JP2019110399A - Antenna device and antenna directivity control method - Google Patents

Antenna device and antenna directivity control method Download PDF

Info

Publication number
JP2019110399A
JP2019110399A JP2017241016A JP2017241016A JP2019110399A JP 2019110399 A JP2019110399 A JP 2019110399A JP 2017241016 A JP2017241016 A JP 2017241016A JP 2017241016 A JP2017241016 A JP 2017241016A JP 2019110399 A JP2019110399 A JP 2019110399A
Authority
JP
Japan
Prior art keywords
antenna
terminal
directivity
control method
specific area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017241016A
Other languages
Japanese (ja)
Other versions
JP6969347B2 (en
Inventor
友規 村上
Tomoki Murakami
友規 村上
俊朗 中平
Toshiro Nakahira
俊朗 中平
浩一 石原
Koichi Ishihara
浩一 石原
守 秋元
Mamoru Akimoto
守 秋元
崇文 林
Takafumi Hayashi
崇文 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017241016A priority Critical patent/JP6969347B2/en
Publication of JP2019110399A publication Critical patent/JP2019110399A/en
Application granted granted Critical
Publication of JP6969347B2 publication Critical patent/JP6969347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

To set an antenna directivity according to a radio environment such as a distribution of terminals by recombination of multiple antenna elements used for MIMO transmission.SOLUTION: An antenna device, including a plurality of antenna elements each having a predetermined antenna directivity, corresponding to MIMO transmission with a terminal existing in the periphery, has a configuration in which a plurality of multiple rotary joints with antenna elements disposed at a side of a cylindrical shape is stacked, each of the rotary joints is rotated independently, and one or several pieces of antenna directivity are formed as a whole.SELECTED DRAWING: Figure 1

Description

本発明は、MIMO伝送を行う無線アクセスシステムの基地局で用いるアンテナ装置、および基地局周辺の端末の分布等の通信環境に対応してアンテナ指向性を調整するアンテナ指向性制御方法に関する。   The present invention relates to an antenna apparatus used in a base station of a radio access system for performing MIMO transmission, and an antenna directivity control method for adjusting antenna directivity corresponding to a communication environment such as distribution of terminals around the base station.

5GHz帯の電磁波を用いる高速無線アクセスシステムには、IEEE802.11a、IEEE802.11n、IEEE802.11acなどの規格に基づくものがある。   High-speed wireless access systems using electromagnetic waves in the 5 GHz band include those based on standards such as IEEE 802.11a, IEEE 802.11n, and IEEE 802.11 ac.

IEEE802.11aの規格に基づく高速無線アクセスシステムは、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変調方式を用いることにより、マルチパスフェージング環境での特性を安定化させて、最大54Mbit/s のスループットを実現している。   The high-speed wireless access system based on the IEEE802.11a standard stabilizes the characteristics in a multipath fading environment by using an orthogonal frequency division multiplexing (OFDM) modulation scheme to achieve a maximum of 54 Mbit / s. Throughput is realized.

IEEE802.11nの規格に基づく高速無線アクセスシステムは、複数のアンテナを用いて同一の無線チャネルで空間分割多重を行うMIMO(Multiple Input Multiple Output)や、20MHzの周波数チャネルを2つ同時に利用して40MHzの周波数チャネルを利用するチャネルボンディング技術を用いて、最大 600Mbit/s の伝送速度を実現している。   A high-speed wireless access system based on the IEEE802.11n standard uses MIMO (Multiple Input Multiple Output) to perform space division multiplexing with the same wireless channel using multiple antennas, and 40 MHz simultaneously using two 20 MHz frequency channels. The channel bonding technology, which utilizes the frequency channel of, achieves transmission speeds of up to 600 Mbit / s.

IEEE802.11acの規格に基づく高速無線アクセスシステムは、20MHzの周波数チャネル4つを同時に利用して80MHzの周波数チャネルとして利用するチャネルボンディング技術や、マルチユーザMIMOを利用して同一の無線チャネルで、複数の無線局に対して同時に伝送を行う空間分割多元接続(SDMA:Spatial Division Multiple Access)の伝送技術を用いて、IEEE802.11nの規格より高速かつ高効率な無線通信を実現している。   A high-speed wireless access system based on the IEEE802.11ac standard uses channel bonding technology that simultaneously uses four 20 MHz frequency channels and uses it as an 80 MHz frequency channel, and multiple using the same wireless channel using multi-user MIMO. A wireless communication with higher speed and higher efficiency than the IEEE802.11n standard is realized by using a space division multiple access (SDMA) transmission technique of simultaneously transmitting to the wireless station of

さらに、高速無線アクセスシステムの伝送特性を高めるために、システムで用いられるアンテナの指向性を切り替えることが検討されている。具体的には、基地局と無線通信する端末の分布などの通信環境に応じてアンテナ装置の指向性を切り替えることにより、端末における受信電力を高めることができる。例えば、ダイポールアンテナと複数の無給電素子を有するアンテナ装置を基地局に配置し、無給電素子を制御することでアンテナ装置の指向性を切り替える技術が提案されている(非特許文献1) 。   Furthermore, in order to improve the transmission characteristics of a high-speed wireless access system, it is considered to switch the directivity of an antenna used in the system. Specifically, the received power at the terminals can be increased by switching the directivity of the antenna apparatus according to the communication environment such as the distribution of terminals wirelessly communicating with the base station. For example, a technique has been proposed in which an antenna device having a dipole antenna and a plurality of parasitic elements is disposed in a base station, and the directivity of the antenna device is switched by controlling the parasitic elements (Non-Patent Document 1).

J. Cheng, M. Hashiguchi, K. Iigusa, T. Ohira, ” Electronically steerable parasitic array radiator antenna for omni- and sector pattern forming applications to wireless ad hoc networks, ” IEE Proceedings Microwaves, antennas and propagation, vol.150, no.4, Aug. 2003.J. Cheng, M. Hashiguchi, K. Iigusa, T. Ohira, "Electronically steerable parametric array antenna for omni- and sector pattern forming applications to wireless ad hoc networks," IEE Proceedings Microwaves, antennas and propagation, 150. no. 4, Aug. 2003.

近年の基地局は、高い通信品質を提供するために、高い密度で設置されている。このような通信環境では、基地局と無線通信する端末によっては、オムニ特性である無指向性が適する場合と、セクタ特性を代表とする有指向性(水平面および垂直面)が適する場合とがある。これまでの従来技術では、非特許文献1のように電子制御によって、通信環境に応じて水平面の指向性をオムニ特性とセクタ特性とに切り替えるアンテナ装置が検討されている。   In recent years, base stations are installed at high density to provide high communication quality. In such a communication environment, depending on the terminal wirelessly communicating with the base station, there may be cases where omnidirectionality, which is an omni characteristic, is suitable, and directionalities (horizontal and vertical planes) represented by sector characteristics are suitable. . In the prior art so far, as in Non-Patent Document 1, an antenna device that switches the directivity of the horizontal plane between the omni characteristic and the sector characteristic according to the communication environment is studied by electronic control.

しかしながら、電子制御を行うための電子デバイスのコストや、電子デバイスを動作させるための電力消費が大きくなる課題である。さらに、MIMO伝送を用いる場合には、複数のアンテナ素子を限られたスペースに配置する必要があり、省スペース化が課題である。   However, the cost of the electronic device for performing the electronic control and the power consumption for operating the electronic device increase. Furthermore, when using MIMO transmission, it is necessary to arrange a plurality of antenna elements in a limited space, and space saving is a problem.

本発明は、MIMO伝送に用いる複数のアンテナ素子について、端末の分布等の無線環境に応じたアンテナ指向性を設定することができるアンテナ装置およびアンテナ指向性制御方法を提供することを目的とする。   An object of the present invention is to provide an antenna apparatus and an antenna directivity control method capable of setting antenna directivity according to a radio environment such as distribution of terminals for a plurality of antenna elements used for MIMO transmission.

第1の発明は、それぞれ所定のアンテナ指向性を有する複数のアンテナ素子を備え、周辺に存在する端末との間のMIMO伝送に対応するアンテナ装置において、円筒形の側面にアンテナ素子を配置したロータリージョイントを複数台積み重ね、それぞれのロータリージョイントを独立に回転させ、全体として1または複数のアンテナ指向性を形成する構成である。   According to a first aspect of the present invention, there is provided an antenna apparatus including a plurality of antenna elements each having a predetermined antenna directivity, and an antenna element corresponding to a MIMO transmission to a terminal located in the periphery, the antenna element being disposed on a cylindrical side surface A plurality of joints are stacked, and each rotary joint is rotated independently to form one or more antenna directivity as a whole.

第2の発明は、第1の発明のアンテナ装置のアンテナ指向性制御方法において、複数のロータリージョイントの各アンテナ素子の配置面を複数の方向に向け、アンテナ素子ごとに、端末からの受信信号から端末ごとの受信信号強度およびアンテナ数を取得し、位置および方向に対応する特定エリアごとの端末密度を判定するステップ1と、端末密度の順番に、該特定エリアの各端末のアンテナ数に応じた数のロータリージョイントを制御してアンテナ素子の指向性を設定するステップ2とを有する。   According to a second aspect of the present invention, in the antenna directivity control method of the antenna apparatus according to the first aspect, the arrangement surface of each antenna element of the plurality of rotary joints is directed in a plurality of directions, and for each antenna element Received signal strength and the number of antennas for each terminal, and determine the terminal density for each specific area corresponding to the position and direction, and the terminal density in the order according to the number of antennas of each terminal in the specific area And controlling the number of rotary joints to set the directivity of the antenna element.

第2の発明のアンテナ指向性制御方法において、ステップ2の特定エリアの各端末のアンテナ数は、その最大値または最小値または平均値または中央値のいずれかで判定する。   In the antenna directivity control method of the second invention, the number of antennas of each terminal in the specific area in step 2 is determined by its maximum value or minimum value, or average value or median value.

第2の発明のアンテナ指向性制御方法において、ステップ2は、特定エリアの各端末のアンテナ数ととともに、各端末に対する伝送容量や伝送速度に応じて、ロータリージョイントを制御してアンテナ素子の指向性を設定する。   In the antenna directivity control method of the second invention, the directivity of the antenna element is controlled by controlling the rotary joint in accordance with the transmission capacity and transmission speed for each terminal together with the number of antennas of each terminal in the specific area in the antenna directivity control method of the second invention. Set

本発明は、ロータリージョイントにより複数のアンテナ素子の指向性を設定することにより、アンテナ装置全体で周辺の端末の分布等の無線環境に応じたアンテナ指向性を容易に設定することができる。   The present invention can easily set the antenna directivity according to the wireless environment such as the distribution of peripheral terminals in the entire antenna apparatus by setting the directivity of the plurality of antenna elements by the rotary joint.

本発明のアンテナ装置の構成例を示す図である。It is a figure which shows the structural example of the antenna apparatus of this invention. 本発明のアンテナ指向性制御方法の処理手順例を示すフローチャートである。It is a flowchart which shows the process procedure example of the antenna directivity control method of this invention. 本発明のアンテナ指向性制御方法における処理例を示す図である。It is a figure which shows the process example in the antenna directivity control method of this invention.

図1は、本発明のアンテナ装置の構成例を示す。
図1において、本発明のアンテナ装置は、例えば基地局におけるMIMO伝送用の複数のアンテナ素子11を備える構成である。
FIG. 1 shows a configuration example of the antenna device of the present invention.
In FIG. 1, the antenna apparatus of the present invention is configured to include, for example, a plurality of antenna elements 11 for MIMO transmission in a base station.

本発明のアンテナ装置の特徴は、図1(1) に示すように、円筒形の側面に例えば平面アンテナによるアンテナ素子11を配置したロータリージョイント12を複数台積み重ねた構成である。各ロータリージョイント12はそれぞれ独立に水平方向に 360度回転し、アンテナ素子11の指向性を水平方向の所定の角度に設定することが可能である。また、アンテナ素子11は、図1(2) に示すように、例えば軸部にマイクロモータとギアを組み合わせて垂直方向に回転自在な構成であり、アンテナ素子11の指向性を垂直方向の所定の角度に設定することが可能である。個々のアンテナ素子11の指向性は固定であり、ここでは配置面に対して垂直前方として図中矢印で示す。   The feature of the antenna device of the present invention is, as shown in FIG. 1 (1), a configuration in which a plurality of rotary joints 12 in which an antenna element 11 of, for example, a planar antenna is disposed on a cylindrical side surface are stacked. Each rotary joint 12 can be independently rotated 360 degrees in the horizontal direction, and the directivity of the antenna element 11 can be set to a predetermined angle in the horizontal direction. In addition, as shown in FIG. 1 (2), the antenna element 11 is configured to be rotatable in the vertical direction by combining, for example, a micromotor and a gear in the shaft portion, and the directivity of the antenna element 11 is predetermined in the vertical direction. It is possible to set to an angle. The directivity of each antenna element 11 is fixed, and is indicated by an arrow in the figure as perpendicular to the arrangement plane.

なお、アンテナ素子11を送受信回路に接続する配線系は省略しているが、例えば各ロータリージョイント12の中心部を貫通するように配線経路を設ける構造であってもよい。   In addition, although the wiring system which connects the antenna element 11 to a transmission / reception circuit is abbreviate | omitted, the structure which provides a wiring path so that the central part of each rotary joint 12 may be penetrated may be sufficient, for example.

図2は、本発明のアンテナ指向性制御方法の処理手順例を示す。
図2において、基地局の複数のアンテナ素子の指向性がそれぞれ異なる方向に向くように設定する(S1)。例えば、図1(1) に示すように、4個のロータリージョイント12にそれぞれ配置されたアンテナ素子11の指向性が、水平方向で90度ずつ異なる4方向に向くように設定する。さらに、図1(2) に示すように、各アンテナ素子11の指向性を垂直方向に設定する角度と組み合わせてもよい。
FIG. 2 shows an example of the processing procedure of the antenna directivity control method of the present invention.
In FIG. 2, the directivity of the plurality of antenna elements of the base station is set to be directed to different directions (S1). For example, as shown in FIG. 1 (1), the directivity of the antenna elements 11 respectively disposed in the four rotary joints 12 is set to be directed in four directions different by 90 degrees in the horizontal direction. Furthermore, as shown in FIG. 1 (2), the directivity of each antenna element 11 may be combined with the angle set in the vertical direction.

次に、周辺の端末からの信号を各アンテナ素子で受信し、アンテナ素子ごとに受信信号の端末IDと端末のアンテナ数を取得し、RSSI(受信信号強度)を測定する(S2)。このステップS1,S2の処理を、複数のアンテナ素子の指向性が全方向をカバーするまで繰り返す(S3)。   Next, signals from peripheral terminals are received by each antenna element, the terminal ID of the received signal and the number of antennas of the terminal are acquired for each antenna element, and RSSI (received signal strength) is measured (S2). The processes of steps S1 and S2 are repeated until the directivity of the plurality of antenna elements covers all directions (S3).

次に、各アンテナ素子の指向性ごとに、端末IDとRSSIの組合せから特定エリアにおける端末密度を判定する(S4)。すなわち、アンテナ素子ごとにRSSIが所定値以上となる特定エリアを想定し、その特定エリアに入る端末数を端末密度とする。   Next, the terminal density in the specific area is determined from the combination of the terminal ID and the RSSI for each directivity of each antenna element (S4). That is, a specific area in which the RSSI is equal to or more than a predetermined value is assumed for each antenna element, and the number of terminals entering the specific area is defined as the terminal density.

ここで、図3を参照し、ステップS1〜S4の処理例について説明する。
図3(1) は、4個のロータリージョイント12を上から見た状態を示し、矢印で示す各アンテナ素子の指向性の方向をN,E,S,Wとする。ここでは、E方向にRSSIが所定値以上となる特定エリアE1を想定し、その特定エリアE1に入る端末1〜4を検出する。同様に、W方向にRSSIが所定値以上となる特定エリアW1を想定し、端末5,6を検出する。同様に、S方向にRSSIが所定値以上となる特定エリアS1を想定し、端末7を検出する。
Here, with reference to FIG. 3, the process example of step S1-S4 is demonstrated.
FIG. 3 (1) shows a state in which the four rotary joints 12 are viewed from above, and the directions of directivity of the respective antenna elements indicated by the arrows are N, E, S and W. Here, a specific area E1 in which the RSSI is equal to or greater than a predetermined value is assumed in the E direction, and the terminals 1 to 4 entering the specific area E1 are detected. Similarly, the terminals 5 and 6 are detected assuming a specific area W1 in which the RSSI is equal to or more than a predetermined value in the W direction. Similarly, the terminal 7 is detected assuming a specific area S1 in which the RSSI is equal to or more than a predetermined value in the S direction.

図3(2) は、4個のロータリージョイント12を上から見た状態を示し、図3(1) の各アンテナ素子の指向性の方向を45度ずつ回転させてNE,SE,SW,NWとする。ここでは、NE方向にRSSIが所定値以上となる特定エリアNE1を想定し、端末1,2を検出する。同様に、SE方向にRSSIが所定値以上となる特定エリアSE1を想定し、端末3,4を検出する。同様に、SW方向にRSSIが所定値以上となる特定エリアSW1を想定し、端末5〜7を検出する。   FIG. 3 (2) shows a state in which the four rotary joints 12 are viewed from the top, and the directivity of each antenna element in FIG. 3 (1) is rotated 45 degrees at a time to NE, SE, SW, NW I assume. Here, terminals 1 and 2 are detected assuming a specific area NE1 in which the RSSI is equal to or greater than a predetermined value in the NE direction. Similarly, terminals 3 and 4 are detected assuming a specific area SE1 in which the RSSI is equal to or greater than a predetermined value in the SE direction. Similarly, terminals 5 to 7 are detected assuming a specific area SW1 in which the RSSI is equal to or greater than a predetermined value in the SW direction.

なお、ロータリージョイント12の数を8個にすれば、図3(1),(2) に示す各特定エリアにおける端末密度を一度に判定することができる。   If the number of rotary joints 12 is eight, the terminal density in each specific area shown in FIGS. 3 (1) and 3 (2) can be determined at one time.

さらに、各アンテナ素子の指向性の方向を細かく変えて、それぞれの特定エリアを想定し、各特定エリアにおける端末密度を判定してもよい。また、ここでは水平面における端末の二次元分布を対象としたが、水平面および垂直面における端末の三次元分布を対象としてもよい。   Furthermore, the direction of the directivity of each antenna element may be finely changed, and the terminal density in each specific area may be determined, assuming each specific area. In addition, although the two-dimensional distribution of terminals in the horizontal plane is used here, a three-dimensional distribution of terminals in the horizontal plane and the vertical plane may be used.

次に、端末密度が最大になる特定エリア内の各端末のアンテナ数の最大値または最小値または平均値または中央値を判定し、そのいずれかに応じて基地局のアンテナ素子の指向性を設定する(S5)。ここでは、図3(1),(2) に示すように、E方向の特定エリアE1の端末密度が4個で最大となり、各端末のアンテナ数が2個であるので、2個のアンテナ素子の指向性が向くように、2個のロータリージョイント12を回転制御する。このE方向に向けた2個のアンテナ素子は確定とする。   Next, the maximum value or the minimum value or the average value or the median value of the number of antennas of each terminal in the specific area where the terminal density is maximum is determined, and the directivity of the antenna element of the base station is set according to any of them. To do (S5). Here, as shown in FIGS. 3 (1) and 3 (2), the terminal density of the specific area E1 in the E direction is maximum at 4 and the number of antennas of each terminal is 2; therefore, two antenna elements Control the rotation of the two rotary joints 12 so that the directivity of The two antenna elements directed to the E direction are determined.

次に、端末密度が次点になる特定エリアの各端末のアンテナ数の最大値または最小値または平均値または中央値を判定し、そのいずれかに応じて基地局の残りのアンテナ素子の指向性を設定する(S6)。ここでは、図3(1),(2) に示すように、SW方向の特定エリアSW1の端末密度が3個で次点となり、各端末のアンテナ数が2個であるので、2個のアンテナ素子の指向性が向くように、2個のロータリージョイント12を回転制御する。このSW方向に向けた2個のアンテナ素子は確定とする。   Next, the maximum value or the minimum value or the average value or the median value of the number of antennas of each terminal in the specific area where the terminal density is the next point is determined, and the directivity of the remaining antenna elements of the base station is determined according to either. Is set (S6). Here, as shown in FIGS. 3 (1) and 3 (2), the terminal density of the specific area SW1 in the SW direction is three, which is the next point, and the number of antennas of each terminal is two, so two antennas The rotary joints of the two rotary joints 12 are controlled so that the directivity of the element is directed. The two antenna elements directed to the SW direction are determined.

なお、ステップS5,S6において、特定エリアの各端末のアンテナ数は、その最大値または最小値または平均値または中央値とするが、それぞれ次のような効果の違いがある。アンテナ数の最大値を用いる場合は、特定エリア内の端末のMIMO伝送特性の最大化を図ることができるが、他のエリアで利用できる基地局のアンテナ数が減少する。アンテナ数の最小値を用いる場合は、特定エリア内の端末の最低限のMIMO伝送特性を担保しつつ、他のエリアで利用できる基地局のアンテナ数が増加する。アンテナ数の平均値または中央値を用いる場合は、最大値または最小値を用いる場合の特性の中間となる。   In steps S5 and S6, the number of antennas of each terminal in the specific area is the maximum value or the minimum value or the average value or the median value, but there are differences in the following effects. When the maximum number of antennas is used, the MIMO transmission characteristics of the terminals in the specific area can be maximized, but the number of antennas of base stations available in other areas is reduced. When the minimum number of antennas is used, the number of antennas of base stations that can be used in other areas is increased while securing the minimum MIMO transmission characteristics of terminals in a specific area. When using the average value or the median value of the number of antennas, it is in the middle of the characteristics when using the maximum value or the minimum value.

さらに、ステップS5,S6において、各アンテナ素子の方向を確定させる際に、各端末に対する伝送容量や伝送速度に基づいて調整してもよい。   Furthermore, in steps S5 and S6, when determining the direction of each antenna element, adjustment may be performed based on the transmission capacity and transmission speed for each terminal.

次に、他に未設定のアンテナ素子があるか否かを判定し、未設定のアンテナ素子があるうちはステップS6の処理を繰り返し、未設定のアンテナ素子がなくなった時点で終了とする(S7)。ここでは、4個のアンテナ素子の指向性を2個ずつE方向とSW方向に確定すると、未設定のアンテナ素子がなくなるので終了となる。アンテナ素子が5個以上あり、端末が他の方向にも存在すれば同様の処理を繰り返すことになる。   Next, it is determined whether there are other unset antenna elements, and while there are unset antenna elements, the process of step S6 is repeated, and it is determined that there are no unset antenna elements (S7). ). In this case, if the directivity of the four antenna elements is determined two by two in the E direction and the SW direction, there are no unset antenna elements, and the process ends. If there are five or more antenna elements and the terminal is present in other directions, the same processing will be repeated.

また、アンテナ素子に余裕がある場合には、端末のアンテナ数に対応する規定数以上のアンテナ素子をその特定エリア方向を向けてもよい。例えば、一方向に端末が集中している場合には、全アンテナ素子をその方向に向けるようにしてもよい。   In addition, when there is room in the antenna elements, more than a specified number of antenna elements corresponding to the number of antennas of the terminal may be directed to the specific area direction. For example, when the terminals are concentrated in one direction, all antenna elements may be oriented in that direction.

11 アンテナ素子
12 ロータリージョイント
11 antenna element 12 rotary joint

Claims (4)

それぞれ所定のアンテナ指向性を有する複数のアンテナ素子を備え、周辺に存在する端末との間のMIMO伝送に対応するアンテナ装置において、
円筒形の側面に前記アンテナ素子を配置したロータリージョイントを複数台積み重ね、それぞれのロータリージョイントを独立に回転させ、全体として1または複数のアンテナ指向性を形成する構成である
ことを特徴とするアンテナ装置。
In an antenna apparatus comprising a plurality of antenna elements each having a predetermined antenna directivity and supporting MIMO transmission with terminals located in the periphery,
A plurality of rotary joints in which the antenna elements are arranged on the side of a cylinder are stacked, and each rotary joint is independently rotated to form one or a plurality of antenna directivity as a whole. .
請求項1に記載のアンテナ装置のアンテナ指向性制御方法において、
複数の前記ロータリージョイントの各アンテナ素子の配置面を複数の方向に向け、前記アンテナ素子ごとに、前記端末からの受信信号から端末ごとの受信信号強度およびアンテナ数を取得し、位置および方向に対応する特定エリアごとの端末密度を判定するステップ1と、
前記端末密度の順番に、該特定エリアの各端末のアンテナ数に応じた数の前記ロータリージョイントを制御して前記アンテナ素子の指向性を設定するステップ2と
を有することを特徴とするアンテナ指向性制御方法。
In the antenna directivity control method of an antenna device according to claim 1,
The arrangement plane of each antenna element of the plurality of rotary joints is directed in a plurality of directions, and for each of the antenna elements, the received signal strength and the number of antennas for each terminal are acquired from the received signal from the terminal. Step 1 of determining the terminal density for each specific area to be
Step 2 of controlling the number of rotary joints according to the number of antennas of each terminal in the specific area in the order of the terminal density to set directivity of the antenna element Control method.
請求項2に記載のアンテナ指向性制御方法において、
前記ステップ2の前記特定エリアの各端末のアンテナ数は、その最大値または最小値または平均値または中央値のいずれかで判定する
ことを特徴とするアンテナ指向性制御方法。
In the antenna directivity control method according to claim 2,
The antenna directivity control method, wherein the number of antennas of each terminal in the specific area in the step 2 is determined by either the maximum value or the minimum value, or the average value or the median value.
請求項2に記載のアンテナ指向性制御方法において、
前記ステップ2は、前記特定エリアの各端末のアンテナ数ととともに、各端末に対する伝送容量や伝送速度に応じて、前記ロータリージョイントを制御して前記アンテナ素子の指向性を設定する
ことを特徴とするアンテナ指向性制御方法。
In the antenna directivity control method according to claim 2,
The step 2 sets the directivity of the antenna element by controlling the rotary joint in accordance with the transmission capacity and transmission rate to each terminal as well as the number of antennas of each terminal in the specific area. Antenna directivity control method.
JP2017241016A 2017-12-15 2017-12-15 Antenna device and antenna directivity control method Active JP6969347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241016A JP6969347B2 (en) 2017-12-15 2017-12-15 Antenna device and antenna directivity control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241016A JP6969347B2 (en) 2017-12-15 2017-12-15 Antenna device and antenna directivity control method

Publications (2)

Publication Number Publication Date
JP2019110399A true JP2019110399A (en) 2019-07-04
JP6969347B2 JP6969347B2 (en) 2021-11-24

Family

ID=67180230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241016A Active JP6969347B2 (en) 2017-12-15 2017-12-15 Antenna device and antenna directivity control method

Country Status (1)

Country Link
JP (1) JP6969347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110400A (en) * 2017-12-15 2019-07-04 日本電信電話株式会社 Antenna device and antenna directivity control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118511A (en) * 2000-08-09 2002-04-19 Lucent Technol Inc Antenna system
US20070262911A1 (en) * 2006-05-11 2007-11-15 Kim Duk Y Variable beam controlling antenna for a mobile communication base station
JP2008193354A (en) * 2007-02-02 2008-08-21 Nec Corp Antenna device
JP2009519668A (en) * 2005-12-13 2009-05-14 ケーエムダブリュ・インコーポレーテッド Variable beam control antenna in mobile communication base station
JP2010057035A (en) * 2008-08-29 2010-03-11 Yagi Antenna Co Ltd Directivity variable antenna
US20100066590A1 (en) * 2008-07-28 2010-03-18 Physical Domains, LLC Omnidirectional Retrodirective Antennas
JP2015111940A (en) * 2011-01-05 2015-06-18 アルカテル−ルーセント Conformal antenna array
WO2017018070A1 (en) * 2015-07-28 2017-02-02 シャープ株式会社 Wireless communication device and installation method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118511A (en) * 2000-08-09 2002-04-19 Lucent Technol Inc Antenna system
JP2009519668A (en) * 2005-12-13 2009-05-14 ケーエムダブリュ・インコーポレーテッド Variable beam control antenna in mobile communication base station
US20070262911A1 (en) * 2006-05-11 2007-11-15 Kim Duk Y Variable beam controlling antenna for a mobile communication base station
JP2008193354A (en) * 2007-02-02 2008-08-21 Nec Corp Antenna device
US20100066590A1 (en) * 2008-07-28 2010-03-18 Physical Domains, LLC Omnidirectional Retrodirective Antennas
JP2010057035A (en) * 2008-08-29 2010-03-11 Yagi Antenna Co Ltd Directivity variable antenna
JP2015111940A (en) * 2011-01-05 2015-06-18 アルカテル−ルーセント Conformal antenna array
WO2017018070A1 (en) * 2015-07-28 2017-02-02 シャープ株式会社 Wireless communication device and installation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110400A (en) * 2017-12-15 2019-07-04 日本電信電話株式会社 Antenna device and antenna directivity control method

Also Published As

Publication number Publication date
JP6969347B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
CN102884731B (en) Apparatus and method for spatial division duplex (SDD) for millimeter wave communication system
US10439684B2 (en) Smart antenna platform for indoor wireless local area networks
US7643794B2 (en) Multi-sector antenna apparatus
JP5232046B2 (en) WLAN antenna system divided into sectors
EP2260578B1 (en) System and method for wireless communications
US8224253B2 (en) Directional antenna sectoring system and methodology
CN111712970B (en) Phased array antenna system for fast beam search
JP6628652B2 (en) Virtual base station device and communication method
CN110199488A (en) Electronic equipment, communication means and medium
US20180054241A1 (en) Methods and apparatus for fixed broadband communication and backhaul access with large number of antennas
JP4240662B2 (en) Mobile communication terminal
JP6969347B2 (en) Antenna device and antenna directivity control method
CN110731056A (en) Directional MIMO antenna
EP3143667A1 (en) A method, apparatus and system
TW202005178A (en) Phased array antenna module and communication device including the same
JP6881276B2 (en) Antenna device and antenna directivity control method
JP6820813B2 (en) Antenna device
Maltsev et al. Practical LOS MIMO technique for short-range millimeter-wave systems
WO2014029212A1 (en) Antenna system
CN213878438U (en) Antenna device for realizing space-polarization separation of wave beam
JP7115022B2 (en) antenna device
WO2022246773A1 (en) Antenna array, wireless communication apparatus, and communication terminal
JP6920058B2 (en) Wireless communication system and beam control method
WO2005069436A1 (en) Antenna system and radio communication unit
WO2023043929A1 (en) Flexible antenna configurations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150