JP2019108564A - Spherical silver powder - Google Patents

Spherical silver powder Download PDF

Info

Publication number
JP2019108564A
JP2019108564A JP2017240310A JP2017240310A JP2019108564A JP 2019108564 A JP2019108564 A JP 2019108564A JP 2017240310 A JP2017240310 A JP 2017240310A JP 2017240310 A JP2017240310 A JP 2017240310A JP 2019108564 A JP2019108564 A JP 2019108564A
Authority
JP
Japan
Prior art keywords
silver powder
particles
spherical silver
spherical
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240310A
Other languages
Japanese (ja)
Other versions
JP6807302B2 (en
Inventor
将也 大迫
Masaya OSAKO
将也 大迫
太郎 中野谷
Taro Nakanoya
太郎 中野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2017240310A priority Critical patent/JP6807302B2/en
Publication of JP2019108564A publication Critical patent/JP2019108564A/en
Application granted granted Critical
Publication of JP6807302B2 publication Critical patent/JP6807302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide spherical silver powder which can be baked at a lower temperature.SOLUTION: Spherical silver powder is made from approximately spherical-like silver particles (preferably, silver particles having an aspect ratio of 1.5 or less) and has a gap (preferably, does not communicate with the outside and is closed) inside of particles, in an image of a cross section of the silver particles exposed by polishing the surface of the resin after the spherical silver powder is embedded in the resin, a shape coefficient of the gap of 20% or more of the number of silver particles is 3-15 (preferably, 3-10) among 75% or more of the number of silver particles selected in a descending order of the cross section from 20 or more particles having the gap, and a circularity coefficient of the gap of 30% or more of the number of silver particles is 0.4 or less (preferably, 0.1-0.4) among 75% or more of the number of the selected silver particles.SELECTED DRAWING: Figure 1

Description

本発明は、球状銀粉に関し、特に、太陽電池やタッチパネルの基板などの電子部品の電極や回路などを形成する導電性ペーストに使用するのに適した球状銀粉に関する。   The present invention relates to spherical silver powder, and more particularly to spherical silver powder suitable for use in conductive paste for forming electrodes, circuits and the like of electronic parts such as solar cell and touch panel substrates.

従来、電子部品の電極や回路などを形成する方法として、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することによって製造される焼成型の導電性ペーストを基板上に所定のパターンに形成した後、500℃以上の温度で加熱することによって、有機成分を除去し、銀粒子同士を焼結させて導電膜を形成する方法が広く用いられている。   Conventionally, as a method of forming electrodes, circuits and the like of electronic parts, after forming a conductive paste of a baking type, which is manufactured by adding silver powder together with a glass frit into an organic vehicle and kneading it in a predetermined pattern An organic component is removed by heating at a temperature of 500 ° C. or more, and a method of sintering silver particles to form a conductive film is widely used.

このような方法に使用される導電性ペースト用の銀粉は、電子部品の小型化による導体パターンの高密度化やファインライン化に対応したり、太陽電池の集光面積を増大して発電効率を向上させるためにフィンガー電極のファインライン化に対応するように、粒径が適度に小さく、粒度が揃っていることが要求されている。   The silver powder for conductive paste used in such a method corresponds to the densification and fine line formation of conductor patterns due to the miniaturization of electronic parts, and increases the light collection area of the solar cell to generate power generation efficiency. It is required that the particle size is appropriately small and the particle size is uniform so as to correspond to the finer line of the finger electrode in order to improve.

また、ファインライン化により導電パターンや電極の断面積が減少しても、電気を効率よく流す導電パターンや電極などを形成することができる導電性ペーストに使用するのに適した銀粉が望まれており、そのため、より低い温度で加熱して銀粒子同士を焼結させることができる銀粉が望まれている。   In addition, silver powder suitable for use in a conductive paste that can form a conductive pattern, an electrode, etc. that efficiently flows electricity even if the conductive pattern and the cross-sectional area of the electrode decrease due to the fine line is desired. Therefore, silver powder which can be heated at a lower temperature to sinter silver particles is desired.

このような導電性ペースト用の銀粉を製造する方法として、銀イオンを含有する水性反応系に還元剤を加えることによって球状銀粉を還元析出させる湿式還元法が知られている(例えば、特許文献1参照)。   As a method for producing such silver powder for conductive paste, a wet reduction method is known in which spherical silver powder is reduced and precipitated by adding a reducing agent to an aqueous reaction system containing silver ions (for example, Patent Document 1) reference).

しかし、従来の湿式還元法により製造した球状銀粉と同程度の粒径の球状銀粉を焼成型の導電性ペーストに使用した場合に、600℃程度の温度で加熱しても、銀粒子同士を十分に焼結させることができず、良好な導電膜を形成することができない場合があった。   However, when spherical silver powder having the same particle size as that of spherical silver powder manufactured by the conventional wet reduction method is used for the baking conductive paste, the silver particles are sufficiently heated even when heated at a temperature of about 600.degree. In some cases, a good conductive film can not be formed.

このような問題を解決するため、従来の湿式還元法により製造した球状銀粉と同程度の粒径を有し且つより低い温度で焼成可能な球状銀粉を製造する方法として、銀イオンを含有する水性反応系に、キャビテーションを発生させながら、還元剤としてアルデヒドを含有する還元剤含有溶液を混合して、銀粒子を還元析出させることにより、粒子内部に閉鎖された(略球状の)空隙を有する球状銀粉を製造する方法が提案されている(例えば、特許文献2参照)。   In order to solve such a problem, an aqueous solution containing silver ions as a method of producing spherical silver powder having a particle diameter similar to that of spherical silver powder produced by a conventional wet reduction method and calcinable at a lower temperature A reducing agent-containing solution containing an aldehyde as a reducing agent is mixed with the reaction system while generating cavitation, thereby reducing and precipitating silver particles, thereby forming spherical particles having a (substantially spherical) void closed inside the particles. A method for producing silver powder has been proposed (see, for example, Patent Document 2).

特開平8−176620号公報(段落番号0008−0013)JP-A-8-176620 (paragraph number 0008-0013) 特開2013−189704号公報(段落番号0008)JP, 2013-189704, A (paragraph number 0008)

特許文献2の方法により製造された銀粉は、600℃程度の温度で加熱しても、銀粒子同士を十分に焼結させることができる。   Even if it heats at the temperature of about 600 degreeC, the silver powder manufactured by the method of patent document 2 can fully sinter silver particle.

近年、電子部品の小型化がさらに進んでおり、導体パターンの高密度化やファインライン化がさらに進んでいる。また、太陽電池の集光面積を増大して発電効率を向上させるために、フィンガー電極のファインライン化も進んでいる。   In recent years, the miniaturization of electronic components has further progressed, and the densification and fine line formation of conductor patterns have further progressed. In addition, in order to increase the light collection area of the solar cell and improve the power generation efficiency, the fine line of the finger electrode is also in progress.

また、結晶シリコン系太陽電池では、生成された電子が裏面電極まで拡散すると効率が低下するため、裏面障壁(Back−Surface−Field(BSF))を設けて電子が裏面電極に入らないようにしたBSF型の太陽電池が使用されているが、近年、太陽電池セルの裏面のシリコンとアルミニウム電極界面で起こる再結合によるエネルギー損失を(SiN、SiO、Alなどからなる)パッシベーション膜により低減してさらに効率を向上させる、裏面パッシベーション(Passivated Emitter and Rear Cell(PERC))型太陽電池が注目されている。このようなPERC型太陽電池の作製において、銀粉を焼成型の導電性ペーストに使用して電極を形成する際に、銀粉の焼成温度が高過ぎると、パッシベーション膜がダメージを受け易くなる。 Further, in the crystalline silicon solar cell, the efficiency decreases when the generated electrons diffuse to the back electrode, so a back barrier (Back-Surface-Field (BSF)) is provided to prevent electrons from entering the back electrode Although BSF type solar cells are used, in recent years, energy loss due to recombination occurring at the silicon and aluminum electrode interface on the back surface of the solar cell is made by passivation film (composed of SiN, SiO 2 , Al 2 O 3 etc.) Attention has been focused on backside-passivated (passivated emitter and rear cell (PERC)) solar cells that reduce and further improve efficiency. In the production of such a PERC type solar cell, when forming an electrode using silver powder for a baking type conductive paste, the passivation film is easily damaged if the baking temperature of the silver powder is too high.

そのため、特許文献2の方法により製造される銀粉よりも低い温度で加熱しても、銀粒子同士を十分に焼結させることができる銀粉が望まれている。   Therefore, even if it heats at temperature lower than the silver powder manufactured by the method of patent document 2, silver powder which can fully sinter silver particle is desired.

したがって、本発明は、このような従来の問題点に鑑み、より低い温度で焼成可能な球状銀粉を提供することを目的とする。   Accordingly, in view of such conventional problems, it is an object of the present invention to provide spherical silver powder which can be fired at a lower temperature.

本発明者らは、上記課題を解決するために鋭意研究した結果、略球状の銀粒子からなる球状銀粉の粒子内部に空隙を形成し、この球状銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙を有する20個以上の粒子から断面の大きな順に選んだ75%以上の数の銀粒子のうち、20%以上の数の銀粒子の空隙の形状係数を3〜15にすれば(あるいは、その75%以上の数の銀粒子のうち、30%以上の数の銀粒子の空隙の円形度係数を0.4以下にすれば)、より低い温度で焼成可能な球状銀粉を提供することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention form voids inside spherical silver powder particles consisting of substantially spherical silver particles, bury the spherical silver powder in a resin, and then polish the surface of the resin. In the image of the cross section of the silver particles exposed, the number of voids of the silver particles of 20% or more among the number of silver particles of 75% or more selected from the 20 or more particles having voids in descending order of cross section. If the shape factor is 3 to 15 (or if the number of silver particles having a number of 30% or more of the particles having a number of 75% or more, the degree of circularity of the voids of silver particles is 0.4 or less) It has been found that spherical silver powder that can be fired at temperature can be provided, and the present invention has been completed.

すなわち、本発明による球状銀粉は、略球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この球状銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙を有する20個以上の粒子から断面の大きな順に選んだ75%以上の数の銀粒子のうち、20%以上の数の銀粒子の空隙の形状係数が3〜15であることを特徴とする。この球状銀粉において、75%以上の数の銀粒子のうち、30%以上の数の銀粒子の空隙の円形度係数が0.4以下であるのが好ましい。   That is, the spherical silver powder according to the present invention is a spherical silver powder composed of substantially spherical silver particles and having voids inside the particles, and the silver particles are embedded by polishing the surface of the resin after the spherical silver powder is embedded in the resin. In the image of the cross section, the shape factor of the void of silver particles of 20% or more is 3 to 15 among silver particles of the number of 75% or more selected from 20 or more particles having voids in descending order of cross section. It is characterized by In the spherical silver powder, among the number of silver particles of 75% or more, the circularity coefficient of the voids of the silver particles of 30% or more is preferably 0.4 or less.

また、本発明による球状銀粉は、略球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この球状銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙を有する20個以上の粒子から断面の大きな順に選んだ75%以上の数の銀粒子のうち、30%以上の数の銀粒子の空隙の円形度係数が0.4以下であることを特徴とする。   Further, the spherical silver powder according to the present invention is a spherical silver powder consisting of substantially spherical silver particles and having voids inside the particles, and the silver particles are embedded by polishing the surface of the resin after the spherical silver powder is embedded in the resin. In the image of the cross section, the circularity coefficient of the voids of the silver particles of the number of 30% or more is 0.4, of the silver particles of the number of 75% or more selected from the 20 or more particles having voids in the order of the large cross section. It is characterized by the following.

上記の球状銀粉において、球状銀粉の平均一次粒子径DSEMが0.3〜3μmであるのが好ましい。また、球状銀粉のBET比表面積が0.1〜1.5m/gであるのが好ましく、球状銀粉の比表面積径DBETが0.3〜2μmであるのが好ましい。また、球状銀粉の比表面積径DBETに対する平均一次粒子径DSEMの比(DSEM/DBET)が1.0〜2.0であるのが好ましい。また、球状銀粉のレーザー回折法による平均粒径D50が0.5〜4μmであるのが好ましい。また、球状銀粉を加熱したときの球状銀粉の収縮率が10%に達する温度が350℃以下であるのが好ましい。 In the above-mentioned spherical silver powder, the average primary particle diameter D SEM of the spherical silver powder is preferably 0.3 to 3 μm. Further, the BET specific surface area of the spherical silver powder is preferably 0.1 to 1.5 m 2 / g, and the specific surface area diameter D BET of the spherical silver powder is preferably 0.3 to 2 μm. The ratio (D SEM / D BET ) of the average primary particle size D SEM to the specific surface area size D BET of the spherical silver powder is preferably 1.0 to 2.0. The average particle diameter D 50 of the spherical silver powder by a laser diffraction method is preferably in the range of 0.5 to 4 .mu.m. The temperature at which the shrinkage of the spherical silver powder reaches 10% when the spherical silver powder is heated is preferably 350 ° C. or less.

なお、本明細書中において、「レーザー回折法による平均粒径D50」とは、レーザー回折式粒度分布装置により測定した体積基準の累積50%粒子径(D50)をいう。 In this specification, the "average particle size D 50 by laser diffraction method" refers to a cumulative 50% particle diameter on a volume basis as measured by a laser diffraction type particle size distribution apparatus (D 50).

また、本明細書中において、「球状銀粉を加熱したときの球状銀粉の収縮率」とは、球状銀粉に荷重50kgfを1分間加えて作製した(直径5mmの)略円柱形のペレットを常温から昇温速度10℃/分で900℃まで昇温したときのペレットの収縮率(常温のときのペレットの長さと最も収縮したときのペレットの長さとの差に対するペレットの長さの減少量の割合)をいう。   Furthermore, in the present specification, “the shrinkage rate of spherical silver powder when heated spherical silver powder” refers to a substantially cylindrical pellet (with a diameter of 5 mm) prepared by adding a load of 50 kgf to spherical silver powder for 1 minute from ordinary temperature Shrinkage rate of pellet when heated to 900 ° C at a heating rate of 10 ° C / min (proportion of reduction of pellet length to difference between pellet length at normal temperature and pellet length most contracted) Say).

本発明によれば、より低い温度で焼成可能な球状銀粉を提供することができる。   According to the present invention, spherical silver powder that can be fired at lower temperatures can be provided.

実施例1で得られた球状銀粉の断面を1万倍で観察した電界放出形走査電子顕微鏡(FE−SEM)写真を示す図である。It is a figure which shows the field emission scanning electron microscope (FE-SEM) photograph which observed the cross section of the spherical silver powder obtained in Example 1 by 10,000 times. 実施例1で得られた球状銀粉の断面を4万倍で観察したFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph which observed the cross section of the spherical silver powder obtained in Example 1 by 40,000 times. 実施例1で得られた球状銀粉の断面の他の領域を4万倍で観察したFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph which observed the other area | region of the cross section of the spherical silver powder obtained in Example 1 by 40,000 times. 実施例2で得られた球状銀粉の断面を1万倍で観察したFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph which observed the cross section of the spherical silver powder obtained in Example 2 by 10,000 times. 実施例2で得られた球状銀粉の断面を4万倍で観察したFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph which observed the cross section of the spherical silver powder obtained in Example 2 by 40,000 times. 比較例1で得られた球状銀粉の断面を4万倍で観察したFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph which observed the cross section of the spherical silver powder obtained by the comparative example 1 by 40,000 times. 比較例2で得られた球状銀粉の断面を2万倍で観察したFE−SEM写真を示す図である。It is a figure which shows the FE-SEM photograph which observed the cross section of the spherical silver powder obtained by the comparative example 2 by 20,000 times.

本発明による球状銀粉の実施の形態は、略球状の銀粒子(好ましくは銀粒子の長径/短径(アスペクト比)が1.5以下の銀粒子)からなり、粒子内部に空隙を有する球状銀粉であって、この球状銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙を有する20個以上の銀粒子から断面の大きな順に選んだ75%以上の数の銀粒子のうち、20%以上の数の銀粒子の空隙の形状係数が3〜15(好ましくは3〜10)であるか、あるいは、選んだ75%以上の数の銀粒子のうち、30%以上の数の銀粒子の空隙の円形度係数が0.4以下(好ましくは0.1〜0.4)である。また、空隙は、外部に連通しない閉鎖された空隙であるのが好ましい。   The embodiment of the spherical silver powder according to the present invention is a spherical silver powder comprising substantially spherical silver particles (preferably silver particles having a major axis / a minor axis (aspect ratio) of 1.5 or less) of silver particles and having voids inside the particles. In the image of the cross section of the silver particles exposed by polishing the surface of the resin after the spherical silver powder is embedded in the resin, 75% or more selected from the 20 or more silver particles having voids in the order of the large cross section. Among the number of silver particles, the shape factor of the voids of 20% or more of the silver particles is 3 to 15 (preferably 3 to 10), or of the selected 75% or more of silver particles. The circularity coefficient of voids of silver particles having a number of 30% or more is 0.4 or less (preferably 0.1 to 0.4). Also, the void is preferably a closed void that does not communicate with the outside.

このような銀粉の粒子の形状や粒子の内部の空隙の存在は、銀粉を樹脂に埋めた状態で樹脂の表面を研磨して銀粉の粒子の断面を露出させ、その断面を電子顕微鏡により(好ましくは1万倍〜4万倍で)観察することによって確認することができる。この球状銀粉の粒子の断面は、球状銀粉の粒子の中央部の断面であるか、端部付近の断面であるかによって断面の大きさが異なるが、断面が露出した球状銀粉の粒子として観察された100個の球状銀粉の粒子のうち、断面の大きな粒子から順に50個の球状銀粉の粒子を選び、これらの50個の球状銀粉の粒子の断面の少なくとも20個の球状銀粉の粒子の断面に空隙が観察されれば、その球状銀粉は粒子内部に少なくとも一つの空隙を有する球状銀粉であるとする。   The shape of the particles of silver powder and the presence of voids inside the particles polish the surface of the resin while the silver powder is embedded in the resin to expose the cross section of the particles of silver powder, and the cross section is observed with an electron microscope (preferably Can be confirmed by observing at 10,000 to 40,000 times. Although the cross section of the spherical silver powder particle is different depending on whether it is the cross section of the central portion of the spherical silver powder particle or the cross section near the end, the cross section is observed as the spherical silver powder particle exposed Of the 100 particles of spherical silver powder, 50 particles of spherical silver powder are selected in order from the particles of large cross section, and at least 20 particles of spherical silver powder in cross section of these 50 particles of spherical silver powder If voids are observed, the spherical silver powder is considered to be spherical silver powder having at least one void inside the particle.

球状銀粉の断面の観察では、具体的には、球状銀粉を樹脂に埋めた後、クロスセクションポリッシャーで樹脂の表面を研磨することにより球状銀粉の粒子の断面を露出させて、球状銀粉の断面観察用サンプルを作製し、このサンプルを電子顕微鏡により(好ましくは4〜8万倍で)観察して得られた画像について、画像解析ソフトにより解析して、球状銀粉の各々の銀粒子の断面において(断面積が)最も大きい空隙の形状係数(=πLmax /4S)(この式中においてSは画像中の空隙の面積、Lmaxは画像中の空隙の最大長を示す)、その空隙の円形度係数(=4πS/L)(この式中においてSは画像中の空隙の面積、Lは画像中の空隙の周囲長さを示す)、各々の銀粒子の断面積に対する空隙の断面積の割合を求めることができる。 Specifically, in the observation of the cross section of the spherical silver powder, after the spherical silver powder is embedded in the resin, the cross section of the spherical silver powder is exposed by polishing the surface of the resin with a cross section polisher, and the cross section of the spherical silver powder is observed Samples prepared and observed with an electron microscope (preferably at a magnification of 4 to 80 000), the images obtained are analyzed by image analysis software, and the cross section of each silver particle of spherical silver powder ( void area of in the S in the cross-sectional area) the largest void shape factor (= πL max 2 / 4S) ( in this formula the image, L max denotes the maximum length of the void in the image), a circular the gap Coefficient (= 4πS / L 2 ) (wherein S represents the area of the void in the image and L represents the peripheral length of the void in the image), the cross-sectional area of the void relative to the cross-sectional area of each silver particle To determine the proportion Can.

また、上記の球状銀粉の平均一次粒子径DSEMは、0.3〜3.0μmであるのが好ましく、0.5〜2.0μmであるのがさらに好ましく、0.5〜1.5μmであるのが最も好ましい。 Further, the average primary particle diameter D SEM of the spherical silver powder is preferably 0.3 to 3.0 μm, more preferably 0.5 to 2.0 μm, and 0.5 to 1.5 μm. Most preferred.

球状銀粉のBET比表面積は、0.1〜1.5m/gであるのが好ましく、0.2〜1.0m/gであるのがさらに好ましい。BET比表面積が0.1m/gより小さいと、球状銀粉の粒子が大きくなり、そのような大きい球状銀粉を導電性ペーストに使用して配線などの描写に使用すると、微細配線を描写し難くなり、一方、1.5m/gより大きいと、導電性ペーストの粘度が高くなり過ぎるために導電性ペーストを希釈して使用する必要があり、導電性ペーストの銀濃度が低くなって、配線などが断線する場合がある。 BET specific surface area of the spherical silver powder is preferably from 0.1~1.5m 2 / g, and even more preferably 0.2~1.0m 2 / g. When the BET specific surface area is smaller than 0.1 m 2 / g, the particles of spherical silver powder become large, and such large spherical silver powder is difficult to describe fine wiring when it is used for conductive paste and the like for describing wiring etc. On the other hand, if it is larger than 1.5 m 2 / g, the viscosity of the conductive paste becomes too high, so the conductive paste needs to be diluted and used, and the silver concentration of the conductive paste becomes low. Etc. may break.

球状銀粉の粒子形状を真球としてBET比表面積から算出した粒子径(球状銀粉の比表面積径)DBET(=6/(銀の密度×BET比表面積))は、0.3〜2.0μmであるのが好ましく、0.5〜1.5μmであるのがさらに好ましい。 The particle size (specific surface area diameter of spherical silver powder) D BET (= 6 / (density of silver × BET specific surface area)) calculated from the BET specific surface area with the particle shape of spherical silver powder as a true sphere is 0.3 to 2.0 μm Is preferably, and more preferably 0.5 to 1.5 μm.

球状銀粉の比表面積径DBETに対する平均一次粒子径DSEMの比(DSEM/DBET)は、1.0〜2.0であるのが好ましい。この比が1に近いほど、より球形に近い形状の銀粉になる。 The ratio (D SEM / D BET ) of the average primary particle diameter D SEM to the specific surface area diameter D BET of the spherical silver powder is preferably 1.0 to 2.0. The closer this ratio is to 1, the more spherical silver powder is obtained.

球状銀粉のレーザー回折法による平均粒径D50は、0.5〜4.0μmであるのが好ましく、0.5〜2.5μmであるのがさらに好ましい。 The average particle diameter D 50 of the spherical silver powder according to the laser diffraction method is preferably 0.5 to 4.0 μm, and more preferably 0.5 to 2.5 μm.

球状銀粉を加熱したときの球状銀粉の収縮率が10%に達する温度は、350℃以下であるのが好ましく、330℃以下であるのがさらに好ましい。   The temperature at which the shrinkage of the spherical silver powder reaches 10% when the spherical silver powder is heated is preferably 350 ° C. or less, and more preferably 330 ° C. or less.

このような球状銀粉は、銀イオンを含有する水性反応系に、リシンなどの分子量100以上のアミノ酸を添加した後、還元剤を混合して、銀粒子を還元析出させることによって製造することができる。   Such spherical silver powder can be produced by adding an amino acid having a molecular weight of 100 or more such as lysine to an aqueous reaction system containing silver ions, and then mixing a reducing agent to reduce and deposit silver particles. .

銀イオンを含有する水性反応系として、硝酸銀、銀錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。銀錯体を含有する水溶液は、硝酸銀水溶液または酸化銀懸濁液にアンモニア水またはアンモニウム塩を添加することにより生成することができる。これらの中で、銀粉が適当な粒径と略球状の形状を有するようにするためには、硝酸銀水溶液にアンモニア水を添加して得られる銀アンミン錯体水溶液を使用するのが好ましい。銀アンミン錯体中におけるアンモニアの配位数は2であるため、銀1モル当たりアンモニア2モル以上を添加する。また、アンモニアの添加量が多過ぎると錯体が安定化し過ぎて還元が進み難くなるので、アンモニアの添加量は銀1モル当たりアンモニア8モル以下であるのが好ましい。なお、還元剤の添加量を多くするなどの調整を行えば、アンモニアの添加量が8モルを超えても適当な粒径の球状銀粉を得ることは可能である。なお、銀イオンを含有する水性反応系は、アルカリ性であるのが好ましく、pH調整剤として水酸化ナトリウムなどのアルカリを添加してアルカリ性に調整するのが好ましい。   An aqueous solution or slurry containing silver nitrate, a silver complex or a silver intermediate can be used as an aqueous reaction system containing silver ions. An aqueous solution containing a silver complex can be produced by adding aqueous ammonia or an ammonium salt to an aqueous silver nitrate solution or a silver oxide suspension. Among these, in order to make the silver powder have an appropriate particle diameter and a substantially spherical shape, it is preferable to use a silver ammine complex aqueous solution obtained by adding ammonia water to a silver nitrate aqueous solution. Since the coordination number of ammonia in the silver ammine complex is 2, 2 moles or more of ammonia is added per 1 mole of silver. If the amount of ammonia added is too large, the complex becomes too stable and reduction is difficult to proceed, so the amount of ammonia added is preferably 8 moles or less of ammonia per mole of silver. In addition, if adjustment is performed such as increasing the amount of addition of the reducing agent, it is possible to obtain spherical silver powder having an appropriate particle diameter even if the amount of addition of ammonia exceeds 8 moles. The aqueous reaction system containing silver ions is preferably alkaline, and is preferably adjusted to be alkaline by adding an alkali such as sodium hydroxide as a pH adjuster.

還元剤としては、銀粒子を還元析出させる還元剤であればよく、例えば、アスコルビン酸、過酸化水素水、ギ酸、酒石酸、ヒドロキノン、ピロガロール、ぶどう糖、没食子酸、ホルマリンなどの1種以上を使用することができ、ホルマリンを使用するのが好ましい。このような還元剤を使用することにより、上述したような粒径の球状銀粉を得ることができる。還元剤の添加量は、銀の収率を高めるために、銀に対して1当量以上であるのが好ましく、還元力が弱い還元剤を使用する場合には、銀に対して2当量以上、例えば、10〜20当量でもよい。   As the reducing agent, any reducing agent capable of reducing and precipitating silver particles may be used, and for example, one or more of ascorbic acid, hydrogen peroxide water, formic acid, tartaric acid, tartaric acid, hydroquinone, pyrogallol, glucose, gallic acid, formalin, etc. is used It is preferable to use formalin. By using such a reducing agent, spherical silver powder of the above-mentioned particle size can be obtained. The addition amount of the reducing agent is preferably at least 1 equivalent to silver in order to increase the yield of silver, and when using a reducing agent having a weak reducing power, at least 2 equivalents to silver, For example, 10 to 20 equivalents may be sufficient.

還元剤の添加方法については、球状銀粉の凝集を防ぐために、1当量/分以上の速さで添加するのが好ましい。この理由は明確ではないが、還元剤を短時間で投入することで、銀粒子の還元析出が一挙に生じて、短時間で還元反応が終了し、発生した核同士の凝集が生じ難いため、分散性が向上すると考えられる。したがって、還元剤の添加時間が短いほど好ましく、また、還元の際には、より短時間で反応が終了するように反応液を攪拌するのが好ましい。また、還元反応時の温度は、5〜80℃であるのが好ましく、5〜40℃であるのがさらに好ましい。反応温度を低くすることによって、球状銀粉の粒子の内部に(形状係数が3〜15または円形度係数が0.4以下の)空隙を生じさせ易くなる。また、球状銀粉の内部に(形状係数が3〜15または円形度係数が0.4以下の)空隙を生じさせるために、還元剤の添加前または添加中に撹拌するのが好ましい。また、還元剤により銀粒子を還元析出させた後、表面処理剤を添加して、銀粒子の表面に表面処理剤を付着させてもよい。   With regard to the method of adding the reducing agent, in order to prevent aggregation of the spherical silver powder, it is preferable to add at a rate of 1 equivalent / minute or more. The reason for this is not clear, but the addition of the reducing agent in a short time causes the reductive deposition of silver particles to occur at once, the reduction reaction is completed in a short time, and agglomeration of generated nuclei is less likely to occur. It is thought that the dispersibility improves. Therefore, the shorter the addition time of the reducing agent, the better, and in the reduction, it is preferable to stir the reaction solution so that the reaction is completed in a shorter time. Further, the temperature at the reduction reaction is preferably 5 to 80 ° C., and more preferably 5 to 40 ° C. By lowering the reaction temperature, voids (with a shape factor of 3 to 15 or a circularity factor of 0.4 or less) are easily generated inside the spherical silver powder particles. Moreover, in order to produce a void (having a shape factor of 3 to 15 or a circularity factor of 0.4 or less) inside the spherical silver powder, it is preferable to stir before or during the addition of the reducing agent. Alternatively, after reducing and precipitating silver particles with a reducing agent, a surface treatment agent may be added to cause the surface treatment agent to adhere to the surface of the silver particles.

銀粒子を還元析出させることによって得られた銀含有スラリーを固液分離し、得られた固形物を純水で洗浄して、固形物中の不純物を除去するのが好ましい。この洗浄の終点は、洗浄後の水の電気伝導度により判断することができ、この電気伝導度が0.5mS/m以下になるまで洗浄するのが好ましい。   It is preferable to solid-liquid separate the obtained silver-containing slurry obtained by reducing and precipitating silver particles, and wash the obtained solid with pure water to remove impurities in the solid. The end point of this washing can be judged by the electric conductivity of the water after washing, and it is preferable to wash until the electric conductivity becomes 0.5 mS / m or less.

この洗浄後に得られた塊状のケーキは、多くの水分を含有しているため、真空乾燥機などの乾燥機によって、乾燥した球状銀粉を得るのが好ましい。この乾燥の温度は、乾燥の時点で球状銀粉同士が焼結するのを防止するために、100℃以下であるのが好ましい。   Since the massive cake obtained after this washing contains a large amount of water, it is preferable to obtain dried spherical silver powder by a dryer such as a vacuum dryer. The drying temperature is preferably 100 ° C. or less in order to prevent sintering of the spherical silver powders at the time of drying.

また、得られた球状銀粉に乾式解砕処理や分級処理を施してもよい。この解砕の代わりに、粒子を機械的に流動化させることができる装置に球状銀粉を投入して、球状銀粉の粒子同士を機械的に衝突させることによって、球状銀粉の粒子表面の凹凸や角ばった部分を滑らかにする表面平滑化処理を行ってもよい。また、解砕や平滑化処理の後に分級処理を行ってもよい。なお、乾燥、粉砕および分級を行うことができる一体型の装置を用いて乾燥、粉砕および分級を行ってもよい。   In addition, the obtained spherical silver powder may be subjected to dry crushing treatment or classification treatment. Instead of this crushing, the spherical silver powder is introduced into a device capable of mechanically fluidizing the particles, and the particles of the spherical silver powder are caused to mechanically collide with each other, whereby the irregularities and corners of the particle surface of the spherical silver powder are produced. A surface smoothing process may be performed to smooth out the uneven portion. Also, classification processing may be performed after crushing or smoothing processing. The drying, grinding and classification may be carried out using an integrated device which can carry out drying, grinding and classification.

以下、本発明による球状銀粉の実施例について詳細に説明する。   Hereinafter, examples of the spherical silver powder according to the present invention will be described in detail.

[実施例1]
銀イオンとして0.12モル/Lの硝酸銀水溶液3.5Lに、濃度28質量%の工業用アンモニア水155gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.5gを加えてpH調整した後、L−リシン(和光純薬工業株式会社製の特級、分子量146.19)を純水に溶解した5.3質量%のL−リシン水溶液5.88gを添加し、液温を20℃に維持して、還元剤として37質量%のホルマリン水溶液240gを純水144gで希釈した水溶液を加えて、十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15.5重量%のステアリン酸溶液0.635gを加えて、十分に撹拌した後、撹拌を止めて、銀粒子を沈降させた。この銀粒子が沈殿した液をろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
Example 1
A silver ammine complex solution was obtained by adding 155 g of industrial ammonia water at a concentration of 28 mass% to 3.5 L of a 0.12 mol / L silver nitrate aqueous solution as silver ions. To this silver ammine complex solution, 5.5 g of sodium hydroxide aqueous solution having a concentration of 20% by mass is added to adjust the pH, and then L-lysine (special grade manufactured by Wako Pure Chemical Industries, Ltd .; molecular weight 146.19) is used as pure water. 5.88 g of a dissolved 5.3% by weight L-lysine aqueous solution was added, the liquid temperature was maintained at 20 ° C., and an aqueous solution obtained by diluting 240 g of 37% by weight formalin aqueous solution with 144 g of pure water as a reducing agent was added. The mixture was sufficiently stirred to obtain a slurry containing silver particles. To this slurry, 0.635 g of a 15.5 wt% stearic acid solution as a surface treatment agent was added, and after sufficient stirring, the stirring was stopped to precipitate silver particles. The solution in which the silver particles were precipitated was filtered, washed with water, dried, and then crushed to obtain silver powder.

このようにして得られた銀粉を樹脂に埋めた後、クロスセクションポリッシャー(日本電子株式会社製のIB−09010CP)により樹脂の表面を研磨して銀粉の粒子の断面を露出させて、銀粉の断面観察用サンプルを作製した。このサンプルを電界放出型走査電子顕微鏡(FE−SEM)(日本電子株式会社製のJSM−6700F)により1万倍および4万倍で観察して、銀粉の粒子の断面の画像を得た。これらの画像から、銀粉の形状は略球状であり、断面が大きい5個の粒子中の4個の粒子の断面に細長く延びる(外部に連通しない閉鎖された)空隙が銀粉の粒子の内部に存在することが確認された。この球状銀粉の粒子について1万倍で観察した電子顕微鏡写真を図1に示し、4万倍で観察した電子顕微鏡写真を図2Aおよび図2Bに示す。   After the silver powder thus obtained is embedded in a resin, the surface of the resin is polished with a cross section polisher (IB-09010 CP manufactured by Nippon Denshi Co., Ltd.) to expose the cross section of the silver powder particles, and the cross section of the silver powder A sample for observation was prepared. The sample was observed at a magnification of 10,000 and 40,000 with a field emission scanning electron microscope (FE-SEM) (JSM-6700F manufactured by JEOL Ltd.) to obtain an image of a cross section of silver powder particles. From these images, the shape of the silver powder is approximately spherical, and an elongated (closed outside) void exists in the interior of the silver powder particle which is elongated in the cross section of four particles in the five particles of large cross section It was confirmed to do. An electron micrograph of this spherical silver powder particle observed at 10,000 × is shown in FIG. 1, and an electron micrograph observed at 40,000 × is shown in FIGS. 2A and 2B.

また、1万倍で観察した画像について、画像解析ソフト(株式会社マウンテック製のMac−View)により解析して、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合(球状銀粉の粒子の断面に複数の空隙がある場合は球状銀粉の粒子の断面積に対する空隙の断面積の合計の割合)、球状銀粉の粒子の断面の輪郭に外接する円の直径(平均一次粒子径)DSEMを測定した。なお、使用した画像解析ソフトでは、断面の画像における空隙の輪郭をタッチペンでなぞれば、その空隙の断面積を算出することができるようになっている。その結果、画像中の球状銀粉の40個の粒子の断面に空隙が確認され、これらの粒子のうち、断面の大きな粒子から順に30個の粒子を選び、それぞれの粒子の空隙のうち、断面が最も大きい空隙の形状係数(=πLmax /4S)(この式中においてSは画像中の空隙の面積、Lmaxは画像中の空隙の最大長を示す)を求めたところ、23個の粒子の空隙の形状係数が3未満、5個の粒子の空隙の形状係数が3以上4未満、1個の粒子の空隙の形状係数が4以上5未満、1個の粒子の空隙の形状係数が5以上であった。なお、形状係数は、形状が円のときに1になり、それ以外は1より大きくなり、形状がどれくらい円に近いかを表している。また、それぞれの粒子の空隙のうち、断面が最も大きい空隙の円形度係数(=4πS/L)(この式中においてSは画像中の空隙の面積、Lは画像中の空隙の周囲長さを示す)を求めたところ、2個の粒子の空隙の円形度係数が0.2より大きく0.3以下、8個の粒子の空隙の円形度係数が0.3より大きく0.4以下、20個の粒子の空隙の円形度係数が0.4より大きかった。なお、円形度係数は、形状が円のときに1になり、それ以外は1より小さくなり、形状がどれくらい円からかけ離れているかを表している。また、上記の30個の粒子について、球状銀粉の粒子の断面積に対する空隙の断面積の割合を求めたところ、いずれも1.5%以上であった。また、球状銀粉の粒子の断面の直径(平均一次粒子径)DSEMは1.1μmであった。 Further, the image observed at 10,000 times is analyzed by image analysis software (Mac-View, manufactured by Mountech Co., Ltd.), and the size of the void in the cross section of the spherical silver powder particle and the void relative to the cross sectional area of the spherical silver powder particle Of the cross-sectional area of the spherical silver powder particles (the ratio of the total of the cross-sectional area of the voids to the cross-sectional area of the spherical silver powder particles when there are multiple voids in the cross section of the spherical silver powder particles) Diameter (average primary particle size) D SEM was measured. In the image analysis software used, the cross-sectional area of the void can be calculated by tracing the outline of the void in the image of the cross section with a touch pen. As a result, a void is confirmed in the cross section of 40 particles of spherical silver powder in the image, and of these particles, 30 particles are selected in order from the particle with the largest cross section, and the cross section of the void of each particle is selected. The shape factor of the largest void (= πL max 2 / 4S) (wherein S represents the area of the void in the image and L max represents the maximum length of the void in the image), and 23 particles were found. The shape factor of the air gap is less than 3, the shape factor of the air gap of 5 particles is 3 or more and less than 4, the shape factor of the air gap of 1 particle is 4 or more and less than 5, the shape factor of the air gap of 1 particle is 5 It was over. The shape factor is 1 when the shape is a circle, and is larger than 1 otherwise, indicating how close the shape is to a circle. In addition, the circularity coefficient (= 4πS / L 2 ) of the void having the largest cross section among the voids of each particle (in this formula, S is the area of the void in the image, L is the circumferential length of the void in the image The circularity coefficient of the voids of the two particles is greater than 0.2 and 0.3 or less, and the circularity coefficient of the voids of the eight particles is greater than 0.3 and 0.4 or less, The circularity factor of the void of 20 particles was greater than 0.4. The circularity coefficient is 1 when the shape is a circle, and is smaller than 1 otherwise, indicating how far the shape is far from the circle. Moreover, when the ratio of the cross-sectional area of the space | gap with respect to the cross-sectional area of the particle | grains of spherical silver powder was calculated | required about said 30 particle | grains, all were 1.5% or more. Further, the diameter (average primary particle diameter) D SEM of the cross section of the spherical silver powder particles was 1.1 μm.

また、得られた球状銀粉のBET比表面積を、BET比表面積測定装置(株式会社マウンテック製のMacsorb HM−model 1210)を使用して、測定装置内に60℃で10分間Ne−N混合ガス(窒素30%)を流して脱気した後、BET1点法により測定したところ、BET比表面積は0.53m/gであった。また、球状銀粉の粒子形状を真球としてBET比表面積から算出した粒子径(比表面積径)DBETを、DBET=6/(銀の密度×BET比表面積)から算出したところ、比表面積径DBETは1.1μmであり、DSEM/DBETは1.0であった。 In addition, the BET specific surface area of the obtained spherical silver powder was measured using a BET specific surface area measuring device (Macsorb HM-model 1210 manufactured by Mountech Co., Ltd.) in a measuring device at 60 ° C. for 10 minutes at a Ne-N 2 mixed gas. After degassing by flowing (30% nitrogen), the BET specific surface area was 0.53 m 2 / g as measured by the BET 1-point method. In addition, the particle diameter (specific surface area diameter) D BET calculated from the BET specific surface area using spherical silver powder particle shapes as true spheres is calculated from D BET = 6 / (density of silver × BET specific surface area), and the specific surface area diameter The D BET was 1.1 μm, and the D SEM / D BET was 1.0.

また、得られた球状銀粉の粒度分布を、レーザー回折式粒度分布装置(マイクロトラック・ベル株式会社製のマイクロトラック粒度分布測定装置MT−3300EXII)により測定して、体積基準の累積50%粒子径(D50)を求めたところ、2.1μmであった。 In addition, the particle size distribution of the obtained spherical silver powder is measured by a laser diffraction type particle size distribution apparatus (Microtrack particle size distribution measuring apparatus MT-3300EXII manufactured by Microtrack Bell Inc.), and the cumulative 50% particle size based on volume is measured. was asked to (D 50), was 2.1μm.

また、得られた球状銀粉にペレット成形機により荷重50kgfを1分間加えて(直径5mmの)略円柱形のペレットを作製し、このペレットを熱機械的分析(TMA)装置(株式会社リガク製のTMA8311)にセットし、常温から昇温速度10℃/分で900℃まで昇温し、ペレットの収縮率(常温のときのペレットの長さaと最も収縮したときのペレットの長さbとの差(a−b)に対するペレットの長さの減少量cの割合)(=c×100/(a−b))を測定し、収縮率が10%に達した温度を焼結開始温度とすると、この球状銀粉の焼結開始温度は312℃であった。   In addition, a load of 50 kgf is applied to the obtained spherical silver powder for 1 minute with a pellet molding machine to produce a substantially cylindrical pellet (diameter 5 mm), and the pellet is subjected to thermomechanical analysis (TMA) apparatus (manufactured by Rigaku Corporation) Set in TMA 8311), raise the temperature from normal temperature to 900 ° C at a heating rate of 10 ° C / min, shrink the pellet (the pellet length a at normal temperature and the pellet length b at the most shrinkage) The ratio of the reduction amount c of the pellet length to the difference (a−b) (= c × 100 / (a−b)) is measured, and the temperature at which the contraction rate reaches 10% is taken as the sintering start temperature The sintering start temperature of this spherical silver powder was 312 ° C.

また、得られた球状銀粉5gに塩酸(関東化学株式会社製の精密分析用(濃度35〜37質量%))と純水を体積比1:1で混合した塩酸水溶液30mLを加えて、150℃で15分間加熱し、放冷した後、上記と同じ塩酸水溶液で50mLに定容し、さらに超純水で5万倍に希釈して、液体クロマトグラフ質量分析計(LC/MC)(アジレント・テクノロジー株式会社製のAgilent6470トリプル四重極LC/MS(検出下限0.1ppm))により分析したところ、球状銀粉の表面にL−リシンが検出され、銀は塩酸に溶解しないことから、球状銀粉の表面にL−リシンが存在していることが確認された。   In addition, 30 mL of a hydrochloric acid aqueous solution in which hydrochloric acid (for precision analysis (concentration 35 to 37 mass%) manufactured by Kanto Chemical Co., Ltd.) and pure water are mixed at a volume ratio of 1: 1 is added to 5 g of the obtained spherical silver powder, The solution was allowed to cool for 15 minutes, and then the volume was adjusted to 50 mL with the same aqueous hydrochloric acid solution as above, and further diluted to 50,000 times with ultrapure water to obtain a liquid chromatograph mass spectrometer (LC / MC) (Agilent. When analyzed by Agilent 6470 triple quadrupole LC / MS (detection limit: 0.1 ppm) manufactured by Technology Co., Ltd., L-lysine is detected on the surface of spherical silver powder, and silver is not dissolved in hydrochloric acid. It was confirmed that L-lysine was present on the surface.

また、得られた球状銀粉5gに塩酸(関東化学株式会社製の精密分析用(濃度35〜37質量%))を加え、純水で洗浄して球状銀粉の表面のL−リシンを除去し、真空乾燥機により73℃で1時間加熱して乾燥させた後、この乾燥した球状銀粉1・0gを硝酸(関東化学株式会社製の精密分析用(濃度60〜61質量%))と純水を体積比1:1で混合した硝酸水溶液10mLに加えて溶解させ、さらに超純水で1万倍に希釈して、上記の液体クロマトグラフ質量分析計(LC/MC)により分析したところ、L−リシンが検出され、球状銀粉の粒子の内部にL−リシンが含まれていることが確認された。   In addition, hydrochloric acid (for precision analysis (concentration 35 to 37 mass%) manufactured by Kanto Chemical Co., Ltd.) is added to 5 g of the obtained spherical silver powder, and washed with pure water to remove L-lysine on the surface of the spherical silver powder, After drying by heating at 73 ° C. for 1 hour with a vacuum dryer, 1.0 g of this dried spherical silver powder was added with nitric acid (for precision analysis (concentration 60 to 61 mass% manufactured by Kanto Chemical Co., Ltd.)) and pure water. It is added to 10 mL of nitric acid aqueous solution mixed at a volume ratio of 1: 1, dissolved, and further diluted to 10,000 times with ultrapure water, and analyzed by the above liquid chromatograph mass spectrometer (LC / MC). Lysine was detected, and it was confirmed that L-lysine was contained inside the spherical silver powder particles.

また、得られた球状銀粉1.0gに硝酸(関東化学株式会社製の精密分析用(60〜61%))と純水を体積比1:1で混合した硝酸水溶液10mLを加えて超音波により全溶解し、得られた溶液を超純水で1万倍に希釈して、上記の液体クロマトグラフ質量分析計(LC/MC)により分析したところ、粒子全体からL−リシンが検出された。   In addition, 10 mL of a nitric acid aqueous solution in which nitric acid (for precision analysis (60-61%) manufactured by Kanto Chemical Co., Ltd.) and pure water are mixed at a volume ratio of 1: 1 is added to 1.0 g of the obtained spherical silver powder and ultrasonicated. The solution was totally dissolved, and the obtained solution was diluted 10,000-fold with ultrapure water, and analyzed by the above liquid chromatograph mass spectrometer (LC / MC). L-lysine was detected from the whole particles.

[実施例2]
銀イオンとして0.12モル/Lの硝酸銀水溶液3.5Lに、濃度28質量%の工業用アンモニア水155gを加えて、銀アンミン錯体溶液を得た。この銀アンミン錯体溶液に、濃度20質量%の水酸化ナトリウム水溶液5.5gを加えてpH調整した後、L−アルギニン(和光純薬工業株式会社製、分子量174.2)を濃度5.5質量%の水酸化ナトリウム水溶液6.8gに溶解した5.0質量%のL−アルギニン水溶液7.16gを添加し、液温を20℃に維持して、還元剤として37質量%のホルマリン水溶液240gを純水144gで希釈した水溶液を加えて、十分に撹拌し、銀粒子を含むスラリーを得た。このスラリーに、表面処理剤として15.5重量%のステアリン酸溶液0.635gを加えて、十分に撹拌した後、撹拌を止めて、銀粒子を沈降させた。この銀粒子が沈殿した液をろ過し、水洗し、乾燥させた後、解砕して、銀粉を得た。
Example 2
A silver ammine complex solution was obtained by adding 155 g of industrial ammonia water at a concentration of 28 mass% to 3.5 L of a 0.12 mol / L silver nitrate aqueous solution as silver ions. To this silver ammine complex solution, 5.5 g of sodium hydroxide aqueous solution having a concentration of 20% by mass is added to adjust the pH, and then L-arginine (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 174.2) having a concentration of 5.5 mass 7.16 g of a 5.0% by weight aqueous solution of L-arginine dissolved in 6.8 g of a 60% aqueous solution of sodium hydroxide and maintaining the solution temperature at 20 ° C., 240 g of a 37% by weight aqueous solution of formalin as a reducing agent The aqueous solution diluted with 144 g of pure water was added and sufficiently stirred to obtain a slurry containing silver particles. To this slurry, 0.635 g of a 15.5 wt% stearic acid solution as a surface treatment agent was added, and after sufficient stirring, the stirring was stopped to precipitate silver particles. The solution in which the silver particles were precipitated was filtered, washed with water, dried, and then crushed to obtain silver powder.

このようにして得られた銀粉について、実施例1と同様の方法により、粒子の断面の画像を得た。この画像から、銀粉の形状は略球状であり、銀粉の粒子の断面に細長く延びる(外部に連通しない閉鎖された)空隙が銀粉の粒子の内部に存在することが確認された。この球状銀粉の粒子について1万倍で観察した電子顕微鏡写真を図3に示し、4万倍で観察した電子顕微鏡写真を図4に示す。   With respect to the silver powder thus obtained, an image of a cross section of the particle was obtained by the same method as in Example 1. From this image, it was confirmed that the shape of the silver powder was substantially spherical, and a void (closed without communication with the outside) elongated in the cross section of the silver powder particle was present inside the silver powder particle. An electron micrograph of the particles of this spherical silver powder observed at 10,000 × is shown in FIG. 3, and an electron micrograph observed at 40,000 × is shown in FIG.

また、得られた画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の粒子の断面の直径(平均一次粒子径)DSEMを測定した。その結果、画像中の球状銀粉の20個の粒子の断面に空隙が確認され、これらの粒子のうち、断面の大きさ粒子から順に15個の粒子を選び、それぞれの粒子の空隙のうち、断面が最も大きい空隙の形状係数を求めたところ、6個の粒子の空隙の形状係数が3未満、2個の粒子の空隙の形状係数が3以上4未満、3個の粒子の空隙の形状係数が4以上5未満、4個の粒子の空隙の形状係数が5以上であった。また、それぞれの粒子の空隙のうち、断面が最も大きい空隙の円形度係数を求めたところ、1個の粒子の空隙の円形度係数が0.2以下、2個の粒子の空隙の円形度係数が0.2より大きく0.3以下、4個の粒子の空隙の円形度係数が0.3より大きく0.4以下、8個の粒子の空隙の円形度係数が0.4より大きかった。また、上記の15個の粒子について、球状銀粉の粒子の断面積に対する空隙の断面積の割合を求めたところ、いずれも1.5%以上であった。また、球状銀粉の粒子の断面の直径(平均一次粒子径)DSEMは0.7μmであった。 With respect to the obtained image, the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the cross section of the spherical silver powder particle Diameter (average primary particle size) D SEM was measured. As a result, a void is confirmed in the cross section of 20 particles of spherical silver powder in the image, and of these particles, 15 particles are selected in order from the particle of the cross section, and the cross section among the voids of each particle When the shape factor of the void having the largest value of i is determined, the shape factor of the void of 6 particles is less than 3, the shape factor of the void of 2 particles is 3 to 4, and the shape factor of the void of 3 particles is The shape factor of voids of 4 or more and less than 5 and 4 particles was 5 or more. In addition, when the circularity coefficient of the void having the largest cross section among the voids of each particle is determined, the circularity coefficient of the void of one particle is 0.2 or less, and the circularity coefficient of the void of two particles Is greater than 0.2 and less than or equal to 0.3, the circularity factor of the voids of the four particles is greater than 0.3 and less than or equal to 0.4, and the circularity factor of the voids of the eight particles is greater than 0.4. Moreover, when the ratio of the cross-sectional area of the space | gap with respect to the cross-sectional area of the particle | grains of spherical silver powder was calculated | required about said 15 particle | grains, all were 1.5% or more. Further, the diameter (average primary particle diameter) D SEM of the cross section of the spherical silver powder particles was 0.7 μm.

また、実施例1と同様の方法により、球状銀粉のBET比表面積を算出して比表面積径DBETおよびDSEM/DBETを算出するとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は1.24m/g、比表面積径DBETは0.5μm、DSEM/DBETは1.6であり、累積50%粒子径(D50)は1.0μmであった。また、実施例1と同様の方法により、球状銀粉の収縮率が10%に達した温度(焼結開始温度)を求めたところ、327℃であった。 Also, the BET specific surface area of spherical silver powder was calculated by the same method as in Example 1 to calculate the specific surface area diameter D BET and D SEM / D BET, and the 50% cumulative particle diameter (D 50 ) was determined. The BET specific surface area was 1.24 m 2 / g, the specific surface area diameter D BET was 0.5 μm, D SEM / D BET was 1.6, and the 50% cumulative particle size (D 50 ) was 1.0 μm. . Further, the temperature (sintering start temperature) at which the shrinkage rate of the spherical silver powder reached 10% was determined in the same manner as in Example 1. The temperature was 327 ° C.

また、得られた球状銀粉1.0gに硝酸(関東化学株式会社製の精密分析用(60〜61%))と純水を体積比1:1で混合した硝酸水溶液10mLを加えて超音波により全溶解し、得られた溶液を超純水で1万倍に希釈して、上記の液体クロマトグラフ質量分析計(LC/MC)により分析したところ、粒子全体からL−アルギニンが検出された。   In addition, 10 mL of a nitric acid aqueous solution in which nitric acid (for precision analysis (60-61%) manufactured by Kanto Chemical Co., Ltd.) and pure water are mixed at a volume ratio of 1: 1 is added to 1.0 g of the obtained spherical silver powder and ultrasonicated. The solution was totally dissolved, and the obtained solution was diluted 10,000-fold with ultrapure water, and analyzed by the above liquid chromatograph mass spectrometer (LC / MC). L-arginine was detected from the whole particles.

[比較例1]
銀8.63gを含む硝酸銀水溶液753gを分取した1Lビーカーを、水温35℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD−4R、出力160W)に入れ、発振周波数40kHzで超音波照射を開始するとともに攪拌を開始した。
Comparative Example 1
A 1 L beaker prepared by separating 753 g of silver nitrate aqueous solution containing 8.63 g of silver is placed in an ultrasonic cleaner (US Cleaner USD-4R manufactured by As One Corporation, output 160 W) containing water at a water temperature of 35 ° C., oscillation frequency 40 kHz At the same time, ultrasonic irradiation was started and stirring was started.

次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水29.1g(銀に対して3.0当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から30秒後に、20質量%の水酸化ナトリウム水溶液0.48gを添加し、アンモニア水の添加から20分後に、ホルマリンを純水で希釈した27.4質量%のホルムアルデヒド溶液48.7g(銀に対して11.1当量相当)を添加し、その30秒後に、1.2質量%のステアリン酸エタノール溶液0.86gを添加して、銀粒子を含むスラリーを得た。   Next, 29.1 g (equivalent to 3.0 equivalents with respect to silver) of 28% by mass ammonia water is added to the aqueous silver nitrate solution in the above beaker to form a silver ammine complex salt, and 30 seconds after the addition of aqueous ammonia Then, 0.48 g of a 20% by mass aqueous solution of sodium hydroxide was added, and 20 minutes after the addition of ammonia water, 48.7 g of a 27.4% by mass formaldehyde solution in which formalin was diluted with pure water (11. 1 equivalent (corresponding to 1 equivalent) was added, and after 30 seconds, 0.86 g of a 1.2 wt% ethanol solution of stearic acid was added to obtain a slurry containing silver particles.

次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して銀粉を得た。   Next, after completion of the ultrasonic irradiation, the slurry containing silver particles is filtered and washed with water, and the cake obtained is dried in a vacuum dryer at 75 ° C. for 10 hours, and the dried silver powder is subjected to 30 seconds in a coffee mill. It was crushed to obtain silver powder.

このようにして得られた銀粉について、実施例1と同様の方法により、粒子の断面の画像を得た。この画像から、銀粉の形状は略球状であり、銀粉の粒子の内部に(外部に連通しない閉鎖された)略球状の空隙が存在することが確認された。この球状銀粉の粒子について4万倍で観察した電子顕微鏡写真を図5に示す。   With respect to the silver powder thus obtained, an image of a cross section of the particle was obtained by the same method as in Example 1. From this image, it was confirmed that the shape of the silver powder is substantially spherical, and a substantially spherical void (closed without communication with the outside) is present inside the silver powder particles. An electron micrograph of this spherical silver powder particle observed at a magnification of 40,000 is shown in FIG.

また、1万倍で観察した画像について、実施例1と同様の方法により、球状銀粉の粒子の断面における空隙の大きさ、球状銀粉の粒子の断面積に対する空隙の断面積の割合、球状銀粉の粒子の断面の直径(平均一次粒子径)DSEMを測定した。その結果、画像中の球状銀粉の40個の粒子の断面に空隙が確認され、これらの粒子のうち、断面の大きさ粒子から順に30個の粒子を選び、それぞれの粒子の空隙のうち、断面が最も大きい空隙の形状係数と円形度係数を求めたところ、全ての粒子で空隙の形状係数が3未満であり、円形度係数が0.4より大きかった。また、上記の30個の粒子について、球状銀粉の粒子の断面積に対する空隙の断面積の割合を求めたところ、いずれも1.5%以上であった。また、球状銀粉の粒子の断面の直径(平均一次粒子径)DSEMは1.6μmであった。 Further, with respect to the image observed at 10,000 times, the size of the void in the cross section of the spherical silver powder particle, the ratio of the cross sectional area of the void to the cross sectional area of the spherical silver powder particle, and the spherical silver powder Particle cross-sectional diameter (average primary particle size) D SEM was measured. As a result, a void is confirmed in the cross section of 40 particles of spherical silver powder in the image, and of these particles, 30 particles are selected in order from the particle of the cross section, and the cross section among the voids of each particle When the shape factor and the circularity factor of the voids having the largest are determined, the shape factor of the voids is less than 3 and the circularity factor is greater than 0.4 in all particles. Moreover, when the ratio of the cross-sectional area of the space | gap with respect to the cross-sectional area of the particle | grains of spherical silver powder was calculated | required about said 30 particle | grains, all were 1.5% or more. Further, the diameter (average primary particle diameter) D SEM of the cross section of the spherical silver powder particles was 1.6 μm.

また、実施例1と同様の方法により、球状銀粉のBET比表面積を算出して比表面積径DBETおよびDSEM/DBETを算出するとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.35m/g、比表面積径DBETは1.6μm、DSEM/DBETは1.0であり、累積50%粒子径(D50)は3.0μmであった。また、実施例1と同様の方法により、球状銀粉の収縮率が10%に達した温度(焼結開始温度)を求めたところ、410℃であった。 Also, the BET specific surface area of spherical silver powder was calculated by the same method as in Example 1 to calculate the specific surface area diameter D BET and D SEM / D BET, and the 50% cumulative particle diameter (D 50 ) was determined. The BET specific surface area was 0.35 m 2 / g, the specific surface area diameter D BET was 1.6 μm, D SEM / D BET was 1.0, and the 50% cumulative particle size (D 50 ) was 3.0 μm . Further, the temperature (sintering start temperature) at which the shrinkage rate of the spherical silver powder reached 10% was determined in the same manner as in Example 1. The temperature was 410 ° C.

[比較例2]
銀8.63gを含む硝酸銀水溶液28.6gを分取した1Lビーカーを、水温35℃の水を入れた超音波洗浄機(アズワン株式会社製のUS Cleaner USD−4R、出力160W)に入れ、発振周波数40kHzで超音波照射を開始するとともに攪拌を開始した。
Comparative Example 2
A 1 L beaker prepared by separating 28.6 g of an aqueous silver nitrate solution containing 8.63 g of silver was placed in an ultrasonic cleaning machine (US Cleaner USD-4R manufactured by As One Corporation, output 160 W) containing water at a water temperature of 35 ° C. The ultrasonic irradiation was started at a frequency of 40 kHz and the stirring was started.

次に、上記のビーカー中の硝酸銀水溶液に28質量%のアンモニア水52.7g(銀に対して5.0当量相当)を添加して銀アンミン錯塩を生成させ、アンモニア水の添加から5分後に、0.40質量%のポリエチレンイミン(分子量10,000)水溶液2.2gを添加し、アンモニア水の添加から20分後に、6.2質量%の含水ヒドラジン水溶液19.4g(銀に対して1.2当量相当)を添加し、その30秒後に、1.3質量%ステアリン酸溶液0.77gを添加して、銀粒子を含むスラリーを得た。なお、本比較例では、ヒドラジンの使用により小さくなる粒径を調整するためにポリエチレンイミンを添加している。   Next, 52.7 g (equivalent to 5.0 equivalents with respect to silver) of 28% by mass ammonia water is added to the aqueous silver nitrate solution in the above beaker to form a silver ammine complex salt, and 5 minutes after the addition of aqueous ammonia Then, 2.2 g of 0.40% by weight aqueous solution of polyethyleneimine (molecular weight: 10,000) was added, and 20 minutes after the addition of aqueous ammonia, 19.4 g of aqueous 6.2% by weight aqueous hydrazine solution (1 against silver) .2 equivalents) were added, and after 30 seconds, 0.77 g of a 1.3 wt% stearic acid solution was added to obtain a slurry containing silver particles. In addition, in this comparative example, in order to adjust the particle size which becomes small by use of a hydrazine, the polyethylene imine is added.

次に、超音波照射を終了した後、銀粒子を含むスラリーを濾過し、水洗して得られたケーキを、75℃の真空乾燥機で10時間乾燥させ、乾燥した銀粉をコーヒーミルで30秒間解砕して銀粉を得た。   Next, after completion of the ultrasonic irradiation, the slurry containing silver particles is filtered and washed with water, and the cake obtained is dried in a vacuum dryer at 75 ° C. for 10 hours, and the dried silver powder is subjected to 30 seconds in a coffee mill. It was crushed to obtain silver powder.

このようにして得られた銀粉について、実施例1と同様の方法により、粒子の断面の画像を得た。この画像から、銀粉の形状は略球状であり、銀粉の内部に空隙が存在しないことが確認された。この球状銀粉の粒子について2万倍で観察した電子顕微鏡写真を図6に示す。また、実施例1と同様の方法により、球状銀粉の粒子の断面の直径(平均一次粒子径)DSEMを求めたところ、2.7μmであった。 With respect to the silver powder thus obtained, an image of a cross section of the particle was obtained by the same method as in Example 1. From this image, it was confirmed that the shape of the silver powder was substantially spherical and that no void was present inside the silver powder. An electron micrograph of this spherical silver powder particle observed at 20,000 × is shown in FIG. Further, in the same manner as in Example 1, the cross section of particles of spherical silver powder diameter was determined (the average primary particle diameter) D SEM, was 2.7 .mu.m.

また、実施例1と同様の方法により、球状銀粉のBET比表面積を算出して比表面積径DBETおよびDSEM/DBETを算出するとともに、累積50%粒子径(D50)を求めたところ、BET比表面積は0.16m/g、比表面積径DBETは3.6μm、DSEM/DBETは0.8であり、累積50%粒子径(D50)は2.8μmであった。また、実施例1と同様の方法により、球状銀粉の収縮率が10%に達した温度(焼結開始温度)を求めたところ、430℃であった。 Also, the BET specific surface area of spherical silver powder was calculated by the same method as in Example 1 to calculate the specific surface area diameter D BET and D SEM / D BET, and the 50% cumulative particle diameter (D 50 ) was determined. The BET specific surface area was 0.16 m 2 / g, the specific surface area diameter D BET was 3.6 μm, D SEM / D BET was 0.8, and the 50% cumulative particle size (D 50 ) was 2.8 μm . Further, the temperature (sintering start temperature) at which the shrinkage of the spherical silver powder reached 10% was determined in the same manner as in Example 1. The temperature was 430 ° C.

これらの実施例および比較例で得られた球状銀粉の特性を表1〜表3に示す。   The characteristics of the spherical silver powder obtained in these Examples and Comparative Examples are shown in Tables 1 to 3.

Figure 2019108564
Figure 2019108564

Figure 2019108564
Figure 2019108564

Figure 2019108564
Figure 2019108564

これらの実施例および比較例から、実施例の球状銀粉は、焼結開始温度を大幅に低下させることができることがわかる。なお、比較例1の球状銀粉のように略球状の空隙ではなく、実施例1および2の球状銀粉のように、球状銀粉の粒子の断面に細長く延びる(外部に連通しない閉鎖された)空隙が球状銀粉の粒子の内部に存在すると、球状銀粉を加熱する際に、空隙内の残留成分が膨張したときの膨張力が空隙内に不均一に加えられることにより、球状銀粉の粒子が変形し易くなるため、球状銀粉の焼結開始温度を大幅に低下させることができると考えられる。   From these examples and comparative examples, it can be seen that the spherical silver powder of the examples can significantly reduce the sintering start temperature. As in the case of the spherical silver powder of Comparative Example 1, not a substantially spherical void, but like the spherical silver powder of Examples 1 and 2, the void extending in the cross section of the spherical silver powder particles (closed not communicating with the outside) When the spherical silver powder is heated, when the spherical silver powder is heated, the spherical silver powder particles are easily deformed because the expansion force when the residual component in the void is expanded is unevenly applied to the void. Therefore, it is considered that the sintering start temperature of the spherical silver powder can be significantly reduced.

本発明による球状銀粉は、より低い温度で焼成可能な球状銀粉として、導電性ペーストの作製に利用することができ、この球状銀粉を含む導電性ペーストをスクリーン印刷などにより基板上に印刷して、太陽電池、チップ部品、タッチパネルなどの電子部品の電極や回路の他、電磁波シールド材などに使用することができる。   The spherical silver powder according to the present invention can be used for producing a conductive paste as spherical silver powder which can be fired at a lower temperature, and the conductive paste containing the spherical silver powder is printed on a substrate by screen printing or the like. In addition to electrodes and circuits of electronic parts such as solar cells, chip parts and touch panels, they can be used as electromagnetic shielding materials.

Claims (9)

略球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この球状銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙を有する20個以上の粒子から断面の大きな順に選んだ75%以上の数の銀粒子のうち、20%以上の数の銀粒子の空隙の形状係数が3〜15であることを特徴とする、球状銀粉。 A spherical silver powder composed of substantially spherical silver particles and having voids inside the particles, and having the voids in the image of the cross section of the silver particles exposed by polishing the surface of the resin after the spherical silver powder is buried in the resin Spherical silver powder characterized in that the shape factor of voids of silver particles having a number of 20% or more is 3 to 15 among silver particles having a number of 75% or more selected in descending order of cross section from 20 particles or more . 前記75%以上の数の銀粒子のうち、30%以上の数の銀粒子の空隙の円形度係数が0.4以下であることを特徴とする、請求項1に記載の球状銀粉。 2. The spherical silver powder according to claim 1, wherein the circularity coefficient of voids of silver particles having a number of 30% or more among the silver particles having a number of 75% or more is 0.4 or less. 略球状の銀粒子からなり、粒子内部に空隙を有する球状銀粉であって、この球状銀粉を樹脂に埋めた後に樹脂の表面を研磨して露出させた銀粒子の断面の画像において、空隙を有する20個以上の粒子から断面の大きな順に選んだ75%以上の数の銀粒子のうち、30%以上の数の銀粒子の空隙の円形度係数が0.4以下であることを特徴とする、球状銀粉。 A spherical silver powder composed of substantially spherical silver particles and having voids inside the particles, and having the voids in the image of the cross section of the silver particles exposed by polishing the surface of the resin after the spherical silver powder is buried in the resin Among the silver particles in the number of 75% or more selected in descending order of cross section from 20 particles or more, the circularity coefficient of the voids of the silver particles in the number of 30% or more is 0.4 or less, Spherical silver powder. 前記球状銀粉の平均一次粒子径DSEMが0.3〜3μmであることを特徴とする、請求項1乃至3のいずれかに記載の球状銀粉。 The spherical silver powder according to any one of claims 1 to 3, wherein an average primary particle diameter D SEM of the spherical silver powder is 0.3 to 3 m. 前記球状銀粉のBET比表面積が0.1〜1.5m/gであることを特徴とする、請求項1乃至4のいずれかに記載の球状銀粉。 The BET specific surface area of the spherical silver powder is characterized in that it is a 0.1~1.5m 2 / g, a spherical silver powder according to any one of claims 1 to 4. 前記球状銀粉の比表面積径DBETが0.3〜2μmであることを特徴とする、請求項1乃至5のいずれかに記載の球状銀粉。 The spherical silver powder according to any one of claims 1 to 5, wherein the specific surface area diameter D BET of the spherical silver powder is 0.3 to 2 μm. 前記球状銀粉の比表面積径DBETに対する前記平均一次粒子径DSEMの比(DSEM/DBET)が1.0〜2.0であることを特徴とする、請求項1乃至6のいずれかに記載の球状銀粉。 The ratio (D SEM / D BET ) of the average primary particle diameter D SEM to the specific surface area diameter D BET of the spherical silver powder is 1.0 to 2.0. Spherical silver powder as described in. 前記球状銀粉のレーザー回折法による平均粒径D50が0.3〜4μmであることを特徴とする、請求項1乃至7のいずれかに記載の球状銀粉。 Wherein the average particle size D 50 by laser diffraction method of the spherical silver powder is 0.3~4Myuemu, spherical silver powder according to any one of claims 1 to 7. 前記球状銀粉を加熱したときの球状銀粉の収縮率が10%に達する温度が350℃以下であることを特徴とする、請求項1乃至8いずれかに記載の球状銀粉。 The spherical silver powder according to any one of claims 1 to 8, wherein the temperature at which the shrinkage of the spherical silver powder reaches 10% when heating the spherical silver powder is 350 ° C or less.
JP2017240310A 2017-12-15 2017-12-15 Spherical silver powder Active JP6807302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240310A JP6807302B2 (en) 2017-12-15 2017-12-15 Spherical silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240310A JP6807302B2 (en) 2017-12-15 2017-12-15 Spherical silver powder

Publications (2)

Publication Number Publication Date
JP2019108564A true JP2019108564A (en) 2019-07-04
JP6807302B2 JP6807302B2 (en) 2021-01-06

Family

ID=67179139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240310A Active JP6807302B2 (en) 2017-12-15 2017-12-15 Spherical silver powder

Country Status (1)

Country Link
JP (1) JP6807302B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046708A (en) * 2007-08-15 2009-03-05 Mitsui Mining & Smelting Co Ltd Silver powder
JP2013189704A (en) * 2012-02-13 2013-09-26 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
JP2015155576A (en) * 2015-04-24 2015-08-27 住友金属鉱山株式会社 Silver powder
US20160114398A1 (en) * 2013-06-07 2016-04-28 Lg Chem, Ltd. Method for fabricating metal nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046708A (en) * 2007-08-15 2009-03-05 Mitsui Mining & Smelting Co Ltd Silver powder
JP2013189704A (en) * 2012-02-13 2013-09-26 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
US20160114398A1 (en) * 2013-06-07 2016-04-28 Lg Chem, Ltd. Method for fabricating metal nanoparticles
JP2015155576A (en) * 2015-04-24 2015-08-27 住友金属鉱山株式会社 Silver powder

Also Published As

Publication number Publication date
JP6807302B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2019117234A1 (en) Spherical silver powder
JP6900357B2 (en) Spherical silver powder
JP6096261B2 (en) Silver powder, method for producing the same, and hydrophilic conductive paste
KR100480873B1 (en) Nickel powder and conductive paste
KR20180133043A (en) Silver particle and method of manufacture thereof
WO2014077043A1 (en) Silver powder
JP6857166B2 (en) Spherical silver powder and its manufacturing method
JP2010135140A (en) Flaky metal fine powder of conductive paint, and manufacturing method thereof
JP2020139178A (en) Silver powder and method for producing the same
JP2019108564A (en) Spherical silver powder
JP6975527B2 (en) Spherical silver powder and its manufacturing method, and conductive paste
JP2014185372A (en) Silver powder
JP5985216B2 (en) Silver powder
JP6131773B2 (en) Nickel powder, method for producing the same, and nickel paste using the same
WO2016052362A1 (en) Silver powder, method for producing same, and hydrophilic conductive paste
JP2003253312A (en) Method for manufacturing silver powder, and silver powder
CN112974827A (en) Preparation method of spherical silver powder with high tap density and surface wrinkles
WO2019117235A1 (en) Spherical silver powder and method for producing same
JP2004323884A (en) Nickel powder of hyperfine particle, and production method therefor
JP6985219B2 (en) Manufacturing method of spherical silver powder
JP2001200301A (en) Nickel powder and electrically conductive paste
JP5025149B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery
CN116283622A (en) Nickel metal powder and method for producing nickel metal powder
JP2011058055A (en) Method for cleaning silver particle and silver particle cleaned by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6807302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250