JP2019107642A - Manufacturing method of absorbent - Google Patents
Manufacturing method of absorbent Download PDFInfo
- Publication number
- JP2019107642A JP2019107642A JP2018200277A JP2018200277A JP2019107642A JP 2019107642 A JP2019107642 A JP 2019107642A JP 2018200277 A JP2018200277 A JP 2018200277A JP 2018200277 A JP2018200277 A JP 2018200277A JP 2019107642 A JP2019107642 A JP 2019107642A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- cellulose
- adsorbent
- spherical activated
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、セルロースを原料とした活性炭からなる経口投与用医薬用吸着剤の製造方法に関し、特に、簡易な工程で毒性物質の吸着性能に優れたセルロース由来の活性炭からなる経口投与用医薬用吸着剤を得ることのできる製造方法に関する。 The present invention relates to a method for producing an absorbent for oral administration comprising an activated carbon using cellulose as a raw material, and in particular, an adsorption for oral administration comprising an activated carbon derived from cellulose excellent in adsorption performance of toxic substances in a simple process. The present invention relates to a manufacturing method capable of obtaining an agent.
腎疾患又は肝疾患の患者は、血液中に毒性物質が蓄積し、その結果として尿毒症や意識障害等の脳症を引き起こす。これらの患者数は年々増加する傾向にある。患者の治療には、毒性物質を体外へ除去する血液透析型の人工腎臓等が使用される。しかしながら、このような人工腎臓は、安全管理上から取り扱いに専門技術者を必要とし、また血液の体外への取り出しに際し、患者の肉体的、精神的、及び経済的負担を要することが問題視されており、必ずしも満足すべきものではない。 Patients with kidney disease or liver disease accumulate toxic substances in the blood and as a result cause encephalopathy such as uremia and loss of consciousness. The number of these patients tends to increase year by year. Hemodialysis-type artificial kidneys and the like that remove toxic substances outside the body are used for treatment of patients. However, such artificial kidneys require specialist technicians for safety and management, and it is also considered that the physical, mental and economic burden of the patient is required for taking blood out of the body. And not necessarily satisfactory.
人工臓器に代わる方法として、経口で摂取し体内で毒性物質を吸着し、体外に排出する経口投与用吸着剤が開発されている(特許文献1、特許文献2等参照)。そして、石油系炭化水素(ピッチ)等を原料物質とし、比較的粒径が均一となるように調整し、炭化、賦活させた抗ネフローゼ症候群剤が報告されている(例えば、特許文献3参照)。また、活性炭自体の粒径を比較的均一化するとともに、当該活性炭における細孔容積等の分布について調整を試みた経口投与用吸着剤が報告されている(特許文献4参照)。このように、薬用活性炭は、比較的粒径を均一にすることに伴い、腸内の流動性の悪さを改善し、またこれと同時に細孔を調整することにより当該活性炭の吸着性能の向上を図った。そこで、多くの軽度の慢性腎不全患者に服用されている。 As an alternative to artificial organs, adsorbents for oral administration have been developed which are orally ingested and adsorb toxic substances in the body and discharged out of the body (see Patent Document 1, Patent Document 2, etc.). Then, an anti-nephrotic syndrome agent is reported in which petroleum hydrocarbon (pitch) or the like is used as a raw material material, and the particle size is adjusted to be relatively uniform and carbonized and activated (for example, see Patent Document 3) . In addition, an adsorbent for oral administration has been reported in which the particle size of activated carbon itself is relatively uniformed and distribution of pore volume etc. in the activated carbon is attempted to be adjusted (see Patent Document 4). Thus, along with making the particle size relatively uniform, the medicinal activated carbon improves the poor fluidity in the intestine, and at the same time improves the adsorption performance of the activated carbon by adjusting the pores. planned. Therefore, it is taken by many patients with mild chronic renal failure.
薬用活性炭には、尿毒症の原因物質やその前駆物質に対する迅速かつ効率的な吸着が要求される。しかしながら、既存の薬用活性炭では、形状を球形のまま粒径を小さくすることは難しい。また、従来の薬用活性炭における細孔の調整は良好とはいえず、吸着性能は必ずしも十分ではないので、一日当たりの服用量を多くしなければならない。特に、慢性腎不全患者は水分の摂取量を制限されているため、少量の水分により嚥下することは患者にとって大変な苦痛となっていた。 Medicinal activated carbon requires rapid and efficient adsorption to uremic agents and their precursors. However, it is difficult to reduce the particle size while maintaining the spherical shape with existing medicinal activated carbon. In addition, the adjustment of the pores in the conventional medicinal activated carbon is not good and the adsorption performance is not always sufficient, so the daily dose must be increased. In particular, because chronic renal failure patients have limited fluid intake, swallowing with a small amount of fluid has been a great pain for patients.
そして、出願人により経済的かつ環境負荷を抑え、選択吸着性に優れた経口投与用医薬用吸着剤の製造方法が開発され(特許文献5、特許文献6参照)、天然物由来成分であるセルロースを原料とする球状活性炭の経口投与用医薬用吸着剤を得るに至っていた。 Then, the applicant has developed a method for manufacturing an adsorbent for oral administration pharmaceuticals which has low economical and environmental burden and excellent selective adsorption properties (see Patent Document 5 and Patent Document 6), and cellulose which is a natural product-derived component It came to obtain the medicine adsorbent for oral administration of the spherical activated carbon which uses as a raw material.
前掲のセルロース由来の経口投与用医薬用吸着剤の製造方法により製造された活性炭よりなる経口投与用医薬用吸着剤は、少ない服用量でありながら除去すべき毒素の吸着容量及び選択吸着性に優れ、医薬用吸着剤の用途として非常に有望であるといえた。 An adsorbent for oral administration comprising an activated carbon produced by the method for producing an adsorbent for oral administration derived from cellulose described above is excellent in the adsorption capacity and selective adsorption of toxins to be removed although the dose is small. It was very promising as an application of pharmaceutical adsorbents.
本発明は、経済的かつ環境負荷を抑えた医薬用吸着剤を製造することができ、簡易な工程であっても、活性炭の毒性物質の吸着性能及び選択吸着性を維持しつつも歩留まりが良い経口投与用医薬用吸着剤の製造方法を提供する。 The present invention can produce an adsorbent for medical use which is economical and has reduced environmental impact, and has a high yield while maintaining the adsorption performance and selective adsorption of toxic substances of activated carbon even in a simple process. The present invention provides a method of producing a pharmaceutical adsorbent for oral administration.
すなわち、第1の発明は、BET比表面積を700〜3000m2/g、平均粒径を100〜1100μm、表面酸化物量を0.05meq/g以上及び充填密度を0.4〜0.8g/mLである球状活性炭の製造に際し、原料である精製セルロース又は再生セルロースに、1000℃未満で気化する難燃剤を添着させ、窒素雰囲気下300〜700℃で炭化し、750〜1000℃で水蒸気賦活を行うことを特徴とする経口投与用医薬用吸着剤の製造方法に係る。 That is, in the first invention, the BET specific surface area is 700 to 3000 m 2 / g, the average particle diameter is 100 to 1100 μm, the surface oxide amount is 0.05 meq / g or more, and the packing density is 0.4 to 0.8 g / mL. In the production of a spherical activated carbon, a raw material for purified cellulose or regenerated cellulose is impregnated with a flame retardant that vaporizes at less than 1000 ° C., carbonized at 300 to 700 ° C. under nitrogen atmosphere, and steam activation at 750 to 1000 ° C. The present invention relates to a method for producing an adsorbent for oral administration, which is characterized by
第2の発明は、塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、テトラブロモビスフェノールA若しくは塩酸グアニジンのいずれか一又は複数である第1の発明に記載の経口投与用医薬用吸着剤の製造方法に係る。 The second invention relates to the method for producing an adsorbent for oral administration according to the first invention, which is any one or more of ammonium chloride, ammonium sulfate, ammonium bromide, tetrabromobisphenol A and guanidine hydrochloride.
第3の発明は、平均細孔直径が1.5〜3.0nmである球状活性炭の製造である第1又は2の発明に記載の経口投与用医薬用吸着剤の製造方法に係る。 The third invention relates to the method for producing an adsorbent for oral administration as described in the first or second invention, which is production of spherical activated carbon having an average pore diameter of 1.5 to 3.0 nm.
第4の発明は、JIS K 1474−1(2014)に準拠した測定における強熱残分が10%未満とする球状活性炭の製造である第1ないし3の発明のいずれかに記載の経口投与用医薬用吸着剤の製造方法に係る。 A fourth invention is for oral administration according to any of the first to third inventions, which is a production of spherical activated carbon having an ignition residue of less than 10% as measured according to JIS K 1474-1 (2014). The present invention relates to a method for producing a pharmaceutical adsorbent.
第5の発明は、前記球状活性炭が、経口投与用医薬用吸着材である第1ないし4の発明のいずれかに記載の吸着剤の製造方法に係る。 A fifth invention relates to the method for producing an adsorbent according to any one of the first to fourth inventions, wherein the spherical activated carbon is an adsorbent for medicine for oral administration.
第6の発明は、前記球状活性炭が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤である第5の発明に記載の経口投与用医薬用吸着剤の製造方法に係る。 A sixth invention provides the method for producing an adsorbent for oral administration according to the fifth invention, wherein the spherical activated carbon is a therapeutic agent or a preventive agent for renal disease for oral administration or liver disease for oral administration. Concerned.
第1の発明に係る経口投与用医薬用吸着剤の製造方法によると、BET比表面積を700〜3000m2/g、平均粒径を100〜1100μm、表面酸化物量を0.05meq/g以上及び充填密度を0.4〜0.8g/mLである球状活性炭の製造に際し、原料である精製セルロース又は再生セルロースに、1000℃未満で気化する難燃剤を添着させ、窒素雰囲気下300〜700℃で炭化し、750〜1000℃で水蒸気賦活を行うため、経済的かつ環境負荷を抑えた医薬用吸着剤を製造することができ、簡易な工程であっても、活性炭の毒性物質の吸着性能を維持しつつも強熱残分を低くすることができ、歩留まりが良い。 According to the method for producing an adsorbent for oral administration according to the first invention, the BET specific surface area is 700 to 3000 m 2 / g, the average particle diameter is 100 to 1100 μm, the surface oxide amount is 0.05 meq / g or more, and the packing density In the production of spherical activated carbon of 0.4 to 0.8 g / mL, a raw material of purified cellulose or regenerated cellulose is impregnated with a flame retardant that vaporizes at less than 1000 ° C. and carbonized at 300 to 700 ° C. under nitrogen atmosphere Since steam activation is performed at 750 to 1000 ° C., it is possible to manufacture an economical adsorbent for medical use with reduced environmental load, and even with a simple process, while maintaining the adsorption performance of toxic substances of activated carbon. Even the ignition residue can be lowered and the yield is good.
第2の発明に係る経口投与用医薬用吸着剤の製造方法によると、第1の発明において、前記難燃剤が塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、テトラブロモビスフェノールA若しくは塩酸グアニジンのいずれか一又は複数であるため、経済的かつ環境負荷を抑えた医薬用吸着剤を製造することができ、簡易な工程であっても、活性炭の毒性物質の吸着性能を維持しつつも強熱残分を低くすることができ、歩留まりが良い。 According to the method for producing an adsorbent for a pharmaceutical preparation for oral administration according to the second invention, in the first invention, the flame retardant is any one or one of ammonium chloride, ammonium sulfate, ammonium bromide, tetrabromobisphenol A or guanidine hydrochloride. The multiple adsorbents make it possible to manufacture pharmaceutical adsorbents that are economical and have reduced environmental impact, and have low ignition residue while maintaining the adsorption performance of toxic substances on activated carbon even with simple processes. It can be done and the yield is good.
第3の発明に係る経口投与用医薬用吸着剤の製造方法によると、第1又は2の発明において、平均細孔直径が1.5〜3.0nmである球状活性炭の製造であるため、活性炭の吸着性能が高くなる。 According to the method for producing an adsorbent for oral administration pharmaceuticals according to the third invention, in the first or second invention, since it is the production of spherical activated carbon having an average pore diameter of 1.5 to 3.0 nm, activated carbon Adsorption performance of the
第4の発明に係る経口投与用医薬用吸着剤の製造方法によると、第1ないし3の発明において、JIS K 1474−1(2014)に準拠した測定における強熱残分が10%未満とするため、歩留まりが良く経済的である。 According to the method for producing an adsorbent for oral administration pharmaceutical according to the fourth invention, in the first to third inventions, the ignition residue is less than 10% in the measurement according to JIS K 1474-1 (2014). Therefore, the yield is good and economical.
第5の発明に係る経口投与用医薬用吸着剤の製造方法によると、第1ないし4の発明において、前記球状活性炭が、経口投与用医薬用吸着材であるため、治療剤又は予防剤として有望な経口投与用医薬用吸着剤を提供できる。 According to the method for producing an adsorbent for oral administration relating to the fifth invention, in the first to fourth inventions, since the spherical activated carbon is an adsorbent for pharmaceutical for oral administration, it is promising as a therapeutic agent or prophylactic agent It is possible to provide a pharmaceutical adsorbent for oral administration.
第6の発明に係る経口投与用医薬用吸着剤の製造方法によると、第5の発明において、前記球状活性炭が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤であるため、腎疾患又は肝疾患の原因物質を吸着する効果が高く、治療剤又は予防剤として有望な経口投与用医薬用吸着剤を提供できる。 According to the manufacturing method of the adsorbent for oral administration relating to the sixth invention, in the fifth invention, the spherical activated carbon is a therapeutic agent or prophylactic agent for renal disease for oral administration or liver disease for oral administration. For this reason, it is highly effective in adsorbing the causative agent for kidney disease or liver disease, and can provide a medicinal adsorbent for oral administration promising as a therapeutic agent or a preventive agent.
本発明の製造方法により製造された医薬用吸着剤は、出発原料を再生セルロースとし、当該セルロース原料を炭化し、賦活することにより細孔を発達させた球状の活性炭である。原料の再生セルロースとは、従来公知のビスコース法や銅アンモニア法によりパルプから調製された高純度セルロースである。 The pharmaceutical adsorbent produced by the production method of the present invention is a spherical activated carbon in which pores are developed by making the starting material regenerated cellulose, carbonizing the cellulose material, and activating it. The regenerated cellulose as a raw material is a high purity cellulose prepared from pulp by the conventionally known viscose method or copper ammonia method.
あるいは、NMMO(N−メチルモルフォリンオキシド)、BMIMCL(1−ブチル−3−メチルイミダゾリウムクロライド)等のイオン液体を用いてパルプを溶解後に調製したセルロースである。セルロース溶液粘度調整及びセルロース凝固物の細孔分布調整のため、原料となるセルロースに可溶性又は水不溶性デンプンを20重量%以下、添加することもできる。さらに、賦活された活性炭の強度をさらに高めるため、セルロースファイバー又はシリカ等の無機ファイバーを20重量%以下、フィラーとして添加することもできる。 Or it is the cellulose prepared after melt | dissolving a pulp using ionic liquids, such as NMMO (N- methyl morpholine oxide) and BMIMCL (1-butyl 3- methyl imidazolium chloride). In order to adjust the viscosity of the cellulose solution and to adjust the pore distribution of the cellulose coagulum, it is also possible to add 20 wt% or less of soluble or water-insoluble starch to the raw material cellulose. Furthermore, in order to further increase the strength of activated activated carbon, cellulose fibers or inorganic fibers such as silica can be added as a filler in an amount of 20% by weight or less.
再生セルロースの形状については、医薬用吸着剤としての服用を念頭に置くと、粒状であることが好ましい。特に腸管内での流動性を勘案すると医薬用活性炭に好適形状は球状である。再生セルロース等は、水又は強酸下で凝固することにより得ることができる。所定濃度のビスコース溶液が水又は強酸の凝固液内に滴下、あるいは公知の方法により凝固浴内へと噴霧、捕捉されることにより、簡単に球形状のセルロース粒子となる。球形状のセルロース粒子の平均粒径は、ビスコース溶液の濃度、粘度、凝固時の液吐出ノズルの口径、凝固液の回転速度等により任意に調整される。最終的に平均粒径として100〜1100μmの活性炭が得られるようセルロース溶液の吐出装置は調整される。炭化前の乾燥した球状セルロースの段階では150〜2000μmの粒径である。 With regard to the form of regenerated cellulose, it is preferable that it be in the form of particles, taking into consideration its application as a pharmaceutical adsorbent. Particularly in view of the fluidity in the intestinal tract, the preferred shape for pharmaceutical active carbon is spherical. Regenerated cellulose etc. can be obtained by coagulating in water or strong acid. When a viscose solution of a predetermined concentration is dropped into a coagulating solution of water or strong acid, or sprayed and captured into a coagulating bath by a known method, spherical cellulose particles are easily formed. The average particle diameter of the spherical cellulose particles is arbitrarily adjusted by the concentration and viscosity of the viscose solution, the diameter of the liquid discharge nozzle at the time of coagulation, the rotational speed of the coagulation liquid, and the like. The discharge apparatus of the cellulose solution is adjusted so that 100-1100 micrometers of activated carbon may be finally obtained as an average particle diameter. The dried spherical cellulose before carbonization has a particle size of 150 to 2000 μm.
セルロース粒子は、化粧品用粉体や医薬品賦形物等の用途が一般的と考えられている。セルロース粒子には柔軟性や自己崩壊性が要求されているため、特段、硬度までは期待されていない。また、微結晶セルロースの微粒子は医薬品の球状体化等の成形促進剤として用いられ、薬剤とともに製剤化され薬剤の核となる。しかしながら、微結晶セルロースの場合、一定の粒子径、硬さの球状セルロース粒子を調製することができても、体内での硬度維持は期待できない。 Cellulose particles are generally considered to be used for cosmetic powders and pharmaceutical excipients. Cellulose particles are required to be flexible and self-disintegrating, so no particular hardness is expected. In addition, fine particles of microcrystalline cellulose are used as a molding accelerator such as spheroidization of a drug, and are formulated with the drug to form the core of the drug. However, in the case of microcrystalline cellulose, even if spherical cellulose particles having a certain particle size and hardness can be prepared, maintenance of hardness in the body can not be expected.
その一方、セルロースは天然物由来成分であり原料調達、原料調製の負荷が小さい利点がある。また、フェノール系樹脂の活性炭と比較して賦活に要する時間が短い。そこで、発明者らは、セルロースを溶解する際の濃度制御、ビスコースの分子重合度の調節、あるいは硬度を高めるための不燃化処理成分の配合・含浸等により、粒子径、硬さの調整を広い範囲で調整できることを明らかにした。その上で得られたセルロースの球状物を炭化・賦活することにより、従来の技術では困難であったセルロース原料を用いながらも所望の硬度を有する球状活性炭の医薬用吸着剤を得るに至った。 On the other hand, cellulose is a component derived from natural products, and has the advantage that the burden of raw material procurement and raw material preparation is small. In addition, the time required for activation is shorter compared to activated carbon of phenolic resin. Therefore, the present inventors adjust the particle diameter and hardness by controlling the concentration when dissolving cellulose, adjusting the molecular polymerization degree of viscose, or blending / impregnating the non-combustible processing component to increase the hardness. It clarified that it could be adjusted in a wide range. By carbonizing and activating the cellulose spheres obtained thereon, it is possible to obtain a pharmaceutical adsorbent for spherical activated carbon having a desired hardness while using a cellulose raw material which has been difficult in the prior art.
医薬用吸着剤の主成分となる球状活性炭について、その製造方法から説明する。前記の再生セルロースからなる球状セルロースは、円筒状レトルト電気炉等の焼成炉内に収容され、炉内を窒素雰囲気下とし300ないし700℃において炭化され、球状炭化セルロースとなる。 The spherical activated carbon that is the main component of the pharmaceutical adsorbent will be described from the method for producing it. The spherical cellulose composed of the above-mentioned regenerated cellulose is accommodated in a baking furnace such as a cylindrical retort electric furnace, and the inside of the furnace is carbonized at 300 to 700 ° C. in a nitrogen atmosphere to form spherical carbonized cellulose.
あるいは、前記の再生セルロースからなる球状セルロースは、1000℃未満で気化する難燃剤、例えば、塩化アンモニウム若しくは硫酸アンモニウムの溶液や、溶媒をメタノールとするテトラブロモビスフェノールA溶液又はこれらの混合液中に含浸される。その後、この球状セルロースは、円筒状レトルト電気炉等の焼成炉内に収容され、炉内を窒素雰囲気下とし300ないし700℃において炭化され、球状炭化セルロースとなる。前記の溶液への含浸は球状セルロースを難燃性にする目的で行われる。 Alternatively, the spherical cellulose comprising the regenerated cellulose is impregnated in a flame retardant which vaporizes at less than 1000 ° C., for example, a solution of ammonium chloride or ammonium sulfate, a tetrabromobisphenol A solution in which the solvent is methanol, or a mixture thereof. Ru. Thereafter, the spherical cellulose is accommodated in a baking furnace such as a cylindrical retort electric furnace, and the inside of the furnace is carbonized at 300 to 700 ° C. in a nitrogen atmosphere to form spherical carbonized cellulose. The above-mentioned impregnation into the solution is performed for the purpose of making the spherical cellulose flame retardant.
前述のいずれの過程により得られた球状炭化セルロースは、750ないし1000℃、好ましくは800ないし1000℃、さらには850ないし950℃において水蒸気賦活される。賦活時間は生産規模、設備等によるものの、0.5ないし50時間である。 The spherical carbonized cellulose obtained by any of the above processes is steam activated at 750 to 1000 ° C., preferably 800 to 1000 ° C., further 850 to 950 ° C. The activation time is 0.5 to 50 hours depending on the production scale, equipment and the like.
前述の製造方法によれば、燃焼後の灰分が非常に少なく、歩留まりが向上する。原料のセルロースを1000℃未満で気化する難燃剤に含浸させることにより、難燃剤が熱分解されるため、強熱残分として残らず、酸洗浄及び熱処理が不要となり、省工程化が可能となる。つまり、1000℃未満で気化する難燃剤を使用することによって、添加した難燃剤の成分が固形分として残留せず、灰分が少なくなると考えられる。 According to the above-mentioned manufacturing method, the ash content after combustion is very small, and the yield is improved. By impregnating the raw material cellulose with a flame retardant vaporized at less than 1000 ° C., the flame retardant is thermally decomposed, so it does not remain as a high-temperature residue, so acid cleaning and heat treatment become unnecessary, and process saving becomes possible. . That is, by using a flame retardant that vaporizes at less than 1000 ° C., it is considered that the component of the added flame retardant does not remain as a solid, and the ash content decreases.
1000℃未満で気化する難燃剤が、例えば、塩化アンモニウムであれば最終的に塩化水素とアンモニアに、硫酸アンモニウムであれば硫黄酸化物とアンモニアに、臭化アンモニウムであれば臭化水素とアンモニアに、テトラブロモビスフェノールAであれば脱臭素反応により臭化水素、臭素ガス及び分解生成するブロモフェノール類へと熱分解され、揮発することによって、燃焼後の強熱残分を非常に低くすることができると考えられる。さらに、塩酸グアニジンであれば、塩化水素と炭酸ガス並びにアンモニアに分解され、先の難燃剤と同様に揮発することによって、燃焼後の強熱残分を非常に低くすることができると考えられる。つまり、省工程化しつつも高純度の球状活性炭を得ることができる。これらの難燃剤は複数を混合して使用されることも可能である。 For example, if the flame retardant that vaporizes at less than 1000 ° C. is, for example, ammonium chloride, finally hydrogen chloride and ammonia; if it is ammonium sulfate, sulfur oxides and ammonia; if it is ammonium bromide, then hydrogen bromide and ammonia; If it is tetrabromobisphenol A, it can be pyrolyzed into hydrogen bromide, bromine gas and bromophenols which are decomposed and formed by the debromination reaction, and by volatilizing, the ignition residue after combustion can be made very low. it is conceivable that. Further, it is considered that guanidine hydrochloride, when decomposed into hydrogen chloride and carbon dioxide gas and ammonia, and volatilized in the same manner as the above flame retardant, makes it possible to extremely reduce the ignition residue after combustion. That is, it is possible to obtain spherical activated carbon of high purity while saving steps. It is also possible to use a mixture of two or more of these flame retardants.
例えば、医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律第41条により、医薬品の性状及び品質の適正を図るため厚生労働大臣が薬事・食品衛生審議会の意見を聴いて定めた医薬品の規格基準書である日本薬局方における薬用炭の強熱残分が4.0%未満であるという規格を、当該製造方法によって得られた球状活性炭は容易に満たすことが可能である。このため、当該製造方法によれば、従来必要としていた酸洗浄及び熱処理工程を省略して簡易な工程でありながら、高純度の球状活性炭を得ることができる。また、炭化時に使用する炉は、腐食されないため長期的に使用が可能となり経済的である。 For example, the Minister of Health, Labor and Welfare listens to the opinion of the Pharmaceutical Affairs and Food Sanitation Council to ensure the appropriateness of the properties and quality of medicines in accordance with Article 41 of the Act on Ensuring Quality, Efficacy and Safety of Medicines, Medical Devices, etc. The spherical activated carbon obtained by the manufacturing method can easily meet the standard that the ignition residue of medicinal charcoal in the Japanese Pharmacopoeia, which is a standard written standard of pharmaceuticals, is less than 4.0%. . For this reason, according to the said manufacturing method, highly pure spherical activated carbon can be obtained, although it is a simple process by omitting the acid cleaning and heat treatment process conventionally required. In addition, since the furnace used at the time of carbonization is not corroded, it can be used for a long time, which is economical.
いずれの製造方法においても、球状活性炭はふるい等により篩別され、球状活性炭としての粒子径の調整、分別される。こうして本発明の製造方法により製造された医薬用吸着剤である球状活性炭が得られる。篩別により、吸着速度が遅く、吸着力を十分に発揮できない粒子径の大きい活性炭は取り除かれる。 In any of the production methods, spherical activated carbon is sieved by a sieve or the like, and the particle diameter as spherical activated carbon is adjusted and fractionated. Thus, spherical activated carbon, which is a pharmaceutical adsorbent produced by the production method of the present invention, is obtained. The sieving separates activated carbon having a slow adsorption rate and a particle diameter which can not sufficiently exert its adsorptive power.
前述の製造方法から得られた球状活性炭には、後記する実施例に掲げる肝機能障害や腎機能障害の原因物質を吸着し、かつ生体に必要な酵素の吸着を極力抑制すること、すなわち選択的吸着性能を向上させること、また比較的少ない服用量で十分な吸着性能を発揮することが求められる。具備すべき性質の調和範囲を見いだすべく、医薬用吸着剤は、〔1〕平均細孔直径、〔2〕BET比表面積、〔3〕平均粒径、〔4〕表面酸化物量、〔5〕充填密度の指標で規定される。そして、後記する実施例の傾向等から明らかなとおり、各指標の好適な範囲値が導出される。なお、以下に記載する前記活性炭の物性等の測定方法及び諸条件等は、実施例において詳述する。 Spherical activated carbon obtained from the above-mentioned production method is adsorbed with a causative agent of liver dysfunction or renal dysfunction listed in the examples to be described later, and the adsorption of enzymes necessary for the living body is suppressed as much as possible, ie selective It is required to improve adsorption performance and to exhibit sufficient adsorption performance with a relatively small dose. In order to find the harmonious range of the properties to be possessed, the pharmaceutical adsorbent comprises [1] average pore diameter, [2] BET specific surface area, [3] average particle size, [4] surface oxide content, [5] loading Specified by the indicator of density. Then, as is clear from the tendency of the embodiment described later, the preferable range value of each index is derived. In addition, the measuring methods, such as physical properties of the said activated carbon described below, various conditions, etc. are explained in full detail in the Example.
まず、〔1〕平均細孔直径は1.5〜3.0nmに規定される。平均細孔直径が1.5nm未満の場合、毒性物質の吸着性能が低下するため好ましくない。逆に平均細孔直径が3.0nmを超える場合、生体に必要な酵素、多糖類等の高分子を吸着する細孔が多く存在してしまうため好ましくない。このため、平均細孔直径は前記の範囲が好適となり、より好ましくは、1.6〜2.0nmである。 First, [1] the average pore diameter is defined to be 1.5 to 3.0 nm. When the average pore diameter is less than 1.5 nm, the adsorption performance of toxic substances is unfavorably reduced. On the contrary, when the average pore diameter exceeds 3.0 nm, it is not preferable because many pores that adsorb macromolecules such as enzymes and polysaccharides necessary for the living body exist. Therefore, the average pore diameter is preferably in the above range, and more preferably 1.6 to 2.0 nm.
〔2〕BET比表面積は700〜3000m2/gに規定される。BET比表面積が700m2/g未満の場合、毒性物質の吸着性能が低下するため好ましくない。BET比表面積が3000m2/gを超える場合、充填密度が悪化することに加えて細孔容積が大きくなることから球状活性炭自体の強度が悪化し易くなる。そこで、BET比表面積は、前記の範囲が好適となり、好ましくは900〜2400m2/g、より好ましくは1000〜2000m2/gである。 [2] The BET specific surface area is defined to be 700 to 3000 m 2 / g. If the BET specific surface area is less than 700 m 2 / g, the adsorption performance of toxic substances is unfavorably reduced. When the BET specific surface area exceeds 3000 m 2 / g, the strength of the spherical activated carbon itself tends to deteriorate because the pore volume increases in addition to the deterioration of the packing density. Therefore, BET specific surface area, the ranges be suitable, preferably 900~2400m 2 / g, more preferably 1000 to 2000 2 / g.
〔3〕平均粒径は100〜1100μmに規定される。平均粒径が100μm未満の場合、消化酵素等の有用物質の吸着が生じやすく選択吸着性の面から好ましくない。また、平均粒径100μm未満、例えば20μmについては、理論上想定することはできるものの、現実には製造が困難である。平均粒径が1100μmを超える場合、粒子が大きくなりすぎ相対的に表面積が減少するため吸着速度が低下する。そこで、平均粒径は前記の範囲が好適となり、好ましくは100〜1000μm、より好ましくは150〜700μmである。本明細書における「平均粒径」とは、後出の実施例のレーザー光散乱式粒度分布測定装置を用いてレーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。 [3] The average particle size is defined as 100 to 1100 μm. When the average particle size is less than 100 μm, adsorption of useful substances such as digestive enzymes is likely to occur, which is not preferable from the aspect of selective adsorption. In addition, although it can theoretically be assumed for an average particle diameter of less than 100 μm, for example, 20 μm, it is actually difficult to manufacture. When the average particle size exceeds 1100 μm, the adsorption rate is lowered because the particles become too large and the surface area relatively decreases. Therefore, the average particle diameter is preferably in the range described above, preferably 100 to 1000 μm, more preferably 150 to 700 μm. The "average particle diameter" in this specification means the particle diameter at 50% of the integrated value in the particle size distribution determined by the laser diffraction / scattering method using the laser light scattering type particle size distribution measuring apparatus of the later example. Do.
〔4〕表面酸化物量は0.05meq/g以上に規定される。球状活性炭表面の表面酸化物量の増加とは、活性炭表面にイオン性の官能基を増加させることである。このため、イオン性有機化合物の吸着性能を向上させる上で表面酸化物量が0.05meq/g以上、さらには0.10meq/g以上が望ましいと考えられる。なお、表面酸化物量が0.05meq/gよりも少なくなる場合、吸着特性が劣ることから好ましいとはいえない。 [4] The amount of surface oxide is specified to be 0.05 meq / g or more. The increase in the amount of surface oxides on the spherical activated carbon surface is to increase the number of ionic functional groups on the activated carbon surface. For this reason, in order to improve the adsorption performance of the ionic organic compound, it is considered that the surface oxide amount is preferably 0.05 meq / g or more, and further preferably 0.10 meq / g or more. In the case where the surface oxide content is less than 0.05 meq / g, it is not preferable because the adsorption characteristics are inferior.
〔5〕充填密度は0.4〜0.8g/mLに規定される。充填密度が0.4g/mL未満の場合、服用量が増加し経口投与時に嚥下しづらくなる。充填密度が0.8g/mLを超える場合、所望の選択吸着性のバランスを欠くことになるため、不適切である。このようなことから、充填密度は前記の範囲が好適となり、好ましくは0.5〜0.7g/mLである。 [5] The packing density is specified to be 0.4 to 0.8 g / mL. If the filling density is less than 0.4 g / mL, the dose increases and it becomes difficult to swallow when administered orally. If the packing density exceeds 0.8 g / mL, the balance of the desired selective adsorptivity is inadequate, which is inappropriate. From the above, the packing density is preferably in the range described above, preferably 0.5 to 0.7 g / mL.
前述の物性を具備する球状活性炭は、経口投与を目的とした薬剤であって、腎疾患又は肝疾患の治療剤又は予防剤となる。前述のとおり、球状活性炭の表面に発達した細孔内に疾患、慢性症状の原因物質が吸着、保持され、体外へ排出されることにより、症状の悪化を防ぎ、病態改善に導くことができる。さらに、先天的あるいは後天的に代謝異常又はそのおそれのある場合、予め球状活性炭を内服することにより、疾患、慢性症状の原因物質の体内濃度を下げることができる。そこで、症状悪化を防ぐ予防としての服用も考えられる。 Spherical activated carbon having the above-mentioned physical properties is a drug intended for oral administration, and serves as a therapeutic or preventive agent for kidney disease or liver disease. As described above, the causative agent of a disease or chronic condition is adsorbed and held in pores developed on the surface of spherical activated carbon, and discharged from the body, thereby preventing the deterioration of the condition and leading to the improvement of the pathological condition. Furthermore, when there is a possibility of metabolic abnormality or congenitally or acquiredly, the internal concentration of the causative agent of a disease or a chronic condition can be lowered by internally administering spherical activated carbon. Therefore, taking it as a preventive to prevent the aggravation of symptoms is also considered.
腎疾患として、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、さらに、透析前の軽度腎不全を挙げることができる。肝疾患として、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振戦(しんせん)、脳症、代謝異常、機能異常を挙げることができる。 Examples of renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, nephrotic syndrome, nephrosclerosis, interstitial nephritis And ureteritis, lipoidonephrosis, diabetic nephropathy, renovascular hypertension, hypertension syndrome, secondary renal disease associated with the above-mentioned primary disease, and mild renal failure before dialysis. Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, tremor ), Encephalopathy, metabolic disorders, functional disorders can be mentioned.
球状活性炭を経口医薬用吸着剤として使用する際の投与量は、年令、性別、体格又は病状等に影響されるので一律に規定できない。しかし、一般にヒトを対象とする場合には、球状活性炭の重量換算で1日当り1〜20g、2〜4回の服用が想定される。球状活性炭の経口医薬用吸着剤は、散剤、顆粒剤、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等による形態、剤型で投与される。 The dose when using spherical activated carbon as an adsorbent for oral medicine can not be uniformly defined because it is affected by age, sex, physical size or medical condition. However, in general, in the case where human beings are targeted, doses of 1 to 20 g and 2 to 4 times per day may be assumed in terms of weight of spherical activated carbon. The orally active pharmaceutical adsorbent for spherical activated carbon is administered in the form of a powder, granules, tablets, dragees, capsules, suspensions, sticks, sachets, emulsions, etc.
[測定項目と測定方法]
発明者らは、後記する各実施例及び比較例の球状活性炭に関し、平均粒径(μm)、BET比表面積(m2/g)、水銀細孔容積(mL/g)、N2細孔容積(mL/g)、平均細孔直径(nm)、充填密度(g/mL)、及び表面酸化物量(meq/g)の物性を測定した。同時に、毒性物質(毒性原因物質)としてクレアチニン、インドール、インドール酢酸、インドキシル硫酸及びアミノイソ酪酸の吸着性能を評価し、有用物質としてトリプシンの吸着性能を評価した。併せて、活性炭の一般的な吸着性能を評価するためヨウ素吸着力(mg/g)も測定した。
[Measurement item and measurement method]
The present inventors, regarding the spherical activated carbon of each example and comparative example described later, average particle diameter (μm), BET specific surface area (m 2 / g), mercury pore volume (mL / g), N 2 pore volume Physical properties of (mL / g), average pore diameter (nm), packing density (g / mL), and surface oxide amount (meq / g) were measured. At the same time, the adsorption performance of creatinine, indole, indole acetic acid, indoxyl sulfate and aminoisobutyric acid as toxic substances (toxic causative substances) was evaluated, and the adsorption performance of trypsin as a useful substance was evaluated. At the same time, iodine adsorption capacity (mg / g) was also measured to evaluate the general adsorption performance of activated carbon.
平均粒径(μm)は、株式会社島津製作所製のレーザー光散乱式粒度分布測定装置(SALD3000S)を使用して測定し、レーザー回折・散乱法によって求めた粒度分布における積算値50%における粒径とした。 The average particle diameter (μm) is measured using a laser light scattering type particle size distribution analyzer (SALD3000S) manufactured by Shimadzu Corporation, and the particle diameter at 50% of the integrated value in the particle size distribution determined by laser diffraction / scattering method And
BET比表面積(m2/g)は、77Kにおける窒素吸着等温線を日本ベル株式会社製、BELSORP miniにより測定し、BET法により求めた。 The BET specific surface area (m 2 / g) was determined by the BET method by measuring the nitrogen adsorption isotherm at 77 K using BELSORP mini (Bell Japan).
細孔容積(mL/g)は次の2とおりの方法とした。
N2細孔容積Vmiは、Gurvitschの法則を適用し、日本ベル株式会社製BELSORPminiを使用し、相対圧0.990における液体窒素換算した窒素吸着量から求めた。同方法は細孔直径0.6〜100nmの範囲を対象とした。
水銀細孔容積Vmeは、株式会社島津製作所製のオートポア9500を使用し、接触角130°、表面張力484ダイン/cm(484mN/m)に設定し、細孔直径7.5〜15000nmの水銀圧入法による細孔容積を求めた。
The pore volume (mL / g) was the following two methods.
The N 2 pore volume V mi was obtained from the nitrogen adsorption amount in terms of liquid nitrogen at a relative pressure of 0.990, using Gurvitsch's law, using BELSORP mini manufactured by Nippon Bell Co., Ltd. The method targeted the range of pore diameter 0.6 to 100 nm.
The mercury pore volume V me is a mercury having a pore diameter of 7.5 to 15,000 nm, using an autopore 9500 manufactured by Shimadzu Corporation, with a contact angle of 130 ° and a surface tension of 484 dynes / cm (484 mN / m). The pore volume was determined by the indentation method.
平均細孔直径Dp(nm)は、細孔の形状を円筒形と仮定し、下記の(i)式により求めた。式中、Vmiは前出のN2細孔容積であり、SaはBET比表面積である。 The average pore diameter Dp (nm) was obtained by the following equation (i), assuming that the pore shape is cylindrical. In the formula, V mi is the aforementioned N 2 pore volume, and Sa is the BET specific surface area.
充填密度(g/mL)は、JIS K 1474−1(2014)に準拠し測定した。 The packing density (g / mL) was measured in accordance with JIS K 1474-1 (2014).
表面酸化物量(meq/g)は、Boehmの方法を適用し、0.05N水酸化ナトリウム水溶液中において球状活性炭を振とうした後に濾過し、その濾液を0.05N塩酸で中和滴定した際の水酸化ナトリウム量とした。 The amount of surface oxides (meq / g) was determined by applying the method of Boehm, shaking the spherical activated carbon in a 0.05 N aqueous solution of sodium hydroxide and filtering it, and the filtrate was subjected to neutralization titration with 0.05 N hydrochloric acid. The amount of sodium hydroxide was used.
ヨウ素吸着力(mg/g)は、JIS K 1474−1(2014)に準拠し測定した。 The iodine adsorption power (mg / g) was measured in accordance with JIS K 1474-1 (2014).
毒性物質としてクレアチニン、インドール、インドール酢酸、インドキシル硫酸及びアミノイソ酪酸、有用物質としてトリプシンを被吸着物質の例として用い、各試作例の球状活性炭による吸着性能を評価した。はじめに、各被吸着物質をpH7.4のリン酸緩衝液に溶解し、被吸着物質の濃度を0.1g/Lとする標準溶液を作成した。
クレアチニンの標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ2.5g添加し、37℃の温度で3時間接触振とうした。
インドールの標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドール酢酸の標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドキシル硫酸の標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
アミノイソ酪酸の標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
トリプシンの標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.125g添加し、21℃の温度で3時間接触振とうした。
Creatinine, indole, indole acetic acid, indoxyl sulfuric acid and aminoisobutyric acid as toxic substances, and trypsin as useful substances as an example of the adsorptive substance were used to evaluate the adsorption performance of the spherical activated carbon of each trial example. First, each adsorptive substance was dissolved in pH 7.4 phosphate buffer to prepare a standard solution in which the concentration of the adsorptive substance was 0.1 g / L.
To 50 mL of a standard creatinine solution, 2.5 g of each of the spherical activated carbons of Examples and Comparative Examples were added, respectively, and contact shaking was carried out at a temperature of 37 ° C. for 3 hours.
To 50 mL of a standard solution of indole, 0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added, respectively, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
To 50 mL of a standard solution of indole acetic acid, 0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added, respectively, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added to 50 mL of a standard solution of indoxyl sulfuric acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added to 50 mL of a standard solution of aminoisobutyric acid, and contact shaking was carried out at a temperature of 37 ° C. for 3 hours.
0.125 g of each of the spherical activated carbons of Examples and Comparative Examples was added to 50 mL of a standard solution of trypsin, and contact shaking was performed at a temperature of 21 ° C. for 3 hours.
その後濾過して得た濾液について、全有機体炭素計(株式会社島津製作所製、TOC5000A)を用い、各濾液中のTOC濃度(mg/L)を測定し、各濾液中の被吸着物質の質量を算出した。各被吸着物質の吸着率(%)は(ii)式より求めた。 Thereafter, the filtrate obtained by filtration is measured for TOC concentration (mg / L) in each filtrate using a total organic carbon meter (TOC 5000A, manufactured by Shimadzu Corporation), and the mass of the substance to be adsorbed in each filtrate Was calculated. The adsorption rate (%) of each adsorbed substance was determined from the formula (ii).
[実施例及び比較例の球状活性炭の製造]
〈実施例1〉
単位重量当たりα−セルロースが90重量%の溶解パルプLNDP(日本製紙ケミカル株式会社製)2kgと水酸化ナトリウム溶液(濃度18.5%)を55℃で15分浸漬し、その後、圧搾を行い余剰の水酸化ナトリウム分を除去してセルロース濃度33.5重量%のアルカリセルロース(AC)を作製した。アルカリセルロースを40℃にて7時間老成し、同アルカリセルロース5kgと純度97%以上の二硫化炭素436mLを70分間反応させて、40℃にて粘度0.055Pa・s(55cP)のセルロースザンテートを得た。
[Production of Spherical Activated Carbon of Examples and Comparative Examples]
Example 1
2 kg of dissolved pulp LNDP (made by Nippon Paper Chemicals Co., Ltd.) containing 90% by weight of α-cellulose per unit weight and a sodium hydroxide solution (concentration 18.5%) are soaked at 55 ° C. for 15 minutes and then pressed to make excess Sodium hydroxide was removed to produce an alkali cellulose (AC) having a cellulose concentration of 33.5% by weight. Alkali cellulose is aged at 40 ° C. for 7 hours, and 5 kg of the alkali cellulose is reacted with 436 mL of carbon disulfide having a purity of 97% or more for 70 minutes to obtain cellulose xanthate having a viscosity of 0.055 Pa · s (55 cP) at 40 ° C. I got
反応終了後、セルロースザンテートに希薄な水酸化ナトリウム溶液を約13L添加し、100分間攪拌してビスコースを得た。さらに脱泡、熟成、濾過の工程を経てセルロース濃度9.0%のビスコースを調製した。前記調製のビスコースを蒸留水によりビスコース濃度70%まで希釈し、希釈したビスコースを、導入管を通じて外径85mmの回転体に供給し、噴霧により滴下させることで、下方に設置した希硫酸浴に液滴を捕捉し、セルロース(いわゆる再生セルロース)の球状物を得た。ここで、滴下の方法は落下式や遠心式が望ましい。このとき、セルロースの球状物を30分間以上、希硫酸浴に浸漬した。セルロースの球状物を大過剰の水にて水洗し希硫酸を除去後、希水酸化ナトリウム水溶液に1時間以上浸漬した。再度大過剰の水にて水洗し球状物中の水酸化ナトリウム分を除去した後、80℃で乾燥して球状セルロースを得た。 After completion of the reaction, about 13 L of dilute sodium hydroxide solution was added to cellulose xanthate and stirred for 100 minutes to obtain viscose. Furthermore, through the steps of defoaming, ripening and filtration, viscose with a cellulose concentration of 9.0% was prepared. The prepared viscose is diluted with distilled water to a viscose concentration of 70%, and the diluted viscose is supplied to a rotating body with an outer diameter of 85 mm through an inlet tube and dropped by spraying, so that dilute sulfuric acid installed below The droplets were captured in a bath to obtain cellulose (so-called regenerated cellulose) spheres. Here, the dropping method is preferably a drop method or a centrifugal method. At this time, the cellulose spheres were immersed in a dilute sulfuric acid bath for 30 minutes or more. The cellulose spheres were washed with a large excess of water to remove dilute sulfuric acid, and then immersed in dilute aqueous sodium hydroxide solution for 1 hour or more. After washing again with a large excess of water to remove the sodium hydroxide content in the spheres, it was dried at 80 ° C. to obtain spherical cellulose.
前記調製により得た球状セルロース500gに対し、塩化アンモニウム水溶液(濃度5%)を1000mL加え、2時間静置した。その後、水分をきり、乾燥機により80℃、一晩乾燥した。塩化アンモニウム処理を経た球状セルロース400gを円筒状レトルト電気炉に入れて窒素を封入した後、900℃になるまで加熱し、炭化した。その後、炭化物に水蒸気を添加して2.5時間その温度に保持して賦活化して、実施例1の球状活性炭を得た(実質収率は18.7%であった)。 To 500 g of spherical cellulose obtained by the above preparation, 1000 mL of an aqueous solution of ammonium chloride (concentration 5%) was added, and allowed to stand for 2 hours. Thereafter, the water was drained and dried overnight at 80 ° C. with a drier. 400 g of spherical cellulose that had undergone ammonium chloride treatment was placed in a cylindrical retort electric furnace, sealed with nitrogen, and then heated to 900 ° C. to carbonize. Thereafter, steam was added to the carbide and activated by maintaining at that temperature for 2.5 hours to obtain spherical activated carbon of Example 1 (substantial yield was 18.7%).
〈実施例2〉
実施例1における難燃剤(塩化アンモニウム水)溶液を硫酸アンモニウム溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例2の球状活性炭を得た(実質収率は12.7%であった)。
Example 2
A spherical activated carbon of Example 2 was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to an ammonium sulfate solution (concentration 5%, 1000 mL) (substantial yield is 12.7% Met).
〈実施例3〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、塩化アンモニウム水溶液(濃度2.5%、500mL)と硫酸アンモニウム溶液(濃度2.5%、500mL)の混合液とした以外は実施例1に準じ、実施例3の球状活性炭を得た(実質収率は16.1%であった)。
Example 3
According to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 is a mixed solution of ammonium chloride aqueous solution (concentration 2.5%, 500 mL) and ammonium sulfate solution (concentration 2.5%, 500 mL) Spherical activated carbon of Example 3 was obtained (substantial yield was 16.1%).
〈実施例4〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、臭化アンモニウム溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例4の球状活性炭を得た(実質収率は18.1%であった)。
Example 4
Spherical activated carbon of Example 4 was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to an ammonium bromide solution (concentration 5%, 1000 mL) (substantial yield is 18) 1%).
〈実施例5〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、溶媒をメタノールとするテトラブロモビスフェノールA溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例5球状活性炭を得た(実質収率は16.5%であった)。
Example 5
Example 5 Spherical activated carbon was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to tetrabromobisphenol A solution (concentration 5%, 1000 mL) using methanol as the solvent. The real yield was 16.5%).
〈実施例6〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、塩酸グアニジン溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例6の球状活性炭を得た(実質収率は14.1%であった)。
Example 6
The spherical activated carbon of Example 6 was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to guanidine hydrochloride solution (concentration 5%, 1000 mL) (substantial yield is 14.4. 1%).
〈比較例1〉
前記調製により得た球状セルロース500gに対し、リン酸アンモニウム水溶液(濃度5%)を1000mL加え、2時間静置した。その後、水分をきり、乾燥機により80℃、一晩乾燥した。リン酸アンモニウム処理を経た球状セルロース400gを円筒状レトルト電気炉に入れて窒素を封入した後、900℃になるまで加熱し、炭化した。その後、炭化物に水蒸気を添加して2.5時間その温度に保持して賦活化して、比較例1の球状活性炭を得た(実質収率は13.1%であった)。
Comparative Example 1
To 500 g of the spherical cellulose obtained by the above preparation, 1000 mL of an aqueous ammonium phosphate solution (concentration 5%) was added and allowed to stand for 2 hours. Thereafter, the water was drained and dried overnight at 80 ° C. with a drier. After putting 400 g of spherical cellulose which had undergone ammonium phosphate treatment into a cylindrical retort electric furnace and sealing nitrogen, it was heated to 900 ° C. to carbonize. Thereafter, steam was added to the carbide, and the carbide was maintained at that temperature for 2.5 hours for activation to obtain spherical activated carbon of Comparative Example 1 (substantial yield was 13.1%).
〈比較例2〉
比較例1におけるリン酸アンモニウム水溶液をポリホウ酸ナトリウム水溶液(濃度5%、1000mL)とした以外は比較例1に準じ、比較例2の球状活性炭を得た(実質収率は10.5%であった)。
Comparative Example 2
A spherical activated carbon according to Comparative Example 2 was obtained according to Comparative Example 1 except that the aqueous ammonium phosphate solution in Comparative Example 1 was changed to an aqueous solution of sodium polyborate (concentration 5%, 1000 mL) (substantial yield is 10.5%). ).
〈比較例3〉
比較例1におけるリン酸アンモニウム水溶液をポリリン酸ナトリウム水溶液(濃度5%、1000mL)とした以外は比較例1に準じ、比較例3の球状活性炭を得た(実質収率は8.0%であった)。
Comparative Example 3
A spherical activated carbon according to Comparative Example 3 was obtained according to Comparative Example 1 except that the aqueous solution of ammonium phosphate in Comparative Example 1 was changed to an aqueous solution of sodium polyphosphate (concentration 5%, 1000 mL) (substantial yield is 8.0%). ).
各実施例及び比較例の球状活性炭について、強熱残分(%)を表1に示した。 The ignition residue (%) is shown in Table 1 for the spherical activated carbon of each Example and Comparative Example.
続いて、各実施例及び比較例について、球状活性炭の各物性値を表2及び3に記した。表の上から順に、実質収率(%)、平均粒径(μm)、BET比表面積(m2/g)、水銀細孔容積(mL/g)、N2細孔容積(mL/g)、平均細孔直径(nm)、充填密度(g/mL)、表面酸化物量(meq/g)、ヨウ素吸着力(mg/g)、クレアチニン、インドール、インドール酢酸、インドキシル硫酸、アミノイソ酪酸及びトリプシンの吸着率(%)である。ここで、実質収率とは、原料を焼成した後の活性炭収量のうち、強熱残分を差し引いた活性炭の収率をいう。 Then, each physical-property value of spherical activated carbon was described in Table 2 and 3 about each Example and comparative example. From the top of the table, real yield (%), average particle size (μm), BET specific surface area (m 2 / g), mercury pore volume (mL / g), N 2 pore volume (mL / g) , Average pore diameter (nm), packing density (g / mL), surface oxide amount (meq / g), iodine adsorption power (mg / g), creatinine, indole, indole acetic acid, indoxyl sulfuric acid, aminoisobutyric acid and trypsin Adsorption rate (%) of Here, a substantial yield means the yield of the activated carbon which deducted the ignition residue among the activated carbon yields after baking a raw material.
[結果と考察]
表1から理解されるように、各実施例の球状活性炭は、難燃剤として1000℃未満で気化する難燃剤である塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、テトラブロモビスフェノールA若しくは塩酸グアニジンのいずれか一又は複数が添着されて製造されるため、製造時に難燃剤が熱分解されて気化することから、強熱残分が低くなった。このため、灰分(ロス)が少なく歩留まりが高い。加えて、水蒸気賦活後の強熱残分が非常に低いため、前述の日本薬局方における強熱残分の規格を容易に満たすことができつつ、酸洗浄及び熱処理工程の省略が可能となることから、効率的かつ経済的に優位な医薬用吸着材を製造することができる。
[Results and discussion]
As understood from Table 1, the spherical activated carbon of each example is any one of ammonium chloride, ammonium sulfate, ammonium bromide, tetrabromobisphenol A or guanidine hydrochloride which is a flame retardant which vaporizes at a temperature of less than 1000 ° C. as a flame retardant. Alternatively, since the flame retardant is thermally decomposed and vaporized at the time of production because a plurality is attached and produced, the ignition residue is lowered. Therefore, the ash content (loss) is small and the yield is high. In addition, since the ignition residue after steam activation is very low, the acid cleaning and heat treatment steps can be omitted while the ignition residue specification in the aforementioned Japanese Pharmacopoeia can be easily satisfied. Thus, an efficient and economically superior pharmaceutical adsorbent can be produced.
表2及び3から理解されるように、各実施例の球状活性炭は、難燃剤としてリン酸アンモニウム、ポリホウ酸ナトリウム又はポリリン酸ナトリウムを添加し、炭化、水蒸気賦活を経て得た球状活性炭(比較例1ないし3)と比較して概ね同等又はそれ以上の物性値を示した。実施例の球状活性炭の充填密度も比較例と同等又は向上しており、実施の形態いかんにより非常にコンパクトな剤形の医薬用吸着剤の可能性を示唆している。また、各実施例の球状活性炭は、吸着測定の結果より、クレアチニン等の毒性物質の吸着率が高いことから、極めて吸着性能に優れている。そして、有用物質であるトリプシンの吸着性能は抑制されていることから、極めて選択吸着性にも優れている。従って、毒性物質を効率よく吸収する医薬用吸着剤として望ましいということができる。 As understood from Tables 2 and 3, the spherical activated carbons obtained in each Example were obtained by carbonizing and steam activation by adding ammonium phosphate, sodium polyborate or sodium polyphosphate as a flame retardant (comparative example) The physical properties were almost the same as or higher than in 1) to 3). The packing density of the spherical activated carbons of the examples is also equal to or higher than that of the comparative examples, suggesting the possibility of a very compact dosage form of the pharmaceutical adsorbent according to the embodiment. Further, the spherical activated carbon of each example is extremely excellent in the adsorption performance because the adsorption rate of toxic substances such as creatinine is higher than the result of the adsorption measurement. And, since the adsorption performance of trypsin, which is a useful substance, is suppressed, it is also extremely excellent in selective adsorption. Therefore, it can be said that it is desirable as a medical adsorbent that absorbs toxic substances efficiently.
本発明の製造方法は、簡易な工程で吸着性能に優れた活性炭を歩留まりよく製造することができ、経済的であり環境負荷を抑えることができる。また、本発明の製造方法により製造された球状活性炭は、経口投与により消化器官に達し、毒性物質を効率よく吸収して排泄する医薬用吸着剤の用途が極めて有望である。 INDUSTRIAL APPLICABILITY The production method of the present invention can produce activated carbon excellent in adsorption performance with a high yield by a simple process, is economical, and can suppress environmental impact. In addition, the spherical activated carbon produced by the production method of the present invention reaches the digestive organs by oral administration, and the use of a pharmaceutical adsorbent that efficiently absorbs and excretes toxic substances is very promising.
本発明は、セルロースを原料とした活性炭からなる経口投与用医薬用吸着剤の製造方法に関し、特に、簡易な工程で毒性物質の吸着性能に優れたセルロース由来の活性炭からなる経口投与用医薬用吸着剤を得ることのできる製造方法に関する。 The present invention relates to a method for producing an absorbent for oral administration comprising an activated carbon using cellulose as a raw material, and in particular, an adsorption for oral administration comprising an activated carbon derived from cellulose excellent in adsorption performance of toxic substances in a simple process. The present invention relates to a manufacturing method capable of obtaining an agent.
腎疾患又は肝疾患の患者は、血液中に毒性物質が蓄積し、その結果として尿毒症や意識障害等の脳症を引き起こす。これらの患者数は年々増加する傾向にある。患者の治療には、毒性物質を体外へ除去する血液透析型の人工腎臓等が使用される。しかしながら、このような人工腎臓は、安全管理上から取り扱いに専門技術者を必要とし、また血液の体外への取り出しに際し、患者の肉体的、精神的、及び経済的負担を要することが問題視されており、必ずしも満足すべきものではない。 Patients with kidney disease or liver disease accumulate toxic substances in the blood and as a result cause encephalopathy such as uremia and loss of consciousness. The number of these patients tends to increase year by year. Hemodialysis-type artificial kidneys and the like that remove toxic substances outside the body are used for treatment of patients. However, such artificial kidneys require specialist technicians for safety and management, and it is also considered that the physical, mental and economic burden of the patient is required for taking blood out of the body. And not necessarily satisfactory.
人工臓器に代わる方法として、経口で摂取し体内で毒性物質を吸着し、体外に排出する経口投与用吸着剤が開発されている(特許文献1、特許文献2等参照)。そして、石油系炭化水素(ピッチ)等を原料物質とし、比較的粒径が均一となるように調整し、炭化、賦活させた抗ネフローゼ症候群剤が報告されている(例えば、特許文献3参照)。また、活性炭自体の粒径を比較的均一化するとともに、当該活性炭における細孔容積等の分布について調整を試みた経口投与用吸着剤が報告されている(特許文献4参照)。このように、薬用活性炭は、比較的粒径を均一にすることに伴い、腸内の流動性の悪さを改善し、またこれと同時に細孔を調整することにより当該活性炭の吸着性能の向上を図った。そこで、多くの軽度の慢性腎不全患者に服用されている。 As an alternative to artificial organs, adsorbents for oral administration have been developed which are orally ingested and adsorb toxic substances in the body and discharged out of the body (see Patent Document 1, Patent Document 2, etc.). Then, an anti-nephrotic syndrome agent is reported in which petroleum hydrocarbon (pitch) or the like is used as a raw material material, and the particle size is adjusted to be relatively uniform and carbonized and activated (for example, see Patent Document 3) . In addition, an adsorbent for oral administration has been reported in which the particle size of activated carbon itself is relatively uniformed and distribution of pore volume etc. in the activated carbon is attempted to be adjusted (see Patent Document 4). Thus, along with making the particle size relatively uniform, the medicinal activated carbon improves the poor fluidity in the intestine, and at the same time improves the adsorption performance of the activated carbon by adjusting the pores. planned. Therefore, it is taken by many patients with mild chronic renal failure.
薬用活性炭には、尿毒症の原因物質やその前駆物質に対する迅速かつ効率的な吸着が要求される。しかしながら、既存の薬用活性炭では、形状を球形のまま粒径を小さくすることは難しい。また、従来の薬用活性炭における細孔の調整は良好とはいえず、吸着性能は必ずしも十分ではないので、一日当たりの服用量を多くしなければならない。特に、慢性腎不全患者は水分の摂取量を制限されているため、少量の水分により嚥下することは患者にとって大変な苦痛となっていた。 Medicinal activated carbon requires rapid and efficient adsorption to uremic agents and their precursors. However, it is difficult to reduce the particle size while maintaining the spherical shape with existing medicinal activated carbon. In addition, the adjustment of the pores in the conventional medicinal activated carbon is not good and the adsorption performance is not always sufficient, so the daily dose must be increased. In particular, because chronic renal failure patients have limited fluid intake, swallowing with a small amount of fluid has been a great pain for patients.
そして、出願人により経済的かつ環境負荷を抑え、選択吸着性に優れた経口投与用医薬用吸着剤の製造方法が開発され(特許文献5、特許文献6参照)、天然物由来成分であるセルロースを原料とする球状活性炭の経口投与用医薬用吸着剤を得るに至っていた。 Then, the applicant has developed a method for manufacturing an adsorbent for oral administration pharmaceuticals which has low economical and environmental burden and excellent selective adsorption properties (see Patent Document 5 and Patent Document 6), and cellulose which is a natural product-derived component It came to obtain the medicine adsorbent for oral administration of the spherical activated carbon which uses as a raw material.
前掲のセルロース由来の経口投与用医薬用吸着剤の製造方法により製造された活性炭よりなる経口投与用医薬用吸着剤は、少ない服用量でありながら除去すべき毒素の吸着容量及び選択吸着性に優れ、医薬用吸着剤の用途として非常に有望であるといえた。 An adsorbent for oral administration comprising an activated carbon produced by the method for producing an adsorbent for oral administration derived from cellulose described above is excellent in the adsorption capacity and selective adsorption of toxins to be removed although the dose is small. It was very promising as an application of pharmaceutical adsorbents.
本発明は、経済的かつ環境負荷を抑えた医薬用吸着剤を製造することができ、簡易な工程であっても、活性炭の毒性物質の吸着性能及び選択吸着性を維持しつつも歩留まりが良い経口投与用医薬用吸着剤の製造方法を提供する。 The present invention can produce an adsorbent for medical use which is economical and has reduced environmental impact, and has a high yield while maintaining the adsorption performance and selective adsorption of toxic substances of activated carbon even in a simple process. The present invention provides a method of producing a pharmaceutical adsorbent for oral administration.
すなわち、第1の発明は、BET比表面積を700〜3000m 2 /g、平均粒径を100〜1100μm、表面酸化物量を0.05meq/g以上、充填密度を0.4〜0.8g/mL及び平均細孔直径が1.5〜3.0nmである球状活性炭の製造に際し、原料である精製セルロース又は再生セルロースに、1000℃未満で気化する難燃剤を添着させ、窒素雰囲気下300〜700℃で炭化し、750〜1000℃で水蒸気賦活を行い、酸洗浄を行わなくともJIS K 1474−1(2014)に準拠した測定における強熱残分が10%未満とする球状活性炭を得ることを特徴とする経口投与用医薬用吸着剤の製造方法に係る。 That is, in the first invention, the BET specific surface area is 700 to 3000 m 2 / g, the average particle diameter is 100 to 1100 μm, the surface oxide amount is 0.05 meq / g or more , and the packing density is 0.4 to 0.8 g / mL And a flame retardant which is vaporized at less than 1000 ° C. is attached to purified cellulose or regenerated cellulose which is a raw material in the production of spherical activated carbon having an average pore diameter of 1.5 to 3.0 nm , under a nitrogen atmosphere at 300 to 700 ° C. in carbonized, it has rows of steam activation at 750 to 1000 ° C., that ignition residue in the measurement conforming to JIS K 1474-1 without performing acid cleaning (2014) to obtain a spherical activated carbon to less than 10% The present invention relates to a method for producing an adsorbent for oral administration, which is characterized by the present invention.
第2の発明は、塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、テトラブロモビスフェノールA若しくは塩酸グアニジンのいずれか一又は複数である第1の発明に記載の経口投与用医薬用吸着剤の製造方法に係る。 The second invention relates to the method for producing an adsorbent for oral administration according to the first invention, which is any one or more of ammonium chloride, ammonium sulfate, ammonium bromide, tetrabromobisphenol A and guanidine hydrochloride.
第3の発明は、前記球状活性炭が、経口投与用医薬用吸着材である第1又は2の発明のいずれかに記載の吸着剤の製造方法に係る。 A third invention relates to the method for producing an adsorbent according to the first or second invention, wherein the spherical activated carbon is an adsorbent for medicine for oral administration.
第4の発明は、前記球状活性炭が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤である第3の発明に記載の経口投与用医薬用吸着剤の製造方法に係る。 A fourth invention relates to the method for producing an adsorbent for oral administration described in the third invention, wherein the spherical activated carbon is a therapeutic agent or a preventive agent for renal disease for oral administration or liver disease for oral administration. Concerned.
第1の発明に係る経口投与用医薬用吸着剤の製造方法によると、BET比表面積を700〜3000m 2 /g、平均粒径を100〜1100μm、表面酸化物量を0.05meq/g以上、充填密度を0.4〜0.8g/mL及び平均細孔直径が1.5〜3.0nmである球状活性炭の製造に際し、原料である精製セルロース又は再生セルロースに、1000℃未満で気化する難燃剤を添着させ、窒素雰囲気下300〜700℃で炭化し、750〜1000℃で水蒸気賦活を行い、酸洗浄を行わなくともJIS K 1474−1(2014)に準拠した測定における強熱残分が10%未満とする球状活性炭を得るため、経済的かつ環境負荷を抑えた医薬用吸着剤を製造することができ、簡易な工程であっても、活性炭の毒性物質の吸着性能を維持しつつも強熱残分を低くすることができ、歩留まりが良く経済的であり、活性炭の吸着性能が高くなる。 According to the method for producing an adsorbent for oral administration according to the first invention, the BET specific surface area is 700 to 3000 m 2 / g, the average particle diameter is 100 to 1100 μm, the surface oxide amount is 0.05 meq / g or more , A flame retardant which is vaporized at less than 1000 ° C. to purified cellulose or regenerated cellulose which is a raw material in the production of spherical activated carbon having a density of 0.4 to 0.8 g / mL and an average pore diameter of 1.5 to 3.0 nm was impregnated, carbonized under 300 to 700 ° C. nitrogen atmosphere, it has rows of steam activation at 750 to 1000 ° C., the residue on ignition in the measurement conforming to JIS K 1474-1 without performing acid cleaning (2014) In order to obtain spherical activated carbon of less than 10%, it is possible to manufacture an adsorbent for medical use that is economical and has reduced environmental impact, and the adsorption performance of the toxic substance of activated carbon can be maintained even with a simple process. While lifting also can reduce the ignition residue, yield a goodness rather economical adsorption performance of activated carbon is increased.
第2の発明に係る経口投与用医薬用吸着剤の製造方法によると、第1の発明において、前記難燃剤が塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、テトラブロモビスフェノールA若しくは塩酸グアニジンのいずれか一又は複数であるため、経済的かつ環境負荷を抑えた医薬用吸着剤を製造することができ、簡易な工程であっても、活性炭の毒性物質の吸着性能を維持しつつも強熱残分を低くすることができ、歩留まりが良い。 According to the method for producing an adsorbent for a pharmaceutical preparation for oral administration according to the second invention, in the first invention, the flame retardant is any one or one of ammonium chloride, ammonium sulfate, ammonium bromide, tetrabromobisphenol A or guanidine hydrochloride. The multiple adsorbents make it possible to manufacture pharmaceutical adsorbents that are economical and have reduced environmental impact, and have low ignition residue while maintaining the adsorption performance of toxic substances on activated carbon even with simple processes. It can be done and the yield is good.
第3の発明に係る経口投与用医薬用吸着剤の製造方法によると、第1又は2の発明において、前記球状活性炭が、経口投与用医薬用吸着材であるため、治療剤又は予防剤として有望な経口投与用医薬用吸着剤を提供できる。 According to the method for producing an adsorbent for oral administration relating to the third invention, in the first or second invention, since the spherical activated carbon is an adsorbent for oral administration, it is promising as a therapeutic agent or a preventive agent It is possible to provide a pharmaceutical adsorbent for oral administration.
第4の発明に係る経口投与用医薬用吸着剤の製造方法によると、第3の発明において、前記球状活性炭が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤であるため、腎疾患又は肝疾患の原因物質を吸着する効果が高く、治療剤又は予防剤として有望な経口投与用医薬用吸着剤を提供できる。 According to the method for producing an adsorbent for oral administration relating to the fourth invention, in the third invention, the spherical activated carbon is a therapeutic agent or preventive agent for renal disease for oral administration or liver disease for oral administration. For this reason, it is highly effective in adsorbing the causative agent for kidney disease or liver disease, and can provide a medicinal adsorbent for oral administration promising as a therapeutic agent or a preventive agent.
本発明の製造方法により製造された医薬用吸着剤は、出発原料を再生セルロースとし、当該セルロース原料を炭化し、賦活することにより細孔を発達させた球状の活性炭である。原料の再生セルロースとは、従来公知のビスコース法や銅アンモニア法によりパルプから調製された高純度セルロースである。 The pharmaceutical adsorbent produced by the production method of the present invention is a spherical activated carbon in which pores are developed by making the starting material regenerated cellulose, carbonizing the cellulose material, and activating it. The regenerated cellulose as a raw material is a high purity cellulose prepared from pulp by the conventionally known viscose method or copper ammonia method.
あるいは、NMMO(N−メチルモルフォリンオキシド)、BMIMCL(1−ブチル−3−メチルイミダゾリウムクロライド)等のイオン液体を用いてパルプを溶解後に調製したセルロースである。セルロース溶液粘度調整及びセルロース凝固物の細孔分布調整のため、原料となるセルロースに可溶性又は水不溶性デンプンを20重量%以下、添加することもできる。さらに、賦活された活性炭の強度をさらに高めるため、セルロースファイバー又はシリカ等の無機ファイバーを20重量%以下、フィラーとして添加することもできる。 Or it is the cellulose prepared after melt | dissolving a pulp using ionic liquids, such as NMMO (N- methyl morpholine oxide) and BMIMCL (1-butyl 3- methyl imidazolium chloride). In order to adjust the viscosity of the cellulose solution and to adjust the pore distribution of the cellulose coagulum, it is also possible to add 20 wt% or less of soluble or water-insoluble starch to the raw material cellulose. Furthermore, in order to further increase the strength of activated activated carbon, cellulose fibers or inorganic fibers such as silica can be added as a filler in an amount of 20% by weight or less.
再生セルロースの形状については、医薬用吸着剤としての服用を念頭に置くと、粒状であることが好ましい。特に腸管内での流動性を勘案すると医薬用活性炭に好適形状は球状である。再生セルロース等は、水又は強酸下で凝固することにより得ることができる。所定濃度のビスコース溶液が水又は強酸の凝固液内に滴下、あるいは公知の方法により凝固浴内へと噴霧、捕捉されることにより、簡単に球形状のセルロース粒子となる。球形状のセルロース粒子の平均粒径は、ビスコース溶液の濃度、粘度、凝固時の液吐出ノズルの口径、凝固液の回転速度等により任意に調整される。最終的に平均粒径として100〜1100μmの活性炭が得られるようセルロース溶液の吐出装置は調整される。炭化前の乾燥した球状セルロースの段階では150〜2000μmの粒径である。 With regard to the form of regenerated cellulose, it is preferable that it be in the form of particles, taking into consideration its application as a pharmaceutical adsorbent. Particularly in view of the fluidity in the intestinal tract, the preferred shape for pharmaceutical active carbon is spherical. Regenerated cellulose etc. can be obtained by coagulating in water or strong acid. When a viscose solution of a predetermined concentration is dropped into a coagulating solution of water or strong acid, or sprayed and captured into a coagulating bath by a known method, spherical cellulose particles are easily formed. The average particle diameter of the spherical cellulose particles is arbitrarily adjusted by the concentration and viscosity of the viscose solution, the diameter of the liquid discharge nozzle at the time of coagulation, the rotational speed of the coagulation liquid, and the like. The discharge apparatus of the cellulose solution is adjusted so that 100-1100 micrometers of activated carbon may be finally obtained as an average particle diameter. The dried spherical cellulose before carbonization has a particle size of 150 to 2000 μm.
セルロース粒子は、化粧品用粉体や医薬品賦形物等の用途が一般的と考えられている。セルロース粒子には柔軟性や自己崩壊性が要求されているため、特段、硬度までは期待されていない。また、微結晶セルロースの微粒子は医薬品の球状体化等の成形促進剤として用いられ、薬剤とともに製剤化され薬剤の核となる。しかしながら、微結晶セルロースの場合、一定の粒子径、硬さの球状セルロース粒子を調製することができても、体内での硬度維持は期待できない。 Cellulose particles are generally considered to be used for cosmetic powders and pharmaceutical excipients. Cellulose particles are required to be flexible and self-disintegrating, so no particular hardness is expected. In addition, fine particles of microcrystalline cellulose are used as a molding accelerator such as spheroidization of a drug, and are formulated with the drug to form the core of the drug. However, in the case of microcrystalline cellulose, even if spherical cellulose particles having a certain particle size and hardness can be prepared, maintenance of hardness in the body can not be expected.
その一方、セルロースは天然物由来成分であり原料調達、原料調製の負荷が小さい利点がある。また、フェノール系樹脂の活性炭と比較して賦活に要する時間が短い。そこで、発明者らは、セルロースを溶解する際の濃度制御、ビスコースの分子重合度の調節、あるいは硬度を高めるための不燃化処理成分の配合・含浸等により、粒子径、硬さの調整を広い範囲で調整できることを明らかにした。その上で得られたセルロースの球状物を炭化・賦活することにより、従来の技術では困難であったセルロース原料を用いながらも所望の硬度を有する球状活性炭の医薬用吸着剤を得るに至った。 On the other hand, cellulose is a component derived from natural products, and has the advantage that the burden of raw material procurement and raw material preparation is small. In addition, the time required for activation is shorter compared to activated carbon of phenolic resin. Therefore, the present inventors adjust the particle diameter and hardness by controlling the concentration when dissolving cellulose, adjusting the molecular polymerization degree of viscose, or blending / impregnating the non-combustible processing component to increase the hardness. It clarified that it could be adjusted in a wide range. By carbonizing and activating the cellulose spheres obtained thereon, it is possible to obtain a pharmaceutical adsorbent for spherical activated carbon having a desired hardness while using a cellulose raw material which has been difficult in the prior art.
医薬用吸着剤の主成分となる球状活性炭について、その製造方法から説明する。前記の再生セルロースからなる球状セルロースは、円筒状レトルト電気炉等の焼成炉内に収容され、炉内を窒素雰囲気下とし300ないし700℃において炭化され、球状炭化セルロースとなる。 The spherical activated carbon that is the main component of the pharmaceutical adsorbent will be described from the method for producing it. The spherical cellulose composed of the above-mentioned regenerated cellulose is accommodated in a baking furnace such as a cylindrical retort electric furnace, and the inside of the furnace is carbonized at 300 to 700 ° C. in a nitrogen atmosphere to form spherical carbonized cellulose.
あるいは、前記の再生セルロースからなる球状セルロースは、1000℃未満で気化する難燃剤、例えば、塩化アンモニウム若しくは硫酸アンモニウムの溶液や、溶媒をメタノールとするテトラブロモビスフェノールA溶液又はこれらの混合液中に含浸される。その後、この球状セルロースは、円筒状レトルト電気炉等の焼成炉内に収容され、炉内を窒素雰囲気下とし300ないし700℃において炭化され、球状炭化セルロースとなる。前記の溶液への含浸は球状セルロースを難燃性にする目的で行われる。 Alternatively, the spherical cellulose comprising the regenerated cellulose is impregnated in a flame retardant which vaporizes at less than 1000 ° C., for example, a solution of ammonium chloride or ammonium sulfate, a tetrabromobisphenol A solution in which the solvent is methanol, or a mixture thereof. Ru. Thereafter, the spherical cellulose is accommodated in a baking furnace such as a cylindrical retort electric furnace, and the inside of the furnace is carbonized at 300 to 700 ° C. in a nitrogen atmosphere to form spherical carbonized cellulose. The above-mentioned impregnation into the solution is performed for the purpose of making the spherical cellulose flame retardant.
前述のいずれの過程により得られた球状炭化セルロースは、750ないし1000℃、好ましくは800ないし1000℃、さらには850ないし950℃において水蒸気賦活される。賦活時間は生産規模、設備等によるものの、0.5ないし50時間である。 The spherical carbonized cellulose obtained by any of the above processes is steam activated at 750 to 1000 ° C., preferably 800 to 1000 ° C., further 850 to 950 ° C. The activation time is 0.5 to 50 hours depending on the production scale, equipment and the like.
前述の製造方法によれば、燃焼後の灰分が非常に少なく、歩留まりが向上する。原料のセルロースを1000℃未満で気化する難燃剤に含浸させることにより、難燃剤が熱分解されるため、強熱残分として残らず、酸洗浄及び熱処理が不要となり、省工程化が可能となる。つまり、1000℃未満で気化する難燃剤を使用することによって、添加した難燃剤の成分が固形分として残留せず、灰分が少なくなると考えられる。 According to the above-mentioned manufacturing method, the ash content after combustion is very small, and the yield is improved. By impregnating the raw material cellulose with a flame retardant vaporized at less than 1000 ° C., the flame retardant is thermally decomposed, so it does not remain as a high-temperature residue, so acid cleaning and heat treatment become unnecessary, and process saving becomes possible. . That is, by using a flame retardant that vaporizes at less than 1000 ° C., it is considered that the component of the added flame retardant does not remain as a solid, and the ash content decreases.
1000℃未満で気化する難燃剤が、例えば、塩化アンモニウムであれば最終的に塩化水素とアンモニアに、硫酸アンモニウムであれば硫黄酸化物とアンモニアに、臭化アンモニウムであれば臭化水素とアンモニアに、テトラブロモビスフェノールAであれば脱臭素反応により臭化水素、臭素ガス及び分解生成するブロモフェノール類へと熱分解され、揮発することによって、燃焼後の強熱残分を非常に低くすることができると考えられる。さらに、塩酸グアニジンであれば、塩化水素と炭酸ガス並びにアンモニアに分解され、先の難燃剤と同様に揮発することによって、燃焼後の強熱残分を非常に低くすることができると考えられる。つまり、省工程化しつつも高純度の球状活性炭を得ることができる。これらの難燃剤は複数を混合して使用されることも可能である。 For example, if the flame retardant that vaporizes at less than 1000 ° C. is, for example, ammonium chloride, finally hydrogen chloride and ammonia; if it is ammonium sulfate, sulfur oxides and ammonia; if it is ammonium bromide, then hydrogen bromide and ammonia; If it is tetrabromobisphenol A, it can be pyrolyzed into hydrogen bromide, bromine gas and bromophenols which are decomposed and formed by the debromination reaction, and by volatilizing, the ignition residue after combustion can be made very low. it is conceivable that. Further, it is considered that guanidine hydrochloride, when decomposed into hydrogen chloride and carbon dioxide gas and ammonia, and volatilized in the same manner as the above flame retardant, makes it possible to extremely reduce the ignition residue after combustion. That is, it is possible to obtain spherical activated carbon of high purity while saving steps. It is also possible to use a mixture of two or more of these flame retardants.
例えば、医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律第41条により、医薬品の性状及び品質の適正を図るため厚生労働大臣が薬事・食品衛生審議会の意見を聴いて定めた医薬品の規格基準書である日本薬局方における薬用炭の強熱残分が4.0%未満であるという規格を、当該製造方法によって得られた球状活性炭は容易に満たすことが可能である。このため、当該製造方法によれば、従来必要としていた酸洗浄及び熱処理工程を省略して簡易な工程でありながら、高純度の球状活性炭を得ることができる。また、炭化時に使用する炉は、腐食されないため長期的に使用が可能となり経済的である。 For example, the Minister of Health, Labor and Welfare listens to the opinion of the Pharmaceutical Affairs and Food Sanitation Council to ensure the appropriateness of the properties and quality of medicines in accordance with Article 41 of the Act on Ensuring Quality, Efficacy and Safety of Pharmaceuticals, Medical Devices etc. The spherical activated carbon obtained by the manufacturing method can easily meet the standard that the ignition residue of medicinal charcoal in the Japanese Pharmacopoeia, which is a standard written standard of pharmaceuticals, is less than 4.0%. . For this reason, according to the said manufacturing method, highly pure spherical activated carbon can be obtained, although it is a simple process by omitting the acid cleaning and heat treatment process conventionally required. In addition, since the furnace used at the time of carbonization is not corroded, it can be used for a long time, which is economical.
いずれの製造方法においても、球状活性炭はふるい等により篩別され、球状活性炭としての粒子径の調整、分別される。こうして本発明の製造方法により製造された医薬用吸着剤である球状活性炭が得られる。篩別により、吸着速度が遅く、吸着力を十分に発揮できない粒子径の大きい活性炭は取り除かれる。 In any of the production methods, spherical activated carbon is sieved by a sieve or the like, and the particle diameter as spherical activated carbon is adjusted and fractionated. Thus, spherical activated carbon, which is a pharmaceutical adsorbent produced by the production method of the present invention, is obtained. The sieving separates activated carbon having a slow adsorption rate and a particle diameter which can not sufficiently exert its adsorptive power.
前述の製造方法から得られた球状活性炭には、後記する実施例に掲げる肝機能障害や腎機能障害の原因物質を吸着し、かつ生体に必要な酵素の吸着を極力抑制すること、すなわち選択的吸着性能を向上させること、また比較的少ない服用量で十分な吸着性能を発揮することが求められる。具備すべき性質の調和範囲を見いだすべく、医薬用吸着剤は、〔1〕平均細孔直径、〔2〕BET比表面積、〔3〕平均粒径、〔4〕表面酸化物量、〔5〕充填密度の指標で規定される。そして、後記する実施例の傾向等から明らかなとおり、各指標の好適な範囲値が導出される。なお、以下に記載する前記活性炭の物性等の測定方法及び諸条件等は、実施例において詳述する。 Spherical activated carbon obtained from the above-mentioned production method is adsorbed with a causative agent of liver dysfunction or renal dysfunction listed in the examples to be described later, and the adsorption of enzymes necessary for the living body is suppressed as much as possible, ie selective It is required to improve adsorption performance and to exhibit sufficient adsorption performance with a relatively small dose. In order to find the harmonious range of the properties to be possessed, the pharmaceutical adsorbent comprises [1] average pore diameter, [2] BET specific surface area, [3] average particle size, [4] surface oxide content, [5] loading Specified by the indicator of density. Then, as is clear from the tendency of the embodiment described later, the preferable range value of each index is derived. In addition, the measuring methods, such as physical properties of the said activated carbon described below, various conditions, etc. are explained in full detail in the Example.
まず、〔1〕平均細孔直径は1.5〜3.0nmに規定される。平均細孔直径が1.5nm未満の場合、毒性物質の吸着性能が低下するため好ましくない。逆に平均細孔直径が3.0nmを超える場合、生体に必要な酵素、多糖類等の高分子を吸着する細孔が多く存在してしまうため好ましくない。このため、平均細孔直径は前記の範囲が好適となり、より好ましくは、1.6〜2.0nmである。 First, [1] the average pore diameter is defined to be 1.5 to 3.0 nm. When the average pore diameter is less than 1.5 nm, the adsorption performance of toxic substances is unfavorably reduced. On the contrary, when the average pore diameter exceeds 3.0 nm, it is not preferable because many pores that adsorb macromolecules such as enzymes and polysaccharides necessary for the living body exist. Therefore, the average pore diameter is preferably in the above range, and more preferably 1.6 to 2.0 nm.
〔2〕BET比表面積は700〜3000m2/gに規定される。BET比表面積が700m2/g未満の場合、毒性物質の吸着性能が低下するため好ましくない。BET比表面積が3000m2/gを超える場合、充填密度が悪化することに加えて細孔容積が大きくなることから球状活性炭自体の強度が悪化し易くなる。そこで、BET比表面積は、前記の範囲が好適となり、好ましくは900〜2400m2/g、より好ましくは1000〜2000m2/gである。 [2] The BET specific surface area is defined to be 700 to 3000 m 2 / g. If the BET specific surface area is less than 700 m 2 / g, the adsorption performance of toxic substances is unfavorably reduced. When the BET specific surface area exceeds 3000 m 2 / g, the strength of the spherical activated carbon itself tends to deteriorate because the pore volume increases in addition to the deterioration of the packing density. Therefore, BET specific surface area, the ranges be suitable, preferably 900~2400m 2 / g, more preferably 1000 to 2000 2 / g.
〔3〕平均粒径は100〜1100μmに規定される。平均粒径が100μm未満の場合、消化酵素等の有用物質の吸着が生じやすく選択吸着性の面から好ましくない。また、平均粒径100μm未満、例えば20μmについては、理論上想定することはできるものの、現実には製造が困難である。平均粒径が1100μmを超える場合、粒子が大きくなりすぎ相対的に表面積が減少するため吸着速度が低下する。そこで、平均粒径は前記の範囲が好適となり、好ましくは100〜1000μm、より好ましくは150〜700μmである。本明細書における「平均粒径」とは、後出の実施例のレーザー光散乱式粒度分布測定装置を用いてレーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。 [3] The average particle size is defined as 100 to 1100 μm. When the average particle size is less than 100 μm, adsorption of useful substances such as digestive enzymes is likely to occur, which is not preferable from the aspect of selective adsorption. In addition, although it can theoretically be assumed for an average particle diameter of less than 100 μm, for example, 20 μm, it is actually difficult to manufacture. When the average particle size exceeds 1100 μm, the adsorption rate is lowered because the particles become too large and the surface area relatively decreases. Therefore, the average particle diameter is preferably in the range described above, preferably 100 to 1000 μm, more preferably 150 to 700 μm. The "average particle diameter" in this specification means the particle diameter at 50% of the integrated value in the particle size distribution determined by the laser diffraction / scattering method using the laser light scattering type particle size distribution measuring apparatus of the later example. Do.
〔4〕表面酸化物量は0.05meq/g以上に規定される。球状活性炭表面の表面酸化物量の増加とは、活性炭表面にイオン性の官能基を増加させることである。このため、イオン性有機化合物の吸着性能を向上させる上で表面酸化物量が0.05meq/g以上、さらには0.10meq/g以上が望ましいと考えられる。なお、表面酸化物量が0.05meq/gよりも少なくなる場合、吸着特性が劣ることから好ましいとはいえない。 [4] The amount of surface oxide is specified to be 0.05 meq / g or more. The increase in the amount of surface oxides on the spherical activated carbon surface is to increase the number of ionic functional groups on the activated carbon surface. For this reason, in order to improve the adsorption performance of the ionic organic compound, it is considered that the surface oxide amount is preferably 0.05 meq / g or more, and further preferably 0.10 meq / g or more. In the case where the surface oxide content is less than 0.05 meq / g, it is not preferable because the adsorption characteristics are inferior.
〔5〕充填密度は0.4〜0.8g/mLに規定される。充填密度が0.4g/mL未満の場合、服用量が増加し経口投与時に嚥下しづらくなる。充填密度が0.8g/mLを超える場合、所望の選択吸着性のバランスを欠くことになるため、不適切である。このようなことから、充填密度は前記の範囲が好適となり、好ましくは0.5〜0.7g/mLである。 [5] The packing density is specified to be 0.4 to 0.8 g / mL. If the filling density is less than 0.4 g / mL, the dose increases and it becomes difficult to swallow when administered orally. If the packing density exceeds 0.8 g / mL, the balance of the desired selective adsorptivity is inadequate, which is inappropriate. From the above, the packing density is preferably in the range described above, preferably 0.5 to 0.7 g / mL.
前述の物性を具備する球状活性炭は、経口投与を目的とした薬剤であって、腎疾患又は肝疾患の治療剤又は予防剤となる。前述のとおり、球状活性炭の表面に発達した細孔内に疾患、慢性症状の原因物質が吸着、保持され、体外へ排出されることにより、症状の悪化を防ぎ、病態改善に導くことができる。さらに、先天的あるいは後天的に代謝異常又はそのおそれのある場合、予め球状活性炭を内服することにより、疾患、慢性症状の原因物質の体内濃度を下げることができる。そこで、症状悪化を防ぐ予防としての服用も考えられる。 Spherical activated carbon having the above-mentioned physical properties is a drug intended for oral administration, and serves as a therapeutic or preventive agent for kidney disease or liver disease. As described above, the causative agent of a disease or chronic condition is adsorbed and held in pores developed on the surface of spherical activated carbon, and discharged from the body, thereby preventing the deterioration of the condition and leading to the improvement of the pathological condition. Furthermore, when there is a possibility of metabolic abnormality or congenitally or acquiredly, the internal concentration of the causative agent of a disease or a chronic condition can be lowered by internally administering spherical activated carbon. Therefore, taking it as a preventive to prevent the aggravation of symptoms is also considered.
腎疾患として、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、さらに、透析前の軽度腎不全を挙げることができる。肝疾患として、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振戦(しんせん)、脳症、代謝異常、機能異常を挙げることができる。 Examples of renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, nephrotic syndrome, nephrosclerosis, interstitial nephritis And ureteritis, lipoidonephrosis, diabetic nephropathy, renovascular hypertension, hypertension syndrome, secondary renal disease associated with the above-mentioned primary disease, and mild renal failure before dialysis. Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, tremor ), Encephalopathy, metabolic disorders, functional disorders can be mentioned.
球状活性炭を経口医薬用吸着剤として使用する際の投与量は、年令、性別、体格又は病状等に影響されるので一律に規定できない。しかし、一般にヒトを対象とする場合には、球状活性炭の重量換算で1日当り1〜20g、2〜4回の服用が想定される。球状活性炭の経口医薬用吸着剤は、散剤、顆粒剤、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等による形態、剤型で投与される。 The dose when using spherical activated carbon as an adsorbent for oral medicine can not be uniformly defined because it is affected by age, sex, physical size or medical condition. However, in general, in the case where human beings are targeted, doses of 1 to 20 g and 2 to 4 times per day may be assumed in terms of weight of spherical activated carbon. The orally active pharmaceutical adsorbent for spherical activated carbon is administered in the form of a powder, granules, tablets, dragees, capsules, suspensions, sticks, sachets, emulsions, etc.
[測定項目と測定方法]
発明者らは、後記する各実施例及び比較例の球状活性炭に関し、平均粒径(μm)、BET比表面積(m2/g)、水銀細孔容積(mL/g)、N2細孔容積(mL/g)、平均細孔直径(nm)、充填密度(g/mL)、及び表面酸化物量(meq/g)の物性を測定した。同時に、毒性物質(毒性原因物質)としてクレアチニン、インドール、インドール酢酸、インドキシル硫酸及びアミノイソ酪酸の吸着性能を評価し、有用物質としてトリプシンの吸着性能を評価した。併せて、活性炭の一般的な吸着性能を評価するためヨウ素吸着力(mg/g)も測定した。
[Measurement item and measurement method]
The present inventors, regarding the spherical activated carbon of each example and comparative example described later, average particle diameter (μm), BET specific surface area (m 2 / g), mercury pore volume (mL / g), N 2 pore volume Physical properties of (mL / g), average pore diameter (nm), packing density (g / mL), and surface oxide amount (meq / g) were measured. At the same time, the adsorption performance of creatinine, indole, indole acetic acid, indoxyl sulfate and aminoisobutyric acid as toxic substances (toxic causative substances) was evaluated, and the adsorption performance of trypsin as a useful substance was evaluated. At the same time, iodine adsorption capacity (mg / g) was also measured to evaluate the general adsorption performance of activated carbon.
平均粒径(μm)は、株式会社島津製作所製のレーザー光散乱式粒度分布測定装置(SALD3000S)を使用して測定し、レーザー回折・散乱法によって求めた粒度分布における積算値50%における粒径とした。 The average particle diameter (μm) is measured using a laser light scattering type particle size distribution analyzer (SALD3000S) manufactured by Shimadzu Corporation, and the particle diameter at 50% of the integrated value in the particle size distribution determined by laser diffraction / scattering method And
BET比表面積(m2/g)は、77Kにおける窒素吸着等温線を日本ベル株式会社製、BELSORP miniにより測定し、BET法により求めた。 The BET specific surface area (m 2 / g) was determined by the BET method by measuring the nitrogen adsorption isotherm at 77 K using BELSORP mini (Bell Japan).
細孔容積(mL/g)は次の2とおりの方法とした。
N2細孔容積Vmiは、Gurvitschの法則を適用し、日本ベル株式会社製BELSORPminiを使用し、相対圧0.990における液体窒素換算した窒素吸着量から求めた。同方法は細孔直径0.6〜100nmの範囲を対象とした。
水銀細孔容積Vmeは、株式会社島津製作所製のオートポア9500を使用し、接触角130°、表面張力484ダイン/cm(484mN/m)に設定し、細孔直径7.5〜15000nmの水銀圧入法による細孔容積を求めた。
The pore volume (mL / g) was the following two methods.
The N 2 pore volume V mi was obtained from the nitrogen adsorption amount in terms of liquid nitrogen at a relative pressure of 0.990, using Gurvitsch's law, using BELSORP mini manufactured by Nippon Bell Co., Ltd. The method targeted the range of pore diameter 0.6 to 100 nm.
The mercury pore volume V me is a mercury having a pore diameter of 7.5 to 15,000 nm, using an autopore 9500 manufactured by Shimadzu Corporation, with a contact angle of 130 ° and a surface tension of 484 dynes / cm (484 mN / m). The pore volume was determined by the indentation method.
平均細孔直径Dp(nm)は、細孔の形状を円筒形と仮定し、下記の(i)式により求めた。式中、Vmiは前出のN2細孔容積であり、SaはBET比表面積である。 The average pore diameter Dp (nm) was obtained by the following equation (i), assuming that the pore shape is cylindrical. In the formula, V mi is the aforementioned N 2 pore volume, and Sa is the BET specific surface area.
充填密度(g/mL)は、JIS K 1474−1(2014)に準拠し測定した。 The packing density (g / mL) was measured in accordance with JIS K 1474-1 (2014).
表面酸化物量(meq/g)は、Boehmの方法を適用し、0.05N水酸化ナトリウム水溶液中において球状活性炭を振とうした後に濾過し、その濾液を0.05N塩酸で中和滴定した際の水酸化ナトリウム量とした。 The amount of surface oxides (meq / g) was determined by applying the method of Boehm, shaking the spherical activated carbon in a 0.05 N aqueous solution of sodium hydroxide and filtering it, and the filtrate was subjected to neutralization titration with 0.05 N hydrochloric acid. The amount of sodium hydroxide was used.
ヨウ素吸着力(mg/g)は、JIS K 1474−1(2014)に準拠し測定した。 The iodine adsorption power (mg / g) was measured in accordance with JIS K 1474-1 (2014).
毒性物質としてクレアチニン、インドール、インドール酢酸、インドキシル硫酸及びアミノイソ酪酸、有用物質としてトリプシンを被吸着物質の例として用い、各試作例の球状活性炭による吸着性能を評価した。はじめに、各被吸着物質をpH7.4のリン酸緩衝液に溶解し、被吸着物質の濃度を0.1g/Lとする標準溶液を作成した。
クレアチニンの標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ2.5g添加し、37℃の温度で3時間接触振とうした。
インドールの標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドール酢酸の標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドキシル硫酸の標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
アミノイソ酪酸の標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
トリプシンの標準溶液50mLに実施例、比較例の球状活性炭をそれぞれ0.125g添加し、21℃の温度で3時間接触振とうした。
Creatinine, indole, indole acetic acid, indoxyl sulfuric acid and aminoisobutyric acid as toxic substances, and trypsin as useful substances as an example of the adsorptive substance were used to evaluate the adsorption performance of the spherical activated carbon of each trial example. First, each adsorptive substance was dissolved in pH 7.4 phosphate buffer to prepare a standard solution in which the concentration of the adsorptive substance was 0.1 g / L.
To 50 mL of a standard creatinine solution, 2.5 g of each of the spherical activated carbons of Examples and Comparative Examples were added, respectively, and contact shaking was carried out at a temperature of 37 ° C. for 3 hours.
To 50 mL of a standard solution of indole, 0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added, respectively, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
To 50 mL of a standard solution of indole acetic acid, 0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added, respectively, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added to 50 mL of a standard solution of indoxyl sulfuric acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each of the spherical activated carbons of Examples and Comparative Examples was added to 50 mL of a standard solution of aminoisobutyric acid, and contact shaking was carried out at a temperature of 37 ° C. for 3 hours.
0.125 g of each of the spherical activated carbons of Examples and Comparative Examples was added to 50 mL of a standard solution of trypsin, and contact shaking was performed at a temperature of 21 ° C. for 3 hours.
その後濾過して得た濾液について、全有機体炭素計(株式会社島津製作所製、TOC5000A)を用い、各濾液中のTOC濃度(mg/L)を測定し、各濾液中の被吸着物質の質量を算出した。各被吸着物質の吸着率(%)は(ii)式より求めた。 Thereafter, the filtrate obtained by filtration is measured for TOC concentration (mg / L) in each filtrate using a total organic carbon meter (TOC 5000A, manufactured by Shimadzu Corporation), and the mass of the substance to be adsorbed in each filtrate Was calculated. The adsorption rate (%) of each adsorbed substance was determined from the formula (ii).
[実施例及び比較例の球状活性炭の製造]
〈実施例1〉
単位重量当たりα−セルロースが90重量%の溶解パルプLNDP(日本製紙ケミカル株式会社製)2kgと水酸化ナトリウム溶液(濃度18.5%)を55℃で15分浸漬し、その後、圧搾を行い余剰の水酸化ナトリウム分を除去してセルロース濃度33.5重量%のアルカリセルロース(AC)を作製した。アルカリセルロースを40℃にて7時間老成し、同アルカリセルロース5kgと純度97%以上の二硫化炭素436mLを70分間反応させて、40℃にて粘度0.055Pa・s(55cP)のセルロースザンテートを得た。
[Production of Spherical Activated Carbon of Examples and Comparative Examples]
Example 1
2 kg of dissolved pulp LNDP (made by Nippon Paper Chemicals Co., Ltd.) containing 90% by weight of α-cellulose per unit weight and a sodium hydroxide solution (concentration 18.5%) are soaked at 55 ° C. for 15 minutes and then pressed to make excess Sodium hydroxide was removed to produce an alkali cellulose (AC) having a cellulose concentration of 33.5% by weight. Alkali cellulose is aged at 40 ° C. for 7 hours, and 5 kg of the alkali cellulose is reacted with 436 mL of carbon disulfide having a purity of 97% or more for 70 minutes to obtain cellulose xanthate having a viscosity of 0.055 Pa · s (55 cP) at 40 ° C. I got
反応終了後、セルロースザンテートに希薄な水酸化ナトリウム溶液を約13L添加し、100分間攪拌してビスコースを得た。さらに脱泡、熟成、濾過の工程を経てセルロース濃度9.0%のビスコースを調製した。前記調製のビスコースを蒸留水によりビスコース濃度70%まで希釈し、希釈したビスコースを、導入管を通じて外径85mmの回転体に供給し、噴霧により滴下させることで、下方に設置した希硫酸浴に液滴を捕捉し、セルロース(いわゆる再生セルロース)の球状物を得た。ここで、滴下の方法は落下式や遠心式が望ましい。このとき、セルロースの球状物を30分間以上、希硫酸浴に浸漬した。セルロースの球状物を大過剰の水にて水洗し希硫酸を除去後、希水酸化ナトリウム水溶液に1時間以上浸漬した。再度大過剰の水にて水洗し球状物中の水酸化ナトリウム分を除去した後、80℃で乾燥して球状セルロースを得た。 After completion of the reaction, about 13 L of dilute sodium hydroxide solution was added to cellulose xanthate and stirred for 100 minutes to obtain viscose. Furthermore, through the steps of defoaming, ripening and filtration, viscose with a cellulose concentration of 9.0% was prepared. The prepared viscose is diluted with distilled water to a viscose concentration of 70%, and the diluted viscose is supplied to a rotating body with an outer diameter of 85 mm through an inlet tube and dropped by spraying, so that dilute sulfuric acid installed below The droplets were captured in a bath to obtain cellulose (so-called regenerated cellulose) spheres. Here, the dropping method is preferably a drop method or a centrifugal method. At this time, the cellulose spheres were immersed in a dilute sulfuric acid bath for 30 minutes or more. The cellulose spheres were washed with a large excess of water to remove dilute sulfuric acid, and then immersed in dilute aqueous sodium hydroxide solution for 1 hour or more. After washing again with a large excess of water to remove the sodium hydroxide content in the spheres, it was dried at 80 ° C. to obtain spherical cellulose.
前記調製により得た球状セルロース500gに対し、塩化アンモニウム水溶液(濃度5%)を1000mL加え、2時間静置した。その後、水分をきり、乾燥機により80℃、一晩乾燥した。塩化アンモニウム処理を経た球状セルロース400gを円筒状レトルト電気炉に入れて窒素を封入した後、900℃になるまで加熱した。球状セルロースは昇温の過程で炭化した。その後、炭化物に水蒸気を添加して2.5時間その温度に保持して賦活化して、実施例1の球状活性炭を得た(実質収率は18.7%であった)。 To 500 g of spherical cellulose obtained by the above preparation, 1000 mL of an aqueous solution of ammonium chloride (concentration 5%) was added, and allowed to stand for 2 hours. Thereafter, the water was drained and dried overnight at 80 ° C. with a drier. After encapsulating nitrogen put spherical cellulose 400g passing through the ammonium chloride treatment in a cylindrical retort electric furnace, and heated to 900 ° C.. Spherical cellulose was carbonized in the process of temperature increase . Thereafter, steam was added to the carbide and activated by maintaining at that temperature for 2.5 hours to obtain spherical activated carbon of Example 1 (substantial yield was 18.7%).
〈実施例2〉
実施例1における難燃剤(塩化アンモニウム水)溶液を硫酸アンモニウム溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例2の球状活性炭を得た(実質収率は12.7%であった)。
Example 2
A spherical activated carbon of Example 2 was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to an ammonium sulfate solution (concentration 5%, 1000 mL) (substantial yield is 12.7% Met).
〈実施例3〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、塩化アンモニウム水溶液(濃度2.5%、500mL)と硫酸アンモニウム溶液(濃度2.5%、500mL)の混合液とした以外は実施例1に準じ、実施例3の球状活性炭を得た(実質収率は16.1%であった)。
Example 3
According to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 is a mixed solution of ammonium chloride aqueous solution (concentration 2.5%, 500 mL) and ammonium sulfate solution (concentration 2.5%, 500 mL) Spherical activated carbon of Example 3 was obtained (substantial yield was 16.1%).
〈実施例4〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、臭化アンモニウム溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例4の球状活性炭を得た(実質収率は18.1%であった)。
Example 4
Spherical activated carbon of Example 4 was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to an ammonium bromide solution (concentration 5%, 1000 mL) (substantial yield is 18) 1%).
〈実施例5〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、溶媒をメタノールとするテトラブロモビスフェノールA溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例5球状活性炭を得た(実質収率は16.5%であった)。
Example 5
Example 5 Spherical activated carbon was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to tetrabromobisphenol A solution (concentration 5%, 1000 mL) using methanol as the solvent. The real yield was 16.5%).
〈実施例6〉
実施例1における難燃剤(塩化アンモニウム水)溶液を、塩酸グアニジン溶液(濃度5%、1000mL)とした以外は実施例1に準じ、実施例6の球状活性炭を得た(実質収率は14.1%であった)。
Example 6
The spherical activated carbon of Example 6 was obtained according to Example 1 except that the flame retardant (ammonium chloride water) solution in Example 1 was changed to guanidine hydrochloride solution (concentration 5%, 1000 mL) (substantial yield is 14.4. 1%).
〈比較例1〉
前記調製により得た球状セルロース500gに対し、リン酸アンモニウム水溶液(濃度5%)を1000mL加え、2時間静置した。その後、水分をきり、乾燥機により80℃、一晩乾燥した。リン酸アンモニウム処理を経た球状セルロース400gを円筒状レトルト電気炉に入れて窒素を封入した後、900℃になるまで加熱した。球状セルロースは昇温の過程で炭化した。その後、炭化物に水蒸気を添加して2.5時間その温度に保持して賦活化して、比較例1の球状活性炭を得た(実質収率は13.1%であった)。
Comparative Example 1
To 500 g of the spherical cellulose obtained by the above preparation, 1000 mL of an aqueous ammonium phosphate solution (concentration 5%) was added and allowed to stand for 2 hours. Thereafter, the water was drained and dried overnight at 80 ° C. with a drier. After putting 400 g of spherical cellulose which had undergone ammonium phosphate treatment into a cylindrical retort electric furnace and sealing nitrogen, it was heated to 900.degree . Spherical cellulose was carbonized in the process of temperature increase . Thereafter, steam was added to the carbide, and the carbide was maintained at that temperature for 2.5 hours for activation to obtain spherical activated carbon of Comparative Example 1 (substantial yield was 13.1%).
〈比較例2〉
比較例1におけるリン酸アンモニウム水溶液をポリホウ酸ナトリウム水溶液(濃度5%、1000mL)とした以外は比較例1に準じ、比較例2の球状活性炭を得た(実質収率は10.5%であった)。
Comparative Example 2
A spherical activated carbon according to Comparative Example 2 was obtained according to Comparative Example 1 except that the aqueous ammonium phosphate solution in Comparative Example 1 was changed to an aqueous solution of sodium polyborate (concentration 5%, 1000 mL) (substantial yield is 10.5%). ).
〈比較例3〉
比較例1におけるリン酸アンモニウム水溶液をポリリン酸ナトリウム水溶液(濃度5%、1000mL)とした以外は比較例1に準じ、比較例3の球状活性炭を得た(実質収率は8.0%であった)。
Comparative Example 3
A spherical activated carbon according to Comparative Example 3 was obtained according to Comparative Example 1 except that the aqueous solution of ammonium phosphate in Comparative Example 1 was changed to an aqueous solution of sodium polyphosphate (concentration 5%, 1000 mL) (substantial yield is 8.0%). ).
各実施例及び比較例の球状活性炭について、強熱残分(%)を表1に示した。 The ignition residue (%) is shown in Table 1 for the spherical activated carbon of each Example and Comparative Example.
続いて、各実施例及び比較例について、球状活性炭の各物性値を表2及び3に記した。表の上から順に、実質収率(%)、平均粒径(μm)、BET比表面積(m2/g)、水銀細孔容積(mL/g)、N2細孔容積(mL/g)、平均細孔直径(nm)、充填密度(g/mL)、表面酸化物量(meq/g)、ヨウ素吸着力(mg/g)、クレアチニン、インドール、インドール酢酸、インドキシル硫酸、アミノイソ酪酸及びトリプシンの吸着率(%)である。ここで、実質収率とは、原料を焼成した後の活性炭収量のうち、強熱残分を差し引いた活性炭の収率をいう。 Then, each physical-property value of spherical activated carbon was described in Table 2 and 3 about each Example and comparative example. From the top of the table, real yield (%), average particle size (μm), BET specific surface area (m 2 / g), mercury pore volume (mL / g), N 2 pore volume (mL / g) , Average pore diameter (nm), packing density (g / mL), surface oxide amount (meq / g), iodine adsorption power (mg / g), creatinine, indole, indole acetic acid, indoxyl sulfuric acid, aminoisobutyric acid and trypsin Adsorption rate (%) of Here, a substantial yield means the yield of the activated carbon which deducted the ignition residue among the activated carbon yields after baking a raw material.
[結果と考察]
表1から理解されるように、各実施例の球状活性炭は、難燃剤として1000℃未満で気化する難燃剤である塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、テトラブロモビスフェノールA若しくは塩酸グアニジンのいずれか一又は複数が添着されて製造されるため、製造時に難燃剤が熱分解されて気化することから、強熱残分が低くなった。このため、灰分(ロス)が少なく歩留まりが高い。加えて、水蒸気賦活後の強熱残分が非常に低いため、前述の日本薬局方における強熱残分の規格を容易に満たすことができつつ、酸洗浄及び熱処理工程の省略が可能となることから、効率的かつ経済的に優位な医薬用吸着材を製造することができる。
[Results and discussion]
As understood from Table 1, the spherical activated carbon of each example is any one of ammonium chloride, ammonium sulfate, ammonium bromide, tetrabromobisphenol A or guanidine hydrochloride which is a flame retardant which vaporizes at a temperature of less than 1000 ° C. as a flame retardant. Alternatively, since the flame retardant is thermally decomposed and vaporized at the time of production because a plurality is attached and produced, the ignition residue is lowered. Therefore, the ash content (loss) is small and the yield is high. In addition, since the ignition residue after steam activation is very low, the acid cleaning and heat treatment steps can be omitted while the ignition residue specification in the aforementioned Japanese Pharmacopoeia can be easily satisfied. Thus, an efficient and economically superior pharmaceutical adsorbent can be produced.
表2及び3から理解されるように、各実施例の球状活性炭は、難燃剤としてリン酸アンモニウム、ポリホウ酸ナトリウム又はポリリン酸ナトリウムを添加し、炭化、水蒸気賦活を経て得た球状活性炭(比較例1ないし3)と比較して概ね同等又はそれ以上の物性値を示した。実施例の球状活性炭の充填密度も比較例と同等又は向上しており、実施の形態いかんにより非常にコンパクトな剤形の医薬用吸着剤の可能性を示唆している。また、各実施例の球状活性炭は、吸着測定の結果より、クレアチニン等の毒性物質の吸着率が高いことから、極めて吸着性能に優れている。そして、有用物質であるトリプシンの吸着性能は抑制されていることから、極めて選択吸着性にも優れている。従って、毒性物質を効率よく吸収する医薬用吸着剤として望ましいということができる。 As understood from Tables 2 and 3, the spherical activated carbons obtained in each Example were obtained by carbonizing and steam activation by adding ammonium phosphate, sodium polyborate or sodium polyphosphate as a flame retardant (comparative example) The physical properties were almost the same as or higher than in 1) to 3). The packing density of the spherical activated carbons of the examples is also equal to or higher than that of the comparative examples, suggesting the possibility of a very compact dosage form of the pharmaceutical adsorbent according to the embodiment. Further, the spherical activated carbon of each example is extremely excellent in the adsorption performance because the adsorption rate of toxic substances such as creatinine is higher than the result of the adsorption measurement. And, since the adsorption performance of trypsin, which is a useful substance, is suppressed, it is also extremely excellent in selective adsorption. Therefore, it can be said that it is desirable as a medical adsorbent that absorbs toxic substances efficiently.
本発明の製造方法は、簡易な工程で吸着性能に優れた活性炭を歩留まりよく製造することができ、経済的であり環境負荷を抑えることができる。また、本発明の製造方法により製造された球状活性炭は、経口投与により消化器官に達し、毒性物質を効率よく吸収して排泄する医薬用吸着剤の用途が極めて有望である。 INDUSTRIAL APPLICABILITY The production method of the present invention can produce activated carbon excellent in adsorption performance with a high yield by a simple process, is economical, and can suppress environmental impact. In addition, the spherical activated carbon produced by the production method of the present invention reaches the digestive organs by oral administration, and the use of a pharmaceutical adsorbent that efficiently absorbs and excretes toxic substances is very promising.
Claims (6)
原料である精製セルロース又は再生セルロースに、
1000℃未満で気化する難燃剤を添着させ、
窒素雰囲気下300〜700℃で炭化し、750〜1000℃で水蒸気賦活を行う
ことを特徴とする吸着剤の製造方法。 In the production of spherical activated carbon having a BET specific surface area of 700 to 3000 m 2 / g, an average particle diameter of 100 to 1100 μm, a surface oxide content of 0.05 meq / g or more and a packing density of 0.4 to 0.8 g / mL
To the raw material purified cellulose or regenerated cellulose,
Attach a flame retardant that vaporizes at less than 1000 ° C,
It carbonizes at 300-700 degreeC under nitrogen atmosphere, and carries out steam activation at 750-1000 degreeC. The manufacturing method of the adsorbent characterized by the above-mentioned.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017241939 | 2017-12-18 | ||
JP2017241939 | 2017-12-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019107642A true JP2019107642A (en) | 2019-07-04 |
JP6637573B2 JP6637573B2 (en) | 2020-01-29 |
Family
ID=67178547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018200277A Active JP6637573B2 (en) | 2017-12-18 | 2018-10-24 | Adsorbent production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6637573B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021112011A1 (en) * | 2019-12-05 | 2021-06-10 | フタムラ化学株式会社 | Per- and poly-fluoroalkyl compounds trapping sampler |
JP7560052B2 (en) | 2019-12-05 | 2024-10-02 | 国立研究開発法人産業技術総合研究所 | Per- and polyfluoroalkyl compound sampler |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS506199A (en) * | 1973-05-21 | 1975-01-22 | ||
JPS50148627A (en) * | 1974-05-16 | 1975-11-28 | ||
JPS5428291A (en) * | 1977-08-04 | 1979-03-02 | Toyobo Co Ltd | Production of fibrous activated carbon |
JPS565313A (en) * | 1979-06-26 | 1981-01-20 | Kureha Chem Ind Co Ltd | Detoxificating spherical active carbon and preparing the same |
WO2005094844A1 (en) * | 2004-04-02 | 2005-10-13 | Kureha Corporation | Adsorbent for oral administration, preventive or remedy for kidney disease and preventive or remedy for liver disease |
JP2006281212A (en) * | 2006-06-02 | 2006-10-19 | Bridgestone Corp | Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article |
JP2011212531A (en) * | 2010-03-31 | 2011-10-27 | Kuraray Chemical Co Ltd | Alkylsilanol removing material, and method for manufacturing the same |
JP2012102072A (en) * | 2010-10-12 | 2012-05-31 | Futamura Chemical Co Ltd | Adsorbent for medicine and its production method |
-
2018
- 2018-10-24 JP JP2018200277A patent/JP6637573B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS506199A (en) * | 1973-05-21 | 1975-01-22 | ||
JPS50148627A (en) * | 1974-05-16 | 1975-11-28 | ||
JPS5428291A (en) * | 1977-08-04 | 1979-03-02 | Toyobo Co Ltd | Production of fibrous activated carbon |
JPS565313A (en) * | 1979-06-26 | 1981-01-20 | Kureha Chem Ind Co Ltd | Detoxificating spherical active carbon and preparing the same |
WO2005094844A1 (en) * | 2004-04-02 | 2005-10-13 | Kureha Corporation | Adsorbent for oral administration, preventive or remedy for kidney disease and preventive or remedy for liver disease |
JP2006281212A (en) * | 2006-06-02 | 2006-10-19 | Bridgestone Corp | Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article |
JP2011212531A (en) * | 2010-03-31 | 2011-10-27 | Kuraray Chemical Co Ltd | Alkylsilanol removing material, and method for manufacturing the same |
JP2012102072A (en) * | 2010-10-12 | 2012-05-31 | Futamura Chemical Co Ltd | Adsorbent for medicine and its production method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021112011A1 (en) * | 2019-12-05 | 2021-06-10 | フタムラ化学株式会社 | Per- and poly-fluoroalkyl compounds trapping sampler |
JP7560052B2 (en) | 2019-12-05 | 2024-10-02 | 国立研究開発法人産業技術総合研究所 | Per- and polyfluoroalkyl compound sampler |
Also Published As
Publication number | Publication date |
---|---|
JP6637573B2 (en) | 2020-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5984352B2 (en) | Method for producing pharmaceutical adsorbent for oral administration | |
JP3835698B2 (en) | Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent | |
JP5352378B2 (en) | Adsorbent for oral administration with excellent adsorption characteristics | |
JP6637573B2 (en) | Adsorbent production method | |
JPWO2014129618A1 (en) | Adsorbent for oral administration, therapeutic agent for kidney disease and therapeutic agent for liver disease | |
JP5985027B2 (en) | Method for producing pharmaceutical adsorbent for oral administration | |
JP6306721B2 (en) | Adsorbent for oral administration, therapeutic agent for kidney disease and therapeutic agent for liver disease | |
JPWO2014129617A1 (en) | Adsorbent for oral administration, therapeutic agent for kidney disease and therapeutic agent for liver disease | |
JP7499054B2 (en) | Oral tablet-type adsorbent | |
JP6386571B2 (en) | Orally administered pharmaceutical adsorbent with increased strength | |
JP7438897B2 (en) | Tablet type adsorbent for oral administration | |
JP2006143736A (en) | Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases | |
JP4471959B2 (en) | Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent | |
JP2006077028A (en) | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease | |
JP2006328085A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181114 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20181114 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190917 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20190917 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190925 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20191016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6637573 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |