JP2019110369A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2019110369A
JP2019110369A JP2017240207A JP2017240207A JP2019110369A JP 2019110369 A JP2019110369 A JP 2019110369A JP 2017240207 A JP2017240207 A JP 2017240207A JP 2017240207 A JP2017240207 A JP 2017240207A JP 2019110369 A JP2019110369 A JP 2019110369A
Authority
JP
Japan
Prior art keywords
imaging
drive
driving
optical axis
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017240207A
Other languages
Japanese (ja)
Inventor
宮脇 誠
Makoto Miyawaki
宮脇  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017240207A priority Critical patent/JP2019110369A/en
Publication of JP2019110369A publication Critical patent/JP2019110369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Studio Devices (AREA)

Abstract

To provide an imaging apparatus capable of performing a focus follow-up with high responsibility over wide imaging region on an imaging surface.SOLUTION: An imaging apparatus includes: imaging means; a driving instruction means of outputting a plurality of driving target value in accordance with a plurality of signals from one part of an imaging region different in the imaging means; and driving means of moving one part of the imaging region to a prescribed position of an optical axial direction on the basis of the plurality of driving target values from the driving instruction means. In the imaging apparatus, a plurality of combinations of one part of the plurality of imaging regions and each driving instruction means corresponded to them and the driving means is provided. One part of the plurality of imaging regions is a different region from a whole imaging region, and the position of the optical axis direction is independently determined.SELECTED DRAWING: Figure 1

Description

本発明はカメラやビデオなどの撮影装置に関し、特に撮影装置に設けられた駆動機構の高応答化に関する。   The present invention relates to an imaging device such as a camera and a video, and more particularly to a high response of a drive mechanism provided in the imaging device.

近年カメラの使われ方は多様化しており、様々なシーン、被写体の撮影に適合した利便性の高い撮影装置が求められている。   In recent years, the usage of cameras has diversified, and a highly convenient photographing device adapted to photographing of various scenes and objects is required.

特許文献1では高速に動く被写体に追従する機動性の高いオートフォーカス機構が開示されている。   Patent Document 1 discloses a highly mobile autofocus mechanism that follows an object moving at high speed.

特開平7−248522号公報Unexamined-Japanese-Patent No. 7-248522 gazette

これまでは一定方向に高速で移動する被写体に追従する事を主眼にした技術開発がなされてきた。しかしながら被写体の動きや撮影の動きは様々であり、撮像領域全体において、頻繁に距離が変化する被写体に対して追従し続ける要素技術はまだ不十分である。 そこで本発明の目的は、撮像面上で広い撮像領域にわたり、高い応答性を持って、フォーカス追従できる技術を実現する事である。   So far, technology development has been made with the main aim of following an object moving at high speed in a certain direction. However, the motion of the subject and the motion of shooting are various, and the elemental technology for keeping track of the subject whose distance changes frequently in the entire imaging region is still insufficient. Therefore, an object of the present invention is to realize a technology capable of following the focus with high responsiveness over a wide imaging area on the imaging surface.

上記目的を達成する為に本発明の撮影装置は以下の構成を備える。
・撮像手段
・撮像手段における撮像領域の一部からの複数の信号に対応する複数の駆動目標値を出力する駆動指示手段
・複数の駆動目標値に基づいて撮像領域の一部を光軸方向の所定の位置へ移動する駆動手段の組合せで撮影装置を構成する。
In order to achieve the above object, the imaging apparatus of the present invention has the following configuration.
· Imaging means · Drive instructing means for outputting a plurality of drive target values corresponding to a plurality of signals from a part of the imaging area in the imaging means · A part of the imaging area in the optical axis direction based on the plurality of drive target values A photographing device is configured by a combination of driving means which moves to a predetermined position.

本発明により撮像面上で広い撮像領域にわたり、高い応答性を持って、フォーカス追従できる様になる。   According to the present invention, it is possible to follow the focus with high responsiveness over a wide imaging area on the imaging surface.

本発明の第1の実施例の撮影装置におけるブロック図。FIG. 1 is a block diagram of an imaging apparatus according to a first embodiment of the present invention. 本発明の第1の実施例の撮影装置における駆動機構と制御ブロックを説明する図。FIG. 2 is a diagram for explaining a drive mechanism and a control block in the imaging device of the first embodiment of the present invention. 本発明の第1の実施例の撮影装置における駆動フローチャート。7 is a drive flowchart of the photographing device according to the first embodiment of the present invention. 本発明の第2の実施例の撮影装置におけるブロック図。FIG. 8 is a block diagram of an imaging apparatus according to a second embodiment of the present invention.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.

[実施例1]
図1(a)は撮像素子を光軸方向に駆動してピント調節を行う場合のブロック図であり、光学手段であるレンズ103を有する撮影鏡筒102と撮像手段である撮像素子105を有するカメラ本体104で撮影装置を構成する。
Example 1
FIG. 1A is a block diagram in the case of driving an imaging device in the optical axis direction to perform focusing, and a camera having a photographing lens barrel 102 having a lens 103 as an optical means and an imaging device 105 as an imaging means The main body 104 configures an imaging device.

図1(a)では説明の為にカメラ本体104から抜き出して図示されている各々の駆動指示手段である信号処理手段107a、107b、107cは、撮像素子105からの撮像信号が同時に入力されるカスケード接続されており、信号処理手段107a、107b、107cはそれらの入力の中で必要な信号のみを取り出して処理し、ドライバなどの複数の制御手段108a、108b、108cに駆動目標値を出力する。   In FIG. 1A, signal processing units 107a, 107b, and 107c, which are drive instruction units extracted and illustrated from the camera main body 104 for the purpose of explanation, are cascaded to which imaging signals from the imaging element 105 are simultaneously input. The signal processing means 107a, 107b and 107c are connected and take out only necessary signals from their inputs and process them, and output drive target values to a plurality of control means 108a, 108b and 108c such as drivers.

信号処理手段107a、107b、107cが必要な信号とは例えば図1bに示す撮像素子105の全体の撮像領域のうち、それぞれ異なる撮像領域の一部109a、109b、109cに対応する。   The signals required by the signal processing means 107a, 107b, 107c correspond to, for example, the portions 109a, 109b, 109c of different imaging areas in the entire imaging area of the imaging device 105 shown in FIG. 1b.

この様に制御手段108a、108b、108cは各々の撮像領域の一部109a、109b、109c毎に、光軸方向の複数の所定の位置に、それぞれ独立して移動する駆動手段である駆動機構106a、106b、106cを駆動制御する。 図1(b)に示すように、ここではそれぞれの駆動機構106aは撮像素子105の近傍の3カ所のうち、撮像領域の一部109aに最も近い位置に配置され、同様に、駆動機構106bは撮像領域の一部109bに最も近い位置に配置され、駆動機構106cは撮像領域の一部109cに最も近い位置に配置される。   As described above, the control units 108a, 108b, and 108c are drive units 106a that are drive units that independently move to a plurality of predetermined positions in the optical axis direction for each of the portions 109a, 109b, and 109c of the respective imaging regions. , 106b, 106c are driven and controlled. As shown in FIG. 1B, in this case, each drive mechanism 106a is disposed at a position closest to the part 109a of the imaging region among the three locations in the vicinity of the imaging element 105, and similarly, the drive mechanism 106b is The drive mechanism 106c is disposed closest to the part 109b of the imaging area, and the drive mechanism 106c is disposed closest to the part 109c of the imaging area.

また、例えば撮像領域の一部109a、信号処理手段107a、制御手段108a及び駆動機構106aはひとつの組合せとなっており、これを組合せ1とし、図1(a)に個の組合せの範囲を範囲Aとして破線で示す。同様に撮像領域の一部109b、信号処理手段107b、制御手段108b及び駆動機構106bは組合せ2、撮像領域の一部109c、信号処理手段107c、制御手段108c及び駆動機構106cは組合せ3となり、本実施例の撮影装置ではこの組合せが複数(ここでは3つ)備えられている。組合せ2、組合せ3の範囲は不図示。   Further, for example, a part 109a of the imaging area, the signal processing means 107a, the control means 108a, and the drive mechanism 106a form one combination, which is a combination 1, and the range of individual combinations is shown in FIG. Indicated by dashed line as A. Similarly, the part 109b of the imaging area, the signal processing means 107b, the control means 108b and the drive mechanism 106b are combination 2, the part 109c of the imaging area, the signal processing means 107c, the control means 108c and the drive mechanism 106c are combination 3, In the imaging apparatus of the embodiment, a plurality of (in this case, three) combinations are provided. The range of combination 2 and combination 3 is not shown.

カメラ本体104に設けられたレリーズボタン110の信号も信号処理手段107a、107b、107cに入力しており、撮影者がレリーズボタンを操作する事で信号処理手段107a、107b、107cは前述した駆動目標値を制御手段108a、108b、108cに出力し、撮像素子105はピント調節の為の駆動を始める。図1(b)に示すように、 このとき駆動機構106a、106b、106cの3個の駆動手段により、撮像領域の一部109a、109b、109cの光軸方向の位置はそれぞれ独立して決定される。   The signal of the release button 110 provided on the camera body 104 is also input to the signal processing means 107a, 107b and 107c, and when the photographer operates the release button, the signal processing means 107a, 107b and 107c are the drive targets described above. The values are output to the control means 108a, 108b, 108c, and the imaging device 105 starts driving for focus adjustment. As shown in FIG. 1B, at this time, the positions of the portions 109a, 109b and 109c in the optical axis direction of the imaging region are independently determined by the three drive means of the drive mechanisms 106a, 106b and 106c. Ru.

従って、撮像素子105は光軸方向であるZ方向の移動と、傾くこと、及びその組み合わせによって駆動されて位置が決定される。   Therefore, the position of the image pickup device 105 is determined by movement in the Z direction which is the optical axis direction, tilting, and a combination thereof.

例えば撮像領域の一部109a、109b、109cにそれぞれ投影される複数の被写体までの距離が等しく、撮像領域の一部109a、109b、109cの焦点検出状態が等しい場合にはその信号に応じて撮像素子105は光軸101方向にZ方向に駆動する。複数の被写体までの距離がそれぞれ異なり、撮像領域の一部109a、109b、109cからの焦点検出状態が異なる場合にはその信号に応じて撮像素子105はZ軸方向に移動しつつ、Z軸と直交する平面に対して撮像素子105の撮影面を傾かせる。従って、各々の撮像領域の一部に投影される被写体に対し、合焦状態にする事が出来る。   For example, when the distances to a plurality of subjects projected onto the portions 109a, 109b, and 109c of the imaging region are equal and the focus detection states of the portions 109a, 109b, and 109c are equal, imaging is performed according to the signals. The element 105 is driven in the Z direction in the optical axis 101 direction. When the distances to the plurality of subjects are different and the focus detection states from the portions 109a, 109b, and 109c of the imaging area are different, the imaging device 105 moves in the Z-axis direction according to the signal and The imaging surface of the imaging device 105 is tilted with respect to the orthogonal plane. Therefore, it is possible to focus on the subject projected on a part of each imaging area.

また、撮影装置との距離が、撮像領域の一部109a、109b、109cに撮像されるそれぞれの被写体の相互の差が大きい場合、前記複数の駆動目標値の相互差が大きくなる。その場合、撮像素子105の光軸との傾きが大きくなり、制御が困難になることを防ぐため、複数の駆動目標値の相互差は所定量以内であるように制御されている。尚、この所定量は光学手段の撮影条件により変化する。この撮影条件とは、被写体からの反射光の輝度変化による光学手段の絞り値や、シャッター速度、及び光学手段の焦点距離などである。   In addition, when the distance between the imaging device and each of the subjects imaged in the portions 109a, 109b, and 109c of the imaging region is large, the mutual difference between the plurality of drive target values becomes large. In that case, the difference between the plurality of drive target values is controlled to be within a predetermined amount in order to prevent the inclination of the imaging element 105 from the optical axis to become large and control becomes difficult. Note that this predetermined amount changes depending on the photographing condition of the optical means. The photographing conditions include the aperture value of the optical unit, the shutter speed, and the focal length of the optical unit due to the change in the brightness of the reflected light from the subject.

図2(a)は図1における駆動機構106a、106b、106c(106bは不図示)周辺を説明する図である。   FIG. 2A is a view for explaining the periphery of the drive mechanisms 106a, 106b, 106c (106b is not shown) in FIG.

図2(a)において駆動機構106aについて説明し、106b、106cも同様な構造の為に説明は省く。   The drive mechanism 106a will be described with reference to FIG. 2A, and the description of the drive mechanisms 106b and 106c will be omitted because they have the same structure.

駆動機構106aはローター201aと、振動子203a、圧電部材204a、加圧バネ205a、位置検出手段206aから構成されている。撮像素子105に固定された摩擦部材であるローター201aは、撮像装置105の光軸近傍上の点209を中心とする円弧上の接触面を有する。   The drive mechanism 106a includes a rotor 201a, a vibrator 203a, a piezoelectric member 204a, a pressure spring 205a, and a position detection unit 206a. The rotor 201 a, which is a friction member fixed to the imaging element 105, has a contact surface on a circular arc centered on a point 209 near the optical axis of the imaging device 105.

振動子203aは同一部材で形成されたダボ202aを有する。ダボ202aは制御手段a(108a)からの印加電圧による圧電部材204aの振動により、超音波振動される。従って、ダボ202aが加圧バネ205aの加圧によりローター201aの接触面に加圧されて接触することで、振動子203aとローター201aは相対運動を行う。ここでは振動子203aは加圧バネ205aを介して撮影装置の本体に固定されている為、ローター201aが固定される撮像素子105が移動するように駆動される。
位置検出手段206aは、撮像素子105の撮像領域の一部109a(図1b)のZ方向の変位を検出し、位置検出信号を制御手段108aに出力する。
The vibrator 203a has a dowel 202a formed of the same member. The dowel 202a is ultrasonically vibrated by the vibration of the piezoelectric member 204a by the voltage applied from the control means a (108a). Therefore, the vibrator 203a and the rotor 201a perform relative motion by the dowel 202a being pressurized and brought into contact with the contact surface of the rotor 201a by the pressure of the pressure spring 205a. Here, since the vibrator 203a is fixed to the main body of the imaging apparatus via the pressure spring 205a, the imaging element 105 to which the rotor 201a is fixed is driven to move.
The position detection means 206a detects the displacement in the Z direction of the part 109a (FIG. 1b) of the imaging area of the imaging device 105, and outputs a position detection signal to the control means 108a.

ダボ202aの振動により、ローター201aは例えば図2(b)の様にZ軸の正方向に変位する。   Due to the vibration of the dowel 202a, the rotor 201a is displaced in the positive direction of the Z axis as shown in FIG. 2B, for example.

位置検出手段206aはその撮像素子105の撮像領域の一部109aの変位に応じた信号を制御手段108aに出力し、制御手段108aはその変位信号と信号処理手段107aからの目標値信号との誤差分を駆動電圧として圧電部材204aに印加する事でフィードバック駆動制御を行う。   The position detection means 206a outputs a signal corresponding to the displacement of the part 109a of the imaging area of the imaging device 105 to the control means 108a, and the control means 108a produces an error between the displacement signal and the target value signal from the signal processing means 107a. Feedback drive control is performed by applying a voltage as a drive voltage to the piezoelectric member 204a.

例えば図2(b)に示すように、撮像素子105の撮像領域の一部109aのピントが信号処理手段107aで解析され前ピン状態の場合には前ピンを補正する目標値を制御手段108aに出力する。制御手段108aはその目標値に基づいて圧電部材204aを駆動しローター201aはZ軸の正方向に駆動される。   For example, as shown in FIG. 2B, the focus of a part 109a of the imaging area of the imaging device 105 is analyzed by the signal processing means 107a, and in the case of a front pin state, a target value for correcting the front pin is sent to the control means 108a. Output. The control means 108a drives the piezoelectric member 204a based on the target value, and the rotor 201a is driven in the positive direction of the Z axis.

この時撮像素子105の撮像領域の一部109cのピントが信号処理手段107cで解析され後ピン状態の場合には後ピンを補正する目標値を制御手段108cに出力する。制御手段108aはその目標値に基づいて圧電部材204aを駆動しローター201cはZ軸の負方向に駆動される。
その為図2bに示す様に撮像素子105は光軸に直交する平面に対して傾き、各々の撮像領域の一部のピントずれを補正する。
At this time, the focus of a part 109c of the imaging area of the imaging device 105 is analyzed by the signal processing means 107c, and in the case of the back pin state, a target value for correcting the back pin is output to the control means 108c. The control means 108a drives the piezoelectric member 204a based on the target value, and the rotor 201c is driven in the negative direction of the Z axis.
Therefore, as shown in FIG. 2B, the imaging device 105 is inclined with respect to a plane orthogonal to the optical axis, and corrects the defocus of a part of each imaging region.

撮像領域の一部109a、109cとも前ピン状態の場合には、図2(c)に示すように、信号処理手段107a、信号処理手段107cは前ピンを補正する目標値を制御手段108aに出力する。制御手段108a、制御手段108cはその目標値に基づいて圧電部材204a、204cをZ軸の正方向に駆動する。   In the case where both the portions 109a and 109c of the imaging area are in the front pin state, as shown in FIG. 2C, the signal processing unit 107a and the signal processing unit 107c output target values for correcting the front pin to the control unit 108a. Do. The control means 108a and the control means 108c drive the piezoelectric members 204a and 204c in the positive direction of the Z axis based on the target values.

この時撮像素子105の撮像領域の一部109cのピントが信号処理手段107cで解析され後ピン状態の場合には後ピンを補正する目標値を制御手段108cに出力する。制御手段108aはその目標値に基づいて圧電部材204aを駆動する。   At this time, the focus of a part 109c of the imaging area of the imaging device 105 is analyzed by the signal processing means 107c, and in the case of the back pin state, a target value for correcting the back pin is output to the control means 108c. The control means 108a drives the piezoelectric member 204a based on the target value.

この様に駆動機構106はローター201とダボ202の接触で駆動され、駆動間に伝達系のメカニズムが無い為に高い応答性で駆動される。又、撮像素子の各撮像領域の一部毎に独立して信号処理を行い、独立して駆動制御を行う為に駆動目標値の出力も高速に行うことができ、精度の高い補正駆動が行える。   As described above, the drive mechanism 106 is driven by the contact between the rotor 201 and the dowel 202, and is driven with high responsiveness because there is no mechanism of the transmission system between the drives. In addition, since signal processing is performed independently for each part of each imaging area of the imaging device and drive control is performed independently, output of the drive target value can also be performed at high speed, and highly accurate correction drive can be performed. .

図3は図1、2で説明した撮像素子の駆動フローチャートであり、本発明とかかわりあいの無い撮影装置シーケンスは省いて説明する。   FIG. 3 is a drive flowchart of the image pickup element described in FIGS. 1 and 2, and a description will be given by omitting a photographing apparatus sequence not related to the present invention.

本フローチャートは撮影装置の主電源オンでスタートする。 ステップ#301では撮像素子105は画像信号の取り込みを行い、撮像素子105の各々の撮像領域の一部109a、109b、109cより得られた画像信号を対応する信号処理手段107a、107b、107cに出力する。   This flowchart starts when the main power of the imaging apparatus is turned on. In step # 301, the imaging device 105 takes in an image signal, and outputs the image signal obtained from the part 109a, 109b, 109c of each imaging region of the imaging device 105 to the corresponding signal processing means 107a, 107b, 107c. Do.

ステップ#302では各々の信号処理手段107a、107b、107cは入力された画像信号を処理して各々の撮像領域の一部109a、109b、109cにおける主要被写体の焦点状態を検出する。   At step # 302, each signal processing means 107a, 107b, 107c processes the input image signal to detect the focus state of the main subject in the part 109a, 109b, 109c of each imaging area.

ステップ#303では撮影装置のレリーズボタンを撮影者が半押しするまでこのステップを循環して待機する。 レリーズボタンが半押しされるとステップ#304では信号処理手段107a、107b、107cは撮像素子105の駆動目標値を各々の撮像領域の一部109a、109b、109c毎に制御手段108a、108b、108cに出力し撮像素子はピント調整駆動を始める。   In step # 303, this step is repeated and the process waits until the photographer presses the release button of the photographing apparatus halfway. When the release button is pressed halfway, in step # 304, the signal processing means 107a, 107b and 107c control the drive target values of the image sensor 105 for each of the parts 109a, 109b and 109c of the respective imaging areas. The image pickup device starts focus adjustment driving.

ステップ#305では位置検出手段206a、206b、206cが検出する撮像素子の位置が駆動目標値近傍に収まったか否かを判定しており、おさまっていない時にはステップ#304に戻り再度撮像素子の駆動を行い、おさまった場合にはステップ#302に戻り信号処理手段107a、107b、107cは次の焦点状態を検出する。   At step # 305, it is judged whether or not the position of the image pickup element detected by the position detection means 206a, 206b, 206c is in the vicinity of the drive target value. If not, the process returns to step # 304 to drive the image pickup element again. If yes, the process returns to step # 302 and the signal processing means 107a, 107b, 107c detect the next focus state.

この様に撮像素子から得られる画像信号を複数の信号処理手段で撮像領域の一部毎に分けて並列処理し、得られた駆動目標値で撮像素子の撮像領域の一部毎に設けられた駆動手段を撮像領域の一部毎に独立して駆動制御できるように複数の手段の組合せが並列に構成されている。   In this manner, image signals obtained from the imaging device are divided into parts of the imaging region by a plurality of signal processing means and processed in parallel, and provided for each part of the imaging region of the imaging device with the obtained drive target value. A combination of a plurality of means is configured in parallel so that the drive means can be independently driven and controlled for each part of the imaging region.

このように構成する事で、従来の撮像領域全体からの信号を統合してから、領域毎の駆動目標値に分割して駆動手段へ出力するシステムに比べて、その処理時間が短くなる。
従って、撮影から撮像手段を所定の位置へ移動する時間が短縮されて、オートフォーカス動作の応答性が高くなる。この応答性の高い動作が独立して並行して実行されることにより、高い応答性をもって、撮像面の広い撮像領域にわたってピントの合った画像を得る事が可能になった。
With this configuration, the processing time is shorter than in a system in which signals from the entire imaging region in the related art are integrated, and then divided into drive target values for each region and output to the drive unit.
Accordingly, the time for moving the imaging means from the photographing to the predetermined position is shortened, and the responsiveness of the autofocusing operation becomes high. By executing the highly responsive operations independently and in parallel, it is possible to obtain an in-focus image over a wide imaging area of the imaging surface with high responsiveness.

[実施例2]
図4は本発明の第2実施例を示す側面図である。 第1の実施例における駆動手段は超音波振動する振動子と摩擦部材の接触による相対移動の駆動機構であったのに対し、本実施例においてはマグネットとコイルによる電磁駆動力によるものとしている。 それ以外の部分に関しては必要な部分を除き、説明を割愛している。
Example 2
FIG. 4 is a side view showing a second embodiment of the present invention. The driving means in the first embodiment is a driving mechanism for relative movement due to the contact between the ultrasonic vibrator and the friction member, whereas in this embodiment, the driving means is based on the electromagnetic driving force by the magnet and the coil. Descriptions are omitted except for necessary parts for the other parts.

撮像素子105は保持リング403の腕部403oで回動中心209周りに回動可能に軸支されており、保持リング403は端部403a、403bにて撮影鏡筒に固定されたガイド軸404a、404bにZ軸方向に摺動可能に軸支されている。撮像素子105には永久磁石401a、401b、401c(各永久磁石は図2と同様に3ヶ所配置して有り永久磁石401cは不図示)が設けられ、対向するコイル402a、402b、402c (各コイルは図2と同様に3ヶ所配置して有りコイル402cは不図示)が撮影鏡筒に固定されている。   The image pickup device 105 is pivotally supported by the arm portion 403o of the holding ring 403 about the rotation center 209, and the holding ring 403 is a guide shaft 404a fixed to the photographing lens barrel at the end portions 403a and 403b. It is supported so as to be slidable in the Z-axis direction at 404 b. Permanent magnets 401a, 401b, and 401c (each permanent magnet is disposed at three locations as in FIG. 2 and the permanent magnet 401c is not shown) are provided in the imaging element 105, and opposing coils 402a, 402b, and 402c (each coil Are arranged in three places as in FIG. 2, and the coil 402c is not shown) is fixed to the photographing lens barrel.

その為コイル402a、402b、402cに同相で同じ量の電流を印加すると永久磁石401a、401b、401cはすべて光軸であるZ軸方向に同じ力を受け、撮像素子105はZ軸の前後方向に駆動される。また、コイル402a、402b、402cに異なる量の電流を印加すると撮像素子105は回動中心209周りに駆動力を受けつつ、Z軸方向にも駆動力を受ける。コイル402a、402b、402cいずれかの対に逆相の電流を印加した場合もと撮像素子105は回動軸周りに駆動力を受ける。   Therefore, when the same amount of current in phase is applied to the coils 402a, 402b and 402c, the permanent magnets 401a, 401b and 401c all receive the same force in the Z axis direction which is the optical axis, and the imaging device 105 in the longitudinal direction of the Z axis It is driven. When different amounts of current are applied to the coils 402a, 402b, and 402c, the imaging element 105 receives driving force around the rotation center 209, and also receives driving force in the Z-axis direction. When a current of reverse phase is applied to any one of the coils 402a, 402b, and 402c, the imaging element 105 receives driving force around the rotation axis.

位置検出手段206a、206b、206c (各位置検出手段は図2と同様に3ヶ所配置して有り位置検出手段206cは不図示)撮像素子105の光軸であるZ軸方向変位を各々検出し、位置検出信号を対応する制御手段108a、108bに出力する。信号処理手段107a、107bは位置検出手段206a、206bの位置検出信号と制御手段108a、108bからのピント合わせの駆動目標値との関連でコイル402a、402bをフィードバック制御する。   Position detection means 206a, 206b, 206c (each position detection means is arranged at three locations as in FIG. 2, and the position detection means 206c is not shown) detects the displacement in the Z axis direction which is the optical axis of the imaging element 105, The position detection signal is output to the corresponding control means 108a, 108b. The signal processing means 107a, 107b performs feedback control of the coils 402a, 402b in relation to the position detection signals of the position detection means 206a, 206b and the focusing target value from the control means 108a, 108b.

この様に本実施例においてはマグネットとコイルによる電磁駆動力を用いても第1の実施例と変わらず機能する。すなわち、撮像素子から得られる画像信号を複数の信号処理手段で撮像領域の一部毎に分けて並列処理し、得られた駆動目標値で撮像素子の撮像領域の一部毎に設けられた駆動手段を撮像領域の一部毎に独立して駆動制御できるように複数の手段の組合せが並列に構成されている。   As described above, in the present embodiment, even if the electromagnetic driving force by the magnet and the coil is used, the same function as the first embodiment is performed. That is, image signals obtained from the imaging device are divided into portions for each imaging region by a plurality of signal processing means and processed in parallel, and driving provided for each portion of the imaging region of the imaging device with the obtained driving target value A combination of a plurality of means is configured in parallel so that the means can be driven and controlled independently for each part of the imaging region.

このように構成する事で、従来の撮像領域全体からの信号を統合してから、領域毎の駆動目標値に分割して駆動手段へ出力するシステムに比べて、その処理時間が短くなる。従って、撮影から撮像手段を所定の位置へ移動する時間が短縮されて、オートフォーカス動作の応答性が高くなる。この応答性の高い動作が独立して並行して実行されることにより、高い応答性をもって、撮像面の広い撮像領域にわたってピントの合った画像を得る事が可能になった。   With this configuration, the processing time is shorter than in a system in which signals from the entire imaging region in the related art are integrated, and then divided into drive target values for each region and output to the drive unit. Accordingly, the time for moving the imaging means from the photographing to the predetermined position is shortened, and the responsiveness of the autofocusing operation becomes high. By executing the highly responsive operations independently and in parallel, it is possible to obtain an in-focus image over a wide imaging area of the imaging surface with high responsiveness.

本発明はデジタルカメラやビデオばかりではなく工場や監視などを目的とする産業用カメラにも適用可能である。   The present invention is applicable not only to digital cameras and videos but also to industrial cameras intended for factories and surveillance.

102 撮影鏡筒カメラ本体
104 カメラ本体
105 撮像素子
107 信号処理手段
108 制御手段
102 shooting barrel camera body 104 camera body 105 image pickup element 107 signal processing means 108 control means

Claims (6)

撮像手段と、
前記撮像手段の撮像領域の一部からの信号に対応する駆動目標値を出力する駆動指示手段と、
前記駆動目標値に基づいて、前記撮像領域の一部を所定の光軸方向の位置へ移動する駆動手段を備えた撮影装置において、
前記撮像領域の一部とこれに対応するそれぞれ前記駆動指示手段と前記駆動手段の組合せが複数備えられ、
複数の前記撮像領域の一部は、前記撮像領域全体のうち、各々異なる領域であり、
その光軸方向の位置はそれぞれ独立して決定されていることを特徴とする撮影装置。
Imaging means,
Drive instructing means for outputting a drive target value corresponding to a signal from a part of the imaging area of the imaging means;
An imaging apparatus comprising a drive unit configured to move a part of the imaging area to a position in a predetermined optical axis direction based on the drive target value.
A plurality of combinations of the drive instruction means and the drive means are provided, each corresponding to a part of the imaging area.
Some of the plurality of imaging regions are different from each other in the entire imaging region,
An image pickup apparatus characterized in that the positions in the optical axis direction are independently determined.
前記撮像手段からの信号が、複数の前記駆動指示手段にカスケード接続されていることを特徴とする請求項1に記載の撮影装置。 The imaging apparatus according to claim 1, wherein a signal from the imaging unit is cascade-connected to the plurality of drive instruction units. 前記駆動手段は、前記撮像手段の近傍の3カ所に配置され、かつ、それぞれ対応する前記撮像手段の撮像領域の一部に最も近い位置に配置されていることを特徴とする請求項1に記載の撮影装置。 The driving means is disposed at three locations in the vicinity of the imaging means, and is disposed at a position closest to a part of the imaging area of the corresponding imaging means. Shooting device. 前記撮影装置は前記撮像手段に被写体からの光線を導く光学手段を備え、複数の前記駆動目標値の差は所定量以内であり、該所定量は前記光学手段の撮影条件により変化することを特徴とする請求項3に記載の撮影装置。 The imaging apparatus includes an optical unit for guiding a light beam from a subject to the imaging unit, and a difference between a plurality of drive target values is within a predetermined amount, and the predetermined amount changes according to the imaging condition of the optical unit. The imaging device according to claim 3. 前記駆動手段は、超音波振動する振動子と、前記振動子と接触する接触面を有する摩擦部材からなり、前記摩擦部材は前記撮像手段に固定され、前記接触面は、前記撮像手段の光軸近傍上の点を中心とする円弧形状であることを特徴とする請求項1に記載の撮影装置。 The driving means comprises a vibrator for ultrasonically vibrating and a friction member having a contact surface in contact with the vibrator, the friction member is fixed to the imaging means, and the contact surface is an optical axis of the imaging means The photographing device according to claim 1, wherein the photographing device has an arc shape centering on a point on the vicinity. 前記駆動手段は、マグネットとコイルによる電磁駆動力を用いることを特徴とする請求項1に記載の撮影装置。 The imaging device according to claim 1, wherein the driving unit uses an electromagnetic driving force by a magnet and a coil.
JP2017240207A 2017-12-15 2017-12-15 Imaging apparatus Pending JP2019110369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240207A JP2019110369A (en) 2017-12-15 2017-12-15 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240207A JP2019110369A (en) 2017-12-15 2017-12-15 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2019110369A true JP2019110369A (en) 2019-07-04

Family

ID=67180191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240207A Pending JP2019110369A (en) 2017-12-15 2017-12-15 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2019110369A (en)

Similar Documents

Publication Publication Date Title
JP4857021B2 (en) Actuator and lens unit and camera provided with the same
US20170192247A1 (en) Optical control apparatus, optical apparatus, and storage medium for storing optical control program
US7548257B2 (en) Optical apparatus for correcting vibration using ball-guides and method of resetting thereof
US9398220B2 (en) Shake correction apparatus and image pickup apparatus thereof, and optical device mountable on image pickup apparatus
JP2014092755A (en) Image shake correcting device, optical equipment comprising the same, imaging device, and control method of image shake correcting device
WO2020003942A1 (en) Lens barrel and image capturing device
US9563068B2 (en) Image shake correction device, control method thereof, and image pickup apparatus
JP2008089804A (en) Imaging apparatus
JP2010249934A (en) Image shake correction apparatus
US11283988B2 (en) Imaging apparatus
JP2017044878A (en) Image-capturing device and control method therefor
JP2019110369A (en) Imaging apparatus
US11644638B2 (en) Lens apparatus and image pickup apparatus
JP7443040B2 (en) Drive control device, drive control system, lens device, drive control method, and program
JP6519232B2 (en) Imaging apparatus, imaging method, program and optical apparatus
JP2006330077A (en) Optical equipment
JP2016080892A (en) Image blur correction device, focus adjustment device, control unit, and optical instrument
JP2008065073A (en) Actuator, lens unit having the same, and camera
US20240048837A1 (en) Image pickup apparatus
JP7062398B2 (en) Optical equipment
JP2010271584A (en) Optical apparatus having shake-correcting device
JP2019078903A (en) Lens device and imaging device using the same
JP7166949B2 (en) CONTROL DEVICE, AND LENS DEVICE AND IMAGING DEVICE INCLUDING THE SAME
JP2017026911A (en) Imaging apparatus and control method therefor, program, and storage medium
JP2016114841A (en) Control apparatus, optical apparatus, imaging apparatus, control method, program, and storage medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125