各検出情報(画像、音、時間、振動、場所、体の変化、環境変化)に基づいて、パン・チルトやズームを駆動して被写体を自動探索する。そして、ユーザの好みの撮影が行えるタイミングであると判定されると自動で撮影が行われる。
<In-mode processing>
In the automatic photographing mode processing (step S710), pan / tilt and zoom are driven to automatically search for a subject based on each detection information (image, sound, time, vibration, place, body change, environment change). Then, when it is determined that it is the timing at which the user's favorite shooting can be performed, shooting is automatically performed.

(2)自動編集モード
<モード判定条件>
前回自動編集を行ってからの経過時間、過去の撮影画像情報から、自動編集を行うべきと判定されると、自動編集モードに設定される。
(2) Automatic editing mode <mode judgment condition>
If it is determined that the automatic editing should be performed from the elapsed time since the previous automatic editing and the past photographed image information, the automatic editing mode is set.

<モード内処理>
自動編集モード処理(ステップS712)では、学習に基づいた静止画像や動画像の選抜処理を行い、学習に基づいて、画像効果や編集後動画の時間などにより、一つの動画にまとめたハイライト動画を作成する自動編集処理が行われる。
<In-mode processing>
In the automatic editing mode process (step S 712), a still image or moving image selection process is performed based on learning, and based on the learning, a highlight moving image summarized into one moving image by an image effect, a time of edited moving image, etc. An automatic editing process is performed to create

(3)画像転送モード
<モード判定条件>
外部装置301内の専用のアプリケーションを用いた指示により、画像自動転送モードに設定されている場合、前回画像転送を行ってからの経過時間と過去の撮影画像情報から、自動転送を行うべきと判定されると、自動画像転送モードに設定される。
(3) Image transfer mode <mode determination condition>
When an automatic image transfer mode is set by an instruction using a dedicated application in the external device 301, it is determined that automatic transfer should be performed based on the elapsed time since the previous image transfer and the past captured image information Then, the automatic image transfer mode is set.

<モード内処理>
画像自動転送モード処理(ステップS714)では、カメラ101は、ユーザの好みに合うであろう画像を自動で抽出し、外部装置301にユーザの好みと思われる画像を自動で転送する。ユーザの好みの画像抽出は、後述する各画像に付加されたユーザの好みを判定したスコアにより行われる。
<In-mode processing>
In the image automatic transfer mode process (step S714), the camera 101 automatically extracts an image that will suit the user's preference, and automatically transfers an image that seems to be the user's preference to the external apparatus 301. The image extraction of the user's preference is performed based on the score that determines the user's preference added to each image described later.

(4)学習モード
<モード判定条件>
前回学習処理を行ってからの経過時間と、学習に使用することのできる画像に一体となった情報や学習データの数などから、自動学習を行うべきと判定されると、自動学習送モードに設定される。または、外部装置301からの通信を介して学習モードが設定されるように指示があった場合もこのモードに設定される。
(4) Learning mode <mode judgment condition>
If it is determined that automatic learning should be performed from the elapsed time since the previous learning process and information integrated with the image that can be used for learning, the number of learning data, etc. It is set. Alternatively, when there is an instruction to set the learning mode via the communication from the external device 301, this mode is also set.

<モード内処理>
学習モード処理(ステップS716)では、外部装置301での各操作情報(カメラからの画像取得情報、専用アプリケーションを介して手動編集した情報、カメラ内の画像に対してユーザが入力した判定値情報)、外部装置301からの学習情報の通知などに基づいて、ニューラルネットワークを用いて、ユーザの好みに合わせた学習を行う。また、個人認証の登録、音声登録、音シーン登録、一般物体認識登録などの、検出に関する学習や、上述した低消費電力モードの条件などの学習も同時に行われる。
<In-mode processing>
In the learning mode process (step S 716), each operation information in the external device 301 (image acquisition information from the camera, information manually edited through a dedicated application, determination value information input by the user with respect to the image in the camera) Based on a notification of learning information from the external device 301, etc., learning is performed according to the user's preference using a neural network. Further, learning regarding detection such as registration of personal authentication, voice registration, sound scene registration, general object recognition registration, etc., and learning of the conditions of the above-mentioned low power consumption mode, etc. are simultaneously performed.

(5)ファイル自動削除モード
<モード判定条件>
前回ファイル自動削除を行ってからの経過時間と、画像を記録している不揮発性メモリ216の残容量とに基づいて、ファイル自動削除を行うべきと判定されると、ファイル自動削除モードに設定される。
(5) File automatic deletion mode <mode judgment condition>
If it is determined that automatic file deletion should be performed based on the elapsed time since the previous automatic file deletion and the remaining capacity of the non-volatile memory 216 storing the image, the automatic file deletion mode is set. Ru.

<モード内処理>
ファイル自動削除モード処理(ステップS718)では、不揮発性メモリ216内の画像の中から、各画像のタグ情報と撮影された日時などから自動削除されるべきファイルを指定し削除する。
<In-mode processing>
In the file automatic deletion mode process (step S 718), a file to be automatically deleted is specified and deleted from the images in the non-volatile memory 216 based on the tag information of each image and the photographed date and time.

以上の各モードにおける処理の詳細については、後述する。   Details of processing in each of the above modes will be described later.

図7の説明に戻り、ステップS705で低消費電力モードでないと判定されると、ステップS709に進み、モード設定が自動撮影モードであるか否かを判定する。判定の結果、自動撮影モードであればステップS710に進み、自動撮影モード処理が行われる。処理が終了すると、ステップS702に戻り、処理を繰り返す。ステップS709で、自動撮影モードでないと判定されると、ステップS711に進む。   Referring back to FIG. 7, when it is determined in step S705 that the mode is not the low power consumption mode, the process proceeds to step S709, and it is determined whether the mode setting is the automatic shooting mode. If it is determined that the mode is the automatic shooting mode, the process proceeds to step S710, and the automatic shooting mode process is performed. When the process ends, the process returns to step S702 to repeat the process. If it is determined in step S709 that the mode is not the automatic shooting mode, the process proceeds to step S711.

ステップS711では、モード設定が自動編集モードであるか否かを判定し、自動編集モードであればステップS712に進み、自動編集モード処理が行われる。処理が終了すると、ステップS702に戻り、処理を繰り返す。ステップS711で、自動編集モードでないと判定されると、ステップS713に進む。なお、自動編集モードは、本発明の主旨に直接関係しないため、詳細な説明は省略する。   In step S711, it is determined whether the mode setting is the automatic editing mode. If the mode is the automatic editing mode, the process advances to step S712 to perform automatic editing mode processing. When the process ends, the process returns to step S702 to repeat the process. If it is determined in step S711 that the automatic editing mode is not set, the process proceeds to step S713. The automatic editing mode is not directly related to the subject matter of the present invention, and thus the detailed description is omitted.

ステップS713では、モード設定が画像自動転送モードであるか否かを判定し、画像自動転送モードであればステップS714に進み、画像自動転送モード処理が行われる。処理が終了すると、ステップS702に戻り、処理を繰り返す。ステップS713で、画像自動転送モードでないと判定されると、ステップS715に進む。なお、画像自動転送モードは、本発明の主旨に直接関係しないため、詳細な説明は省略する。   In step S713, it is determined whether the mode setting is the automatic image transfer mode. If the automatic image transfer mode is selected, the process proceeds to step S714, and automatic image transfer mode processing is performed. When the process ends, the process returns to step S702 to repeat the process. If it is determined in step S713 that the mode is not the automatic image transfer mode, the process proceeds to step S715. The automatic image transfer mode is not directly related to the subject matter of the present invention, and thus the detailed description is omitted.

ステップS715では、モード設定が学習モードであるか否かを判定し、学習モードであればステップS716に進み、学習モード処理が行われる。処理が終了すると、ステップS702に戻り、処理を繰り返す。ステップS715で、学習モードでないと判定されると、ステップS717に進む。   In step S715, it is determined whether the mode setting is the learning mode. If the mode setting is the learning mode, the process proceeds to step S716, and learning mode processing is performed. When the process ends, the process returns to step S702 to repeat the process. If it is determined in step S715 that the learning mode is not set, the process proceeds to step S717.

ステップS717では、モード設定がファイル自動削除モードであるか否かを判定し、ファイル自動削除モードであればステップS718に進み、ファイル自動削除モード処理が行われる。処理が終了すると、ステップS702に戻り、処理を繰り返す。ステップS717で、ファイル自動削除モードでないと判定されると、ステップS702に戻り、処理を繰り返す。なお、ファイル自動削除モードは、本発明の主旨に直接関係しないため、詳細な説明は省略する。   In step S717, it is determined whether the mode setting is the automatic file deletion mode. If the automatic file deletion mode is selected, the process proceeds to step S718, and the automatic file deletion mode processing is performed. When the process ends, the process returns to step S702 to repeat the process. If it is determined in step S717 that the mode is not the file automatic deletion mode, the process returns to step S702 to repeat the processing. The automatic file deletion mode is not directly related to the subject matter of the present invention, and thus the detailed description is omitted.

図8は、本実施形態におけるカメラ101の第2制御部211が受け持つ動作の例を説明するフローチャートである。   FIG. 8 is a flow chart for explaining an example of the operation of the second control unit 211 of the camera 101 in the present embodiment.

ユーザがカメラ101に設けられた電源ボタンを操作すると、第1電源部210から第1制御部223及びカメラ101の各ブロックに電力が供給される。また、同様に、第2電源部212から第2制御部211に電力が供給される。   When the user operates a power button provided on the camera 101, power is supplied from the first power supply unit 210 to each block of the first control unit 223 and the camera 101. Similarly, power is supplied from the second power supply unit 212 to the second control unit 211.

電力が供給されると、第2制御部(SubCPU)211が起動され、図8の処理がスタートする。ステップS801では、所定サンプリング周期が経過したか否かを判定する。所定サンプリング周期は、例えば10msecに設定され、10msec周期で、ステップS802に進む。所定サンプリング周期が経過していないと判定されると、第2制御部211はそのまま待機する。   When power is supplied, the second control unit (SubCPU) 211 is activated, and the process of FIG. 8 starts. In step S801, it is determined whether a predetermined sampling period has elapsed. The predetermined sampling cycle is set to, for example, 10 msec, and the process proceeds to step S802 in a cycle of 10 msec. If it is determined that the predetermined sampling cycle has not elapsed, the second control unit 211 waits as it is.

ステップS802では、学習情報の読み込みが行われる。学習情報は、図7のステップS706での第2制御部211へ情報を通信する際に転送された情報であり、例えば以下の情報が含まれる。
(1)特定揺れ検出の判定(後述するステップS804で用いる)
(2)特定音検出の判定(後述するステップS805で用いる)
(3)時間経過の判定(後述するステップS807で用いる)
ステップS802で学習情報が読み込まれると、ステップS803に進み、揺れ検出値が取得される。揺れ検出値は、装置揺れ検出部209におけるジャイロセンサや加速度センサなどの出力値である。
In step S802, reading of learning information is performed. The learning information is information transferred when communicating information to the second control unit 211 in step S706 of FIG. 7, and includes, for example, the following information.
(1) Determination of specific swing detection (used in step S804 described later)
(2) Determination of specific sound detection (used in step S805 described later)
(3) Determination of passage of time (used in step S 807 described later)
When the learning information is read in step S802, the process proceeds to step S803, and a shake detection value is acquired. The shake detection value is an output value of a gyro sensor, an acceleration sensor, or the like in the device shake detection unit 209.

ステップS803で揺れ検出値が取得されると、ステップS804に進み、予め設定された特定の揺れ状態の検出処理を行う。ここでは、ステップS802で読み込まれた学習情報によって、判定処理を変更する。いくつかの例について説明する。   When the shake detection value is acquired in step S803, the process proceeds to step S804, and detection processing of a specific shake state set in advance is performed. Here, the determination process is changed according to the learning information read in step S802. Some examples are described.

<タップ検出>
ユーザがカメラ101を例えば指先などで叩いた状態(タップ状態)を、カメラ101に取り付けられた加速度センサ107の出力値から検出することが可能である。3軸の加速度センサ107の出力を、所定サンプリング周期で、特定の周波数領域に設定したバンドパスフィルタ(BPF)に通すことで、タップによる加速度変化の信号領域を抽出することができる。BPFに通した後の加速度信号が、所定時間TimeAの間に、所定閾値ThreshAを超えた回数が、所定回数CountAであるか否かにより、タップ検出を行う。ダブルタップの場合は、CountAは2に設定され、トリプルタップの場合は、CountAは3に設定される。また、TimeAやThreshAについても、学習情報によって変化させることができる。
<Tap detection>
It is possible to detect a state (tap state) in which the user taps the camera 101 with, for example, a fingertip from the output value of the acceleration sensor 107 attached to the camera 101. By passing the output of the three-axis acceleration sensor 107 through a band pass filter (BPF) set in a specific frequency region at a predetermined sampling cycle, it is possible to extract a signal region of acceleration change due to a tap. Tap detection is performed depending on whether the number of times the acceleration signal after passing through the BPF exceeds the predetermined threshold ThreshA is the predetermined number CountA during the predetermined time TimeA. For double taps, CountA is set to 2, and for triple taps, CountA is set to 3. Further, Time A and Thresh A can also be changed by learning information.

<揺れ状態の検出>
カメラ101の揺れ状態を、カメラ101に取り付けられたジャイロセンサ106や加速度センサ107の出力値から検出することが可能である。ジャイロセンサ106や加速度センサ107の出力の高周波成分をハイパスフィルタ(HPF)でカットし、低周波成分をローパスフィルタ(LPF)でカットした後、絶対値変換を行う。算出した絶対値が、所定時間TimeBの間に、所定閾値ThreshBを超えた回数が、所定回数CountB以上であるか否かにより、振動検出を行う。これにより、例えばカメラ101を机などに置いたような揺れが小さい状態か、カメラ101をウエアラブルカメラとして体に装着して歩いているような揺れが大きい状態かを判定することが可能である。また、判定閾値や判定のカウント数の条件を複数設けることにより、揺れレベルに応じた細かい揺れ状態を検出することも可能である。TimeBやThreshBやCountBについても、学習情報によって変化させることができる。
<Detection of shaking condition>
The shaking state of the camera 101 can be detected from the output values of the gyro sensor 106 and the acceleration sensor 107 attached to the camera 101. High frequency components of the outputs of the gyro sensor 106 and the acceleration sensor 107 are cut by a high pass filter (HPF), low frequency components are cut by a low pass filter (LPF), and absolute value conversion is performed. The vibration detection is performed based on whether or not the number of times the calculated absolute value exceeds the predetermined threshold value ThreshB is equal to or more than the predetermined number of times CountB during the predetermined time TimeB. Thus, it is possible to determine, for example, whether the shaking is small when the camera 101 is placed on a desk or the like, or whether the shaking is large when walking while wearing the camera 101 as a wearable camera. Further, by providing a plurality of conditions for the determination threshold value and the determination count number, it is possible to detect a fine swing state according to the swing level. Time B, Thresh B, and Count B can also be changed by learning information.

上記では、揺れ検出センサの検出値を判定することにより、特定の揺れ状態を検出する方法について説明した。しかし、所定時間内でサンプリングされた揺れ検出センサのデータから、ニューラルネットワークを用いた揺れ状態判定器に入力することで、学習させたニューラルネットワークにより、事前に登録しておいた特定の揺れ状態を検出することも可能である。その場合、ステップS802での学習情報読み込みはニューラルネットワークの重みパラメータとなる。   In the above, the method of detecting a specific shaking condition by determining the detection value of the shaking detection sensor has been described. However, from the data of the shake detection sensor sampled within a predetermined time, a specific shake state registered in advance by the learned neural network can be input by inputting it to the shake state determiner using a neural network. It is also possible to detect. In that case, the learning information reading in step S802 is a weight parameter of the neural network.

ステップS804で特定の揺れ状態の検出処理が行われると、ステップS805に進み、予め設定された特定の音の検出処理を行う。ここでは、ステップS802で読み込まれた学習情報によって、検出判定処理を変更する。いくつかの例について説明する。   When the detection process of the specific swing state is performed in step S804, the process proceeds to step S805, and the detection process of the specific sound set in advance is performed. Here, the detection determination process is changed according to the learning information read in step S802. Some examples are described.

<特定音声コマンド検出>
特定の音声コマンドを検出する。音声コマンドは事前に登録されたいくつかのコマンドの他、ユーザが特定音声をカメラに登録できる。
<Specific voice command detection>
Detect specific voice commands. In addition to several pre-registered voice commands, the user can register a specific voice to the camera.

<特定音シーン認識>
予め大量の音声データに基づいて、機械学習により学習させたネットワークにより音シーンの判定を行う。例えば、「歓声が上がっている」、「拍手している」、「声を発している」などの特定シーンを検出する。検出するシーンは学習によって変化する。
<Specific sound scene recognition>
Based on a large amount of voice data, a sound scene is determined by a network learned by machine learning. For example, it detects a specific scene such as "Cheers up", "Applause", "Speaking" or the like. The scene to detect changes with learning.

<音レベル判定>
音声レベルの大きさが所定時間の間、所定の大きさを超えているかを判定することよって、音レベルの検出を行う。所定時間や所定の大きさなどが学習によって変化する。
<Sound level judgment>
Sound level detection is performed by determining whether the magnitude of the sound level exceeds a predetermined magnitude for a predetermined time. The predetermined time, the predetermined size, and the like change by learning.

<音方向判定>
平面上に配置された複数のマイクにより、所定の大きさの音について、音の方向を検出する。
<Sound direction judgment>
With a plurality of microphones arranged on a plane, the direction of sound is detected for sound of a predetermined size.

音声処理部214内で上記の判定処理が行われ、事前に学習された各設定により、特定の音の検出がされたかをステップS805で判定する。   The above determination process is performed in the voice processing unit 214, and it is determined in step S805 whether or not a specific sound has been detected by each setting learned in advance.

ステップS805で特定の音の検出処理が行われると、ステップS806に進み、第1制御部223の電源がOFF状態であるか否かを判定する。第1制御部223(MainCPU)がOFF状態であれば、ステップS807に進み、予め設定された時間の経過検出処理を行う。ここでは、ステップS802で読み込まれた学習情報によって、検出判定処理を変更する。学習情報は、図7で説明したステップS706での第2制御部211へ情報を通信する際に転送された情報である。第1制御部223がONからOFFへ遷移したときからの経過時間が計測され、経過時間が所定の時間TimeC以上であれば、時間が経過したと判定し、TimeCより短かければ、時間が経過していないと判定される。TimeCは、学習情報によって変化するパラメータである。   After the specific sound detection process is performed in step S805, the process proceeds to step S806, in which it is determined whether the power of the first control unit 223 is in the OFF state. If the first control unit 223 (Main CPU) is in the OFF state, the process proceeds to step S 807, and the process of detecting the passage of time set in advance is performed. Here, the detection determination process is changed according to the learning information read in step S802. The learning information is information transferred when communicating information to the second control unit 211 in step S706 described with reference to FIG. The elapsed time from when the first control unit 223 transitions from ON to OFF is measured, and if the elapsed time is equal to or longer than a predetermined time TimeC, it is determined that the time has elapsed, and if shorter than TimeC, the time has elapsed It is judged that it has not done. TimeC is a parameter that changes according to learning information.

ステップS807で時間経過検出処理が行われると、ステップS808に進み、低消費電力モードを解除する条件が成立したか否かを判定する。低消費電力モード解除は以下の条件によって判定される。
(1)特定の揺れが検出されたこと
(2)特定の音が検出されたこと
(3)所定の時間が経過したこと
(1)については、ステップS804での特定揺れ状態検出処理により、特定の揺れが検出されたか否かが判定されている。(2)については、ステップS805での特定音検出処理により、特定の音が検出されたか否かが判定されている。(3)については、ステップS807での時間経過検出処理により、所定の時間が経過したか否かが判定されている。(1)〜(3)の少なくとも1つが成立すれば、低消費電力モード解除を行うように判定される。
When the time lapse detection process is performed in step S807, the process proceeds to step S808, and it is determined whether a condition for canceling the low power consumption mode is satisfied. The low power consumption mode cancellation is determined by the following conditions.
(1) that a specific vibration has been detected (2) that a specific sound has been detected (3) that a predetermined time has elapsed (1) For the specific vibration state detection processing in step S804, It is determined whether or not the movement of the vehicle has been detected. As for (2), it is determined by the specific sound detection process in step S805 whether or not a specific sound is detected. For (3), it is determined by the time lapse detection process in step S 807 whether a predetermined time has elapsed. If at least one of (1) to (3) is established, it is determined that low power consumption mode cancellation is performed.

ステップS808で低消費電力モードの解除が判定されると、ステップS809に進み第1制御部223の電源をONし、ステップS810で、低消費電力モードの解除が判定された条件(揺れ、音、時間のいずれか)を第1制御部223に通知する。そして、ステップS801に戻り処理をループする。ステップS808で何れの解除条件にも当てはまらず、低消費電力モード解除の条件ではないと判定されると、ステップS801に戻り処理をループする。   If it is determined in step S808 that the release of the low power consumption mode is determined, the process proceeds to step S809, the power of the first control unit 223 is turned on, and the conditions under which the release of the low power consumption mode is determined in step S810 The first control unit 223 is notified of any of the time). Then, the process returns to step S801 to loop the process. If it is determined in step S808 that any of the release conditions is not satisfied and it is determined that the low power consumption mode release condition is not satisfied, the process returns to step S801 to loop the process.

一方、ステップS806で、第1制御部223がON状態であると判定された場合、ステップS811に進み、ステップS803〜S805までで取得した情報を第1制御部223に通知し、ステップS801に戻り処理をループする。   On the other hand, if it is determined in step S806 that the first control unit 223 is in the ON state, the process advances to step S811 to notify the first control unit 223 of the information acquired in steps S803 to S805, and returns to step S801. Loop the process.

本実施形態においては、第1制御部223がON状態である場合でも、揺れ検出や特定音の検出を第2制御部211で行い、検出結果を第1制御部223に通知する構成にしている。しかし、第1制御部223がONの場合は、ステップS803〜S805の処理を行わず、第1制御部223内の処理(図7のステップS702)で揺れ検出や特定音の検出を行う構成にしてもよい。   In the present embodiment, even when the first control unit 223 is in the ON state, the second control unit 211 performs the shake detection and the detection of the specific sound and notifies the first control unit 223 of the detection result. . However, when the first control unit 223 is ON, the processing in steps S 803 to S 805 is not performed, and the configuration in the first control unit 223 (in step S 702 in FIG. 7) performs vibration detection and specific sound detection. May be

上述したように、図7のステップS704〜S707や、図8の処理を行うことにより、低消費電力モードに移行する条件や低消費電力モードを解除する条件が、ユーザの操作に基づいて学習される。そして、カメラ101を所有するユーザの使い勝手に合わせたカメラ動作を行うことが可能となる。学習の方法については後述する。   As described above, the conditions for transitioning to the low power consumption mode and the conditions for canceling the low power consumption mode are learned based on the user's operation by performing steps S704 to S707 in FIG. 7 and the processing in FIG. Ru. Then, the camera operation can be performed in accordance with the convenience of the user who owns the camera 101. The method of learning will be described later.

なお、上記において、揺れ検出や音検出や時間経過により低消費電力モードを解除する方法について詳しく説明したが、環境情報により低消費電力モードの解除を行ってもよい。環境情報は、温度、気圧、明るさ、湿度、紫外線量の絶対量や変化量が所定閾値を超えたか否かにより判定することができ、後述する学習により閾値を変化させることもできる。   In the above, although the method of canceling the low power consumption mode by vibration detection, sound detection, or time lapse has been described in detail, the low power consumption mode may be canceled by environmental information. Environmental information can be determined based on whether the absolute amount or change amount of temperature, barometric pressure, brightness, humidity, or ultraviolet light amount exceeds a predetermined threshold, and the threshold can be changed by learning described later.

また、揺れ検出や音検出や時間経過の検出情報や、各環境情報の絶対値や変化量をニューラルネットワークに基づいて判断し、低消費電力モードを解除する判定をしてもよい。この判定処理は、後述する学習によって、判定条件を変更することができる。   Further, it is also possible to judge the cancellation of the low power consumption mode by judging the vibration detection, the sound detection, the detection information of time lapse, the absolute value or the change amount of each environment information based on the neural network. In this determination process, the determination conditions can be changed by learning described later.

<自動撮影モード処理>
図9を用いて、自動撮影モード処理について説明する。まず、ステップS901において、撮像部206により取り込まれた信号に対して、画像処理部207で画像処理を行い、被写体検出用の画像を生成する。生成された画像に対して、人物や物体などを検出する被写体検出処理が行われる。
<Automatic shooting mode processing>
The automatic photographing mode process will be described with reference to FIG. First, in step S901, the image processing unit 207 performs image processing on a signal acquired by the imaging unit 206 to generate an image for object detection. An object detection process for detecting a person or an object is performed on the generated image.

人物を検出する場合、被写体の顔や人体を検出する。顔検出処理では、人物の顔を判断するためのパターンが予め定められており、撮像された画像内においてそのパターンに一致する箇所を、人物の顔領域として検出することができる。また、被写体の顔としての確からしさを示す信頼度も同時に算出する。信頼度は、例えば画像内における顔領域の大きさや、顔パターンとの一致程度等から算出される。物体認識についても同様に、予め登録されたパターンに一致する物体を認識することができる。   When detecting a person, the face or the human body of the subject is detected. In the face detection process, a pattern for determining the face of a person is determined in advance, and a portion matching the pattern in the captured image can be detected as a face region of the person. In addition, the degree of reliability indicating the likelihood of the subject's face is also calculated at the same time. The reliability is calculated from, for example, the size of the face area in the image, the degree of matching with the face pattern, and the like. Similarly for object recognition, it is possible to recognize an object that matches the pattern registered in advance.

また、撮像された画像内の色相や彩度等のヒストグラムを用いて特徴被写体を抽出する方法などもある。撮影画角内に捉えられている被写体の画像に関し、その色相や彩度等のヒストグラムから導出される分布を複数の区間に分け、区間ごとに撮像された画像を分類する処理が実行される。例えば、撮像された画像について複数の色成分のヒストグラムが作成され、その山型の分布範囲で区分けされ、同一の区間の組み合わせに属する領域において撮像された画像が分類され、被写体の画像領域が認識される。認識された被写体の画像領域ごとに評価値を算出することで、その評価値が最も高い被写体の画像領域を主被写体領域として判定することができる。以上の方法で、撮像情報から各被写体情報を得ることができる。   In addition, there is also a method of extracting a characteristic subject using a histogram such as hue or saturation in a captured image. With regard to the image of the subject captured within the shooting angle of view, processing of dividing the distribution derived from the histogram of the hue, saturation, etc. into a plurality of sections and classifying the images captured for each section is executed. For example, a histogram of a plurality of color components is created for the captured image, divided by the mountain-shaped distribution range, the captured image is classified in the region belonging to the combination of the same sections, and the image region of the subject is recognized Be done. By calculating the evaluation value for each image area of the recognized subject, the image area of the subject having the highest evaluation value can be determined as the main subject area. Each subject information can be obtained from the imaging information by the above method.

ステップS902では、像ブレ補正量の算出を行う。具体的には、まず、装置揺れ検出部209において取得した角速度および加速度情報に基づいてカメラの揺れの絶対角度を算出する。そして、その絶対角度を打ち消す角度方向にチルト回転ユニット104およびパン回転ユニット105を動かして像ブレを補正する角度を求め、像ブレ補正量とする。なお、ここでの像ブレ補正量算出処理は、後述する学習処理によって、算出方法を変更することが出来る。   In step S902, the image blur correction amount is calculated. Specifically, first, the absolute angle of camera shake is calculated based on the angular velocity and acceleration information acquired by the device shake detection unit 209. Then, the tilt rotation unit 104 and the pan rotation unit 105 are moved in the angular direction that cancels the absolute angle to obtain an angle for correcting the image blur, and this is used as the image blur correction amount. In the image blur correction amount calculation process here, the calculation method can be changed by a learning process described later.

ステップS903では、カメラの状態判定を行う。角速度情報や加速度情報やGPS位置情報などで検出したカメラ角度やカメラ移動量などにより、現在カメラがどのような振動/動き状態なのかを判定する。例えば、車にカメラ101を装着して撮影する場合、移動された距離によって大きく周りの風景などの被写体情報が変化する。そのため、車などに装着して速い速度で移動している「乗り物移動状態」か否かを判定し、後に説明する自動被写体探索に使用する。また、カメラの角度の変化が大きいか否かを判定し、カメラ101の揺れがほとんどない「置き撮り状態」であるのかを判定する。「置き撮り状態」である場合は、カメラ101自体の位置変化はないと考えてよいので、置き撮り用の被写体探索を行うことができる。また、比較的カメラの角度変化が大きい場合は、「手持ち状態」と判定され、手持ち用の被写体探索を行うことができる。   In step S903, the state of the camera is determined. It is determined what kind of vibration / motion state of the camera is at present based on the camera angle detected by angular velocity information, acceleration information, GPS position information, and the like. For example, when the camera 101 is attached to a car and shooting is performed, subject information such as a surrounding landscape changes largely depending on the distance moved. Therefore, it is determined whether or not it is a "vehicle moving state" which is attached to a car or the like and is moving at a high speed, and is used for automatic subject search described later. In addition, it is determined whether or not the change in the angle of the camera is large, and it is determined whether or not the camera 101 is in the "posting state" with almost no shaking. In the case of the “post-taking state”, it may be considered that there is no change in the position of the camera 101 itself, so that it is possible to perform a subject search for the post-taking. In addition, when the angle change of the camera is relatively large, it is determined that the "hand-held state", and it is possible to perform a hand-held subject search.

ステップS904では、被写体探索処理を行う。被写体探索は、以下の処理によって構成される。
(1)エリア分割
(2)エリア毎の重要度レベルの算出
(3)探索対象エリアの決定
以下、各処理について順次説明する。
In step S904, a subject search process is performed. The subject search is configured by the following processing.
(1) Area division (2) Calculation of importance level for each area (3) Determination of search target area Hereinafter, each processing will be sequentially described.

(1)エリア分割
図10Aを用いて、エリア分割について説明する。図10A(a)のようにカメラ(原点Oがカメラ位置とする)位置を中心として、全周囲でエリア分割を行う。図10A(a)の例においては、チルト方向、パン方向をそれぞれ22.5度ごとに分割している。図10A(a)のように分割すると、チルト方向の角度が0度から離れるにつれて、水平方向の円周が小さくなり、エリア領域が小さくなる。よって、図10A(b)のように、チルト角度が45度以上の場合、水平方向のエリア範囲を22.5度よりも大きく設定している。
(1) Area Division Area division will be described using FIG. 10A. As shown in FIG. 10A (a), area division is performed all around the position of the camera (the origin O is the camera position). In the example of FIG. 10A (a), the tilt direction and the pan direction are divided at 22.5 degrees each. When division is performed as shown in FIG. 10A (a), the horizontal circumference decreases and the area area decreases as the angle in the tilt direction deviates from 0 degrees. Therefore, as shown in FIG. 10A (b), when the tilt angle is 45 degrees or more, the area range in the horizontal direction is set larger than 22.5 degrees.

図10A(c)、10A(d)に撮影画角内でのエリア分割された領域の例を示す。軸1301は初期化時のカメラ101の向きであり、この方向を基準位置としてエリア分割が行われる。1302は、撮像されている画像の画角エリアを示しており、そのときの画像例を図10A(d)に示す。撮像されている画角の画像内では、エリア分割に基づいて、図10A(d)で符号1303〜1318で示されるように画像が分割される。   FIGS. 10A (c) and 10A (d) show examples of the area divided region within the shooting angle of view. An axis 1301 is the direction of the camera 101 at the time of initialization, and area division is performed with this direction as a reference position. Reference numeral 1302 denotes the angle of view area of the image being captured, and an example of the image at that time is shown in FIG. 10A (d). In the image of the angle of view being imaged, the image is divided as shown by reference numerals 1303 to 1318 in FIG. 10A (d) based on the area division.

(2)エリア毎の重要度レベルの算出
上記のように分割した各エリアについて、エリア内に存在する被写体の状況やシーンの状況に応じて、探索を行う優先順位を示す重要度レベルを算出する。被写体の状況に基づいた重要度レベルは、例えば、エリア内に存在する人物の数、人物の顔の大きさ、顔の向き、顔検出の確からしさ、人物の表情、人物の個人認証結果等に基づいて算出される。また、シーンの状況に応じた重要度レベルは、例えば、一般物体認識結果、シーン判別結果(青空、逆光、夕景など)、エリアの方向からする音のレベルや音声認識結果、エリア内の動き検知情報等に基づいて算出される。
(2) Calculation of Importance Level for Each Area For each area divided as described above, the importance level indicating the priority to be searched is calculated according to the situation of the subject present in the area and the situation of the scene. . The importance level based on the condition of the subject is, for example, the number of persons present in the area, the size of the face of the person, the direction of the face, the certainty of face detection, the facial expression of the person, the personal authentication result of the person, etc. Calculated based on In addition, the importance level according to the situation of the scene is, for example, general object recognition result, scene discrimination result (blue sky, back light, sunset scene etc.), sound level from the direction of area and voice recognition result, motion detection in area Calculated based on the information etc.

また、図9のカメラ状態判定(ステップS903)で、カメラの振動が検出されている場合、振動状態に応じても重要度レベルが変化するようにすることもできる。例えば、「置き撮り状態」と判定された場合、顔認証で登録されている中で優先度の高い被写体(例えばカメラの所有者)を中心に被写体探索が行われるように判定される。また、後述する自動撮影も例えばカメラの所有者の顔を優先して行われる。これにより、カメラの所有者がカメラを身に着けて持ち歩き撮影を行っている時間が多くても、カメラを取り外して机の上などに置くことで、所有者が写った画像も多く残すことができる。このときパン・チルトにより顔の探索が可能であることから、カメラの置き角度などを考えなくても、適当に設置するだけで所有者が写った画像やたくさんの顔が写った集合写真などを残すことができる。   In addition, when camera vibration is detected in the camera state determination (step S 903) in FIG. 9, the importance level can also be changed according to the vibration state. For example, when it is determined that the “lay-in state” is set, it is determined that a subject search is performed centering on a high priority subject (for example, the owner of the camera) registered in the face authentication. In addition, automatic photographing described later is also performed with priority given to the face of the owner of the camera, for example. As a result, even if the camera owner wears the camera and takes a long time to take a picture, removing the camera and placing it on a desk can leave many images captured by the owner. it can. At this time, it is possible to search for a face by pan / tilt, so even if you don't think about the camera's placement angle, etc., you just need to install it properly and you will see an image of the owner and a group photo with many faces. You can leave it.

なお、上記の条件だけでは、各エリアに変化がない限りは、最も重要度レベルが高いエリアが同じとなり、その結果探索されるエリアがずっと変わらないことになってしまう。そこで、過去の撮影情報に応じて重要度レベルを変化させる。具体的には、所定時間継続して探索エリアに指定され続けたエリアは重要度レベルを下げたり、後述するステップS910において撮影を行ったエリアでは、所定時間の間重要度レベルを下げてもよい。   It should be noted that under the above conditions alone, as long as there is no change in each area, the area with the highest importance level will be the same, and as a result, the area to be searched will remain unchanged. Therefore, the importance level is changed according to the past shooting information. Specifically, the area continuously designated as the search area for a predetermined time may be lowered in importance level, or may be lowered for a predetermined time in an area photographed in step S 910 described later. .

(3)探索対象エリアの決定
上記のように各エリアの重要度レベルが算出されたら、重要度レベルが高いエリアを探索対象エリアとして決定する。そして、探索対象エリアを画角に捉えるために必要なパン・チルト探索目標角度を算出する。
(3) Determination of Search Target Area When the importance level of each area is calculated as described above, an area having a high importance level is determined as a search target area. Then, the pan / tilt search target angle required to capture the search target area at the angle of view is calculated.

図9の説明に戻って、ステップS905では、パン・チルト駆動を行う。具体的には、制御サンプリング周波数での、像ブレ補正量と、パン・チルト探索目標角度に基づいた駆動角度とを加算することにより、パン・チルト駆動量を算出する。そして、鏡筒回転駆動部205によって、チルト回転ユニット104、パン回転ユニット105をそれぞれ駆動制御する。   Returning to the explanation of FIG. 9, in step S905, pan / tilt driving is performed. Specifically, the pan / tilt driving amount is calculated by adding the image blur correction amount at the control sampling frequency and the driving angle based on the pan / tilt search target angle. Then, the lens barrel rotation drive unit 205 controls driving of the tilt rotation unit 104 and the pan rotation unit 105 respectively.

ステップS906ではズームユニット201を制御し、ズーム駆動を行う。具体的には、ステップS904で決定した探索対象被写体の状態に応じてズームを駆動させる。例えば、探索対象被写体が人物の顔である場合、画像上の顔が小さすぎると検出可能な最小サイズを下回ることで検出が出来ず、見失ってしまう恐れがある。そのような場合は、望遠側にズームすることで画像上の顔のサイズが大きくなるように制御する。一方で、画像上の顔が大きすぎる場合、被写体やカメラ自体の動きによって被写体が画角から外れやすくなってしまう。そのような場合は、広角側にズームすることで、画面上の顔のサイズが小さくなるように制御する。このようにズーム制御を行うことで、被写体を追跡するのに適した状態を保つことが出来る。   In step S906, the zoom unit 201 is controlled to perform zoom driving. Specifically, the zoom is driven according to the state of the search target subject determined in step S904. For example, in the case where the search target subject is the face of a person, if the face on the image is too small, detection is not possible because the size is smaller than the minimum detectable size, and there is a risk of losing sight. In such a case, control is performed to increase the size of the face on the image by zooming to the telephoto side. On the other hand, when the face on the image is too large, the subject or the camera itself easily moves the subject out of the angle of view. In such a case, control is performed to reduce the size of the face on the screen by zooming to the wide angle side. By performing zoom control as described above, it is possible to maintain a state suitable for tracking an object.

ステップS907では、手動による撮影指示があったか否かを判定し、手動撮影指示があった場合、ステップS910に進む。この時、手動による撮影指示は、シャッターボタン押下によるもの、カメラ筺体を指等で軽く叩くこと(タップ)によるもの、音声コマンド入力によるもの、外部装置からの指示によるものなどのいずれでもよい。タップ操作をトリガーとする撮影指示は、ユーザがカメラ筺体をタップした際、装置揺れ検出部209によって短期間に連続した高周波の加速度を検知することにより判定される。音声コマンド入力は、ユーザが所定の撮影を指示する合言葉(例えば「写真とって」等)を発声した場合、音声処理部214で音声を認識し、撮影のトリガーとする撮影指示方法である。外部装置からの指示は、例えばカメラとBlueTooth接続したスマートフォン等から、専用のアプリケーションを用いて送信されたシャッター指示信号をトリガーとする撮影指示方法である。   In step S 907, it is determined whether there is a manual imaging instruction. If there is a manual imaging instruction, the process proceeds to step S 910. At this time, the manual photographing instruction may be either by pressing the shutter button, by tapping the camera housing with a finger or the like (tap), by an audio command input, or by an instruction from an external device. A shooting instruction triggered by a tap operation is determined by the device shake detection unit 209 detecting, in a short period, continuous high-frequency acceleration when the user taps the camera housing. The voice command input is a shooting instruction method of recognizing a voice by the voice processing unit 214 and using it as a trigger for shooting when the user utters a combination (for example, "take a photo" or the like) instructing a predetermined shooting. The instruction from the external device is, for example, a photographing instruction method using as a trigger a shutter instruction signal transmitted using a dedicated application from a smartphone or the like connected to the camera and BlueTooth.

ステップS907で手動による撮影指示がなかった場合には、ステップS908に進み、自動撮影判定を行う。自動撮影判定では、自動撮影を行うか否かの判定と、撮影方法の判定(静止画撮影、動画撮影、連写、パノラマ撮影などの内どれを実行するかの判定)を行う。   If it is determined in step S 907 that a manual imaging instruction has not been issued, the process advances to step S 908 to perform automatic imaging determination. In the automatic shooting determination, it is determined whether or not automatic shooting is to be performed, and determination of a shooting method (whether still image shooting, moving image shooting, continuous shooting, panoramic shooting, or the like is to be performed).

<自動撮影を行うか否かの判定>
自動撮影(撮像部によって出力された画像データを記録する撮影動作)を行うか否かの判定は以下のように行われる。具体的には、以下の2つの場合に、自動撮影を実行すると判定する。1つは、ステップS904において得られたエリア別の重要度レベルに基づき、重要度レベルが所定値を超えている場合、自動撮影を実施すると判定する。2つめは、ニューラルネットワークに基づく判定であるが、これについては後述する。なお、ここでいう記録は、メモリ215への画像データの記録でもよいし、不揮発性メモリ216への画像データの記録でもよい。また、外部装置301に画像を自動で転送し、外部装置301側に画像データを記録するものも含む。
<Determining Whether to Perform Automatic Shooting>
The determination as to whether or not to perform automatic shooting (shooting operation for recording image data output by the imaging unit) is performed as follows. Specifically, it is determined to execute automatic shooting in the following two cases. First, based on the importance level of each area obtained in step S904, when the importance level exceeds a predetermined value, it is determined that automatic shooting is to be performed. The second is determination based on a neural network, which will be described later. Note that the recording here may be recording of image data in the memory 215 or recording of image data in the non-volatile memory 216. Also, it includes one that automatically transfers an image to the external device 301 and records image data on the external device 301 side.

本実施形態では、上記のように、重要度レベルのような自動撮影判定パラメータにより撮影を自動的に行うように制御する。所定条件を満たした場合に自動撮影を行う撮像装置では、以下の問題が発生する。   In the present embodiment, as described above, control is performed such that shooting is automatically performed by an automatic shooting determination parameter such as the importance level. The following problems occur in an imaging apparatus that performs automatic shooting when a predetermined condition is satisfied.

1つは、自動撮影の頻度が高い場合である。決められた時間内でまんべんなく撮影したい場合でも、所定条件を満たせば撮影が行われてしまうため、前半の時間帯に撮影頻度が非常に高くなってしまって、 後半の時間帯には、バッテリー残量/カード残量が不足して、撮影できなくなってしまうことが起こり得る。   One is when the frequency of automatic shooting is high. Even if you want to shoot evenly within the determined time, shooting will be performed if the predetermined conditions are met, so the shooting frequency will be very high in the first half, and the battery will remain in the second half. It may happen that the quantity / card remaining amount is insufficient and shooting becomes impossible.

また、もう1つは、自動撮影の頻度が低い場合である。業者などが、予め決まった枚数を撮影したい場合でも、自動撮影の所定条件がなかなか満たされず、撮影枚数が不足してしまうことが起こり得る。   The other is the case where the frequency of automatic shooting is low. Even when a vendor or the like wants to shoot a predetermined number of photos, the predetermined conditions for automatic shooting may not be satisfied easily, and the number of captured photos may run short.

そこで、撮影頻度をコントロールするために、その場の状況やカメラの状況によっては、自動撮影の判定パラメータを変更したほうがよい場合がある。   Therefore, in order to control the shooting frequency, it may be preferable to change the determination parameter of the automatic shooting depending on the situation of the spot or the situation of the camera.

例えば時間が限られた結婚式等のイベントでは、以下のような自動撮影制御が好まれる傾向にある。
(1)人やモノも含めて多めの枚数の画像を撮影したい
(2)短時間の撮影なのでバッテリーの残量、記録メディアの残量を気にせず撮影を行いたい
(3)パン、チルトを積極的に行い、被写体を探索したい
一方、このような限られた時間の撮影に対して、一日中の出来事を記録したい場合は、以下のような自動撮影制御が好まれる傾向にある。
(1)長時間の撮影なのである程度被写体は選別したい
(2)バッテリーの残量、記録メディアの残量を考慮し、省エネで撮影を行いたい
(3)パン、チルト制御は通常制御よりバッテリーを消費してしまうので制限したい
上述の制御例として図10B(a)を用いて説明する。まず、ユーザの指示(例えば外部装置301や音声入力)により撮影時間T(総撮影時間)などの撮影条件(例えば結婚式:2時間)の入力を行う。この入力情報とバッテリー(第1電源部210など)の残量、記録メディア(記録媒体221など)の残量に基づいて目標撮影枚数Sを決定する。
For example, in events such as weddings where time is limited, the following automatic photographing control tends to be preferred.
(1) I want to shoot a large number of images including people and things (2) I want to shoot without worrying about the remaining amount of battery and recording media because it is short time shooting (3) Pan, tilt On the other hand, when it is desired to record an event during the entire day for shooting in such a limited time, it is likely that automatic shooting control as described below is preferred.
(1) I want to sort the subject to some extent because it is shooting for a long time (2) I want to shoot with energy saving considering the remaining amount of battery and recording media (3) Pan, tilt control consumes the battery than normal control As the above control example is described with reference to FIG. 10B (a). First, imaging conditions (for example, wedding: 2 hours) such as imaging time T (total imaging time) are input according to a user's instruction (for example, the external device 301 or voice input). Based on the input information, the remaining amount of the battery (such as the first power supply unit 210), and the remaining amount of the recording medium (such as the recording medium 221), the target number of captured images S is determined.

一定の時間間隔で監視を行い、監視結果に基づいて自動撮影の判定閾値、カメラ制御パラメータを随時更新していく。なお、自動撮影の判定閾値、カメラ制御パラメータの初期値は、それまでの学習結果あるいはニューラルネットワークを用いた判定により決定される。   The monitoring is performed at a constant time interval, and the determination threshold value for automatic shooting and the camera control parameter are updated as needed based on the monitoring result. Note that the determination threshold value for automatic shooting and the initial value of the camera control parameter are determined by the learning result up to that point or the determination using a neural network.

図10B(a)に示す例では、図中破線で示す領域R内に撮影枚数が入るようにパラメータを更新していく。図10B(a)では、横軸に経過時間、縦軸に累積の撮影枚数を示している。撮影枚数が領域R内に入るように制御するのは、時間の経過とともに累積の撮影枚数が概略リニア(直線的)に増加するように撮影を行えば、撮影時間全体にわたって、ほぼ万遍なく撮影を行うことができると考えられるからである。   In the example shown in FIG. 10B (a), the parameters are updated so that the number of captured images falls within a region R indicated by a broken line in the drawing. In FIG. 10B (a), the horizontal axis indicates the elapsed time, and the vertical axis indicates the cumulative number of captured images. The number of shots is controlled to be within the range R. If shooting is performed so that the cumulative number of shots increases approximately linearly (linearly) with the passage of time, shooting is performed almost uniformly over the entire shooting time. Because it is considered possible to

図10B(a)の例では、監視時刻Aでは撮影枚数が不足していると判断し、自動撮影の判定閾値を下げ、パン、チルト可動範囲を拡げて積極的に主被写体を探索し、自動撮影頻度を上げていく。一方、監視時刻Bでは撮影枚数が多いと判断し、自動撮影の判定閾値を上げ、パン、チルト可動範囲を狭めて撮影頻度を下げていく。監視時刻Cでは適切な撮影枚数が得られていると判断して、自動撮影の判定閾値、パン、チルトの可動範囲の制御パラメータを維持していく。このように一定間隔で、一定期間ごとの撮影枚数の監視を行い、所定期間である撮影時間Tにおける目標枚数Sに向かって撮影頻度を随時制御していく。   In the example of FIG. 10B (a), it is determined that the number of shots is insufficient at monitoring time A, the determination threshold for automatic shooting is lowered, the pan and tilt movable range is expanded, and the main subject is actively searched. Increase the frequency of shooting. On the other hand, at monitoring time B, it is determined that the number of captured images is large, the determination threshold for automatic imaging is increased, the pan and tilt movable range is narrowed, and the imaging frequency is decreased. At the monitoring time C, it is determined that the appropriate number of captured images is obtained, and the control threshold of the automatic imaging determination threshold and the control parameter of the movable range of pan and tilt are maintained. As described above, the number of photographed images is monitored at fixed intervals and the imaging frequency is controlled as needed toward the target number S in the imaging time T which is a predetermined period.

例えば、カメラ101を制御するCPUは、画像情報を基に被写体の顔を検出する検出部や、顔の表情を認識して表情が特定の状態(例えば、喜び、悲しみ、怒り、驚きの状態の特徴値が閾値を超えた場合)になっているかを判定する判定部、更には該判定部の判定結果に応じて被写体記録動作(自動撮影)を行う制御部を有する。この場合において、自動撮影の判定閾値を撮影頻度に応じて調整する。この調整により、判定部により判定された被写体の顔の表情が同じであっても、撮影頻度が第1の頻度だった場合には撮影動作を実施し、撮影頻度が第2の頻度の場合には撮影動作を実施しないように制御することになる。これにより、所望の撮影枚数を得るとともに記録メモリ不足の低減が図れる。   For example, a CPU that controls the camera 101 detects a face of a subject based on image information, recognizes an expression of the face, and detects an expression that is a specific expression (for example, a state of joy, sadness, The apparatus further includes a determination unit that determines whether the feature value exceeds a threshold), and a control unit that performs a subject recording operation (automatic imaging) according to the determination result of the determination unit. In this case, the determination threshold for automatic imaging is adjusted in accordance with the imaging frequency. By this adjustment, even if the facial expression of the subject determined by the determination unit is the same, the imaging operation is performed when the imaging frequency is the first frequency, and the imaging frequency is the second frequency. Is controlled so as not to carry out the photographing operation. As a result, it is possible to obtain a desired number of photographed images and reduce the shortage of the recording memory.

また、例えば、カメラ101を制御するCPUは、画像情報を基に被写体の顔を検出する検出部や、顔の向きを認識して、顔が特定の方向、特に正面を向いた状態になっているかを判定する判定部、更には該判定部の判定結果に応じて自動撮影を行う制御部を有する。この場合において、自動撮影の判定閾値(正面を向いた状態になっているか否かの判定をする閾値)を撮影頻度に応じて調整する。この調整により、判定部により判定された被写体の顔の向きが同じであっても、撮影頻度が第1の頻度だった場合には撮影動作を実施し、撮影頻度が第2の頻度の場合には撮影動作を実施しないように制御することになる。これにより、所望の撮影枚数を得るとともに記録メモリ不足の低減が図れる。   In addition, for example, the CPU that controls the camera 101 recognizes the face of the subject based on the image information and the direction of the face, and the face is directed in a specific direction, particularly, the front. The apparatus further includes a determination unit that determines the presence or absence, and a control unit that performs automatic photographing according to the determination result of the determination unit. In this case, the determination threshold for automatic imaging (the threshold for determining whether or not to face the front) is adjusted according to the imaging frequency. By this adjustment, even if the direction of the face of the subject determined by the determination unit is the same, the imaging operation is performed when the imaging frequency is the first frequency, and the imaging frequency is the second frequency. Is controlled so as not to carry out the photographing operation. As a result, it is possible to obtain a desired number of photographed images and reduce the shortage of the recording memory.

その他にも、被写体の目の状態を認識し、目が所定の状態、特に目をしっかり開けて、カメラに目線が向いている状態になったときに自動撮影を行う場合も同様である。また、被写体の姿勢を認識し、被写体が所定の姿勢になったときに自動撮影を行う場合も同様である。また、被写体の動作を認識し、被写体が所定の動作を行ったときに自動撮影を行う場合も同様である。   In addition, the same applies to the case where the state of the subject's eyes is recognized, and the automatic photographing is performed when the eyes are in a predetermined state, particularly when the eyes are firmly opened and the eyes are facing the camera. The same applies to the case where the posture of the subject is recognized and automatic shooting is performed when the subject is in a predetermined posture. The same applies to the case where the motion of the subject is recognized and the automatic photographing is performed when the subject performs a predetermined motion.

このように、被写体の状態を認識して、被写体の状態が特定の状態になっているかを判定し、判定結果に応じて自動撮影を行う場合に、撮影頻度が第1の頻度だった場合には撮影動作を実施し、撮影頻度が第2の頻度の場合には撮影動作を実施しないように制御する。これにより、撮影時間Tにおいて、所望の撮影枚数を得るとともに、撮影時間の途中での記録メモリ不足の低減が図れる。   As described above, when the condition of the subject is recognized and it is determined whether the condition of the subject is in the specific condition and the automatic photographing is performed according to the determination result, the photographing frequency is the first frequency. The control unit performs control so as not to perform the photographing operation when the photographing frequency is the second frequency. As a result, in the photographing time T, a desired number of photographed images can be obtained, and the shortage of the recording memory in the middle of the photographing time can be reduced.

他の制御例として、図10B(b)に示す例について説明する。図10B(a)の制御例と同様に、まずユーザの指示により撮影時間Tの入力を行い、目標枚数Sが決定される。一定の時間間隔で監視を行いその結果を保持する。ここで保持する内容は監視期間内に自動撮影の判定に用いられた、ユーザにとって撮影する価値がある画像かを示す評価値を保持する。図10B(b)では、閾値Th以上の評価値の画像(1枚のみ)が自動撮影された結果となっている。そのため、時刻T1では撮影枚数が足りないと判断し、評価値の判定閾値を下げる制御を行う。一方、時刻T2では評価値の閾値を下げた結果、5枚の画像が自動撮影されて目標枚数に対して撮影枚数が過多と判断され、評価値の判定閾値を上げて撮影頻度を下げた結果となっている。このように過去の自動撮影の判定で用いた評価値を監視していき、適切な撮影枚数を得られるように随時判定閾値を更新していく。これにより、短時間内の過多な撮影処理が抑制される。また、撮影時間Tにおいて、所望の撮影枚数を得るとともに、撮影時間の途中での記録メモリ不足の低減が図れる。   As another control example, an example shown in FIG. 10B (b) will be described. As in the control example of FIG. 10B (a), first, the user inputs an imaging time T according to an instruction from the user, and the target number S is determined. Monitor at fixed time intervals and hold the result. The content held here holds an evaluation value, which is used for determination of automatic shooting within the monitoring period, indicating whether the image is worth photographing for the user. In FIG. 10B (b), the result is that the image (only one image) of the evaluation value equal to or larger than the threshold Th is automatically photographed. Therefore, it is determined that the number of captured images is insufficient at time T1, and control to lower the evaluation threshold is performed. On the other hand, as a result of lowering the evaluation value threshold at time T2, five images are automatically taken and it is judged that the number of images is excessive with respect to the target number, and the evaluation threshold is raised to lower the imaging frequency. It has become. As described above, the evaluation value used in the determination of the past automatic shooting is monitored, and the determination threshold is updated as needed so as to obtain an appropriate number of shootings. As a result, excessive photographing processing in a short time is suppressed. In addition, while obtaining the desired number of shots in the shooting time T, it is possible to reduce the shortage of the recording memory in the middle of the shooting time.

また、別の制御例として、画像の評価値が閾値を超えた場合だけ撮像した画像データを保存する構成について説明する。自動撮影中、一定間隔(例えば、時刻T1、T2、T3、T4)で撮影枚数の監視を行い、目標枚数に向かって、画像の評価値の閾値を変更する。例えば、時刻T1の時点で、撮影枚数が不足している場合は、画像の評価値の閾値を下げて、保存しやすくする。また、例えば、時刻T2の時点で、撮影枚数が方と判断された場合は、画像の評価値の閾値を上げて、保存されにくくする。これにより、撮影時間Tにおいて、所望の撮影枚数を得るとともに、撮影時間の途中での記録メモリ不足の低減が図れる。   Further, as another control example, a configuration will be described in which captured image data is stored only when the evaluation value of the image exceeds a threshold. During automatic photographing, the number of photographed images is monitored at fixed intervals (for example, time T1, T2, T3, T4), and the threshold of the evaluation value of the image is changed toward the target number. For example, when the number of captured images is insufficient at time T1, the image evaluation value threshold is lowered to facilitate storage. Also, for example, when it is determined that the number of captured images is the one at time T2, the threshold value of the evaluation value of the image is increased to make it difficult to save. As a result, in the photographing time T, a desired number of photographed images can be obtained, and the shortage of the recording memory in the middle of the photographing time can be reduced.

このように撮影状況に応じて撮影頻度をコントロールする(変更する)ことにより、適切な撮影枚数が得られる自動撮影を行うことができる。これにより、自動撮影を行う撮像装置において、ユーザが撮影したい映像の撮り逃しを極力抑制できる。   By controlling (changing) the imaging frequency in accordance with the imaging situation as described above, it is possible to perform automatic imaging in which an appropriate number of imaging images can be obtained. As a result, in the imaging device that performs automatic shooting, it is possible to minimize missed shooting of a video that the user wants to shoot.

なお、上述では、撮影状況に応じて撮影頻度を変更するように制御したが、合わせて、カメラ101と外部装置との間の通信の性能も考慮して、撮影頻度を変更するように制御してもよい。   In the above description, control is performed to change the shooting frequency according to the shooting conditions, but in addition, control is performed to change the shooting frequency taking into consideration the performance of communication between the camera 101 and the external device. May be

次に、2つめの判定である、ニューラルネットワークに基づく判定について説明する。ニューラルネットワークの一例として、多層パーセプトロンによるネットワークの例を図11に示す。ニューラルネットワークは、入力値から出力値を予測することに使用されるものであり、予め入力値と、その入力に対して模範となる出力値とを学習しておくことで、新たな入力値に対して、学習した模範に倣った出力値を推定することができる。なお、学習の方法は後述する。図11の1201およびその縦に並ぶ丸は入力層のニューロンを示し、1203およびその縦に並ぶ丸は中間層のニューロンを示し、1204は出力層のニューロンを示す。1202で示すような矢印は各ニューロンを繋ぐ結合を示している。ニューラルネットワークに基づく判定では、入力層のニューロンに対して、現在の画角中に写る被写体や、シーンやカメラの状態に基づいた特徴量を入力として与え、多層パーセプトロンの順伝播則に基づく演算を経て出力層から出力された値を得る。そして、出力の値が閾値以上であれば、自動撮影を実施する判定を下す。なお、被写体の特徴としては、現在のズーム倍率、現在の画角における一般物体認識結果、顔検出結果、現在画角に写る顔の数、顔の笑顔度、目瞑り度、顔角度、顔認証ID番号、被写体人物の視線角度、シーン判別結果、前回撮影時からの経過時間、現在時刻、GPS位置情報および前回撮影位置からの変化量、現在の音声レベル、声を発している人物、拍手、歓声が上がっているか否か、振動情報(加速度情報、カメラ状態)、環境情報(温度、気圧、照度、湿度、紫外線量)等を使用する。更に、外部装置501からの情報通知がある場合、通知情報(ユーザの運動情報、腕のアクション情報、心拍などの生体情報など)も特徴として使用する。この特徴を所定の範囲の数値に変換し、特徴量として入力層の各ニューロンに与える。そのため、入力層の各ニューロンは上記使用する特徴量の数だけ必要となる。   Next, a second determination, that is, determination based on a neural network will be described. An example of a multi-layer perceptron network is shown in FIG. 11 as an example of a neural network. A neural network is used to predict an output value from an input value, and learns in advance an input value and an output value that is an exemplar for the input to obtain a new input value. On the other hand, it is possible to estimate an output value that follows the learned model. The method of learning will be described later. In FIG. 11, 1201 and its vertical circles indicate neurons in the input layer, 1203 and vertical circles indicate neurons in the middle layer, and 1204 indicate neurons in the output layer. Arrows as shown by 1202 indicate connections connecting each neuron. In the judgment based on the neural network, the input layer neuron is given as input the subject appearing in the current angle of view and the feature value based on the state of the scene or the camera, and the operation based on the forward propagation rule of the multilayer perceptron Get the output value from the output layer. Then, if the value of the output is equal to or greater than the threshold value, it is determined to perform automatic photographing. The characteristics of the subject include the current zoom magnification, the result of general object recognition at the current angle of view, the result of face detection, the number of faces in the current angle of view, the degree of smile on the face, the degree of eye closing, the face angle, and face recognition ID number, gaze angle of the subject person, scene discrimination result, elapsed time since last shooting, current time, GPS position information and change amount from last shooting position, current voice level, voice emitting person, applause, Use of vibration information (acceleration information, camera status), environment information (temperature, air pressure, illuminance, humidity, amount of ultraviolet rays), etc. whether or not cheers are rising. Furthermore, when there is information notification from the external device 501, notification information (user's exercise information, arm action information, biological information such as heart beat, etc.) is also used as a feature. This feature is converted into a numerical value of a predetermined range, and given to each neuron of the input layer as a feature amount. Therefore, each neuron of the input layer is required as many as the number of feature quantities to be used.

なお、このニューラルネットワークに基づく判断は、後述する学習処理で各ニューロン間の結合重みを変化させることによって、出力値を変化させることができ、判断の結果を学習結果に適応させることが出来る。   In this judgment based on this neural network, the output value can be changed by changing the connection weight between each neuron in learning processing described later, and the result of the judgment can be adapted to the learning result.

また、図7のステップS702で読み込んだ第1制御部223の起動条件によって、自動撮影の判定も変化する。例えば、タップ検出による起動や特定音声コマンドによる起動の場合は、ユーザが現在撮影してほしいための操作である可能性が非常に高い。そこで、撮影頻度が多くなるように設定される。   Further, the determination of automatic photographing also changes according to the start condition of the first control unit 223 read in step S702 in FIG. 7. For example, in the case of activation by tap detection or activation by a specific voice command, there is a very high possibility that the operation is for the user to want to take a picture at present. Therefore, the shooting frequency is set to be high.

<撮影方法の判定>
撮影方法の判定では、ステップS901〜S904において検出した、カメラの状態や周辺の被写体の状態に基づいて、静止画撮影、動画撮影、連写撮影、パノラマ撮影などの内どれを実行するかを判定する。例えば、被写体(人物)が静止している場合は静止画撮影を実行し、被写体が動いている場合は動画撮影または連写撮影を実行する。また、被写体がカメラを取り囲むように複数存在している場合や、前述したGPS情報に基づいて景勝地であるということが判断出来ている場合には、パン・チルトを操作させながら順次撮影した画像を合成してパノラマ画像を生成するパノラマ撮影処理を実行してもよい。なお、<自動撮影を行うか否かの判定>での判定方法と同様に、撮影前に検出した各種情報をニューラルネットワークに基づいて判断し、撮影方法を決定することもできる。また、この判定処理では、後述する学習処理によって、判定条件を変更することも出来る。
<Judgment of shooting method>
In the determination of the shooting method, it is determined which of the still image shooting, the moving image shooting, the continuous shooting, and the panoramic shooting to execute based on the state of the camera and the surrounding objects detected in steps S901 to S904. Do. For example, when the subject (person) is stationary, still image shooting is performed, and when the subject is moving, moving image shooting or continuous shooting is performed. In addition, when a plurality of subjects exist so as to surround the camera, or when it is determined that the subject is a scenic site based on the above-described GPS information, images captured sequentially while operating the pan and tilt May be combined to generate a panoramic image. Similar to the determination method of <determination of whether or not to perform automatic imaging>, various information detected before imaging may be determined based on a neural network to determine the imaging method. Further, in this determination process, the determination conditions can also be changed by a learning process described later.

図9の説明に戻って、ステップS909では、ステップS908の自動撮影判定により自動撮影する判定が下された場合、ステップS910に進み、自動撮影する判定が下されなかった場合、自動撮影モード処理を終了する。   Returning to the explanation of FIG. 9, in step S909, if it is determined that automatic imaging is determined by the automatic imaging determination in step S908, the process proceeds to step S910, and if it is not determined that automatic imaging is performed, automatic imaging mode processing is performed. finish.

ステップS910では、自動撮影を開始する。この時、ステップS908において判定された撮影方法による撮影を開始する。その際、フォーカス駆動制御部204によるオートフォーカス制御を行う。また、不図示の絞り制御部およびセンサゲイン制御部、シャッター制御部を用いて、被写体が適切な明るさになるような露出制御を行う。さらに、撮影後には画像処理部207において、オートホワイトバランス処理、ノイズリダクション処理、ガンマ補正処理等、種々の公知の画像処理が行われ、画像が生成される。   In step S910, automatic imaging is started. At this time, shooting according to the shooting method determined in step S 908 is started. At this time, auto focus control is performed by the focus drive control unit 204. Also, exposure control is performed such that the subject has appropriate brightness by using an aperture control unit, a sensor gain control unit, and a shutter control unit (not shown). Furthermore, after photographing, the image processing unit 207 performs various known image processing such as auto white balance processing, noise reduction processing, gamma correction processing, and the like to generate an image.

なお、この撮影の際に、所定の条件を満たした場合、カメラが撮影対象となる人物に対し撮影を行う旨を報知した上で撮影するようにしてもよい。報知の方法として、例えば、音声出力部218からの発音やLED制御部224によるLED点灯等を使用してもよい。所定の条件は、例えば、画角内における顔の数、顔の笑顔度、目瞑り度、被写体人物の視線角度や顔角度、顔認証ID番号、個人認証登録されている人物の数、撮影時の一般物体認識結果、シーン判別結果、前回撮影時からの経過時間、撮影時刻、GPS情報に基づく現在位置が景勝地であるか否か、撮影時の音声レベル、声を発している人物の有無、拍手、歓声が上がっているか否か、振動情報(加速度情報、カメラ状態)、環境情報(温度、気圧、照度、湿度、紫外線量)等である。これらの条件に基づいて報知撮影を行うことによって、重要性が高いシーンにおいて好ましいカメラ目線の画像を残すことが出来る。   In addition, when a predetermined condition is satisfied at the time of photographing, the camera may notify that the person to be photographed is to be photographed before photographing. As a method of notification, for example, sound generation from the audio output unit 218 or LED lighting by the LED control unit 224 may be used. The predetermined conditions include, for example, the number of faces within the angle of view, the degree of smile of the face, the degree of closing of the eyes, the gaze angle and face angle of the subject person, the face authentication ID number, the number of persons registered for personal authentication, As a result of general object recognition, scene discrimination result, elapsed time since last shooting, shooting time, whether the current position based on GPS information is a scenic site, voice level at the time of shooting, presence or absence of person making voice , Applause, whether cheers are rising, vibration information (acceleration information, camera state), environment information (temperature, pressure, illuminance, humidity, amount of ultraviolet light) and the like. By performing informing shooting on the basis of these conditions, it is possible to leave an image of a preferred camera view in a scene of high importance.

このような撮影前の報知についても、撮影画像の情報、或いは撮影前に検出した各種情報をニューラルネットワークに基づいて判断し、報知の方法やタイミングを決定することもできる。また、この判定処理では、後述する学習処理によって、判定条件を変更することも出来る。   With regard to such notification before shooting, it is also possible to determine the method and timing of the notification by judging information of the shot image or various information detected before shooting based on the neural network. Further, in this determination process, the determination conditions can also be changed by a learning process described later.

ステップS911では、ステップS910において生成した画像を加工したり、動画に追加したりといった編集処理を行う。画像加工については、具体的には、人物の顔や合焦位置に基づいたトリミング処理、画像の回転処理、HDR(ハイダイナミックレンジ)効果処理、ボケ効果処理、色変換フィルタ効果処理などである。画像加工では、ステップS910において生成した画像に基づいて、上記の処理の組み合わせによって複数の加工画像を生成し、ステップS910において生成した画像とは別に保存するようにしてもよい。また、動画処理については、撮影した動画または静止画を、生成済みの編集動画にスライド、ズーム、フェードの特殊効果処理をつけながら追加するといった処理をしてもよい。ステップS911での編集についても、撮影画像の情報、或いは撮影前に検出した各種情報をニューラルネットワークに基づいて判断し、画像加工の方法を決定することもできる。また、この判定処理では、後述する学習処理によって、判定条件を変更することも出来る。   In step S 911, editing processing such as processing the image generated in step S 910 or adding it to a moving image is performed. Specifically, image processing includes trimming processing based on a person's face and in-focus position, image rotation processing, HDR (high dynamic range) effect processing, blur effect processing, color conversion filter effect processing, and the like. In image processing, a plurality of processed images may be generated based on the image generated in step S910 by a combination of the above-described processing, and may be stored separately from the image generated in step S910. In addition, in the moving image processing, processing may be performed such that the captured moving image or still image is added to the generated edited moving image while performing special effect processing of slide, zoom, and fade. Also in the editing in step S911, it is possible to determine the method of image processing by judging the information of the photographed image or various information detected before photographing based on the neural network. Further, in this determination process, the determination conditions can also be changed by a learning process described later.

ステップS912では、撮影画像の学習情報生成処理を行う。ここでは、後述する学習処理に使用する情報を生成し、記録する。具体的には、今回の撮影画像における、撮影時のズーム倍率、撮影時の一般物体認識結果、顔検出結果、撮影画像に写る顔の数、顔の笑顔度、目瞑り度、顔角度、顔認証ID番号、被写体人物の視線角度、シーン判別結果、前回撮影時からの経過時間、撮影時刻、GPS位置情報および前回撮影位置からの変化量、撮影時の音声レベル、声を発している人物、拍手、歓声が上がっているか否か、振動情報(加速度情報、カメラ状態)、環境情報(温度、気圧、照度、湿度、紫外線量)、動画撮影時間、手動撮影指示によるものか否か、等である。更にユーザの画像の好みを数値化したニューラルネットワークの出力であるスコアも演算する。これらの情報を生成し、撮影画像ファイルへタグ情報として記録する。あるいは、不揮発性メモリ216へ書き込むか、記録媒体221内に、所謂カタログデータとして各々の撮影画像の情報をリスト化した形式で保存するようにしてもよい。   In step S912, learning information generation processing of the photographed image is performed. Here, the information used for the learning process described later is generated and recorded. Specifically, the zoom magnification at the time of shooting, the general object recognition result at the time of shooting, the face detection result, the number of faces included in the shot image, the degree of smile of the face, the degree of eye closing, the face angle, the face Authentication ID number, gaze angle of subject person, scene discrimination result, elapsed time since last shooting, shooting time, GPS position information and change amount from last shooting position, voice level at shooting, person speaking voice, Applause, whether cheers are rising or not, vibration information (acceleration information, camera status), environment information (temperature, air pressure, illuminance, humidity, amount of ultraviolet light), movie shooting time, manual shooting instruction, etc. is there. Furthermore, a score, which is the output of a neural network that quantifies the preferences of the user's image, is also calculated. These pieces of information are generated and recorded as tag information in the photographed image file. Alternatively, the information may be written to the non-volatile memory 216 or may be stored in the recording medium 221 as so-called catalog data in the form of a list of information of each photographed image.

ステップS913では過去の撮影情報の更新を行う。具体的には、ステップS908で説明したエリア毎の撮影枚数、個人認証登録された人物毎の撮影枚数、一般物体認識で認識された被写体毎の撮影枚数、シーン判別のシーン毎の撮影枚数について、今回撮影された画像が該当する枚数のカウントを1つ増やす。   In step S913, the past shooting information is updated. Specifically, the number of shots for each area described in step S908, the number of shots for each person registered for personal identification, the number of shots for each object recognized by general object recognition, and the number of shots for each scene of scene determination The count of the number of images corresponding to the image taken this time is incremented by one.

<学習処理>
次に、本実施形態におけるユーザの好みに合わせた学習について説明する。本実施形態では、図11に示すようなニューラルネットワークを用い、機械学習アルゴリズムを使用して、学習処理部219においてユーザの好みに合わせた学習を行う。ニューラルネットワークは、入力値から出力値を予測することに使用されるものであり、予め入力値の実績値と出力値の実績値を学習しておくことで、新たな入力値に対して、出力値を推定することができる。ニューラルネットワークを用いることにより、前述の自動撮影や自動編集、被写体探索に対して、ユーザの好みに合わせた学習を行う。また、ニューラルネットワークに入力する特徴データともなる被写体情報(顔認証や一般物体認識などの結果)の登録や、撮影報知制御や低消費電力モード制御やファイル自動削除を学習により変更する動作も行う。
<Learning process>
Next, learning in accordance with the preference of the user in the present embodiment will be described. In the present embodiment, using a neural network as shown in FIG. 11 and a machine learning algorithm, the learning processing unit 219 performs learning in accordance with the user's preference. The neural network is used to predict the output value from the input value, and learns in advance the actual value of the input value and the actual value of the output value to output an output for the new input value. The value can be estimated. By using the neural network, learning is performed according to the user's preference for the above-mentioned automatic photographing, automatic editing, and subject search. In addition, registration of subject information (results of face recognition, general object recognition, etc.) as feature data to be input to the neural network, and operation of changing photographing notification control, low power consumption mode control, and automatic file deletion by learning are also performed.

本実施形態において、学習処理が適用される動作は、以下の動作である。
(1)自動撮影
(2)自動編集
(3)被写体探索
(4)被写体登録
(5)撮影報知制御
(6)低消費電力モード制御
(7)ファイル自動削除
(8)像ブレ補正
(9)画像自動転送
なお、上記の学習処理が適用される動作のうち、自動編集、ファイル自動削除、画像自動転送については、本発明の主旨と直接関係しないので、説明を省略する。
In the present embodiment, the operation to which the learning process is applied is the following operation.
(1) Automatic shooting (2) Automatic editing (3) Subject search (4) Subject registration (5) Shooting notification control (6) Low power consumption mode control (7) File automatic deletion (8) Image blur correction (9) image Automatic Transfer Of the operations to which the above-described learning process is applied, automatic editing, file automatic deletion, and automatic image transfer are not directly related to the subject matter of the present invention, and thus the description thereof is omitted.

<自動撮影>
自動撮影に対する学習について説明する。自動撮影では、ユーザの好みに合った画像の撮影を自動で行うための学習を行う。図9のフローチャートを用いて説明したように、撮影後(ステップS910の後)に学習用情報生成処理(ステップS912)が行われている。後述する方法により学習させる画像を選択させ、画像に含まれる学習情報に基づいて、ニューラルネットワークの重みを変化させることにより学習を行わせる。
<Auto shoot>
Describe learning for automatic shooting. In automatic shooting, learning is performed to automatically take an image that suits the user's preference. As described with reference to the flowchart of FIG. 9, the learning information generation process (step S912) is performed after shooting (after step S910). An image to be learned is selected by a method to be described later, and learning is performed by changing the weight of the neural network based on the learning information included in the image.

学習は、自動撮影タイミングの判定を行うニューラルネットワークの変更と、撮影方法(静止画撮影、動画撮影、連写、パノラマ撮影など)の判定を行うニューラルネットワークの変更により行われる。   The learning is performed by changing the neural network that determines the automatic shooting timing and changing the neural network that determines the shooting method (still image shooting, moving image shooting, continuous shooting, panoramic shooting, etc.).

<被写体探索>
被写体探索に対する学習について説明する。被写体探索では、ユーザの好みに合った被写体の探索を自動的に行うための学習を行う。図9のフローチャートを用いて説明したように、被写体探索処理(ステップS904)において、各エリアの重要度レベルを算出し、パン・チルト、ズームを駆動し、被写体探索を行う。学習は撮影画像や探索中の検出情報に基づいて行われ、ニューラルネットワークの重みを変化させることで学習結果として反映される。探索動作中の各種検出情報をニューラルネットワークに入力し、重要度レベルの判定を行うことにより、学習を反映した被写体探索を行う。また、重要度レベルの算出以外にも、例えば、パン・チルト探索方法(速度、動かす頻度)の制御も行う。
<Object Search>
The learning for the subject search will be described. In the subject search, learning is performed to automatically search for a subject matching the user's preference. As described using the flowchart of FIG. 9, in the subject search process (step S904), the importance level of each area is calculated, pan / tilt and zoom are driven, and the subject search is performed. The learning is performed based on the photographed image and the detection information during the search, and is reflected as a learning result by changing the weight of the neural network. Various detection information during the search operation is input to the neural network, and the importance level is determined to perform the object search reflecting the learning. In addition to the calculation of the importance level, for example, control of a pan / tilt search method (speed, frequency of movement) is also performed.

<被写体登録>
被写体登録に対する学習について説明する。被写体登録では、ユーザの好みに合った被写体の登録やランク付けを自動的に行うための学習を行う。学習として、例えば、顔認証登録や一般物体認識の登録、ジェスチャーや音声認識、音によるシーン認識の登録を行う。人と物体に対する認証登録を行い、画像の取得される回数や頻度、手動撮影される回数や頻度、探索中の被写体の現れる頻度からランク付けの設定を行う。登録された情報は、各ニューラルネットワークを用いた判定のための入力として登録されることになる。
<Subject registration>
The learning for subject registration will be described. In subject registration, learning is performed to automatically register and rank subjects according to the user's preference. As learning, for example, registration of face recognition registration and registration of general object recognition, registration of gesture and voice recognition, and scene recognition by sound are performed. Authentication registration is performed for a person and an object, and setting of ranking is performed based on the number and frequency of image acquisition, the number and frequency of manual photographing, and the frequency of appearance of a subject under search. The registered information is registered as an input for determination using each neural network.

<撮影報知制御>
撮影報知に対する学習について説明する。図9のステップS910で説明したように、撮影直前に、所定の条件を満たしたとき、カメラが撮影対象となる人物に対して撮影を行う旨を報知した上で撮影することを行う。例えば、パン・チルトを駆動することにより視覚的に被写体の視線を誘導したり、音声出力部218から発するスピーカー音や、LED制御部224によるLED点灯光を使用して被写体の注意を誘導したりする。上記の報知の直後に、被写体の検出情報(例えば、笑顔度、目線検出、ジェスチャー)が得られたか否かに基づいて、検出情報を学習に使用するかを判定し、ニューラルネットワークの重みを変化させることで学習する。
<Recording notification control>
The learning for the imaging notification will be described. As described in step S 910 in FIG. 9, when the predetermined condition is satisfied immediately before shooting, shooting is performed after notifying that the person to be shot is to be shot by the camera. For example, the line of sight of the subject is visually guided by driving the pan / tilt, the speaker sound emitted from the audio output unit 218, or the LED lighting by the LED control unit 224 is used to guide the attention of the subject Do. Immediately after the above notification, it is determined whether to use the detection information for learning based on whether or not the detection information of the subject (for example, smile level, eye line detection, gesture) is obtained, and the weight of the neural network is changed. Learn by letting them do it.

撮影直前の各検出情報をニューラルネットワークに入力し、報知を行うか否かの判定や、各動作(音(音レベル/音の種類/タイミング)、光(点灯時間、スピード)、カメラの向き(パン・チルトモーション))の判定を行う。   Each detection information immediately before shooting is input to the neural network, and it is judged whether to notify or not, each operation (sound (sound level / sound type / timing), light (lighting time, speed), camera direction ( Perform pan / tilt motion) determination.

<低消費電力モード制御>
図7、図8を用いて、説明したようにMainCPU(第1制御部223)への電源供給をON/OFFする制御を行うが、低消費電力モードからの復帰条件や、低消費電力状態への遷移条件の学習も行う。低消費電力モードを解除する条件の学習について説明する。
<Low power consumption mode control>
As described above with reference to FIGS. 7 and 8, control is performed to turn on / off the power supply to the Main CPU (the first control unit 223). However, to return to the low power consumption mode or to the low power consumption state Also learn transition conditions of The learning of the condition for canceling the low power consumption mode will be described.

<音検出>
ユーザが特定音声や検出したい特定音シーンや特定音レベルを、例えば外部装置301の専用アプリケーションを用いた通信により、手動で設定することで学習することができる。また、複数の検出方法を音声処理部に予め設定しておき、後述する方法により学習させる画像を選択させ、画像に含まれる前後音情報を学習し、起動要因とする音判定(特定音コマンドや、「歓声」、「拍手」などの音シーン)を設定することで学習することもできる。
<Sound detection>
For example, it is possible to learn by manually setting a specific voice, a specific sound scene that the user wants to detect, and a specific sound level by communication using a dedicated application of the external device 301, for example. In addition, a plurality of detection methods are set in advance in the voice processing unit, an image to be learned is selected by a method to be described later, learning front and back sound information included in the image is performed, and sound determination (specific sound command You can also learn by setting sound scenes such as "Cheers" and "Applause".

<環境情報検出>
ユーザが起動条件としたい環境情報変化を、例えば外部装置301の専用アプリケーションを用いた通信により、手動で設定することで学習することができる。例えば、温度、気圧、明るさ、湿度、紫外線量の絶対量や変化量等の特定条件によって起動させることができる。各環境情報に基づく判定閾値を学習することもできる。環境情報による起動後のカメラ検出情報から、起動要因ではなかったと判定されると、各判定閾値のパラメータを環境変化を検出し難いように設定する。
<Environmental information detection>
For example, the environment information change that the user wants to set as the start condition can be learned by setting manually by communication using a dedicated application of the external device 301, for example. For example, activation can be performed according to specific conditions such as temperature, air pressure, brightness, humidity, absolute amount of ultraviolet light amount, and change amount. It is also possible to learn a determination threshold based on each piece of environmental information. If it is determined from the camera detection information after activation by the environmental information that the activation factor is not determined, the parameter of each determination threshold is set so as to make it difficult to detect environmental change.

また、上記の各パラメータは、電池の残容量によっても変化する。例えば、電池残量が少ないときは各種判定に入り難くなり、電池残量が多いときは各種判定に入り易くなる。具体的には、ユーザが必ずカメラを起動してほしい要因ではない揺れ状態検出結果や、音シーン検出結果でも、電池残量が多い場合には、カメラを起動すると判定されてしまう場合もある。   Each of the above-mentioned parameters also changes depending on the remaining capacity of the battery. For example, when the battery remaining amount is low, it becomes difficult to enter various determinations, and when the battery remaining amount is large, it becomes easy to enter various determinations. Specifically, even when the battery remaining amount is large even in the shaking state detection result or the sound scene detection result that is not a factor that the user necessarily wants to start the camera, it may be determined to start the camera.

また、低消費電力モード解除条件の判定は、揺れ検出、音検出、時間経過検出の情報、各環境情報、電池残量等からニューラルネットワークに基づいて行うこともできる。その場合、後述する方法により学習させる画像を選択させ、画像に含まれる学習情報に基づいて、ニューラルネットワークの重みを変化させることにより学習する。   In addition, the determination of the low power consumption mode cancellation condition can also be performed based on a neural network from vibration detection, sound detection, information on time lapse detection, environment information, battery remaining amount, and the like. In this case, learning is performed by selecting an image to be learned by a method to be described later, and changing weights of the neural network based on learning information included in the image.

次に、低消費電力状態への遷移条件の学習について説明する。図7に示したとおり、ステップS704のモード設定判定において、「自動撮影モード」「自動編集モード」「画像自動転送モード」「学習モード」「ファイル自動削除モード」の何れでもないと判定されると、低消費電力モードに入る。各モードの判定条件については、上述したとおりであるが、各モードが判定される条件についても学習によって変化する。   Next, learning of the transition condition to the low power consumption state will be described. As shown in FIG. 7, when it is determined that the mode setting determination in step S704 is neither “automatic shooting mode” “automatic editing mode” “image automatic transfer mode” “learning mode” “automatic file deletion mode” , Enter low power mode. The determination conditions of each mode are as described above, but the conditions under which each mode is determined also change by learning.

<自動撮影モード>
上述したとおり、エリア毎の重要度レベルを判定し、パン・チルトで被写体探索をしながら自動撮影を行うが、撮影される被写体が存在しないと判定されると、自動撮影モードが解除される。例えば、すべのエリアの重要度レベルや、各エリアの重要度レベルを加算した値が、所定閾値以下になったとき、自動撮影モードを解除する。このとき、自動撮影モードに遷移してからの経過時間によって所定閾値を下げていくことも行われる。自動撮影モードに遷移してからの経過時間が長くなるにつれて低消費電力モードへ移行し易くしている。
<Automatic shooting mode>
As described above, the importance level for each area is determined, and automatic shooting is performed while searching for a subject with pan and tilt. However, when it is determined that a subject to be shot does not exist, the automatic shooting mode is canceled. For example, when the importance level of all the areas or the value obtained by adding the importance levels of the respective areas becomes equal to or less than a predetermined threshold, the automatic photographing mode is canceled. At this time, the predetermined threshold may be lowered according to the elapsed time after the transition to the automatic photographing mode. The transition to the low power consumption mode is facilitated as the elapsed time from the transition to the automatic shooting mode becomes longer.

また、電池の残容量によって所定閾値を変化させることにより、電池もちを考慮した低消費電力モード制御を行うことができる。例えば、電池残量が少ないときは閾値を大きくして低消費電力モードに移行しやすくし、電池残量が多いときは閾値を小さくして低消費電力モードに移行し難くする。ここで、前回自動撮影モードに遷移してからの経過時間と撮影枚数によって、第2制御部211(SubCPU)に対して、次回の低消費電力モード解除条件のパラメータ(経過時間閾値TimeC)を設定する。上記の各閾値は学習によって変化する。学習は、例えば外部装置301の専用アプリケーションを用いた通信により、手動で撮影頻度や起動頻度などを設定することで行われる。   In addition, by changing the predetermined threshold according to the remaining capacity of the battery, it is possible to perform the low power consumption mode control in consideration of the battery durability. For example, when the battery remaining amount is low, the threshold is increased to facilitate transition to the low power consumption mode, and when the battery remaining amount is large, the threshold is reduced to transition to the low power consumption mode. Here, the parameter (elapsed time threshold TimeC) of the next low power consumption mode cancellation condition is set for the second control unit 211 (SubCPU) based on the elapsed time since the transition to the automatic shooting mode last time and the number of shots. Do. Each threshold mentioned above changes by learning. The learning is performed by, for example, manually setting the imaging frequency, the activation frequency, and the like by communication using a dedicated application of the external apparatus 301.

また、カメラ101の電源ボタンをONしてから、電源ボタンをOFFするまでの経過時間の平均値や時間帯ごとの分布データを蓄積し、各パラメータを学習する構成にしてもよい。その場合、電源ONからOFFまでの時間が短いユーザに対しては低消費電力モードからの復帰や、低消費電力状態への遷移の時間間隔が短くなり、電源ONからOFFまでの時間が長いユーザに対しては間隔が長くなるように学習される。   In addition, an average value of elapsed time from when the power button of the camera 101 is turned on to when the power button is turned off or distribution data for each time zone may be accumulated to learn each parameter. In this case, for users with short time from power ON to OFF, the time interval for returning from the low power consumption mode and transition to the low power consumption state becomes short, and the time from power ON to OFF is long Is learned so that the interval is long.

また、探索中の検出情報によっても学習される。学習によって設定された重要となる被写体が多いと判断されている間は、低消費電力モードからの復帰や、低消費電力状態への遷移の時間間隔が短くなり、重要となる被写体が少ない間は、間隔が長くなるように学習される。   In addition, learning is also performed by the detection information under search. While it is determined that the number of important subjects set by learning is large, the time interval for returning from the low power consumption mode and the transition to the low power consumption state is short, and the number of important subjects is small. , Will be learned to increase the interval.

<像ブレ補正>
像ブレ補正に対する学習について説明する。像ブレ補正は、図9のステップS902で補正量を算出し、補正量に基づいてステップS905でパン・チルトを駆動することにより行われる。像ブレ補正では、ユーザの揺れの特徴に合わせた補正を行うための学習を行う。撮影画像に対して、例えば、PSF(Point Spread Function)を用いることにより、ブレの方向及び大きさを推定することが可能である。図9のステップS912の学習用情報生成では、推定したブレの方向と大きさが、情報として画像に付加される。
Image blur correction
The learning for the image blur correction will be described. Image blur correction is performed by calculating a correction amount in step S902 in FIG. 9 and driving pan and tilt in step S905 based on the correction amount. In image blur correction, learning is performed to perform correction in accordance with the characteristics of the user's shaking. By using, for example, a PSF (Point Spread Function) on a captured image, it is possible to estimate the direction and size of blur. In the generation of the learning information in step S912 in FIG. 9, the estimated direction and size of blur are added to the image as information.

図7のステップS716での学習モード処理内で、推定したブレの方向と大きさを出力として、撮影時の各検出情報(撮影前所定時間における画像の動きベクトル情報、検出した被写体(人や物体)の動き情報、振動情報(ジャイロ出力、加速度出力、カメラ状態)を入力として、像ブレ補正用のニューラルネットワークの重みを学習させる。他にも、環境情報(温度、気圧、照度、湿度)、音情報(音シーン判定、特定音声検出、音レベル変化)、時間情報(起動からの経過時間、前回撮影時からの経過時間)、場所情報(GPS位置情報、位置移動変化量)なども入力に加えて判定してもよい。   In the learning mode processing in step S 716 of FIG. 7, the detected direction and magnitude of the estimated blur are output, and each detected information at the time of shooting (motion vector information of the image at a predetermined time before shooting, detected subject (person or object Learning the weights of the neural network for image blur correction using the motion information and vibration information (gyro output, acceleration output, camera status) as input, as well as environmental information (temperature, pressure, illuminance, humidity), Sound information (sound scene determination, specific voice detection, sound level change), time information (elapsed time from start, elapsed time from last shooting), location information (GPS position information, position movement change amount) etc. are also input In addition, it may be determined.

ステップS902での像ブレ補正量の算出時において、上記各検出情報をニューラルネットワークに入力することにより、その瞬間撮影したときのブレの大きさを推定することができる。そして、推定したブレの大きさが大きいときは、シャッター速度を速くするなどの制御が可能となる。また、推定したブレの大きさが大きいときはブレ画像になってしまうので撮影を禁止するなどの方法もとることができる。   At the time of calculation of the image blur correction amount in step S902, by inputting each of the above detection information to the neural network, it is possible to estimate the size of the blur at the moment of the photographing. Then, when the size of the estimated blur is large, control such as increasing the shutter speed becomes possible. In addition, when the size of the estimated blur is large, a blurred image is generated. Therefore, it is possible to take a method such as prohibiting photographing.

また、パン・チルト駆動角度には制限があるため、駆動端に到達してしまうとそれ以上補正を行うことができないが、撮影時のブレの大きさと方向を推定することにより、露光中の像ブレを補正するためのパン・チルト駆動に必要な範囲を推定することができる。露光中の可動範囲の余裕がない場合は、像ブレ補正量を算出するフィルタのカットオフ周波数を大きくして、可動範囲を超えないように設定することにより、大きなブレを抑制することもできる。また、可動範囲を超えそうな場合は、露光直前にパン・チルトの角度を可動範囲を超えそうな方向とは逆の方向に回転してから露光開始することにより、可動範囲を確保してブレのない撮影を行うこともできる。これにより、ユーザの撮影時の特徴や使い方に合わせて像ブレ補正を学習することができるので、撮影画像がブレてしまうことを防止できる。   In addition, since there is a limit to the pan / tilt drive angle, no further correction can be made if it reaches the drive end, but the image during exposure is estimated by estimating the magnitude and direction of blur at the time of shooting. It is possible to estimate the range required for pan / tilt driving to correct blurring. When there is no margin of the movable range during exposure, it is possible to suppress large blurring by setting the cutoff frequency of the filter for calculating the image blur correction amount so as not to exceed the movable range. If the movable range is likely to be exceeded, the movable range is secured by rotating the pan / tilt angle in the direction opposite to the direction likely to exceed the movable range immediately before exposure to ensure the movable range. You can also take pictures without As a result, image blur correction can be learned in accordance with the characteristics and usage of the user at the time of photographing, so that it is possible to prevent the photographed image from being blurred.

また、上述した<撮影方法の判定>において、動いている被写体はブレがなく、動いていない背景が流れる撮影を行う、流し撮り撮影を行うか否かを判定してもよい。その場合、撮影前までの検出情報から、被写体をブレなく撮影するためのパン・チルト駆動速度を推定して、被写体ブレ補正を行ってもよい。この時、上記各検出情報を既に学習させているニューラルネットワークに入力することにより、駆動速度を推定することができる。学習は、画像を各ブロックに分割して、各ブロックのPSFを推定することにより、主被写体が位置するブロックでのブレの方向及び大きさを推定し、その情報に基づいて行われる。   In the above-described <Determination of photographing method>, it may be determined whether or not the moving subject has no blur, and the non-moving background is photographed and the follow shot photographing is performed. In that case, subject shake correction may be performed by estimating a pan / tilt driving speed for shooting a subject without blurring from detection information before shooting. At this time, the driving speed can be estimated by inputting the above detection information to the neural network which has already been learned. The learning is performed based on the information by estimating the direction and size of blurring in the block where the main subject is located by dividing the image into blocks and estimating the PSF of each block.

また、ユーザが選択した画像の情報から、背景流し量を学習することもできる。その場合、主被写体が位置しないブロックでのブレの大きさを推定し、その情報に基づいてユーザの好みを学習することができる。学習した好みの背景流し量に基づいて、撮影時のシャッター速度を設定することにより、ユーザの好みにあった流し撮り効果が得られる撮影を自動で行うことができる。   In addition, it is possible to learn the background flow amount from the information of the image selected by the user. In that case, it is possible to estimate the magnitude of blur in a block where the main subject is not located, and to learn the user's preference based on the information. By setting the shutter speed at the time of shooting based on the learned background flow amount of preference, it is possible to automatically perform shooting that can obtain a shooting effect that meets the user's preference.

次に、学習方法について説明する。学習方法としては、「カメラ内の学習」と「通信機器との連携による学習」がある。   Next, the learning method will be described. As learning methods, there are “learning in the camera” and “learning in cooperation with the communication device”.

カメラ内学習の方法について、以下説明する。本実施形態におけるカメラ内学習には、以下の方法がある。
(1)手動撮影時の検出情報による学習
(2)被写体探索時の検出情報による学習
<手動撮影時の検出情報による学習>
図9のステップS907〜ステップS913で説明したとおり、本実施形態においては、カメラ101は、手動撮影と自動撮影の2つの撮影を行うことができる。ステップS907で手動撮影指示があった場合には、ステップS912において、撮影画像は手動で撮影された画像であるとの情報が付加される。また、ステップS909において自動撮影ONと判定されて撮影された場合においては、ステップS912において、撮影画像は自動で撮影された画像であると情報が付加される。
The in-camera learning method will be described below. There are the following methods for in-camera learning in the present embodiment.
(1) Learning by detection information at manual shooting (2) Learning by detection information at object search <Learning by detection information at manual shooting>
As described in step S 907 to step S 913 in FIG. 9, in the present embodiment, the camera 101 can perform two shootings, manual shooting and automatic shooting. If a manual imaging instruction has been issued in step S 907, information indicating that the captured image is an image captured manually is added in step S 912. If it is determined in step S909 that automatic imaging is ON and imaging is performed, information is added in step S912 that the captured image is an image captured automatically.

ここで、手動撮影される場合、ユーザの好みの被写体、好みのシーン、好みの場所や時間間隔に基づいて撮影された可能性が非常に高い。よって、手動撮影時に得られた各特徴データや撮影画像の学習情報を基にした学習が行われるようにする。また、手動撮影時の検出情報から、撮影画像における特徴量の抽出や個人認証の登録、個人ごとの表情の登録、人の組み合わせの登録に関して学習を行う。また、被写体探索時の検出情報からは、例えば、個人登録された被写体の表情から、近くの人や物体の重要度を変更するような学習を行う。   Here, in the case of manual shooting, the possibility of shooting based on the user's favorite subject, favorite scene, favorite place and time interval is very high. Therefore, learning is performed based on each feature data obtained at the time of manual shooting and learning information of the shot image. Further, from detection information at the time of manual imaging, learning is performed regarding extraction of feature amounts in the captured image, registration of personal authentication, registration of individual facial expressions, and registration of human combinations. In addition, from the detection information at the time of subject search, for example, learning is performed to change the importance of a nearby person or object from the expression of the subject registered individually.

<被写体探索時の検出情報による学習>
被写体探索動作中において、個人認証登録されている被写体が、どんな人物、物体、シーンと同時に写っているかを判定し、同時に画角内に写っている時間比率を算出しておく。例えば、個人認証登録被写体の人物Aが、個人認証登録被写体の人物Bと同時に写っている時間比率を計算する。そして、人物Aと人物Bが画角内に入る場合は、自動撮影判定の点数が高くなるように、各種検出情報を学習データとして保存して、学習モード処理(ステップS716)で学習する。
<Learning by detection information at the time of subject search>
During the subject search operation, it is determined what kind of person, an object, and a scene are captured at the same time as a subject registered for personal identification registration, and a time ratio at which the subject is captured at the same time is calculated. For example, the time ratio in which the person A of the personal identification registration subject is shown simultaneously with the person B of the personal identification registration subject is calculated. Then, when the person A and the person B fall within the angle of view, various types of detection information are stored as learning data so as to increase the score of the automatic photographing determination, and learning is performed in the learning mode process (step S716).

他の例では、個人認証登録被写体の人物Aが、一般物体認識により判定された被写体「猫」と同時に写っている時間比率を計算する。そして、人物Aと「猫」が画角内に入る場合は、自動撮影判定の点数が高くなるように、各種検出情報を学習データとして保存して、学習モード処理(ステップS716)で学習する。   In another example, a time ratio is calculated in which the person A of the personal identification registration subject is shown simultaneously with the subject "cat" determined by the general object recognition. Then, when the person A and the "cat" fall within the angle of view, various types of detection information are stored as learning data so as to increase the score of the automatic photographing determination, and learning is performed in the learning mode process (step S716).

また、個人認証登録被写体の人物Aの高い笑顔度を検出した場合や、「喜び」「驚き」などの表情が検出された場合に、同時に写っている被写体は重要であると学習される。あるいは、「怒り」「真顔」などの表情が検出された場合に、同時に写っている被写体は重要である可能性が低いので学習することはしないなどの処理が行われる。   Also, when a high degree of smile of the person A of the personal identification registration subject is detected, or when an expression such as "joy" or "surprise" is detected, the subject shown at the same time is learned to be important. Alternatively, when an expression such as "anger" or "true face" is detected, processing such as not learning is performed because the subject appearing at the same time is unlikely to be important.

次に、本実施形態における外部装置との連携による学習について説明する。本実施形態における外部装置との連携による学習には、以下の方法がある。
(1)外部装置で画像を取得したことによる学習
(2)外部装置を介して画像に判定値を入力することによる学習
(3)外部装置内の保存されている画像を解析することによる学習
(4)外部装置でSNSのサーバにアップロードされた情報からの学習
(5)外部装置でカメラパラメータを変更することによる学習
(6)外部装置で画像が手動編集された情報からの学習
<外部装置で画像を取得したことによる学習>
図3で説明したとおり、カメラ101と外部装置301は、第1及び第2の通信302,303を行う通信手段を有している。そして、主に第1の通信302によって画像の送受信が行われ、外部装置301内の専用のアプリケーションを介して、カメラ101内の画像を外部装置301に送信することができる。また、カメラ101内の保存されている画像データのサムネイル画像を外部装置301内の専用のアプリケーションを用いて、閲覧可能である。ユーザは、このサムネイル画像の中から、自分が気に入った画像を選んで、画像確認し、画像取得指示を操作することで外部装置301に画像を送信させることができる。
Next, learning in cooperation with an external device in the present embodiment will be described. There are the following methods for learning in cooperation with an external device in the present embodiment.
(1) Learning by obtaining an image by an external device (2) Learning by inputting a determination value to an image through an external device (3) Learning by analyzing an image stored in the external device ( 4) Learning from the information uploaded to the SNS server in the external device (5) Learning by changing the camera parameters in the external device (6) Learning from the information in which the image was manually edited in the external device <With the external device Learning by having acquired an image>
As described in FIG. 3, the camera 101 and the external apparatus 301 have communication means for performing the first and second communications 302 and 303. Then, transmission and reception of an image is mainly performed by the first communication 302, and the image in the camera 101 can be transmitted to the external device 301 via a dedicated application in the external device 301. Also, thumbnail images of image data stored in the camera 101 can be browsed using a dedicated application in the external device 301. The user can select an image that he / she likes from the thumbnail images, check the image, and transmit the image to the external device 301 by operating the image acquisition instruction.

このとき、ユーザが画像を選んで取得しているので、取得された画像はユーザの好みの画像である可能性が非常に高い。よって取得された画像は、学習すべき画像であると判定し、取得された画像の学習情報に基づいて学習することにより、ユーザの好みの各種学習を行うことができる。   At this time, since the user selects and acquires an image, the acquired image is very likely to be an image preferred by the user. Therefore, it is possible to perform various types of learning of the user's preference by determining that the acquired image is an image to be learned and performing learning based on the learning information of the acquired image.

ここで、操作例について説明する。外部装置301の専用のアプリケーションを用いて、カメラ101内の画像を閲覧している例を図12に示す。表示部407にカメラ内に保存されている画像データのサムネイル画像(1604〜1609)が表示されており、ユーザは自分が気に入った画像を選択し取得することができる。このとき、表示方法を変更する表示方法変更部を構成するボタン1601,1602,1603が設けられている。   Here, an operation example will be described. An example in which an image in the camera 101 is browsed using an application dedicated to the external device 301 is shown in FIG. The display unit 407 displays thumbnail images (1604 to 1609) of the image data stored in the camera, and the user can select and acquire an image that he / she likes. At this time, buttons 1601, 1602, and 1603 constituting a display method change unit for changing the display method are provided.

ボタン1601を押下すると日時優先表示モードに変更され、カメラ101内の画像の撮影日時の順番で表示部407に画像が表示される。例えば、1604で示される位置には日時が新しい画像が表示され、1609で示される位置には日時が古い画像が表示される。   When the button 1601 is pressed, the display mode is changed to the date-and-time priority display mode, and the images are displayed on the display unit 407 in the order of the shooting date and time of the image in the camera 101. For example, an image with a new date and time is displayed at a position indicated by 1604, and an image with an old date and time is displayed at a position indicated by 1609.

ボタン1602を押下すると、おすすめ画像優先表示モードに変更される。図9のステップS912で演算した各画像に対するユーザの好みを判定したスコアに基づいて、カメラ101内の画像が、スコアの高い順番で表示部407に表示される。例えば、1604で示される位置にはスコアが高い画像が表示され、1609で示される位置にはスコアが低い画像が表示される。   When the button 1602 is pressed, the recommended image priority display mode is changed. The images in the camera 101 are displayed on the display unit 407 in descending order of score, based on the scores obtained by determining the preference of the user for each image calculated in step S912 in FIG. For example, an image with a high score is displayed at a position indicated by 1604, and an image with a low score is displayed at a position indicated by 1609.

ボタン1603を押下すると、人物や物体被写体を指定でき、続いて特定の人物や物体被写体を指定すると特定の被写体のみを表示することもできる。ボタン1601〜1603は同時に設定をONすることもできる。例えばすべての設定がONされている場合、指定された被写体のみを表示し、且つ、撮影日時が新しい画像が優先され、且つ、スコアの高い画像が優先され、表示されることになる。このように、撮影画像に対してもユーザの好みを学習しているため、撮影された大量の画像の中から簡単な確認作業でユーザの好みの画像のみを抽出することが可能である。   When the button 1603 is pressed, a person or an object / subject can be designated, and when a specific person or an object / subject is subsequently designated, only a specific subject can be displayed. The buttons 1601 to 1603 can simultaneously turn on the setting. For example, when all the settings are turned on, only a designated subject is displayed, an image with a new shooting date and time is prioritized, and an image with a high score is prioritized and displayed. As described above, since the user's preference is learned also for the photographed image, it is possible to extract only the user's favorite image from a large number of photographed images by a simple confirmation operation.

<外部装置を介して画像に判定値を入力することによる学習>
上記で説明したとおり、カメラ101と外部装置301は、通信手段を有しており、カメラ101内に保存されている画像を外部装置301内の専用のアプリケーションを用いて、閲覧可能である。ここで、ユーザは、各画像に対して点数付けを行う構成にしてもよい。ユーザが好みと思った画像に対して高い点数(例えば5点)を付けたり、好みでないと思った画像に対して低い点数(例えば1点)を付けることができ、ユーザの操作によって、カメラが学習していくような構成にする。各画像の点数は、カメラ内で学習情報と共に再学習に使用される。指定した画像情報からの特徴データを入力にした、ニューラルネットワークの出力がユーザが指定した点数に近づくように学習される。
<Learning by inputting a judgment value to an image through an external device>
As described above, the camera 101 and the external device 301 have communication means, and can browse the image stored in the camera 101 using a dedicated application in the external device 301. Here, the user may be configured to score each image. A high score (for example, 5 points) can be given to an image that the user thinks like, or a low score (for example, 1 point) can be given to images that the user thinks is not like. Make it a structure to learn. The score of each image is used for relearning along with the learning information in the camera. Learning is performed so that the output of the neural network, which has feature data from specified image information as an input, approaches a point specified by the user.

本実施形態では、外部装置301を介して、撮影済み画像にユーザが判定値を入力する構成にしたが、カメラ101を操作して、直接、画像に判定値を入力する構成にしてもよい。その場合、例えば、カメラ101にタッチパネルディスプレイを設け、タッチパネルディスプレイの画面表示部に表示されたGUIボタンをユーザが押下して、撮影済み画像を表示するモードに設定する。そして、ユーザは撮影済み画像を確認しながら、各画像に判定値を入力するなどの方法により、同様の学習を行うことができる。   In the present embodiment, the user inputs the determination value to the photographed image via the external apparatus 301. However, the determination value may be directly input to the image by operating the camera 101. In that case, for example, the camera 101 is provided with a touch panel display, and the user presses a GUI button displayed on the screen display unit of the touch panel display to set a mode for displaying a photographed image. Then, the user can perform similar learning by a method of inputting a determination value to each image while confirming the photographed image.

<外部装置内の保存されている画像を解析することによる学習>
外部装置301は、記憶部404を有し、記憶部404にはカメラ101で撮影された画像以外の画像も記録される構成とする。このとき、外部装置301内に保存されている画像は、ユーザが閲覧し易く、公衆無線制御部406を介して、共有サーバに画像をアップロードすることも容易なため、ユーザの好みの画像が多く含まれる可能性が非常に高い。
<Learning by analyzing stored image in external device>
The external apparatus 301 includes a storage unit 404, and the storage unit 404 is configured to record an image other than the image captured by the camera 101. At this time, it is easy for the user to view the image stored in the external device 301 and to easily upload the image to the shared server via the public wireless control unit 406. Very likely to be included.

外部装置301の制御部411は、専用のアプリケーションを用いて、記憶部404に保存されている画像を、カメラ101内の学習処理部219と同等の能力で処理可能に構成される。そして、処理された学習用データをカメラ101に通信することにより、学習を行う。あるいは、カメラ101に学習させたい画像やデータを送信して、カメラ101内で学習するような構成にしてもよい。また、専用のアプリケーションを用いて、記録部404に保存されている画像の中から、学習させたい画像をユーザが選択して学習する構成にすることもできる。   The control unit 411 of the external device 301 is configured to be able to process an image stored in the storage unit 404 with the same capability as the learning processing unit 219 in the camera 101 using a dedicated application. Then, learning is performed by communicating the processed data for learning to the camera 101. Alternatively, an image or data to be learned by the camera 101 may be transmitted, and learning may be performed in the camera 101. Alternatively, the user may select an image to be learned from among the images stored in the recording unit 404 using a dedicated application, and may learn.

<外部装置でSNSのサーバにアップロードされた情報からの学習>
次に、人と人の繋がりに主眼をおいた社会的なネットワークを構築できるサービスやウェブサイトであるソーシャル・ネットワーキング・サービス(SNS)における情報を学習に使用する方法について説明する。画像をSNSにアップロードする際に、外部装置301から画像に関するタグを入力した上で、画像と共に送信する技術がある。また、他のユーザがアップロードした画像に対して好き嫌いを入力する技術もあり、他のユーザがアップロードした画像が、外部装置301を所有するユーザの好みの写真であるかも判定できる。
<Learning from the information uploaded to the SNS server in the external device>
Next, a method of using information in a social networking service (SNS), which is a service or website that can build a social network focusing on the connection between people, is used for learning. When uploading an image to the SNS, there is a technique of inputting a tag relating to the image from the external device 301 and transmitting it along with the image. In addition, there is also a technology for inputting liking or dislike to images uploaded by other users, and it is possible to determine whether the images uploaded by the other users are photos of the user of the external apparatus 301 who prefers.

外部装置301内にダウンロードされた専用のSNSアプリケーションで、上記のようにユーザが自らアップロードした画像と画像についての情報を取得することができる。また、ユーザが他のユーザがアップロードした画像に対して好きか否かを入力することにより、ユーザの好みの画像やタグ情報を取得することもできる。それらの画像やタグ情報を解析し、カメラ101内で学習できるようにする。   The dedicated SNS application downloaded into the external device 301 can acquire the image and information about the image uploaded by the user as described above. Also, by inputting whether or not the user likes the image uploaded by another user, it is possible to acquire the user's favorite image and tag information. The images and tag information thereof are analyzed, and can be learned in the camera 101.

外部装置301の制御部411は、上記のようにユーザがアップロードした画像や、ユーザが好きと判定した画像を取得し、カメラ101内の学習処理部219と同等の能力で処理可能に構成される。そして、処理された学習用データをカメラ101に通信することで、学習を行う。あるいは、カメラ101に学習させたい画像を送信して、カメラ101内で学習するような構成にしてもよい。   The control unit 411 of the external device 301 is configured to obtain an image uploaded by the user as described above and an image determined to be liked by the user, and can be processed with the same capability as the learning processing unit 219 in the camera 101. . Then, learning is performed by communicating the processed data for learning to the camera 101. Alternatively, an image to be learned may be transmitted to the camera 101 and learning may be performed in the camera 101.

また、タグ情報に設定された被写体情報(例えば、犬、猫などの被写体物体情報、ビーチなどのシーン情報、スマイルなどの表情情報など)から、ユーザが好みであろう被写体情報を推定する。そして、ニューラルネットワークに入力する検出すべき被写体として登録することによる学習を行う。   In addition, subject information which the user may prefer is estimated from subject information (for example, subject object information such as a dog or a cat, scene information such as a beach, expression information such as a smile, etc.) set as tag information. Then, learning is performed by registering as a subject to be detected to be input to the neural network.

また、上記SNSでのタグ情報(画像フィルタ情報や被写体情報)の統計値から、世の中で今現在流行っている画像情報を推定し、カメラ101内で学習できる構成にすることもできる。   In addition, image information currently in circulation in the world can be estimated from statistical values of tag information (image filter information and subject information) in the SNS, and can be learned in the camera 101.

<外部装置でカメラパラメータを変更することによる学習>
上記で説明したとおり、カメラ101と外部装置301は、通信手段を有している。そして、カメラ101内に現在設定されている学習パラメータ(ニューラルネットワークの重みや、ニューラルネットワークに入力する被写体の選択など)を外部装置301に通信し、外部装置301の記憶部404に保存することができる。また、外部装置301内の専用のアプリケーションを用いて、専用のサーバにセットされた学習パラメータを公衆無線制御部406を介して取得し、カメラ101内の学習パラメータに設定することもできる。これにより、ある時点でのパラメータを外部装置301に保存しておいて、カメラ101に設定することで、学習パラメータを戻すこともできる。また、他のユーザが持つ学習パラメータを、専用のサーバを介して取得し、自身のカメラ101に設定することもできる。
<Learning by changing camera parameters in external device>
As described above, the camera 101 and the external device 301 have communication means. Then, the learning parameter (weight of neural network, selection of subject to be input to neural network, etc.) currently set in the camera 101 is communicated to the external device 301 and stored in the storage unit 404 of the external device 301. it can. In addition, using a dedicated application in the external device 301, learning parameters set in a dedicated server can be acquired via the public wireless control unit 406 and set as learning parameters in the camera 101. As a result, by storing the parameters at a certain point in the external device 301 and setting them in the camera 101, it is possible to return the learning parameters. In addition, learning parameters possessed by other users can be acquired via a dedicated server and set in their own cameras 101.

また、外部装置301の専用のアプリケーションを用いて、ユーザが登録した音声コマンドや認証登録、ジェスチャーを登録できるようにしてもよいし、重要な場所を登録してもよい。これらの情報は、自動撮影モード処理(図9)で説明した撮影トリガーや自動撮影判定の入力データとして扱われる。また、撮影頻度や起動間隔、静止画と動画の割合や好みの画像などを設定することができる構成とし、<低消費電力モード制御>で説明した起動間隔などの設定を行ってもよい。   Further, voice commands, authentication registrations, gestures registered by the user may be registered using an application dedicated to the external device 301, or important places may be registered. These pieces of information are treated as the imaging trigger described in the automatic imaging mode process (FIG. 9) and input data for automatic imaging determination. In addition, it is possible to set the shooting frequency, the start interval, the ratio of still images and moving pictures, a desired image, and the like, and the start interval described in <Low Power Consumption Mode Control> may be set.

<外部装置で画像が手動編集された情報からの学習>
外部装置301の専用のアプリケーションにユーザの操作により手動で編集できる機能を持たせ、編集作業の内容を学習にフィードバックすることもできる。例えば、画像効果付与(トリミング処理、回転処理、スライド、ズーム、フェード、色変換フィルタ効果、時間、静止画動画比率、BGM)の編集が可能である。そして、画像の学習情報に対して、手動で編集した画像効果付与が判定されるように、自動編集のニューラルネットワークを学習させる。
<Learning from the information on which the image was manually edited by an external device>
A dedicated application of the external device 301 can be provided with a function that can be manually edited by a user operation, and the contents of editing work can be fed back to learning. For example, editing of image effect application (trimming process, rotation process, slide, zoom, fade, color conversion filter effect, time, still image / moving image ratio, BGM) is possible. Then, a neural network for automatic editing is trained so that the manually added image effect is determined for the learning information of the image.

次に、学習処理シーケンスについて説明する。図7のステップS704のモード設定判定において、学習処理を行うべきか否かを判定し、学習処理を行うべきと判定された場合、ステップS716の学習モード処理を行う。   Next, the learning processing sequence will be described. In the mode setting determination in step S704 in FIG. 7, it is determined whether or not learning processing should be performed. If it is determined that the learning processing should be performed, the learning mode processing in step S716 is performed.

学習モードの判定条件について説明する。学習モードに移行するか否かは、前回学習処理を行ってからの経過時間と、学習に使用できる情報の数、通信機器を介して学習処理指示があったかなどから判定される。ステップS704のモード設定判定処理内で判定される、学習モードに移行すべきか否かの判定処理フローを図13に示す。   The determination conditions of the learning mode will be described. Whether or not to shift to the learning mode is determined based on the elapsed time since the previous learning process, the number of information that can be used for learning, and whether there is a learning process instruction via the communication device. FIG. 13 shows a flow of processing for determining whether or not to shift to the learning mode, which is determined in the mode setting determination processing of step S704.

ステップS704のモード設定判定処理内で学習モード判定が開始指示されると、図13の処理がスタートする。ステップS1401では、外部装置301からの登録指示があるか否かを判定する。ここでの登録は、上記で説明した<外部装置で画像を取得したことによる学習>や、<外部装置を介して画像に判定値を入力することによる学習>や、<外部装置内の保存されている画像を解析することによる学習>などの、学習するための登録指示があったか否かの判定である。   When the start of the learning mode determination is instructed in the mode setting determination process of step S704, the process of FIG. 13 starts. In step S1401, it is determined whether there is a registration instruction from the external apparatus 301. The registration here may be <learning by obtaining an image by an external device>, <learning by inputting a determination value to an image through an external device>, or <storage in an external device. It is determined whether or not there is a registration instruction for learning, such as learning by analyzing an image.

ステップS1401で、外部装置301からの登録指示があった場合、ステップS1408に進み、学習モード判定をTRUEにして、ステップS716の処理を行うように設定し、学習モード判定処理を終了する。ステップS1401で外部装置からの登録指示がない場合、ステップS1402に進む。   If there is a registration instruction from the external apparatus 301 in step S1401, the process advances to step S1408 to set the learning mode determination to TRUE, perform processing of step S716, and end the learning mode determination process. If there is no registration instruction from the external device in step S1401, the process advances to step S1402.

ステップS1402では外部装置からの学習指示があるか否かを判定する。ここでの学習指示は<外部装置でカメラパラメータを変更することによる学習>のように、学習パラメータをセットする指示があったか否かの判定である。ステップS1402で、外部装置からの学習指示があった場合、ステップS1408に進み、学習モード判定をTRUEにして、ステップS716の処理を行うように設定し、学習モード判定処理を終了する。ステップS1402で外部装置からの学習指示がない場合、ステップS1403に進む。   In step S1402, it is determined whether there is a learning instruction from an external device. The learning instruction here is a determination as to whether or not an instruction to set the learning parameter has been given, as in <Learning by changing camera parameters in external device>. If it is determined in step S1402 that there is a learning instruction from the external apparatus, the process advances to step S1408 to set the learning mode determination to TRUE, perform processing of step S716, and end the learning mode determination process. If it is determined in step S1402 that there is no learning instruction from the external apparatus, the process advances to step S1403.

ステップS1403では、前回の学習処理(ニューラルネットワークの重みの再計算)が行われてからの経過時間TimeNを取得し、ステップS1404に進む。ステップS1404では、学習する新規のデータ数DN(前回の学習処理が行われてからの経過時間TimeNの間で、学習するように指定された画像の数)を取得し、ステップS1405に進む。ステップS1405では、経過時間TimeNから学習モードに入るか否かを判定する閾値DTを演算する。閾値DTの値が小さいほど学習モードに入りやすく設定されている。例えば、TimeNが所定値よりも小さい場合の閾値DTの値であるDTaが、TimeNが所定値よりも大きい場合の閾値DTの値であるDTbよりも大きく設定されており、時間の経過とともに、閾値が小さくなるように設定されている。これにより、学習データが少ない場合においても、時間経過が大きいと学習モードに入りやすくして、再度学習することで、使用時間に応じてカメラが学習変化し易いようにされている。   In step S1403, an elapsed time Time N after the previous learning process (recalculation of weights of the neural network) is performed, and the process proceeds to step S1404. In step S 1404, the number of new data to be learned DN (the number of images designated to be learned during the elapsed time Time N since the previous learning process was performed) is acquired, and the process proceeds to step S 1405. In step S1405, a threshold value DT for determining whether to enter the learning mode is calculated from the elapsed time TimeN. The smaller the threshold value DT, the easier it is to enter the learning mode. For example, DTa, which is the value of the threshold DT when TimeN is smaller than a predetermined value, is set larger than DTb, which is the value of the threshold DT when TimeN is larger than the predetermined value. Is set to be small. As a result, even when the amount of learning data is small, if the time lapse is large, it is easy to enter the learning mode and learning is performed again so that the camera can easily change learning according to the time of use.

ステップS1405で閾値DTを演算すると、ステップS1406に進み、学習するデータ数DNが、閾値DTよりも大きいか否かを判定する。データ数DNが、閾値DTよりも大きい場合、ステップS1407に進み、DNを0に設定する。その後、ステップS1408に進み、学習モード判定をTRUEにして、ステップS716(図7)の処理を行うように設定し、学習モード判定処理を終了する。   After calculating the threshold value DT in step S1405, the process proceeds to step S1406, and it is determined whether the number of data to be learned DN is larger than the threshold value DT. If the number of data DN is larger than the threshold value DT, the process advances to step S1407 to set DN to 0. Thereafter, the process proceeds to step S1408, the learning mode determination is set to TRUE, and the process of step S716 (FIG. 7) is set to be performed, and the learning mode determination process is ended.

ステップS1406でDNが閾値DT以下の場合、ステップS1409に進む。外部装置からの登録指示も、外部装置からの学習指示もなく、且つ学習データ数も所定値以下であるので、学習モード判定をFALSEにし、ステップS716の処理は行わないように設定し、学習モード判定処理を終了する。   If it is determined in step S1406 that the DN is less than or equal to the threshold value DT, the process advances to step S1409. Since there is neither a registration instruction from an external device nor a learning instruction from an external device, and the number of learning data is less than a predetermined value, the learning mode determination is set to FALSE and the process of step S716 is set not to be performed. The determination process ends.

次に、学習モード処理(ステップS716)内の処理について説明する。学習モード処理の動作を示す詳細なフローチャートを図14に示す。   Next, the process in the learning mode process (step S716) will be described. A detailed flowchart showing the operation of the learning mode process is shown in FIG.

図7のステップS715で学習モードと判定され、ステップS716に進むと、図14の処理がスタートする。ステップS1501では、外部装置301からの登録指示があるか否かを判定する。ステップS1501で、外部装置301からの登録指示があった場合、ステップS1502に進む。ステップS1502では、各種登録処理を行う。   When it is determined in step S715 in FIG. 7 that the learning mode is set, and the process proceeds to step S716, the processing in FIG. 14 starts. In step S1501, it is determined whether there is a registration instruction from the external apparatus 301. If it is determined in step S1501 that a registration instruction is issued from the external apparatus 301, the process advances to step S1502. In step S1502, various registration processing is performed.

各種登録は、ニューラルネットワークに入力する特徴の登録であり、例えば顔認証の登録や、一般物体認識の登録や、音情報の登録や、場所情報の登録などである。登録処理を終了すると、ステップS1503に進み、ステップS1502で登録された情報から、ニューラルネットワークへ入力する要素を変更する。ステップS1503の処理を終了すると、ステップS1507に進む。   The various registrations are registrations of features to be input to the neural network, such as registration of face recognition, registration of general object recognition, registration of sound information, registration of location information, and the like. When the registration process is completed, the process proceeds to step S1503, and the element to be input to the neural network is changed from the information registered in step S1502. When the process of step S1503 ends, the process proceeds to step S1507.

ステップS1501で外部装置301からの登録指示がない場合、ステップS1504に進み、外部装置301からの学習指示があるか否かを判定する。外部装置301からの学習指示があった場合、ステップS1505に進み、外部装置301から通信された学習パラメータを各判定器(ニューラルネットワークの重みなど)に設定し、ステップS1507に進む。   If there is no registration instruction from the external device 301 in step S1501, the process advances to step S1504, and it is determined whether there is a learning instruction from the external device 301. If there is a learning instruction from the external device 301, the process proceeds to step S1505, the learning parameter communicated from the external device 301 is set in each determiner (weight of neural network, etc.), and the process proceeds to step S1507.

ステップS1504で外部装置301からの学習指示がない場合、ステップS1506で学習(ニューラルネットワークの重みの再計算)を行う。ステップS1506の処理に入るのは、図13を用いて説明したように、学習するデータ数DNが閾値DTを超えて、各判定器の再学習を行う場合である。誤差逆伝搬法或いは、勾配降下法などの方法を使って再学習させ、ニューラルネットワークの重みを再計算して、各判定器のパラメータを変更する。学習パラメータが設定されると、ステップS1507に進む。   If there is no learning instruction from the external device 301 in step S1504, learning (recalculation of weights of neural networks) is performed in step S1506. The process of step S1506 is performed as in the case where the number of data to be learned DN exceeds the threshold value DT and the respective determinators are relearned, as described with reference to FIG. Retraining is performed using a method such as error back propagation method or gradient descent method, and weights of the neural network are recalculated to change parameters of each decision unit. When the learning parameter is set, the process proceeds to step S1507.

ステップS1507では、ファイル内の画像を再スコア付けする。本実施形態においては、学習結果に基づいてファイル(記録媒体221)内に保存されている全ての撮影画像にスコアを付けておき、付けられたスコアに応じて、自動編集や自動ファイル削除を行う構成となっている。よって、再学習や外部装置からの学習パラメータのセットが行われた場合には、撮影済み画像のスコアも更新を行う必要がある。よって、ステップS1507では、ファイル内に保存されている撮影画像に対して新たなスコアを付ける再計算が行われ、処理が終了すると学習モード処理を終了する。   In step S1507, the images in the file are re-scored. In the present embodiment, all photographed images stored in the file (recording medium 221) are scored based on learning results, and automatic editing and automatic file deletion are performed according to the scored scores. It is a structure. Therefore, when re-learning or setting of learning parameters from an external device is performed, it is necessary to update the score of the photographed image. Therefore, in step S1507, recalculation is performed to add a new score to the captured image stored in the file, and when the process ends, the learning mode process ends.

本実施形態においては、ユーザが好むと思われるシーンを抽出し、その特徴を学習し、自動撮影や自動編集といったカメラ動作に反映させることにより、ユーザの好みの映像を提案する方法を説明したが、本発明はこの用途に限定されるものではない。例えば、あえてユーザ自身の好みとは異なる映像を提案する用途に用いることもできる。その実現方法の例としては、以下のとおりである。   In the present embodiment, a method has been described in which a user's favorite video is proposed by extracting a scene that the user seems to like, learning its features, and reflecting it on camera operations such as automatic shooting and automatic editing. The invention is not limited to this application. For example, it can also be used for an application that proposes an image different from the user's own preference. As an example of the realization method, it is as follows.

<好みを学習させたニューラルネットワークを用いる方法>
学習については、上記で説明したとおりの方法により、ユーザの好みを学習する。そして、<自動撮影>のS908において、ニューラルネットワークの出力値が、教師データであるユーザの好みとは異なることを示す値であるときに自動撮影を行う。例えば、ユーザが好んだ画像を教師画像とし、教師画像と類似する特徴を示すときに高い値が出力されように学習をさせた場合は、逆に出力値が所定値より低いことを条件として自動撮影を行う。また、同様に被写体探索処理や自動編集処理においても、ニューラルネットワークの出力値が、教師データであるユーザの好みとは異なることを示す値となる処理を実行する。
<Method using neural network with learning preference>
For learning, the user's preference is learned by the method described above. Then, in S908 of <automatic imaging>, automatic imaging is performed when the output value of the neural network is a value indicating that it is different from the user's preference which is teacher data. For example, if an image preferred by the user is used as a teacher image, and learning is performed so that a high value is output when showing a feature similar to the teacher image, conversely, the condition is that the output value is lower than a predetermined value. Perform automatic shooting. Similarly, also in the subject searching process and the automatic editing process, a process is performed in which the output value of the neural network becomes a value indicating that it is different from the user's preference as teacher data.

<好みとは異なる状況を学習させたニューラルネットワークを用いる方法>
この方法では、学習処理の時点で、ユーザの好みとは異なる状況を教師データとして学習する。例えば、上記では、手動で撮影した画像はユーザが好んで撮影したシーンであるとして、これを教師データとする学習方法について説明した。しかし、ここでは、逆に手動撮影した画像は教師データとして使用せず、所定時間以上手動撮影が行われなかったシーンを教師データとして追加する。あるいは、教師データの中に手動撮影した画像と特徴が類似するシーンがあれば、教師データから削除するようにしてもよい。また、外部装置で取得した画像と特徴が異なる画像を教師データに加えるか、取得した画像と特徴が似た画像を教師データから削除するようにしてもよい。このようにすることで、教師データには、ユーザの好みと異なるデータが集まり、学習の結果、ニューラルネットワークは、ユーザの好みと異なる状況を判別することができるようになる。そして、自動撮影ではそのニューラルネットワークの出力値に応じて撮影を行うことで、ユーザの好みとは異なるシーンを撮影することができる。
<How to use a neural network trained on a situation different from preference>
In this method, at the time of learning processing, a situation different from the user's preference is learned as teacher data. For example, in the above description, it is assumed that the image photographed manually is a scene photographed preferably by the user, and the learning method in which this is used as teacher data has been described. However, here, the image taken manually is not used as teacher data, and a scene for which manual shooting has not been performed for a predetermined time or more is added as teacher data. Alternatively, if there is a scene whose feature is similar to the manually captured image in the teacher data, it may be deleted from the teacher data. Further, an image having a feature different from the image acquired by the external device may be added to the teacher data, or an image having a feature similar to the acquired image may be deleted from the teacher data. By doing this, data different from the user's preference is collected in the teacher data, and as a result of learning, the neural network can determine a situation different from the user's preference. Then, in the automatic shooting, a scene different from the user's preference can be shot by shooting according to the output value of the neural network.

上記のように、あえてユーザ自身の好みとは異なる映像を提案することにより、ユーザが手動で撮影をしないであろうシーンが撮影され、撮り逃しを減少させることができる。また、ユーザ自身の発想にないシーンでの撮影を提案することで、ユーザに気付きを与えたり、嗜好の幅を広げたりする効果が期待できる。   As described above, by intentionally proposing a video different from the user's own preference, it is possible to capture a scene where the user will not manually shoot and reduce missed shots. Also, by proposing shooting in a scene that is not in the user's own idea, it is possible to expect the effect of making the user aware or broadening the range of preference.

また、上記の方法を組み合わせることにより、ユーザの好みと多少似ているが一部違う状況の提案もでき、ユーザの好みに対する適合度合いを調節することも容易である。ユーザの好みに対する適合度合いは、モード設定や、各種センサの状態、検出情報の状態に応じて変更してもよい。   Further, by combining the above methods, it is possible to propose a situation that is somewhat similar to, but partially different from, the user's preference, and it is easy to adjust the degree of conformity to the user's preference. The degree of conformity to the preference of the user may be changed according to the mode setting, the state of various sensors, and the state of detection information.

本実施形態においては、カメラ101内で学習する構成について説明した。しかし、外部装置301側に学習機能を持ち、学習に必要なデータを外部装置301に通信し、外部装置側でのみ学習を実行する構成でも同様の学習効果を実現可能である。その場合、上記の<外部装置でカメラパラメータを変更することによる学習>で説明したように、外部装置側で学習したニューラルネットワークの重みなどのパラメータをカメラ101に通信により設定することで学習を行う構成にしてもよい。   In the present embodiment, the configuration for learning in the camera 101 has been described. However, the same learning effect can be realized with a configuration in which the external device 301 has a learning function, data necessary for learning is communicated to the external device 301, and learning is performed only on the external device. In that case, as described above in <Learning by changing the camera parameters in the external device>, learning is performed by setting parameters such as weights of the neural network learned on the external device side to the camera 101 by communication. It may be configured.

また、カメラ101内と、外部装置301内の両方に、それぞれ学習機能を持つ構成にし、例えばカメラ101内で学習モード処理(ステップS716)が行われるタイミングで外部装置301が持つ学習情報をカメラ101に通信し、学習パラメータをマージすることで学習を行う構成にしてもよい。   In addition, both the camera 101 and the external device 301 have a learning function, and for example, the camera 101 can learn the learning information possessed by the external device 301 at the timing when the learning mode processing (step S716) is performed in the camera 101. , And may be configured to perform learning by merging learning parameters.

(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
(Other embodiments)
Furthermore, the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read the program. It can also be realized by the process to be executed. It can also be implemented by a circuit (eg, an ASIC) that implements one or more functions.

本発明の実施様態の例を以下に列挙する。   Examples of embodiments of the present invention are listed below.

(実施様態1) 被写体像を撮像して画像データを出力する撮像手段と、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御手段と、
前記撮影動作の頻度に関する情報を取得する取得手段と、
を備え、
前記制御手段は、前記頻度に関する情報に応じて、前記撮影動作を実施するか否かを決定するための閾値を変更することを特徴とする撮像装置。
(Embodiment 1) Imaging means for imaging a subject image and outputting image data
Control means for controlling whether or not to carry out an imaging operation for recording the image data output by the imaging means;
Acquisition means for acquiring information on the frequency of the photographing operation;
Equipped with
The image pickup apparatus, wherein the control means changes a threshold for determining whether to perform the photographing operation according to the information related to the frequency.

(実施様態2)
被写体の情報を検出する検出手段を更に備え、
前記制御手段は、前記撮影動作を実施するか否かを、前記被写体の情報を前記閾値と比較することにより決定することを特徴とする実施様態1に記載の撮像装置。
(Embodiment 2)
It further comprises detection means for detecting information of the subject,
2. The image pickup apparatus according to claim 1, wherein the control means determines whether or not to carry out the photographing operation by comparing information of the subject with the threshold value.

(実施様態3)
前記検出手段は、検出された音および前記撮像手段により撮像された画像データの少なくとも一方に基づいて、被写体の情報を検出することを特徴とする実施様態2に記載の撮像装置。
(Embodiment 3)
3. The imaging apparatus according to claim 2, wherein the detection unit detects information of a subject based on at least one of a detected sound and image data captured by the imaging unit.

(実施様態4)
前記閾値の初期値は、過去の学習の結果に基づいて決定されることを特徴とする実施様態1乃至3のいずれか1つに記載の撮像装置。
(Embodiment 4)
4. The imaging apparatus according to any one of the embodiments 1 to 3, wherein the initial value of the threshold is determined based on a result of past learning.

(実施様態5)
前記撮影動作の頻度に関する情報は、一定期間ごとの撮影枚数であることを特徴とする実施様態1乃至4のいずれか1つに記載の撮像装置。
(Embodiment 5)
4. The image pickup apparatus according to any one of the embodiments 1 to 4, wherein the information related to the frequency of the photographing operation is the number of photographed images for every predetermined period.

(実施様態6)
前記制御手段は、過去の撮影枚数に基づいて、次の一定期間の前記閾値を決定することを特徴とする実施様態5に記載の撮像装置。
(Embodiment 6)
6. The imaging apparatus according to embodiment 5, wherein the control means determines the threshold for a next fixed period based on the number of times of imaging in the past.

(実施様態7)
所定期間における目標撮影枚数を決定する決定手段を更に備え、
前記制御手段は、前記目標撮影枚数と、前記頻度に関する情報とに基づいて、前記撮影動作を実施するか否かを判定するための閾値を変更することを特徴とする実施様態1乃至6のいずれか1つに記載の撮像装置。
(Embodiment 7)
The apparatus further comprises determination means for determining a target number of shots in a predetermined period,
7. The control method according to any one of the embodiments 1 to 6, wherein the control means changes a threshold value for determining whether or not to perform the imaging operation based on the target number of imaging and the information on the frequency. The imaging device according to any one of the items.

(実施様態8)
前記制御手段は、撮影時間の経過とともに前記目標撮影枚数に向けて、撮影枚数が直線的に増加するように前記閾値を変更することを特徴とする実施様態7に記載の撮像装置。
(Embodiment 8)
9. The imaging apparatus according to claim 7, wherein the control unit changes the threshold value so that the number of captured images increases linearly toward the target number of captured images as the imaging time elapses.

(実施様態9)
前記決定手段は、ユーザによる手動による入力または音声による入力に基づいて設定された撮影条件に基づいて前記目標撮影枚数を決定することを特徴とする実施様態7または8に記載の撮像装置。
(Embodiment 9)
9. The imaging apparatus according to claim 7, wherein the determination unit determines the target number of shot images based on a shooting condition set based on a manual input or a voice input by a user.

(実施様態10)
前記ユーザによる手動による入力または音声による入力は、スマートデバイスを用いて行われることを特徴とする実施様態9に記載の撮像装置。
(Embodiment 10)
10. The imaging apparatus according to embodiment 9, wherein the user's manual input or voice input is performed using a smart device.

(実施様態11)
前記撮影条件は、総撮影時間の情報を含むことを特徴とする実施様態9または10に記載の撮像装置。
(Embodiment 11)
11. The imaging device according to embodiment 9 or 10, wherein the imaging condition includes information of a total imaging time.

(実施様態12)
前記撮影条件は、さらに記録媒体およびバッテリーの残量の情報を含むことを特徴とする実施様態11に記載の撮像装置。
(Embodiment 12)
12. The image pickup apparatus according to claim 11, wherein the photographing condition further includes information of a recording medium and a remaining amount of a battery.

(実施形態13)
被写体像を撮像して画像データを出力する撮像手段と、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御手段と、
被写体の顔を検出する検出手段と、
前記検出手段により検出された被写体の顔の状態を判定する判定手段と、
前記撮影動作の頻度に関する情報を取得する取得手段と、
を備え、
前記制御手段は、前記判定手段により判定された被写体の顔の状態が同じであっても、前記頻度が第1の頻度の場合には撮影動作を実施し、前記頻度が第2の頻度の場合には撮影動作を実施しないように制御することを特徴とする撮像装置。
(Embodiment 13)
Imaging means for imaging a subject image and outputting image data;
Control means for controlling whether or not to carry out an imaging operation for recording the image data output by the imaging means;
Detection means for detecting the face of the subject;
A determination unit that determines the state of the face of the subject detected by the detection unit;
Acquisition means for acquiring information on the frequency of the photographing operation;
Equipped with
The control means performs the photographing operation when the frequency is the first frequency even if the condition of the face of the subject determined by the determination means is the same, and the case where the frequency is the second frequency And an imaging device characterized by performing control so as not to carry out a photographing operation.

(実施形態14)
前記被写体の顔の状態とは、被写体の顔の表情、被写体の顔の向き、被写体の目の開き具合、被写体の視線、被写体の姿勢、被写体の動作の状態であることを特徴とする実施形態13に記載の撮像装置。
(Embodiment 14)
The state of the subject's face includes the expression of the face of the subject, the direction of the face of the subject, the degree of opening of the subject's eyes, the line of sight of the subject, the attitude of the subject, and the state of the action of the subject. 13. The imaging device according to 13.

(実施形態15)
前記撮像手段の向きを被写体に向けるために、前記撮像手段の向きを変更する変更手段を更に備え、
前記変更手段は、前記頻度に応じて、前記撮像手段の向きを変更する可動範囲を変更することを特徴とする実施形態1乃至14のいずれか1つに記載の撮像装置。
(Fifteenth Embodiment)
It further comprises changing means for changing the direction of the imaging means in order to direct the direction of the imaging means to the subject,
15. The image pickup apparatus according to any one of the embodiments 1 to 14, wherein the change unit changes a movable range in which the orientation of the image pickup unit is changed according to the frequency.

(実施形態16)
前記変更手段は、前記撮像手段を、パン方向およびチルト方向に回動させることを特徴とする実施形態15に記載の撮像装置。
(Sixteenth Embodiment)
The imaging device according to the fifteenth embodiment, wherein the change unit rotates the imaging unit in a pan direction and a tilt direction.

(実施形態17)
前記撮像手段への被写体像を拡大あるいは縮小するためのズーム手段をさらに備え、
前記ズーム手段は、前記頻度に応じて、前記拡大あるいは縮小の制御を変更することを特徴とする実施形態1乃至16のいずれか1つに記載の撮像装置。
(Seventeenth Embodiment)
It further comprises zoom means for enlarging or reducing the image of the subject on the imaging means,
17. The image pickup apparatus according to any one of the embodiments 1 to 16, wherein the zoom unit changes the control of the enlargement or reduction according to the frequency.

(実施形態18)
被写体像を撮像して画像データを出力する撮像手段を備える撮像装置を制御する方法であって、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御工程と、
前記撮影動作の頻度に関する情報を取得する取得工程と、を有し、
前記制御工程では、前記頻度に関する情報に応じて、前記撮影動作を実施するか否かを決定するための閾値を変更することを特徴とする撮像装置の制御方法。
(Embodiment 18)
A method of controlling an image pickup apparatus comprising an image pickup means for picking up an image of a subject and outputting image data, comprising:
A control step of controlling whether or not to perform a photographing operation of recording the image data output by the imaging unit;
Obtaining an information related to the frequency of the photographing operation;
In the control step, a threshold value for determining whether to perform the photographing operation is changed according to the information related to the frequency.

(実施形態19)
被写体像を撮像して画像データを出力する撮像手段を備える撮像装置を制御する方法であって、
被写体の顔を検出する検出工程と、
前記検出工程により検出された被写体の顔の状態を判定する判定工程と、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御工程と、
前記撮影動作の頻度に関する情報を取得する取得工程と、を有し、
前記制御工程では、前記判定工程により判定された被写体の顔の状態が同じであっても、前記頻度が第1の頻度の場合には撮影動作を実施し、前記頻度が第2の頻度の場合には撮影動作を実施しないように制御することを特徴とする撮像装置の制御方法。
(Embodiment 19)
A method of controlling an image pickup apparatus comprising an image pickup means for picking up an image of a subject and outputting image data, comprising:
Detecting the face of the subject;
A determination step of determining the state of the face of the subject detected by the detection step;
A control step of controlling whether or not to perform a photographing operation of recording the image data output by the imaging unit;
Obtaining an information related to the frequency of the photographing operation;
In the control step, even if the condition of the face of the subject determined in the determination step is the same, the photographing operation is performed if the frequency is the first frequency, and the frequency is the second frequency A control method of an image pickup apparatus, wherein control is performed so as not to carry out a photographing operation.

(実施形態20)
実施形態18または19に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。
(Embodiment 20)
The program for making a computer perform each process of the control method of embodiment 18 or 19.

(実施形態21)
実施形態18または19に記載の制御方法の各工程をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。
(Embodiment 21)
20. A computer-readable storage medium storing a program for causing a computer to execute the steps of the control method according to embodiment 18 or 19.

101:カメラ、301:スマートデバイス、501:ウエアラブルデバイス、104:チルト回転ユニット、105:パン回転ユニット 101: camera, 301: smart device, 501: wearable device, 104: tilt rotation unit, 105: pan rotation unit

Claims (21)

被写体像を撮像して画像データを出力する撮像手段と、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御手段と、
前記撮影動作の頻度に関する情報を取得する取得手段と、
を備え、
前記制御手段は、前記頻度に関する情報に応じて、前記撮影動作を実施するか否かを決定するための閾値を変更することを特徴とする撮像装置。
Imaging means for imaging a subject image and outputting image data;
Control means for controlling whether or not to carry out an imaging operation for recording the image data output by the imaging means;
Acquisition means for acquiring information on the frequency of the photographing operation;
Equipped with
The image pickup apparatus, wherein the control means changes a threshold for determining whether to perform the photographing operation according to the information related to the frequency.
被写体の情報を検出する検出手段を更に備え、
前記制御手段は、前記撮影動作を実施するか否かを、前記被写体の情報を前記閾値と比較することにより決定することを特徴とする請求項1に記載の撮像装置。
It further comprises detection means for detecting information of the subject,
The imaging apparatus according to claim 1, wherein the control unit determines whether to perform the imaging operation by comparing information of the subject with the threshold.
前記検出手段は、検出された音および前記撮像手段により撮像された画像データの少なくとも一方に基づいて、被写体の情報を検出することを特徴とする請求項2に記載の撮像装置。   3. The image pickup apparatus according to claim 2, wherein the detection unit detects information of a subject based on at least one of the detected sound and the image data captured by the imaging unit. 前記閾値の初期値は、過去の学習の結果に基づいて決定されることを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。   The imaging apparatus according to any one of claims 1 to 3, wherein the initial value of the threshold is determined based on a result of past learning. 前記撮影動作の頻度に関する情報は、一定期間ごとの撮影枚数であることを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。   The image pickup apparatus according to any one of claims 1 to 4, wherein the information on the frequency of the photographing operation is the number of photographed images at predetermined intervals. 前記制御手段は、過去の撮影枚数に基づいて、次の一定期間の前記閾値を決定することを特徴とする請求項5に記載の撮像装置。   The imaging apparatus according to claim 5, wherein the control unit determines the threshold for a next fixed period based on the number of captured images in the past. 所定期間における目標撮影枚数を決定する決定手段を更に備え、
前記制御手段は、前記目標撮影枚数と、前記頻度に関する情報とに基づいて、前記撮影動作を実施するか否かを判定するための閾値を変更することを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。
The apparatus further comprises determination means for determining a target number of shots in a predetermined period,
The controller according to any one of claims 1 to 6, wherein the control means changes a threshold value for determining whether or not to perform the imaging operation based on the target number of imaging and the information on the frequency. An imaging device according to claim 1.
前記制御手段は、撮影時間の経過とともに前記目標撮影枚数に向けて、撮影枚数が直線的に増加するように前記閾値を変更することを特徴とする請求項7に記載の撮像装置。   8. The image pickup apparatus according to claim 7, wherein the control means changes the threshold so that the number of photographed images increases linearly toward the target number of photographed images as the photographing time passes. 前記決定手段は、ユーザによる手動による入力または音声による入力に基づいて設定された撮影条件に基づいて前記目標撮影枚数を決定することを特徴とする請求項7または8に記載の撮像装置。   9. The image pickup apparatus according to claim 7, wherein the determination unit determines the target number of shot images based on a shooting condition set based on a manual input or a voice input by a user. 前記ユーザによる手動による入力または音声による入力は、スマートデバイスを用いて行われることを特徴とする請求項9に記載の撮像装置。   The imaging apparatus according to claim 9, wherein the user's manual input or voice input is performed using a smart device. 前記撮影条件は、総撮影時間の情報を含むことを特徴とする請求項9または10に記載の撮像装置。   The imaging apparatus according to claim 9, wherein the imaging condition includes information of a total imaging time. 前記撮影条件は、さらに記録媒体およびバッテリーの残量の情報を含むことを特徴とする請求項11に記載の撮像装置。   The image pickup apparatus according to claim 11, wherein the photographing condition further includes information of a recording medium and a remaining amount of a battery. 被写体像を撮像して画像データを出力する撮像手段と、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御手段と、
被写体の顔を検出する検出手段と、
前記検出手段により検出された被写体の顔の状態を判定する判定手段と、
前記撮影動作の頻度に関する情報を取得する取得手段と、
を備え、
前記制御手段は、前記判定手段により判定された被写体の顔の状態が同じであっても、前記頻度が第1の頻度の場合には撮影動作を実施し、前記頻度が第2の頻度の場合には撮影動作を実施しないように制御することを特徴とする撮像装置。
Imaging means for imaging a subject image and outputting image data;
Control means for controlling whether or not to carry out an imaging operation for recording the image data output by the imaging means;
Detection means for detecting the face of the subject;
A determination unit that determines the state of the face of the subject detected by the detection unit;
Acquisition means for acquiring information on the frequency of the photographing operation;
Equipped with
The control means performs the photographing operation when the frequency is the first frequency even if the condition of the face of the subject determined by the determination means is the same, and the case where the frequency is the second frequency And an imaging device characterized by performing control so as not to carry out a photographing operation.
前記被写体の顔の状態とは、被写体の顔の表情、被写体の顔の向き、被写体の目の開き具合、被写体の視線、被写体の姿勢、被写体の動作の状態であることを特徴とする請求項13に記載の撮像装置。   The state of the subject's face includes the expression of the face of the subject, the direction of the face of the subject, the degree of opening of the subject's eyes, the line of sight of the subject, the attitude of the subject, and the state of the action of the subject. 13. The imaging device according to 13. 前記撮像手段の向きを被写体に向けるために、前記撮像手段の向きを変更する変更手段を更に備え、
前記変更手段は、前記頻度に応じて、前記撮像手段の向きを変更する可動範囲を変更することを特徴とする請求項1乃至14のいずれか1項に記載の撮像装置。
It further comprises changing means for changing the direction of the imaging means in order to direct the direction of the imaging means to the subject,
The imaging apparatus according to any one of claims 1 to 14, wherein the changing unit changes a movable range in which the direction of the imaging unit is changed according to the frequency.
前記変更手段は、前記撮像手段を、パン方向およびチルト方向に回動させることを特徴とする請求項15に記載の撮像装置。   16. The image pickup apparatus according to claim 15, wherein the change unit rotates the image pickup unit in a pan direction and a tilt direction. 前記撮像手段への被写体像を拡大あるいは縮小するためのズーム手段をさらに備え、
前記ズーム手段は、前記頻度に応じて、前記拡大あるいは縮小の制御を変更することを特徴とする請求項1乃至16のいずれか1項に記載の撮像装置。
It further comprises zoom means for enlarging or reducing the image of the subject on the imaging means,
The image pickup apparatus according to any one of claims 1 to 16, wherein the zoom unit changes the control of the enlargement or reduction according to the frequency.
被写体像を撮像して画像データを出力する撮像手段を備える撮像装置を制御する方法であって、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御工程と、
前記撮影動作の頻度に関する情報を取得する取得工程と、を有し、
前記制御工程では、前記頻度に関する情報に応じて、前記撮影動作を実施するか否かを決定するための閾値を変更することを特徴とする撮像装置の制御方法。
A method of controlling an image pickup apparatus comprising an image pickup means for picking up an image of a subject and outputting image data, comprising:
A control step of controlling whether or not to perform a photographing operation of recording the image data output by the imaging unit;
Obtaining an information related to the frequency of the photographing operation;
In the control step, a threshold value for determining whether to perform the photographing operation is changed according to the information related to the frequency.
被写体像を撮像して画像データを出力する撮像手段を備える撮像装置を制御する方法であって、
被写体の顔を検出する検出工程と、
前記検出工程により検出された被写体の顔の状態を判定する判定工程と、
前記撮像手段によって出力された画像データを記録する撮影動作を実施するか否か制御する制御工程と、
前記撮影動作の頻度に関する情報を取得する取得工程と、を有し、
前記制御工程では、前記判定工程により判定された被写体の顔の状態が同じであっても、前記頻度が第1の頻度の場合には撮影動作を実施し、前記頻度が第2の頻度の場合には撮影動作を実施しないように制御することを特徴とする撮像装置の制御方法。
A method of controlling an image pickup apparatus comprising an image pickup means for picking up an image of a subject and outputting image data, comprising:
Detecting the face of the subject;
A determination step of determining the state of the face of the subject detected by the detection step;
A control step of controlling whether or not to perform a photographing operation of recording the image data output by the imaging unit;
Obtaining an information related to the frequency of the photographing operation;
In the control step, even if the condition of the face of the subject determined in the determination step is the same, the photographing operation is performed if the frequency is the first frequency, and the frequency is the second frequency A control method of an image pickup apparatus, wherein control is performed so as not to carry out a photographing operation.
請求項18または19に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。   A program for causing a computer to execute each step of the control method according to claim 18 or 19. 請求項18または19に記載の制御方法の各工程をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。   A computer readable storage medium storing a program for causing a computer to execute each step of the control method according to claim 18 or 19.
JP2018217522A 2017-12-18 2018-11-20 Imaging device, its control method, program, storage medium Active JP7403218B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/044547 WO2019124055A1 (en) 2017-12-18 2018-12-04 Image capturing device, control method therefor, program, and storage medium
US16/901,741 US11303802B2 (en) 2017-12-18 2020-06-15 Image capturing apparatus, control method therefor, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242229 2017-12-18
JP2017242229 2017-12-18

Publications (2)

Publication Number Publication Date
JP2019110525A true JP2019110525A (en) 2019-07-04
JP7403218B2 JP7403218B2 (en) 2023-12-22

Family

ID=67180316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217522A Active JP7403218B2 (en) 2017-12-18 2018-11-20 Imaging device, its control method, program, storage medium

Country Status (1)

Country Link
JP (1) JP7403218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057815A (en) * 2019-09-30 2021-04-08 キヤノン株式会社 Imaging apparatus, control method of the same, program, and storage medium
WO2021186961A1 (en) * 2020-03-16 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 Signal processing device and signal processing method
DE112020002873T5 (en) 2019-06-13 2022-03-10 Isuzu Motors Limited INSPECTION ASSISTANCE PROGRAM, INSPECTION ASSISTANCE SYSTEM AND CONTROL METHOD FOR AN INSPECTION ASSISTANCE DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111041A (en) * 2001-09-28 2003-04-11 Canon Inc Image processor, image processing system, image processing method, storage medium and program
JP2008160701A (en) * 2006-12-26 2008-07-10 Sky Kk Camera and photographic control program for the camera
JP2011030164A (en) * 2009-07-29 2011-02-10 Sony Corp Image pickup apparatus, image pickup system, image pickup method, and program
JP2012231327A (en) * 2011-04-26 2012-11-22 Canon Inc Imaging apparatus, imaging method, and program
WO2016199483A1 (en) * 2015-06-08 2016-12-15 ソニー株式会社 Image processing apparatus, image processing method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111041A (en) * 2001-09-28 2003-04-11 Canon Inc Image processor, image processing system, image processing method, storage medium and program
JP2008160701A (en) * 2006-12-26 2008-07-10 Sky Kk Camera and photographic control program for the camera
JP2011030164A (en) * 2009-07-29 2011-02-10 Sony Corp Image pickup apparatus, image pickup system, image pickup method, and program
JP2012231327A (en) * 2011-04-26 2012-11-22 Canon Inc Imaging apparatus, imaging method, and program
WO2016199483A1 (en) * 2015-06-08 2016-12-15 ソニー株式会社 Image processing apparatus, image processing method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020002873T5 (en) 2019-06-13 2022-03-10 Isuzu Motors Limited INSPECTION ASSISTANCE PROGRAM, INSPECTION ASSISTANCE SYSTEM AND CONTROL METHOD FOR AN INSPECTION ASSISTANCE DEVICE
JP2021057815A (en) * 2019-09-30 2021-04-08 キヤノン株式会社 Imaging apparatus, control method of the same, program, and storage medium
US11818457B2 (en) 2019-09-30 2023-11-14 Canon Kabushiki Kaisha Image capturing apparatus, control method therefor, and storage medium
JP7527769B2 (en) 2019-09-30 2024-08-05 キヤノン株式会社 Imaging device, control method thereof, program, and storage medium
WO2021186961A1 (en) * 2020-03-16 2021-09-23 ソニーセミコンダクタソリューションズ株式会社 Signal processing device and signal processing method
US11985424B2 (en) 2020-03-16 2024-05-14 Sony Semiconductor Solutions Corporation Signal processing device and signal processing method for correcting input signal from sensor

Also Published As

Publication number Publication date
JP7403218B2 (en) 2023-12-22

Similar Documents

Publication Publication Date Title
JP7423685B2 (en) Image processing device and its control method
WO2019124055A1 (en) Image capturing device, control method therefor, program, and storage medium
JP6799660B2 (en) Image processing device, image processing method, program
JP6641446B2 (en) Image processing method, image processing device, imaging device, program, storage medium
CN111294488B (en) Image pickup apparatus, control method thereof, and storage medium
JP7233162B2 (en) IMAGING DEVICE AND CONTROL METHOD THEREOF, PROGRAM, STORAGE MEDIUM
CN109981976B (en) Image pickup apparatus, control method thereof, and storage medium
KR102475999B1 (en) Image processing apparatus and method for controling thereof
CN110557560B (en) Image pickup apparatus, control method thereof, and storage medium
JP2022070684A (en) Imaging device, control method thereof, and program
JP7545505B2 (en) Imaging device, control method thereof, and program
JP7403218B2 (en) Imaging device, its control method, program, storage medium
CN111105039A (en) Information processing apparatus, control method thereof, and memory
JP7527769B2 (en) Imaging device, control method thereof, program, and storage medium
US11032468B2 (en) Image processing apparatus, image processing method, image capturing apparatus, and storage medium
JP7199808B2 (en) Imaging device and its control method
JP6896818B2 (en) Information processing equipment, information processing methods, and programs
JP2020145556A (en) Imaging device and control method thereof, program, and storage medium
JP2023127983A (en) Imaging apparatus, method for controlling the same, and program
JP2020195099A (en) Image processing device, and image processing method, imaging device, program, and storage medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231212

R151 Written notification of patent or utility model registration

Ref document number: 7403218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151