JP2019109691A - 移動体挙動予測装置および移動体挙動予測方法 - Google Patents

移動体挙動予測装置および移動体挙動予測方法 Download PDF

Info

Publication number
JP2019109691A
JP2019109691A JP2017242023A JP2017242023A JP2019109691A JP 2019109691 A JP2019109691 A JP 2019109691A JP 2017242023 A JP2017242023 A JP 2017242023A JP 2017242023 A JP2017242023 A JP 2017242023A JP 2019109691 A JP2019109691 A JP 2019109691A
Authority
JP
Japan
Prior art keywords
behavior
prediction
unit
vehicle
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017242023A
Other languages
English (en)
Other versions
JP6917878B2 (ja
Inventor
昌義 石川
Masayoshi Ishikawa
昌義 石川
浩朗 伊藤
Hiroo Ito
浩朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017242023A priority Critical patent/JP6917878B2/ja
Priority to CN201880066893.6A priority patent/CN111670468B/zh
Priority to DE112018005774.7T priority patent/DE112018005774T5/de
Priority to US16/768,733 priority patent/US11645916B2/en
Priority to PCT/JP2018/043689 priority patent/WO2019124001A1/ja
Publication of JP2019109691A publication Critical patent/JP2019109691A/ja
Application granted granted Critical
Publication of JP6917878B2 publication Critical patent/JP6917878B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00276Planning or execution of driving tasks using trajectory prediction for other traffic participants for two or more other traffic participants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/285Analysis of motion using a sequence of stereo image pairs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4043Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

【課題】頻出する移動体の挙動の予測精度の低下を伴うことなく、希少な移動体の挙動の予測精度を向上させる。【解決手段】自車両101には移動体挙動予測装置10が設けられ、移動体挙動予測装置10には、第一挙動予測部203および第二挙動予測部207が設けられ、第一挙動予測部203は、移動体の挙動の予測結果と、予測時間経過後の移動体の挙動の認識結果との誤差を最小化するように、第一予測挙動204を学習し、第二挙動予測部207は、自車両101が不安全な運転を行わないように自車両101の周辺の移動体の将来の第二予測挙動208を学習する。【選択図】図2

Description

本発明は、自動車などの自動運転に適用可能な移動体挙動予測装置および移動体挙動予測方法に関する。
自動車の自動運転の実現に向けて、車載カメラなどにより周囲状況をセンシングするセンシング技術、センシングしたデータに基づいて自車の状態と周囲環境を認識する認識技術、自車の状態と周囲環境の認識情報に基づいて走行速度や操舵角などを制御する制御技術などの開発が進められている。認識技術においては、自車周辺に存在する地物や移動体を認識し、それらの将来位置を正確に予測する予測技術が求められる。
歩行者や車両などの移動体の将来挙動には、移動体間の相互作用や周辺環境など多様な要因が影響する。これらの影響を全て定式化することは難しいため、機械学習によって各要因の影響をブラックボックスとして扱うことがある。
例えば、特許文献1では、回帰分析によって移動体の将来位置を予測する仕組みが検討されている。一般に、予測問題には教師あり学習が用いられる。
特開2013−196601
しかしながら、教師あり学習で得られる予測器は頻出するパターンには強いが、希少なパターンに対しては予測精度が悪化する。一方、自動運転においては、例えば、歩行者の飛び出しや他車両の急な加減速、進路変更などの稀にしか発生しない行動を安全のために考慮する必要がある。このため、単純な教師あり学習による予測技術では、自動運転で安全な走行を実現するのは難しい。
また、教師あり学習において、飛び出しや急な加減速、進路変更などの希少パターンのデータのみを学習に用いると、希少パターンの予測のみを行うようになり、通常の安全な走行に支障をきたすことがあった。
本発明は、上記事情に鑑みなされたものであり、その目的は、頻出する移動体の挙動の予測精度の低下を伴うことなく、希少な移動体の挙動の予測精度を向上させることが可能な移動体挙動予測装置および移動体挙動予測方法を提供することにある。
上記目的を達成するため、第1の観点に係る移動体挙動予測装置は、車両から認識可能な移動体の挙動の予測結果と、予測時間経過後の前記移動体の挙動の認識結果に基づいて、前記移動体の第一予測挙動を出力する第一挙動予測部と、前記車両の挙動に基づいて、前記車両から認識可能な移動体の第二予測挙動を出力する第二挙動予測部とを備える。
本発明によれば、頻出する移動体の挙動の予測精度の低下を伴うことなく、希少な移動体の挙動の予測精度を向上させることができる。
図1は、第1実施形態に係る移動体挙動予測装置が適用される自動車の走行環境の一例を示す模式図である。 図2は、第1実施形態に係る移動体挙動予測装置の構成を示すブロック図である。 図3は、図2の認識部の構成を示すブロック図である。 図4は、図3のマップ情報の構成例を示す図である。 図5は、第1実施形態に係る移動体挙動予測装置に用いられる挙動予測部の構成を示すブロック図である。 図6は、図2の制御部の構成を示すブロック図である。 図7(a)は、図2の運転評価部の評価方法を示す模式図、図7(b)は、図5のデータマップの一例を示す図、図7(c)は、図5の将来時刻挙動データの一例を示す図である。 図8は、図2の移動体挙動予測装置にて予測された第1の予測挙動および第2の予測挙動の表示例を示す図である。 図9は、第2実施形態に係る移動体挙動予測装置の構成を示すブロック図である。 図10は、第3実施形態に係る移動体挙動予測装置のハードウェア構成を示すブロック図である。
実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。
(第1実施形態)
図1は、第1実施形態に係る移動体挙動予測装置が適用される自動車の走行環境の一例を示す模式図である。
図1において、道路100上を自車両101が走行し、自車両101の前方を他車両102、103が走行しているものとする。他車両102、103は自車両101以外の車両である。道路100の脇には歩行者104が歩行しているものとする。
自車両101には、移動体挙動予測装置10、センサ20および表示部30が設けられている。移動体挙動予測装置10は、他車両102、103や歩行者104、二輪車などの移動体の将来における位置(以下、予測挙動と言うことがある)を予測する。センサ20は、自車両101の周辺の道路100や移動体の状態を検出する。センサ20は、例えば、カメラ、レーダ、ライダー、ソナー、GPS(Global Positioning System)、カーナビを用いることができる。表示部30は、移動体挙動予測装置10にて予測された予測挙動を表示する。この予測挙動は、センサ20で取得された自車両101の前方の画像に重ねて表示するようにしてもよいし、自車両101のフロントガラスに表示するようにしてもよい。
例えば、他車両102、103および歩行者104が経路K2〜K4に沿ってそれぞれ移動するとした時に、移動体挙動予測装置10は、他車両102、103および歩行者104が何秒後にいずれの位置にいるかを予測することができる。自車両101は、自動運転において、移動体挙動予測装置10による移動体の挙動予測に基づいて、他車両102、103および歩行者104などの移動体との衝突や、自車両101の急操舵、急減速、急加速および急停止等が発生しないように、操舵角や速度などを制御することができる。
他車両102、103や歩行者104、二輪車などの移動体はその周辺環境に応じて挙動が変化する。例えば、高速自動車道と国道、裏道などでは車両の運転挙動が変わってくる。また、周辺に他の移動体がどの程度存在するかによっても移動体の挙動は変化する。例えば、他の移動体の存在しない高速道路、渋滞している高速道路、人通りの多い商店街などで車両の挙動は大きく変化する。そのため、安全な自動運転のために、走行道路情報や周辺物体との相互作用などを考慮した移動体の将来挙動を予測することが求められる。
車両や移動体の挙動には、頻繁に発生する頻出パターンと、稀にしか発生しない希少パターンがある。頻出パターンは、他車両102、103の道路100に沿った通常走行や、歩行者104の道路100に沿った歩行などである。希少パターンは、歩行者104の道路100への飛び出しや道路100の横断、他車両102、103の急な加減速や進路変更などである。
ここで、頻出パターンおよび希少パターンの双方に対応できるようにするため、移動体挙動予測装置10は、自車両101の周辺の移動体の挙動の予測結果と、予測時間経過後の移動体の挙動の認識結果に基づいて、移動体の第一予測挙動を出力する。さらに、移動体挙動予測装置10は、自車両101の挙動に基づいて、自車両101から認識可能な移動体の第二予測挙動を出力する。第一予測挙動は頻出パターンから予測することができる。第二予測挙動は希少パターンから予測することができる。
この時、走行道路情報や周辺物体との相互作用など移動体の将来挙動に影響する要因全てを定式化することは難しい。このため、機械学習によって各要因の影響をブラックボックスとして扱うことで、走行道路情報や周辺物体との相互作用などを考慮した移動体の将来挙動を予測することができる。
頻出パターンに関しては、教師あり学習によって予測を行う。ここでは、自車両101車両に取り付けられたセンサ20によって認識された物体の将来位置および将来速度を予測し、第一予測挙動とする。その後、所定の予測時間経過後に観測された同一の物体の位置および速度と、予測した将来位置および将来速度との差分が小さくなるように学習を行う。
希少パターン関しては、強化学習によって予測を行い、予測された将来位置および将来速度を第二予測挙動とする。ここでは、教師あり学習による第一予測挙動および強化学習による第二予測挙動に基づいて自車両101を制御した際に安全に運転できたか否かを判定し、より安全に運転できるように第二予測挙動を強化学習により修正する。
教師あり学習による挙動予測では、より多くのデータに対して精度の良い挙動予測を行う必要があるため、頻出パターンに対して予測精度が向上しやすくなる。
強化学習による挙動予測では、自車両101の制御に対して不安全になる要因を重点的に考慮する必要があるため、危険な行動である希少パターンに対して予測精度が向上しやすくなる。
このように、上述した実施形態では、教師あり学習と強化学習を組み合わせることで、頻出パターンおよび希少パターンの両方が反映された移動体の挙動を予測することができ、自車両をより安全に制御することが可能となる。
以下、実施形態に係る移動体挙動予測装置について詳細に説明する。
図2は、第1実施形態に係る移動体挙動予測装置の構成を示すブロック図である。
図2において、移動体挙動予測装置10には、認識部202、第一挙動予測部203、予測誤差算出部205、第一パラメータ更新量算出部206、第二挙動予測部207、制御部209、運転評価部210、報酬生成部211および第二パラメータ更新量算出部212が設けられている。
ここで、第一挙動予測部203は、移動体の挙動の予測結果と、予測時間経過後の移動体の挙動の認識結果との誤差を最小化するように、第一予測挙動204を学習することができる。第二挙動予測部207は、自車両101が不安全な運転を行わないように自車両101の周辺の移動体の将来の第二予測挙動208を学習することができる。
この時、第一挙動予測部203および第二挙動予測部207は、認識部202で認識された結果を用いることで第一予測挙動204および第二予測挙動208をそれぞれ出力する。
また、第一挙動予測部203は、第一予測挙動204が頻出パターンである時に、自車両101が安全に走行できるように教師あり学習によって第一予測挙動204を学習する。第二挙動予測部207は、第二予測挙動208が希少パターンである時に、自車両101が安全に走行できるように強化学習によって第二予測挙動208を学習する。また、第二予測挙動208は第一予測挙動204と同様の形式をとることができる。この時、第二挙動予測部207の構成は第一挙動予測部203と同様の構成をとることができる。また、第二挙動予測部207は第一挙動予測部203とパラメータを共有してもよい。
センサデータ201は、自車両101に取り付けられたセンサ20から得られるデータである。認識部202は、センサデータ201を処理した結果得られる周辺の他車両および歩行者などを認識したり、地図データ、道路属性情報および目的地情報などを保持したりする。また、予測モデルが挙動予測に必要とする情報などの認識も行う。
図3は、図2の認識部の構成を示すブロック図である。
図3において、認識部202は、センサデータ201に基づいて、自車両101の周辺物体や周辺環境を認識する。この時、センサデータ201は、ステレオカメラ画像および自車量の速度、ヨーレート、GPSなどから得られた時系列データによって構成することができる。認識部202には、ステレオマッチング部303、物体認識部305、位置算出部307および物体追跡部311が設けられている。
ステレオマッチング部303は、右カメラ画像301および左カメラ画像302に基づいて視差画像304を生成する。ステレオマッチングは、畳み込みニューラルネットワーク(Convolutional Neural Network;CNN)またはブロックマッチング法などによって行うことができる。
物体認識部305は、左カメラ画像302に画像処理を行い、画像上に映っている物体の認識を行うことで物体認識結果306を生成する。なお、図3の構成では、左カメラ画像302に対して物体認識処理を行う例を示したが、右カメラ画像301に対して物体認識処理を行ってもよい。ここで、物体認識部305による物体認識処理は、移動体検知およびセマンティックセグメンテーションである。
移動体検知は、Faster R−CNNや、Single Shot multibox Detector(SSD)と呼ばれるCNNの手法を用いて行うことができる。これらは、画像上で認識対象の位置と種別を認識する手法である。認識対象の位置については、画像上で認識対象を含む矩形領域を出力する。また、認識対象の種別については、認識した矩形領域ごとに矩形領域に含まれる人、車両などの認識対象のクラスを出力する。矩形領域は1枚の画像に対して複数の領域を抽出することが可能である。また、Faster R−CNNやSSDは移動体検知の一例であり、画像上で物体検知が可能な他の手法で代替してもよい。また、物体検知の手法のかわりにインスタンスセグメンテーションと呼ばれる、画像上で認識対象毎に各認識対象が写っているピクセル領域を認識する手法を用いてもよい。インスタンスセグメンテーションはたとえばMask R−CNN等の手法を用いるが、Mask R−CNN以外のインスタンスセグメンテーションの手法を用いてもよい。
セマンティックセグメンテーションは、ResNetやU−Netと呼ばれるCNNの手法を用いて行うことができる。セマンティックセグメンテーションは、画像上の各ピクセルが、どのクラスの物体を写しているかを認識する手法である。セマンティックセグメンテーションで認識されるクラスは、人や車両などの移動体だけでなく、車道、舗道、白線および建物などの地形情報、障害物、立体物を含むことができる。また、ResNetやU−Netはセマンティックセグメンテーションの一例である。
位置算出部307は、視差画像304および物体認識結果306に基づいて、物体認識結果306のクラス情報を求め、位置認識結果308として出力する。位置認識結果308には、移動体検知によって認識された人や車両の3次元位置情報と、セマンティックセグメンテーションによって得られた物体認識結果306の3次元位置情報を含む。
物体追跡部311は、位置認識結果308、前時刻認識結果309および自車軌道310に基づいて位置認識結果308の時系列処理を行い、時系列認識結果312を出力する。前時刻認識結果309は前時刻までの位置認識結果308である。物体追跡部311は、前時刻認識結果309と自車軌道310を用いて、前時刻までに認識された物体の現時刻における位置予測を行う。その後、現時刻における位置認識結果308と、位置予測で得られた予測位置とのマッチングを行う。このマッチングでは、位置認識結果308と予測位置それぞれとの距離を計算し、最も総距離が小さくなる組み合わせを探索することができる。ここで距離の計算は画像上での領域の近さを用いてもよいし、3次元空間での距離を用いてもよい。
その後、マッチングされた物体には、前時刻と同一のIDを付与し、マッチングされなかった物体には、新規のIDを付与する。前時刻にマッチングされた物体があるものは、前時刻と現時刻の位置情報から、その物体の速度を算出する。物体認識部305で移動体検出によって認識された各物体に対して上記の処理を行い、各物体のクラス、位置、速度およびIDを時系列認識結果312とする。
マップ情報313は、位置認識結果308のうち、セマンティックセグメンテーションで得られた各ピクセルのクラス情報を視差画像304によって変換し、自車両周辺の俯瞰画像とした情報である。また、マップ情報313には、時系列認識結果312に含まれる情報も、以下の図4に示す形で含む。
図4は、図3のマップ情報の構成例を示す図である。
図4において、マップ情報313は複数のレイヤ情報401を有する。レイヤ情報401は、車両周辺の情報を位置情報ごとに整理したものである。レイヤ情報401は、車両周辺の領域を切り出し、その領域がグリッドで仕切られた情報である。グリッドで仕切られた各マス402の情報は、それぞれ現実の位置情報と対応している。例えば、道路情報のような1次元の2値で表現される情報であれば、道路の位置情報に対応するマスに1が格納され、道路以外の位置情報に対応するマスには0が格納される。
また、速度情報のような2次元の連続値で表現される情報であれば、レイヤ情報が2層に渡って、第1方向速度成分および第2方向速度成分が格納される。ここで、第1方向および第2方向は、例えば、車両の進行方向、横方向、北方向、東方向などを表すことができる。また、速度情報をレイヤ情報に変換する場合には、自車両101もしくは移動体の存在する位置情報に対応するマス402に情報を格納する。
このように、レイヤ情報401は、環境情報、移動体情報および自車両情報に対して、認識部202の取得情報の次元数以下のレイヤに亘って、その取得情報の位置情報と対応したマス402へ情報が格納されたものである。また、取得情報が落下物や移動体のように特定の位置にのみ存在する情報に関する場合には、対応する位置情報のマス402に情報が格納される。マップ情報313は、車両周辺の情報を位置情報ごとに整理した種々のレイヤ情報401を積み上げた構造を有する。レイヤ情報401を積み上げる際には、各レイヤのマス402の持つ位置情報が一致するようにする。
なお、上述した実施形態では、ステレオカメラ画像に基づいてマップ情報313を生成する構成を示したが、物体の3次元位置、速度およびその周辺のマップ情報313が得られるならば、例えば、カメラ画像における物体検知と、ライダーによる3次元位置認識を組み合わせてもよいし、その他のソナーも用いた構成や単眼カメラのみからなる構成でもよい。また、地図情報を用いてもよい。また、ステレオマッチング部303、物体認識部305および物体追跡部311で行われる処理は他の代替手法に置き換えてもよい。
図5は、第1実施形態に係る移動体挙動予測装置に用いられる挙動予測部の構成を示すブロック図である。この挙動予測部は、図2の第一挙動予測部203または第二挙動予測部207に適用することができる。
図5において、挙動予測部には、N(Nは正の整数)個の移動体1〜Nごとにリカレントニューラルネットワーク502−1〜502−N、全結合層505−1〜505−Nおよび乗算層506−1〜506−Nが設けられている。さらに、挙動予測部には、総和層507、畳込み層509、511および結合層510がN個の移動体1〜Nに共通に設けられている。
挙動予測部は、自車両101の周辺の移動体1〜Nごとにリカレントニューラルネットワーク502−1〜502−Nによる位置予測を行う。移動体1〜Nは、認識部202の物体認識部305で認識されたN個の物体である。図1の例では、移動体1〜Nは、他車両102、103および歩行者104である。そして、各移動体1〜Nのリカレントニューラルネットワーク502−1〜502−Nの中間状態を集約し、自車両101の周辺の道路状況および交通状況と結合し、畳み込みニューラルネットワークによって各移動体1〜Nおよび道路情報との相互作用を考慮した挙動の予測を行う。
リカレントニューラルネットワーク502−1〜502−Nは通常のリカレントニューラルネットワークでもよいし、Gated Recurrent Unit(GRU)や、Long−Short Term Memory(LSTM)などのリカレントニューラルネットワークの派生系でもよい。
各リカレントニューラルネットワーク502−1〜502−Nは、移動体1〜N現在時刻移動データ501−1〜501−Nを入力として、移動体1〜N将来時刻移動データ503−1〜503−Nを出力する。移動体1〜N現在時刻移動データ501−1〜501−Nは各移動体1〜Nのt時刻前からの移動量である。この移動量は、各移動体1〜Nがt時刻前からどの程度移動したかを示す。移動体1〜N将来時刻移動データ503−1〜503−Nは各移動体1〜Nの将来時刻での移動量である。この移動量は、各移動体が将来時刻t0、t1、・・・、tT後までにどの程度移動するかを示す。移動体1〜N現在時刻移動データ501−1〜501−Nおよび移動体1〜N将来時刻移動データ503−1〜503−Nは各移動体1〜Nの現在時刻における位置を基準とした座標系で計算される。
移動体1〜N将来時刻移動データ503−1〜503−Nは、各移動体1〜Nがどの方向に移動する可能性が高いかを予測するものであり、精度のよい予測情報とはならないため、挙動予測の結果としては用いない。
移動体1〜N将来時刻移動データ503−1〜503−Nは、リカレントニューラルネットワーク502−1〜502−Nをより簡易に学習するために用いる。リカレントニューラルネットワーク502−1〜502−Nを学習する際には、移動体1〜N将来時刻移動データ503−1〜503−Nから各移動体1〜Nの将来時刻t0、t1、・・・、tTにおける移動量を教師情報として与えることができる。
全結合層505−1〜505−Nは、移動体1〜N現在時刻相対位置データ504−1〜504−Nを入力として、アフィン変換と活性化関数を適用したものを出力する。動体1〜N現在時刻相対位置データ504−1〜504−Nは、現在時刻における自車位置を中心とした座標系における各移動体1〜Nの相対位置を示す。全結合層505−1〜505−Nの出力は、リカレントニューラルネットワーク502−1〜502−Nの内部状態と同じ次元を持つ。
乗算層506−1〜506−Nは、リカレントニューラルネットワーク502−1〜502−Nの内部状態と、全結合層505−1〜505−Nの出力の要素ごとの積を出力する。リカレントニューラルネットワーク502−1〜502−Nの予測する各移動体1〜Nの将来時刻における移動量は、各移動体1〜Nの現在時刻を中心とした座標系で行われる。そのため、各移動体1〜Nの自車両101との相対位置を全結合層505−1〜505−Nで処理した値との要素ごとの積をとることで、自車両101との相対的な移動量を計算することができる。
総和層507は、各移動体1〜Nの乗算層506−1〜506−Nの出力の総和を計算する。総和層507は、各移動体1〜Nの乗算層506−1〜506−Nの値の総和を取ることで、自車両101からどの相対位置にどの方向に移動しようとしている移動体1〜Nがあるか把握することが可能となる。
認識されている全移動体1〜Nの乗算層506−1〜506−Nの出力の総和が総和層507にて取られると、畳み込みニューラルネットワークによる各移動体1〜Nと道路情報の相互作用を考慮した予測を行う。マップデータ508は自車両101の周辺の道路情報が格納されたデータである。
この時、畳み込み層509は、マップデータ508に対して畳み込みニューラルネットワークを適用する。結合層510は、畳み込み層509の出力と総和層507の出力を結合する。
畳み込み層509の出力と総和層507の出力の結合は、例えば、畳み込み層509の出力結果のチャンネル方向に、総和層507の出力を畳み込み層509の幅および高さに合わせた後に追加することで行われる。なお、総和層507と結合層510の間に畳み込み層などの追加のニューラルネットワークを加えてもよい。
畳み込み層511は、総和層507の出力と畳み込み層509の出力の結合結果に対し、畳み込みニューラルネットワークを適用し、将来時刻挙動データ512を出力する。将来時刻挙動データ512は、自車両101の周辺の座標系上で将来時刻t0、t1、・・・、tTにおける各座標に移動体1〜Nが存在する確率を表す。将来時刻挙動データ512は、図4に示したマップ情報313と同様の形式を持つ。
畳み込み層509、511は、必ずしも1層である必要はなく、複数層であってもよいし、マップデータ508、畳み込み層509、511および結合層510は、将来時刻挙動データ512を通して各中間状態および出力の幅と高さを一定に保ってもよいし、縮小または拡大を行ってもよい。上述した実施形態では、N個の移動体1〜Nが存在する状況での構成を示したが、移動体の数は限定されず、1つ以上であればよい。
以上の処理により、図2の第一挙動予測部203および第二挙動予測部207から第一予測挙動204および第二予測挙動208が出力される。第一予測挙動204は、予測誤差算出部205、制御部209および表示部30に入力される。第二予測挙動208は、制御部209および表示部30に入力される。
予測誤差算出部205は、第一挙動予測部203が出力した第一予測挙動204の予測誤差を算出する。ここでは、自車両101の周辺の座標系で表現された将来時刻t0、t1、・・・、tTにおける第一予測挙動204と、将来時刻t0、t1、・・・、tT後に認識部202で認識された物体位置との予測誤差を求める。この際、将来時刻t0、t1、・・・、tTに認識部202で認識された物体位置は、第一予測挙動204と同様に、図4で示したマップ情報313と同様の形式に変換する。マップ情報313上において、特定のグリッド上に物体が将来時刻t0、t1、・・・、tTにおいて存在していれば1、存在していなければ0となるように変換する。予測誤差は、第一予測挙動204と、将来時刻t0、t1、・・・、tTにおける認識結果をマップ表現に変換したものとの相互エントロピーによって計算することができる。
第一パラメータ更新量算出部206は、予測誤差算出部205が算出した予測誤差を最小化するように、第一挙動予測部203のパラメータを更新する量を算出することができる。このパラメータの更新量は、確率勾配降下法によって決定することができる。第一挙動予測部203のパラメータは、リカレントニューラルネットワーク502−1〜502−N、全結合層505−1〜505−Nおよび畳み込み層509、511に含まれる荷重行列やバイアス項である。
制御部209は、第一予測挙動204および第二予測挙動208に基づいて自車両101の制御を行う。制御部209は、自車両101の軌道を決定し、その決定した軌道を追従するように自車両101の操舵角および速度を制御する。軌道は、ある将来時刻t0、t1、・・・、tTにおける自車両101の目標位置の集合である。
図6は、図2の制御部の構成を示すブロック図である。
図6において、制御部209には、軌道生成部601、軌道評価部602、軌道決定部603および軌道追従部604が設けられている。
軌道生成部601は、自車両101の軌道候補を複数生成する。軌道候補は、例えば、ランダムな複数の軌道とすることができる。
軌道評価部602は、軌道生成部601が生成した複数の軌道を評価する。軌道の評価は、第一予測挙動204および第二予測挙動208と、生成された自車軌道の将来時刻t0、t1、・・・、tTごとの空間的な重なりが少ない時に、その軌道に良い評価を与えることができる。また、軌道の評価は、第一予測挙動204および第二予測挙動208に依らず、自車両101の速度や加速度からなる評価を同時に行ってもよいが、少なくとも移動体1〜Nの予測挙動を評価する項を含む。
軌道決定部603は、軌道評価部602の評価値が最も低い軌道を自車両101が追従すべき軌道として決定する。なお、軌道決定部603は、制御部209の制御周期に同期して、自車両101が追従すべき軌道を決定することができる。
軌道追従部604は、自動決定部603が決定した自車軌道に追従するように、自車両101の操舵角および速度を制御する。
運転評価部210は、制御部209による自車両101の制御結果に基づく運転を評価する。この運転の評価では、自車両101が急制動、急操舵、急加速および急減速などの不安全な運転を行ったかどうかを判定する。不安全な運転は、自車両101の衝突回避機能などの運転支援機能が動作したか、操舵角および速度が閾値以上の変化をしたかなどによって判定することができる。また、この評価では、自車両101の周辺に移動体1〜Nが存在しない等で安全に走行できるにも関わらず、自車両101が移動をしない不動作運転を行ったかも判定することができる。
報酬生成部211は、運転評価部210による運転評価結果に基づいて報酬を生成する。この時、運転評価部210で不安全運転もしくは不動作運転が発生したと判定された場合に負の報酬を、不安全運転および不動作運転のいずれも発生していないと判定された場合に正の報酬を生成することができる。
第二パラメータ更新量算出部212は、報酬生成部211で生成された報酬がより多く得られるように、第二挙動予測部207のパラメータの更新量を算出する。この更新量は、確率勾配降下法や進化的アルゴリズムによって算出することができる。この時、第二挙動予測部207は、第一予測挙動204および第二予測挙動208に基づいて実際に自車両101が制御された結果、自車両101の不安全運転および不動作運転が発生しないようにパラメータを更新することができる。
第一挙動予測部203は教師あり学習によって学習されるため、第一予測挙動204は頻出パターンを強く覚えることになる。頻出パターンを強く覚えた第一予測挙動204に基づいて、制御部209が自車両101を制御した場合、自車両101の周辺の移動体1〜Nが頻出パターン通りに行動すれば、第二予測挙動208は何も予測しなくとも、自車両101は安全に運転できる。
自車両101の周辺の移動体1〜Nが頻出パターンどおりに行動しない場合、すなわち希少パターンが発生した場合は、第二挙動予測部207が何も予測しなければ、不安全な事象につながり、自車両101が不安全な運転を示す。第二挙動予測部207は、このような不安全な運転を回避するように学習されるため、不安全な運転につながる希少パターンを予測するようになる。
また、不動作運転が発生しないように第二挙動予測部207が学習することによって、自車両101の周辺が危険で自車両101を動かすことができなくなる状態に陥るのを防ぐことができる。この時、第一挙動予測部203は楽観的な挙動予測を行い、第二挙動予測部207は慎重な挙動予測を行うことができる。
また、第二挙動予測部207は、図4に示したマップ情報313と同様の形式で不安全な運転につながる挙動を予測する。このため、自車両101の周辺に移動体1〜Nが存在していない領域であっても、交差点など飛び出しなどで移動体1〜Nが急発生する可能性のある領域に対しても、不安全な運転を誘発する可能性があるとして、移動体1〜Nの出現という挙動の予測が可能となる。
なお、報酬生成部211は、制御部209の制御周期に同期して報酬を更新するようにしてもよいし、走行ルートの区分ごとに報酬を更新するようにしてもよいし、これらを組み合わせるようにしてもよい。走行ルートの区分は、例えば、ナビゲーションで用いられる地図上での左折時、右折時、交差点までの直線時または出発地から目的地までとすることができる。制御部209の制御周期と走行ルートの区分を組み合わせる場合、これらを等しく扱ってもよいし、いずれかに重みをつけてもよい。第一挙動予測部203および第二挙動予測部207は、報酬生成部211の報酬の更新周期に同期して第一予測挙動204および第二予測挙動208を更新することができる。
図7(a)は、図2の運転評価部の評価方法を示す模式図、図7(b)は、図5のデータマップの一例を示す図、図7(c)は、図5の将来時刻挙動データの一例を示す図である。
図7(a)において、道路100上を自車両101が走行し、自車両101の前方では他車両105が走行しているものとする。他車両105は経路K5に沿って移動するものとする。この他車両105は、図5の移動体1に対応するものとする。
自車両101に設けられた認識部202にて道路100が認識され、マップデータ508が作成される。このマップデータ508の各マスには、図7(a)の道路100の位置に対応して1が格納され、道路100以外の位置に対応して0が格納されているものとする。
他車両105の移動体1現在時刻移動データ501−1、移動体1現在時刻相対位置データ504−1およびマップデータ508は、図5の挙動予測部に入力される。そして、この挙動予測部の出力として、図7(c)に示すように、将来時刻t0、t1、・・・、tTにおける将来時刻挙動データ512−0、512−1、・・・、512−Tが得られたものする。この将来時刻挙動データ512−0、512−1、・・・、512−Tの各マスには、将来時刻t0、t1、・・・、tTにおける各座標に他車両105が存在する確率が格納される。
図2の制御部209は、他車両105の将来時刻挙動データ512−0、512−1、・・・、512−Tに基づいて自車両101の制御を行う。ここで、軌道生成部601にて、自車両101の軌道候補K1−1、K1−2、K1−3が生成されたものとする。そして、軌道評価部602は、各軌道候補K1−1、K1−2、K1−3について、将来時刻t0、t1、・・・、tTごとの他車両105と空間的な重なりを評価する。この時、例えば、軌道候補K1−1では、その空間的な重なりが0%、軌道候補K1−2では、その空間的な重なりが80%、軌道候補K1−3では、その空間的な重なりが30%であるものとする。この場合、軌道決定部603は、その空間的な重なりが最も小さい軌道候補K1−1を自車両101が追従すべき軌道として決定する。そして、軌道追従部604は、自車軌道として決定された軌道候補K1−1に追従するように、自車両101の操舵角および速度を制御する。
軌道候補K1−1に追従するように自車両101の操舵角および速度が制御された結果、自車両101の急制動および急操舵が発生したものとする。この時、運転評価部210にて不安全な運転と判定され、報酬生成部211にて負の報酬が生成される。ここで、第二パラメータ更新量算出部212は、報酬生成部211で生成された報酬がより多く得られるように、第二挙動予測部207のパラメータの更新量を算出する。このため、第二パラメータ更新量算出部212は、負の報酬が生成されないように第二挙動予測部207のパラメータの更新量を算出する。この結果、第二挙動予測部207は、運転評価部210にて不安全な運転と判定されないように第二予測挙動208を生成することができる。
図8は、図2の移動体挙動予測装置にて予測された第1の予測挙動および第2の予測挙動の表示例を示す図である。
図8において、自車両101のフロントガラス40には、第一予測挙動204−1〜204−3および第二予測挙動208−1が投影されている。第一予測挙動204−1〜204−3および第二予測挙動208−1は、運転者がフロントガラス40越しに実際に観察できる移動体の位置に表示することができる。
これにより、運転者が運転中に前方から注意を逸らすことなく、第一予測挙動204−1〜204−3および第二予測挙動208−1を認識することが可能となる。
上述した第1実施形態では、第一予測挙動204および第二予測挙動208を共に制御部209で使用する構成を示した。
以下、周辺環境に応じて制御部209で用いる予測挙動を選択する手法について説明する。
(第2実施形態)
図9は、第2実施形態に係る移動体挙動予測装置の構成を示すブロック図である。
図9の移動体挙動予測装置では、図2の移動体挙動予測装置に予測手法決定部801が追加されている。予測手法決定部801には、荷重推定部802が設けられている。
予測手法決定部801は、認識部202で取得した周辺環境情報に従って、制御部209で用いる予測挙動を、第一予測挙動204のみ、第二予測挙動208のみ、第一予測挙動204と第二予測挙動208の荷重平均のいずれかに決定する。また、第一予測挙動204と第二予測挙動208の荷重平均が選択された場合には、荷重推定部802は、荷重平均に用いる荷重を推定する。
予測手法の決定は、教師あり学習によって行われる。予測手法決定部801は、第一予測挙動204のみを用いて制御部209で生成した自車軌道と、第二予測挙動208のみを用いて制御部209で生成した自車軌道を、同時刻の認識部202の情報と紐付けて記憶する。その後、運転評価部210は、将来時刻において、第一予測挙動204のみによる自車軌道および第二予測挙動208のみによる自車軌道の両方が不安全運転および不動作運転を引き起こさないか判定する。
予測手法決定部801は、認識部202の情報を入力として第一予測挙動204のみによる自車軌道が不安全運転および不動作運転を引き起こすか否か、第二予測挙動208のみによる自車軌道が不安全運転および不動作運転を引き起こすか否かの二つを出力とした機械学習による予測モデルを持つ。予測モデルは、それぞれの予測挙動のみによる自車軌道が不安全運転および不動作運転を引き起こした場合を負例、引き起こさなかった場合を正例とした2クラス分類問題として学習される。
実際の走行時には、予測手法決定部801は、認識部202から取得した情報を用いて、第一予測挙動204のみを用いた自車軌道および第二予測挙動208のみを用いた自車軌道が不安全運転および不動作運転を引き起こさないか予測し、それぞれの正例である確信度を出力する。第一予測挙動204のみを用いた自車軌道が不安全運転および不動作運転を引き起こさない確信度をP1、第二予測挙動208のみを用いた自車軌道が不安全運転および不動作運転を引き起こさない確信度をP2とする。
確信度P1が閾値THより大きく、かつ確信度P2が閾値TLより小さければ、予測手法決定部801は、第一予測挙動204のみを制御部209で用いるように決定する。確信度P1が閾値TLより小さく、かつ確信度P2が閾値THより大きければ、予測手法決定部801は、第二予測挙動208のみを制御部209で用いるように決定する。
それ以外の場合には、第一予測挙動204と第二予測挙動208をP1/(P1+P2):P2/(P1+P2)という割合で荷重平均を取り、その荷重平均を取った値を制御部209で用いる。閾値TH、TLは事前に決定された値である。
この際、認識部202では、図3で示した情報以外にも、GPSの情報や周辺の地図情報、走行道路の道路種別を入力に加えてもよい。
ここで、周辺環境に応じて制御部209で用いる予測挙動を選択することにより、自車軌道が不安全運転および不動作運転を引き起こさない確信度に基づいて、第一予測挙動204および第二予測挙動208を予測することが可能となり、第一予測挙動204および第二予測挙動208の予測精度を向上させることができる。
(第3実施形態)
図10は、第3実施形態に係る移動体挙動予測装置のハードウェア構成を示すブロック図である。
図10において、移動体挙動予測装置10には、プロセッサ11、通信制御デバイス12、通信インターフェース13、主記憶デバイス14および外部記憶デバイス15が設けられている。プロセッサ11、通信制御デバイス12、通信インターフェース13、主記憶デバイス14および外部記憶デバイス15は、内部バス16を介して相互に接続されている。主記憶デバイス14および外部記憶デバイス15は、プロセッサ11からアクセス可能である。
また、移動体挙動予測装置10の入出力インターフェースとして、センサ20、表示部30および操作部40が設けられている。センサ20、表示部30および操作部40は、内部バス16に接続されている。操作部40は、図2の制御部209の指令に基づいて、自車両101のエンジン、変速機、ブレーキおよびステアリングなどを操作することで、自車両101の加減速、制動および操舵などを実行する。
プロセッサ11は、移動体挙動予測装置10全体の動作制御を司るハードウェアである。主記憶デバイス14は、例えば、SRAMまたはDRAMなどの半導体メモリから構成することができる。主記憶デバイス14には、プロセッサ11が実行中のプログラムを格納したり、プロセッサ11がプログラムを実行するためのワークエリアを設けることができる。
外部記憶デバイス15は、大容量の記憶容量を有する記憶デバイスであり、例えば、ハードディスク装置やSSD(Solid State Drive)である。外部記憶デバイス15は、各種プログラムの実行ファイルを保持することができる。外部記憶デバイス15には、移動体挙動予測プログラム15Aを格納することができる。プロセッサ11が移動体挙動予測プログラム15Aを主記憶デバイス14に読み出し、移動体挙動予測プログラム15Aを実行することにより、図1の移動体挙動予測装置10の各機能を実現することができる。
通信制御デバイス12は、外部との通信を制御する機能を有するハードウェアである。通信制御デバイス12は、通信インターフェース13を介してネットワーク19に接続される。
以上、本発明の実施形態を説明したが、本実施形態で記載した各機能の実装場所は問わない。すなわち、車両上に実装してもよいし、車両と通信可能なデータセンタ上に実装してもよい。
また、上述した実施形態では、移動体挙動予測装置を車両の運行に用いる場合について説明したが、移動体挙動予測装置は車両以外に用いてもよく、例えば、ドローンや無人機などの飛翔体の飛行制御に用いてもよいし、人工知能を搭載したロボットの歩行制御や姿勢制御に用いてもよい。
なお、本発明は上述した実施形態に限定されるものではなく様々な変形例が含まれる。上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
10…移動体挙動予測装置、20…センサ、101…自車両、102、103…他車両、104…歩行者

Claims (12)

  1. 車両から認識可能な移動体の挙動の予測結果と、予測時間経過後の前記移動体の挙動の認識結果に基づいて、前記移動体の第一予測挙動を出力する第一挙動予測部と、
    前記車両の挙動に基づいて、前記車両から認識可能な移動体の第二予測挙動を出力する第二挙動予測部とを備える移動体挙動予測装置。
  2. 前記第一挙動予測部は、教師あり学習に基づいて前記第一予測挙動を出力する第一ニューラルネットワークを備え、
    前記第二挙動予測部は、強化学習に基づいて前記第二予測挙動を出力する第二ニューラルネットワークを備える請求項1に記載の移動体挙動予測装置。
  3. 前記第一予測挙動および前記第二予測挙動は前記車両の運転制御に用いられ、
    前記第一挙動予測部は、前記移動体の挙動の予測結果と、前記予測時間経過後の前記移動体の挙動の認識結果との誤差を最小化するように、前記第一予測挙動を学習し、
    前記第二挙動予測部は、前記車両が不安全な運転を行わないように、前記車両から認識可能な移動体の前記第二予測挙動を学習する請求項1に記載の移動体挙動予測装置。
  4. 前記移動体の種別、位置および速度を認識する認識部と、
    前記第一予測挙動および前記第二予測挙動の少なくともいずれかに基づいて、前記車両を制御する制御部と、
    前記車両の制御結果に基づいて前記車両の運転の安全性を評価する運転評価部と、
    前記安全性の評価結果が不安全であれば負の報酬を生成し、前記安全性の評価結果が安全であれば正の報酬を生成する報酬生成部とを備え、
    前記報酬を最大化するように前記第二挙動予測部の予測パラメータを更新する請求項3に記載の移動体挙動予測装置。
  5. 前記認識部は、
    複数のカメラ画像に基づいて視差画像を生成するステレオマッチング部と、
    前記カメラ画像に基づいて物体を認識する物体認識部と、
    前記視差画像および前記物体の認識結果に基づいて前記物体の現時刻における位置認識結果を算出する位置算出部と、
    前記車両の軌道および前時刻までの位置認識結果に基づいて前記物体の現時刻における位置認識結果を予測し、前記位置認識結果の予測結果と、前記位置算出部で算出された位置認識結果とのマッチング結果に基づいて、前記物体を追跡する物体追跡部とを備える請求項4に記載の移動体挙動予測装置。
  6. 前記第一挙動予測部は、
    N(Nは正の整数)個の移動体の現在時刻の移動データに基づいて、前記N個の移動体の将来時刻の移動データをそれぞれ出力するN個のリカレントニューラルネットワークと、
    前記車両の位置を基準とした前記N個の移動体の相対位置データにアフィン変換および活性化関数をそれぞれ適用するN個の全結合層と、
    前記N個のリカレントニューラルネットワークの内部状態と前記N個の全結合層の出力をそれぞれ乗算するN個の乗算層と、
    前記N個の乗算層の出力の総和をとる総和層と、
    前記車両の周辺の道路情報に畳み込みューラルネットワークを適用する第一畳込み層と、
    前記総和層の出力と前記第一畳込み層の出力を結合する結合層と、
    前記結合層の出力に畳み込みューラルネットワークを適用する第二畳込み層とを備える請求項4に記載の移動体挙動予測装置。
  7. 前記制御部は、
    前記車両の複数の軌道候補を生成する軌道生成部と、
    前記第一予測挙動および前記第二予測挙動に基づいて前記軌道候補を評価する軌道評価部と、
    前記軌道評価部による評価結果に基づいて、前記車両の軌道を決定する軌道決定部と、
    前記軌道決定部で決定された軌道に前記車両が追従するように前記車両を制御する軌道追従部とを備える請求項4に記載の移動体挙動予測装置。
  8. 前記車両が不安全運手または不動作運転を引き起こすかどうかの確信度に基づいて、前記制御部で用いられる予測挙動を、前記第一予測挙動のみ、前記第二予測挙動のみ、前記第一予測挙動と前記第二予測挙動の荷重平均のいずれかに決定する予測手法決定部を備える請求項4に記載の移動体挙動予測装置。
  9. 前記第一予測挙動の重みと前記第二予測挙動の重みを推定する荷重推定部を備え、
    前記制御部は、前記第一予測挙動と前記第二予測挙動との荷重平均に基づいて前記車両を制御する請求項4に記載の移動体挙動予測装置。
  10. 前記第一予測挙動および前記第二予測挙動を前記車両の前方のカメラ画像と重ねて表示する表示部を備える請求項4に記載の移動体挙動予測装置。
  11. 前記第一予測挙動および前記第二予測挙動を前記車両のフロントガラスに表示する表示部を備える請求項4に記載の移動体挙動予測装置。
  12. 教師あり学習に基づいて移動体の第1挙動を予測し、
    強化学習に基づいて移動体の第2挙動を予測する移動体挙動予測方法であって、
    前記予測時において前記第2挙動の頻出度は前記第1挙動の頻出度よりも小さい移動体挙動予測方法。

JP2017242023A 2017-12-18 2017-12-18 移動体挙動予測装置 Active JP6917878B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017242023A JP6917878B2 (ja) 2017-12-18 2017-12-18 移動体挙動予測装置
CN201880066893.6A CN111670468B (zh) 2017-12-18 2018-11-28 移动体行为预测装置以及移动体行为预测方法
DE112018005774.7T DE112018005774T5 (de) 2017-12-18 2018-11-28 Vorrichtung zur Vorhersage des Verhaltens eines sich bewegenden Körpers und Verfahren zur Vorhersage des Verhaltens eines sich bewegenden Körpers
US16/768,733 US11645916B2 (en) 2017-12-18 2018-11-28 Moving body behavior prediction device and moving body behavior prediction method
PCT/JP2018/043689 WO2019124001A1 (ja) 2017-12-18 2018-11-28 移動体挙動予測装置および移動体挙動予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242023A JP6917878B2 (ja) 2017-12-18 2017-12-18 移動体挙動予測装置

Publications (2)

Publication Number Publication Date
JP2019109691A true JP2019109691A (ja) 2019-07-04
JP6917878B2 JP6917878B2 (ja) 2021-08-11

Family

ID=66994609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242023A Active JP6917878B2 (ja) 2017-12-18 2017-12-18 移動体挙動予測装置

Country Status (5)

Country Link
US (1) US11645916B2 (ja)
JP (1) JP6917878B2 (ja)
CN (1) CN111670468B (ja)
DE (1) DE112018005774T5 (ja)
WO (1) WO2019124001A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014809A1 (ja) * 2019-07-19 2021-01-28 京セラ株式会社 画像認識評価プログラム、画像認識評価方法、評価装置及び評価システム
KR102490011B1 (ko) * 2022-07-19 2023-01-19 주식회사 라이드플럭스 로드 유저 예측 기반 자율주행 차량의 주행 계획 결정방법, 장치 및 컴퓨터프로그램
JP2023508986A (ja) * 2019-12-27 2023-03-06 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 交通弱者の意図を予測する方法および装置
WO2023047651A1 (ja) * 2021-09-22 2023-03-30 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理システム及び情報処理方法
WO2023102126A1 (en) * 2021-12-03 2023-06-08 Zoox, Inc. Vehicle perception system with temporal tracker
US11685405B2 (en) 2020-04-06 2023-06-27 Toyota Jidosha Kabushiki Kaisha Vehicle controller, method, and computer program for vehicle trajectory planning and control based on other vehicle behavior
WO2023157350A1 (ja) * 2022-02-15 2023-08-24 日立Astemo株式会社 物標算出方法、演算装置
US11776277B2 (en) 2020-03-23 2023-10-03 Toyota Jidosha Kabushiki Kaisha Apparatus, method, and computer program for identifying state of object, and controller
US11829153B2 (en) 2020-04-06 2023-11-28 Toyota Jidosha Kabushiki Kaisha Apparatus, method, and computer program for identifying state of object, and controller
JP7404125B2 (ja) 2019-09-13 2023-12-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 物体追跡方法及びプログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095878B1 (fr) * 2019-05-10 2021-10-08 Univ De Brest Procédé d'analyse automatique d'images pour reconnaître automatiquement au moins une caractéristique rare
DE102019213222B4 (de) * 2019-09-02 2022-09-29 Volkswagen Aktiengesellschaft Verfahren zum Vorhersagen einer zukünftigen Fahr-Situation eines am Straßenverkehr teilnehmenden Fremd-Objektes, Vorrichtung, Fahrzeug
CN114207667A (zh) * 2019-09-19 2022-03-18 赫尔实验室有限公司 利用嵌入空间中的少量标签来学习动作
US11645498B2 (en) * 2019-09-25 2023-05-09 International Business Machines Corporation Semi-supervised reinforcement learning
US11354913B1 (en) * 2019-11-27 2022-06-07 Woven Planet North America, Inc. Systems and methods for improving vehicle predictions using point representations of scene
US11860634B2 (en) * 2019-12-12 2024-01-02 Baidu Usa Llc Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes
KR102541685B1 (ko) * 2020-04-13 2023-06-09 한국과학기술원 재귀 구조를 이용한 예측을 위한 전자 장치 및 그의 동작 방법
US11654933B2 (en) * 2020-11-10 2023-05-23 GM Global Technology Operations LLC Navigation trajectory using reinforcement learning for an ego vehicle in a navigation network
CN112669335A (zh) * 2021-01-27 2021-04-16 东软睿驰汽车技术(沈阳)有限公司 车辆感知方法、装置、电子设备以及机器可读存储介质
GB202106238D0 (en) * 2021-04-30 2021-06-16 Five Ai Ltd Motion planning
CN113361665B (zh) 2021-08-11 2021-11-16 成都理工大学 一种基于强化学习的高原山地旅游安全风险预警方法
TWI794971B (zh) * 2021-09-14 2023-03-01 和碩聯合科技股份有限公司 物體方位辨識方法與物體方位辨識裝置
DE102022202002A1 (de) * 2022-02-28 2023-08-31 Volkswagen Aktiengesellschaft Verfahren, Computerprogramm, und Vorrichtung zur Anpassung von Betriebsparametern eines Fortbewegungsmittels, sowie Fortbewegungsmittel
CN116091894B (zh) * 2023-03-03 2023-07-14 小米汽车科技有限公司 模型训练方法、车辆控制方法、装置、设备、车辆及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068399A1 (ja) * 2003-01-31 2004-08-12 Matsushita Electric Industrial Co. Ltd. 予測型行動決定装置および行動決定方法
JP2010173616A (ja) * 2009-02-02 2010-08-12 Nissan Motor Co Ltd 車両走行支援装置及び車両走行支援方法
JP2011014037A (ja) * 2009-07-03 2011-01-20 Fuji Heavy Ind Ltd リスク予測システム
JP2017211913A (ja) * 2016-05-27 2017-11-30 日本電信電話株式会社 行動決定装置、未来予測モデル学習装置、ネットワーク学習装置、方法、及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954744B2 (en) * 2001-08-29 2005-10-11 Honeywell International, Inc. Combinatorial approach for supervised neural network learning
AU2011265090A1 (en) * 2010-06-07 2012-11-29 Affectiva,Inc. Mental state analysis using web services
JP5189157B2 (ja) * 2010-11-30 2013-04-24 株式会社豊田中央研究所 可動物の目標状態決定装置及びプログラム
JP5838879B2 (ja) 2012-03-22 2016-01-06 株式会社デンソー 予測システム
JP5962706B2 (ja) 2014-06-04 2016-08-03 トヨタ自動車株式会社 運転支援装置
CN107180220B (zh) * 2016-03-11 2023-10-31 松下电器(美国)知识产权公司 危险预测方法
US10055652B2 (en) * 2016-03-21 2018-08-21 Ford Global Technologies, Llc Pedestrian detection and motion prediction with rear-facing camera
CN105892471B (zh) * 2016-07-01 2019-01-29 北京智行者科技有限公司 汽车自动驾驶方法和装置
EP3485337B1 (en) * 2016-09-23 2020-10-21 Apple Inc. Decision making for autonomous vehicle motion control
CN106842925B (zh) * 2017-01-20 2019-10-11 清华大学 一种基于深度强化学习的机车智能操纵方法与系统
US20180374341A1 (en) * 2017-06-27 2018-12-27 GM Global Technology Operations LLC Systems and methods for predicting traffic patterns in an autonomous vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068399A1 (ja) * 2003-01-31 2004-08-12 Matsushita Electric Industrial Co. Ltd. 予測型行動決定装置および行動決定方法
JP2010173616A (ja) * 2009-02-02 2010-08-12 Nissan Motor Co Ltd 車両走行支援装置及び車両走行支援方法
JP2011014037A (ja) * 2009-07-03 2011-01-20 Fuji Heavy Ind Ltd リスク予測システム
JP2017211913A (ja) * 2016-05-27 2017-11-30 日本電信電話株式会社 行動決定装置、未来予測モデル学習装置、ネットワーク学習装置、方法、及びプログラム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018576A (ja) * 2019-07-19 2021-02-15 京セラ株式会社 画像認識評価プログラム、画像認識評価方法、評価装置及び評価システム
JP7148462B2 (ja) 2019-07-19 2022-10-05 京セラ株式会社 画像認識評価プログラム、画像認識評価方法、評価装置及び評価システム
WO2021014809A1 (ja) * 2019-07-19 2021-01-28 京セラ株式会社 画像認識評価プログラム、画像認識評価方法、評価装置及び評価システム
JP7404125B2 (ja) 2019-09-13 2023-12-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 物体追跡方法及びプログラム
JP7480302B2 (ja) 2019-12-27 2024-05-09 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 交通弱者の意図を予測する方法および装置
JP2023508986A (ja) * 2019-12-27 2023-03-06 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 交通弱者の意図を予測する方法および装置
US11776277B2 (en) 2020-03-23 2023-10-03 Toyota Jidosha Kabushiki Kaisha Apparatus, method, and computer program for identifying state of object, and controller
US11829153B2 (en) 2020-04-06 2023-11-28 Toyota Jidosha Kabushiki Kaisha Apparatus, method, and computer program for identifying state of object, and controller
US11685405B2 (en) 2020-04-06 2023-06-27 Toyota Jidosha Kabushiki Kaisha Vehicle controller, method, and computer program for vehicle trajectory planning and control based on other vehicle behavior
WO2023047651A1 (ja) * 2021-09-22 2023-03-30 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理システム及び情報処理方法
WO2023102126A1 (en) * 2021-12-03 2023-06-08 Zoox, Inc. Vehicle perception system with temporal tracker
WO2023157350A1 (ja) * 2022-02-15 2023-08-24 日立Astemo株式会社 物標算出方法、演算装置
KR102490011B1 (ko) * 2022-07-19 2023-01-19 주식회사 라이드플럭스 로드 유저 예측 기반 자율주행 차량의 주행 계획 결정방법, 장치 및 컴퓨터프로그램

Also Published As

Publication number Publication date
CN111670468B (zh) 2022-06-14
US20210171025A1 (en) 2021-06-10
JP6917878B2 (ja) 2021-08-11
US11645916B2 (en) 2023-05-09
WO2019124001A8 (ja) 2020-06-04
CN111670468A (zh) 2020-09-15
WO2019124001A1 (ja) 2019-06-27
DE112018005774T5 (de) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2019124001A1 (ja) 移動体挙動予測装置および移動体挙動予測方法
US11131993B2 (en) Methods and systems for trajectory forecasting with recurrent neural networks using inertial behavioral rollout
US11485384B2 (en) Unstructured vehicle path planner
US10937178B1 (en) Image-based depth data and bounding boxes
US11748909B2 (en) Image-based depth data and localization
US20210339741A1 (en) Constraining vehicle operation based on uncertainty in perception and/or prediction
US10984543B1 (en) Image-based depth data and relative depth data
KR20210074366A (ko) 자율주행 차량 계획 및 예측
CN110857085A (zh) 车辆路径规划
JP2023511755A (ja) オブジェクト速度および/またはヨーレート検出およびトラッキング
US11827214B2 (en) Machine-learning based system for path and/or motion planning and method of training the same
US10449956B2 (en) Object tracking by unsupervised learning
US11577741B1 (en) Systems and methods for testing collision avoidance systems
CN117794803A (zh) 使用具有响应型代理预测的树搜索和/或代理滤波进行车辆轨迹控制
US11787438B2 (en) Collaborative vehicle path generation
US12005925B1 (en) Collaborative action ambiguity resolution for autonomous vehicles
JP7459238B2 (ja) ユーザ選好による強化学習基盤の自律走行最適化方法およびシステム
US20230399026A1 (en) State Identification For Road Actors With Uncertain Measurements Based On Compliant Priors
US20230415773A1 (en) Validating protolanes with actor behavior flowcharts
US20230415767A1 (en) Protolanes for testing autonomous vehicle intent
US20230418291A1 (en) Testing reuse across protolane families
RU2790105C2 (ru) Способ и электронное устройство для управления беспилотным автомобилем
US20240092357A1 (en) Trajectory optimization in multi-agent environments
US20240092350A1 (en) Vehicle safety system
Nino et al. Priority Tracking of Pedestrians for Self-Driving Cars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6917878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150