JP7438897B2 - Tablet type adsorbent for oral administration - Google Patents

Tablet type adsorbent for oral administration Download PDF

Info

Publication number
JP7438897B2
JP7438897B2 JP2020142439A JP2020142439A JP7438897B2 JP 7438897 B2 JP7438897 B2 JP 7438897B2 JP 2020142439 A JP2020142439 A JP 2020142439A JP 2020142439 A JP2020142439 A JP 2020142439A JP 7438897 B2 JP7438897 B2 JP 7438897B2
Authority
JP
Japan
Prior art keywords
tablet
activated carbon
oral administration
prototype example
type adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020142439A
Other languages
Japanese (ja)
Other versions
JP2022038117A (en
Inventor
亮介 浅原
秀治 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2020142439A priority Critical patent/JP7438897B2/en
Publication of JP2022038117A publication Critical patent/JP2022038117A/en
Priority to JP2024020185A priority patent/JP2024040422A/en
Application granted granted Critical
Publication of JP7438897B2 publication Critical patent/JP7438897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、錠剤型の経口投与用吸着剤に関し、特に、毒性物質の吸着性能に優れた活性炭を吸着剤とする経口投与用錠剤型吸着剤に関する。 The present invention relates to a tablet-shaped adsorbent for oral administration, and particularly to a tablet-shaped adsorbent for oral administration using activated carbon as an adsorbent, which has excellent adsorption performance for toxic substances.

腎疾患又は肝疾患の患者は、血液中に毒性物質が蓄積し、その結果として尿毒症や意識障害等の脳症を引き起こす。これらの患者数は年々増加する傾向にある。患者の治療には、毒性物質を体外へ除去する血液透析型の人工腎臓等が使用される。しかしながら、このような人工腎臓は、安全管理上から取り扱いに専門技術者を必要とし、また血液の体外への取り出しに際し、患者の肉体的、精神的、及び経済的負担を要することが問題視されており、必ずしも満足すべきものではない。 In patients with kidney or liver disease, toxic substances accumulate in the blood, resulting in encephalopathy such as uremia and impaired consciousness. The number of these patients tends to increase every year. For patient treatment, hemodialysis-type artificial kidneys and the like are used to remove toxic substances from the body. However, such artificial kidneys require specialized technicians to handle them for safety reasons, and the physical, mental, and financial burden placed on patients when removing blood from the body has been seen as a problem. However, the results are not necessarily satisfactory.

人工臓器に代わる方法として、経口で摂取し体内で毒性物質を吸着し、体外に排出する経口投与用吸着剤が開発されている(特許文献1、特許文献2等参照)。そして、石油系炭化水素(ピッチ)等を原料物質とし、比較的粒径が均一となるように調整し、炭化、賦活させた抗ネフローゼ症候群剤が報告されている(例えば、特許文献3参照)。また、活性炭自体の粒径を比較的均一化するとともに、当該活性炭における細孔容積等の分布について調整を試みた経口投与用吸着剤が報告されている(特許文献4参照)。このように、薬用活性炭は、比較的粒径を均一にすることに伴い、腸内の流動性の悪さを改善し、またこれと同時に細孔を調整することにより当該活性炭の吸着性能の向上を図った。そこで、多くの軽度の慢性腎不全患者に服用されている。 As an alternative to artificial organs, an adsorbent for oral administration has been developed that is ingested orally, adsorbs toxic substances within the body, and excretes them from the body (see Patent Document 1, Patent Document 2, etc.). Anti-nephrotic syndrome drugs have been reported that use petroleum-based hydrocarbons (pitch) as a raw material, adjust the particle size to be relatively uniform, carbonize it, and activate it (for example, see Patent Document 3). . In addition, an adsorbent for oral administration has been reported in which the particle size of the activated carbon itself is made relatively uniform and the distribution of pore volume and the like in the activated carbon is adjusted (see Patent Document 4). In this way, medicinal activated carbon improves poor fluidity in the intestines by making the particle size relatively uniform, and at the same time, by adjusting the pores, the adsorption performance of the activated carbon can be improved. planned. Therefore, it is taken by many patients with mild chronic renal failure.

薬用活性炭には、尿毒症の原因物質やその前駆物質に対する迅速かつ効率的な吸着が要求される。しかしながら、既存の薬用活性炭では、形状を球形のまま粒径を小さくすることは難しい。また、従来の薬用活性炭における細孔の調整は良好とはいえず、吸着性能は必ずしも十分ではないので、一日当たりの服用量を多くしなければならない。特に、慢性腎不全患者は水分の摂取量を制限されているため、少量の水分により嚥下することは患者にとって大変な苦痛となっていた。 Medicinal activated carbon is required to quickly and efficiently adsorb uremia-causing substances and their precursors. However, with existing medicinal activated carbon, it is difficult to reduce the particle size while keeping the shape spherical. In addition, the pores of conventional medicated activated carbon cannot be said to be well adjusted, and the adsorption performance is not necessarily sufficient, so the daily dose must be increased. In particular, patients with chronic renal failure have limited water intake, and swallowing small amounts of water is extremely painful for patients.

そして、薬用活性炭を錠剤型とし、服用しやすい錠剤型の経口投与用組成物が提案されている(例えば、特許文献5参照。)。薬用活性炭は服用量が多いため服用体積は大きくなり、また、活性炭は水に溶解しないため、細粒型であれば口腔内の不快感が残り、決して服用しやすいとはいえない。また、カプセル型とするとデッドボリュームができるため服用体積がさらに大きくなり嚥下しにくいきらいがある。 A tablet-shaped composition for oral administration that is easy to take has been proposed using medicinal activated carbon in the form of a tablet (see, for example, Patent Document 5). Medicinal activated charcoal requires a large dose, so the volume is large, and since activated charcoal does not dissolve in water, fine-grained charcoal leaves a feeling of discomfort in the oral cavity, making it not easy to take. In addition, if the capsule type is used, a dead volume is created, which increases the volume to be taken and makes it difficult to swallow.

前掲の錠剤型の経口投与用組成物は、患者の服用負担の軽減を目的とするものの、結合剤が活性炭表面の細孔を閉塞して吸着性能が低下するきらいがあり、吸着性能の低下から服用量を増加させなければならないおそれがある。このため、結果的には服用負担はあまり変わらないか、逆に負担が大きくなってしまう可能性がある。 Although the aforementioned tablet-shaped composition for oral administration is intended to reduce the burden on patients when taking it, the binder tends to block the pores on the activated carbon surface, resulting in a decrease in adsorption performance. Dosage may need to be increased. Therefore, in the end, the burden of taking the drug may not change much, or the burden may even increase.

特許第3835698号公報Patent No. 3835698 特開2008-303193号公報Japanese Patent Application Publication No. 2008-303193 特開平6-135841号公報Japanese Unexamined Patent Publication No. 6-135841 特開2002―308785号公報Japanese Patent Application Publication No. 2002-308785 特許第5701971号Patent No. 5701971

そこで、本発明は、前掲の状況に鑑み提案されたものであり、結合剤としての添加剤により吸着剤としての活性炭を服用しやすい錠剤型に成形する場合においても、活性炭の毒性物質の吸着性能の低下を抑制することができ、患者の服用負担の軽減を図ることができる経口投与用錠剤型吸着剤を提供する。 Therefore, the present invention was proposed in view of the above-mentioned situation, and even when activated carbon as an adsorbent is formed into a tablet shape that is easy to take by using an additive as a binder, the adsorption performance of activated carbon for toxic substances can be improved. To provide a tablet-type adsorbent for oral administration, which can suppress a decrease in the amount of alcohol and reduce the burden on patients to take it.

すなわち、第1の発明は、吸着剤としての活性炭と、結合剤としての添加剤とを含む経口投与用の錠剤型吸着剤であって、前記活性炭の平均粒子径が20~1000μmであり、充填密度が0.3~0.5g/mlであり、添加剤がカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースの少なくとも1種類を含み、前記錠剤型吸着剤100重量%に対して1.0重量%以下添加されてなることを特徴とする経口投与用錠剤型吸着剤に係る。 That is, the first invention is a tablet-type adsorbent for oral administration containing activated carbon as an adsorbent and an additive as a binder, wherein the average particle size of the activated carbon is 20 to 1000 μm, and the filling The density is 0.3 to 0.5 g/ml, and the additive contains at least one of sodium carboxymethylcellulose or hydroxyethylcellulose, and is added in an amount of 1.0% by weight or less based on 100% by weight of the tablet-type adsorbent. The present invention relates to a tablet-type adsorbent for oral administration, which is characterized by:

第2の発明は、第1の発明において、前記錠剤型吸着剤の硬度が10N以上である経口投与用錠剤型吸着剤に係る。 A second invention relates to the tablet-type adsorbent for oral administration according to the first invention, wherein the tablet-type adsorbent has a hardness of 10N or more.

第3の発明は、第1又は第2の発明において、前記活性炭の下記の(i)式に規定するミクロ孔容積の和(Vmic)に対するメソ孔容積の和(Vmet)の容積比(Vm)が5.0以下である経口投与用錠剤型吸着剤に係る。 A third invention is, in the first or second invention, a volume ratio ( The present invention relates to a tablet-type adsorbent for oral administration having a V m ) of 5.0 or less.

Figure 0007438897000001
Figure 0007438897000001

第4の発明は、第1ないし第3の発明のいずれかにおいて、前記活性炭がフェノール樹脂の樹脂炭化物である経口投与用錠剤型吸着剤に係る。 A fourth invention relates to the tablet-type adsorbent for oral administration according to any one of the first to third inventions, wherein the activated carbon is a carbonized resin of a phenolic resin.

第1の発明に経口投与用錠剤型吸着剤によると、吸着剤としての活性炭と、結合剤としての添加剤とを含む経口投与用の錠剤型吸着剤であって、前記活性炭の平均粒子径が20~1000μmであり、充填密度が0.3~0.5g/mlであり、添加剤がカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースの少なくとも1種類を含み、前記錠剤型吸着剤100重量%に対して1.0重量%以下添加されてなるため、結合剤としての添加剤により吸着剤としての活性炭を服用しやすい錠剤型に成形する場合においても、活性炭の毒性物質の吸着性能の低下を抑制することができ、患者の服用負担の軽減を図ることができる。 According to a first aspect of the present invention, there is provided a tablet-type adsorbent for oral administration, which comprises activated carbon as an adsorbent and an additive as a binder, wherein the average particle size of the activated carbon is 20 to 1000 μm, the packing density is 0.3 to 0.5 g/ml, the additive contains at least one of sodium carboxymethyl cellulose or hydroxyethyl cellulose, and the amount is 1. Since the additive is added as a binder, it is possible to suppress the deterioration of the adsorption performance of activated carbon for toxic substances even when the activated carbon as an adsorbent is molded into a tablet shape that is easy to take. , it is possible to reduce the burden of medication on patients.

第2の発明に係る経口投与用錠剤型吸着剤によると、第1の発明において、前記錠剤型吸着剤の硬度が10N以上であることから、運搬時や包装時における錠剤の破損や摩耗を抑制し、剤形を維持することができる。 According to the tablet-type adsorbent for oral administration according to the second invention, in the first invention, since the tablet-type adsorbent has a hardness of 10N or more, breakage and wear of the tablet during transportation and packaging are suppressed. and can maintain the dosage form.

第3の発明に係る経口投与用錠剤型吸着剤によると、第1又は第2の発明において、前記活性炭の下記の(i)式に規定するミクロ孔容積の和(Vmic)に対するメソ孔容積の和(Vmet)の容積比(Vm)が5.0以下であることから、活性炭の毒性物質の吸着性能の低下をさらに抑制することができ、患者の服用負担の軽減を図ることができる According to the tablet-type adsorbent for oral administration according to the third invention, in the first or second invention, the mesopore volume with respect to the sum of micropore volumes (V mic ) defined by the following formula (i) of the activated carbon is Since the volume ratio (V m ) of the sum of (V met ) is 5.0 or less, it is possible to further suppress the decline in the adsorption performance of activated carbon for toxic substances, and it is possible to reduce the burden of administration on patients. can

第4の発明に係る経口投与用錠剤型吸着剤によると、第1ないし第3の発明のいずれかにおいて、前記活性炭がフェノール樹脂の樹脂炭化物であることから、錠剤型に成形した際の毒性物質の吸着性能の低下を抑制することが可能な活性炭とすることができる。 According to the tablet-type adsorbent for oral administration according to the fourth invention, in any one of the first to third inventions, since the activated carbon is a resin charcoal of a phenol resin, toxic substances can be absorbed when formed into a tablet shape. The activated carbon can suppress a decrease in the adsorption performance of the activated carbon.

本発明の経口投与用錠剤型吸着剤は、活性炭を吸着剤とし、活性炭を結合剤としての添加剤により錠剤型に成形されてなる。成形された錠剤型吸着剤の硬度は、おおよそ10Nよりも高いことが望ましく、10Nよりも硬度が低くなると運搬時や包装時における錠剤の破損や摩耗が生じやすく、剤形を維持できないおそれがある。 The tablet-shaped adsorbent for oral administration of the present invention is formed into a tablet shape using activated carbon as an adsorbent and an additive including activated carbon as a binder. It is desirable that the hardness of the formed tablet-shaped adsorbent is approximately higher than 10N; if the hardness is lower than 10N, the tablet is likely to be damaged or worn during transportation or packaging, and the dosage form may not be maintained. .

また、活性炭はフェノール樹脂の樹脂炭化物とするのがよい。活性炭の原料をフェノール樹脂とすることによって、賦活を高めて比表面積を大きくしながらも、ミクロ孔容積の和に対するメソ孔容積の和の割合(容積比)を高めることができ、毒性物質の吸着性能を向上させやすいためである。フェノール樹脂としては、例えば、ノボラック型やレゾール型のほか両者の複合フェノール樹脂等の公知のものが挙げられる。フェノール樹脂は、平均粒子径が20~1000μmの範囲の粒状ないし球状の活性炭となる範囲とすることが好ましい。活性炭の平均粒子径が20μmより小さくなると、錠剤としたときに活性炭が緻密になりすぎて崩壊性が悪くなるおそれがある。活性炭の平均粒子径が1000μmを超える場合は、結合剤としての添加剤によって活性炭同士が接触し結合する表面積が大きくなるため、結合力が弱くなり錠剤の硬度が低くなってしまうおそれがある。 Furthermore, the activated carbon is preferably a carbonized resin of phenol resin. By using phenolic resin as the raw material for activated carbon, it is possible to increase activation and increase the specific surface area, while also increasing the ratio (volume ratio) of the sum of mesopore volumes to the sum of micropore volumes, which improves the adsorption of toxic substances. This is because performance can be easily improved. Examples of the phenol resin include known ones such as novolac type, resol type, and composite phenol resins of both. The phenol resin is preferably used in a range that will result in granular or spherical activated carbon having an average particle diameter of 20 to 1000 μm. If the average particle size of the activated carbon is smaller than 20 μm, the activated carbon may become too dense when made into a tablet, resulting in poor disintegration. When the average particle size of the activated carbon exceeds 1000 μm, the surface area where the activated carbons come into contact with each other and bond due to the additive as a binder increases, so the bonding force becomes weak and the hardness of the tablet may decrease.

フェノール樹脂の他にも、セルロースを活性炭の原料と使用することができる。セルロースを使用する場合には、マクロ孔の多い活性炭とすることにより、添加剤を用いて錠剤型としたときに活性炭由来の吸着性能の低下を抑制することができると考えられる。 In addition to phenolic resins, cellulose can also be used as a raw material for activated carbon. When cellulose is used, it is thought that by using activated carbon with many macropores, it is possible to suppress a decrease in adsorption performance derived from activated carbon when it is made into a tablet shape using additives.

本発明においては、後述の実施例により示される通り、フェノール樹脂由来の活性炭であって、充填密度が0.3~0.5g/mlであることが好ましく、上記の(i)式により求められるミクロ孔容積の和(Vmic)に対するメソ孔容積の和(Vmet)の容積比(Vm)が5.0以下とすることにより、添加剤を用いて錠剤型としたときに活性炭由来の吸着性能の低下を抑制することができる。 In the present invention, as shown in the examples below, it is preferable that the activated carbon is derived from a phenol resin and has a packing density of 0.3 to 0.5 g/ml, which is determined by the above formula (i). By setting the volume ratio (V m ) of the sum of mesopore volumes (V met ) to the sum of micropore volumes (V mic ) to be 5.0 or less, the activated carbon-derived Decrease in adsorption performance can be suppressed.

フェノール樹脂は、円筒状レトルト電気炉等の焼成炉内に収容され、炉内を窒素、アルゴン、ヘリウム等の不活性雰囲気下とし、300~1000℃、好ましくは450~700℃において1~20時間かけて炭化され樹脂炭化物となる(「炭化工程」)。 The phenolic resin is stored in a firing furnace such as a cylindrical retort electric furnace, and the inside of the furnace is kept under an inert atmosphere such as nitrogen, argon, helium, etc., and heated at 300 to 1000°C, preferably 450 to 700°C, for 1 to 20 hours. It is then carbonized to become a resin carbide (“carbonization process”).

炭化工程の後、樹脂炭化物は公知の加熱炉等に収容され、750~1000℃、好ましくは800~1000℃、さらには、850~950℃において水蒸気賦活される(「賦活工程」)。賦活時間は生産規模、設備等によるものの、0.5~50時間である。あるいは、二酸化炭素等のガス賦活も用いられる。賦活時間は、目的の活性炭の物性により適宜調整される。賦活後の活性炭は、希塩酸によって洗浄される。希塩酸洗浄後の活性炭は、例えば、JIS K 1474(2014)に準拠したpHの測定によりpH5~7になるまで水洗される。 After the carbonization step, the resin carbide is placed in a known heating furnace or the like and activated with steam at 750 to 1000°C, preferably 800 to 1000°C, and further 850 to 950°C ("activation step"). The activation time is 0.5 to 50 hours, depending on the production scale, equipment, etc. Alternatively, gas activation such as carbon dioxide may also be used. The activation time is appropriately adjusted depending on the physical properties of the target activated carbon. The activated carbon after activation is washed with dilute hydrochloric acid. The activated carbon washed with dilute hydrochloric acid is washed with water until the pH reaches 5 to 7, for example, by measuring the pH in accordance with JIS K 1474 (2014).

希塩酸の洗浄後、必要により活性炭吸着剤は、酸素及び窒素の混合気体中において加熱処理、水洗浄され、灰分等の不純物が取り除かれる。加熱処理により残留する塩酸分等は取り除かれる。そして、各処理を経ることにより活性炭吸着剤の表面酸化物量は調整される。酸洗浄後、賦活済みの樹脂炭化物に対する加熱処理を通じて、活性炭吸着剤の表面酸化物量は増加する。当該処理時の酸素濃度は0.1~21体積%である。また、加熱温度は150~1000℃、好ましくは400~800℃であり、15分~2時間である。 After washing with dilute hydrochloric acid, the activated carbon adsorbent is heated in a mixed gas of oxygen and nitrogen and washed with water to remove impurities such as ash, if necessary. Residual hydrochloric acid and the like are removed by heat treatment. The amount of surface oxides on the activated carbon adsorbent is adjusted through each treatment. After acid washing, the activated carbonized resin is heated to increase the amount of surface oxides on the activated carbon adsorbent. The oxygen concentration during this treatment is 0.1 to 21% by volume. Further, the heating temperature is 150 to 1000°C, preferably 400 to 800°C, and is for 15 minutes to 2 hours.

賦活処理後、又は賦活処理に続く加熱処理後の樹脂炭化物(活性炭吸着剤)は、篩別により平均粒子径20~1000μm、より好ましくは150~350μmの粒状物ないし球状物の活性炭に選別されるのがよい。粒子径の調整及び分別により、活性炭吸着剤の吸着速度の一定化と吸着能力の安定化が図られる。粒子径の範囲特に限定されるものではないが、前記の範囲とすると、活性炭吸着剤の表面積を確保することができる。また、粒子径が揃えられると、消化管内での吸着性能は安定することができる。しかも、粒子の硬さを維持して経口投与後(服用後)の消化管内でさらに粉化することも抑制される。ゆえに、経口投与用吸着剤の活性炭の形状は好ましくは球状物である。ただし、製造に起因する真球度のばらつき等も許容されるため、粒状物も含められる。 After the activation treatment or after the heat treatment following the activation treatment, the resin carbide (activated carbon adsorbent) is sorted by sieving into granular or spherical activated carbon having an average particle diameter of 20 to 1000 μm, more preferably 150 to 350 μm. It is better. Adjustment and fractionation of particle size can stabilize the adsorption rate and adsorption capacity of the activated carbon adsorbent. Although the particle size range is not particularly limited, if it is within the above range, a sufficient surface area of the activated carbon adsorbent can be ensured. Furthermore, when the particle diameters are made uniform, the adsorption performance within the gastrointestinal tract can be stabilized. Furthermore, by maintaining the hardness of the particles, further powdering in the gastrointestinal tract after oral administration (after ingestion) is suppressed. Therefore, the shape of the activated carbon of the adsorbent for oral administration is preferably spherical. However, since variations in sphericity due to manufacturing are also allowed, granular materials are also included.

フェノール樹脂は分子中に芳香環構造を有しているため、炭化収率は高まる。さらに賦活により表面積の大きな活性炭が生じる。賦活後の活性炭は、従来の木質やヤシ殻、石油ピッチ等の活性炭と比較しても、細孔径は小さく充填密度は高い。そのため、尿毒症の原因物質やその前駆物質に代表されるインドキシル硫酸、アミノイソ酪酸、トリプトファン等の窒素を含有する比較的小さい分子量(分子量が数十ないし数百の範囲)のイオン性有機化合物の吸着に適する。また、フェノール樹脂は従来の活性炭原料の木質等と比較して窒素、リン、ナトリウム、マグネシウム等の灰分が少なく単位質量当たりの炭素の比率は高い。このため、不純物の少ない活性炭を得ることができる。 Since phenol resin has an aromatic ring structure in its molecule, the carbonization yield increases. Furthermore, activation produces activated carbon with a large surface area. The activated carbon after activation has a smaller pore diameter and a higher packing density than conventional activated carbons such as wood, coconut shell, and petroleum pitch. Therefore, the use of ionic organic compounds with relatively small molecular weights (with molecular weights in the range of tens to hundreds) containing nitrogen, such as indoxyl sulfate, aminoisobutyric acid, and tryptophan, which are the causative agents of uremia and their precursors, is important. Suitable for adsorption. In addition, phenolic resin has a lower ash content such as nitrogen, phosphorus, sodium, and magnesium than conventional activated carbon raw materials such as wood, and has a high carbon ratio per unit mass. Therefore, activated carbon with few impurities can be obtained.

前述の活性炭には、後記する実施例に掲げる肝機能障害や腎機能障害の原因物質を極力速やかに吸着すること、また比較的少ない服用量で十分な吸着性能を発揮することが求められる。具備すべき性質の調和範囲を見いだすべく、活性炭は、水銀細孔容積値やBET比表面積等の指標で規定される。そして、後記する実施例の傾向等から明らかな通り、各指標のうち、BET比表面積の値が一定以上かつミクロ孔容積の和に対するメソ孔容積の和の容積比が一定以下であると、錠剤型としたときに吸着性能の低下が抑制されることがわかった。 The above-mentioned activated carbon is required to adsorb as quickly as possible the causative agents of liver dysfunction and renal dysfunction listed in the examples below, and to exhibit sufficient adsorption performance with a relatively small dose. In order to find a harmonious range of properties, activated carbon is defined by indicators such as mercury pore volume and BET specific surface area. As is clear from the trends in the examples described later, among the various indicators, if the value of the BET specific surface area is above a certain level and the volume ratio of the sum of the mesopore volumes to the sum of the micropore volumes is below a certain level, the tablet It was found that when molded, the deterioration in adsorption performance was suppressed.

充填密度は0.3~0.5g/mlと規定される。本発明において活性炭を錠剤型吸着剤に成形する結合剤としての添加剤は、錠剤型吸着剤100重量%に対して1.0重量%以下と非常に少量である。少量の添加剤で選択吸着性に優れた錠剤型吸着剤とするためには、活性炭の充填密度が低い方が都合が良いからである。ただし、充填密度が0.3g/ml未満の場合、服用量が増加し経口投与時に嚥下しづらくなる。充填密度が0.5g/mlを超える場合、所望の選択吸着性のバランスを欠いたり、添加剤による活性炭の吸着性能の低下が大きくなるおそれがある。 The packing density is defined as 0.3-0.5 g/ml. In the present invention, the additive used as a binder for forming the activated carbon into a tablet-type adsorbent is in a very small amount of 1.0% by weight or less based on 100% by weight of the tablet-type adsorbent. This is because in order to obtain a tablet-type adsorbent with excellent selective adsorption properties using a small amount of additives, it is convenient for the activated carbon to have a low packing density. However, if the packing density is less than 0.3 g/ml, the dose increases and it becomes difficult to swallow during oral administration. If the packing density exceeds 0.5 g/ml, there is a risk that the desired selective adsorption property will be unbalanced, or that the adsorption performance of the activated carbon will be greatly reduced by the additive.

また、ミクロ孔容積の和に対するメソ孔容積の和の容積比(Vm)は、前述した通り、5.0以下に規定される。該容積比が5.0より小さくなると、メソ孔が一定程度発達した活性炭であるということができる。メソ孔が発達していると、添加剤を用いて錠剤型としたときに、比較的大きな分子である添加剤が一部のメソ孔を閉塞したとしても、他のメソ孔から毒性物質をミクロ孔へ導入することが可能となることから、毒性物質の吸着性能の低下を抑制することができると考えられるためである。充填密度が0.3~0.5g/mlであるとともに、ミクロ孔容積の和に対するメソ孔容積の和の容積比(Vm)が5.0以下である場合、毒性物質の吸着性能の低下がさらに抑制される。さらには、BET比表面積は、1200m2/g以上とするのがよい。1200m2/g以上とすると、毒性物質の吸着性能が高くなるため、経口投与用吸着剤として好適である。 Further, the volume ratio (V m ) of the sum of the mesopore volumes to the sum of the micropore volumes is defined to be 5.0 or less, as described above. When the volume ratio is smaller than 5.0, it can be said that the activated carbon has mesopores developed to a certain extent. If mesopores are developed, even if the additive, which is a relatively large molecule, blocks some of the mesopores when it is made into a tablet using an additive, toxic substances can be removed from other mesopores. This is because it is thought that since it becomes possible to introduce the toxic substance into the pores, deterioration in the adsorption performance of toxic substances can be suppressed. When the packing density is 0.3 to 0.5 g/ml and the volume ratio (V m ) of the sum of mesopore volumes to the sum of micropore volumes is 5.0 or less, the adsorption performance of toxic substances decreases. is further suppressed. Furthermore, the BET specific surface area is preferably 1200 m 2 /g or more. If it is 1200 m 2 /g or more, the adsorption performance for toxic substances will be high, so it is suitable as an adsorbent for oral administration.

また、先に述べたように、活性炭は細孔の孔径によっても規定される。活性炭のような吸着剤の場合、ミクロ孔、メソ孔、マクロ孔のいずれの細孔も存在している。その中で、いずれの範囲の細孔をより多く発達させるかにより、活性炭の吸着対象、性能は変化する。本発明において所望される活性炭は、尿毒症の原因物質やその前駆物質に代表されるインドキシル硫酸、アミノイソ酪酸、トリプトファン等の窒素を含有する低分子量のイオン性有機化合物の吸着を想定する。そして、本発明の経口投与用錠剤型吸着剤の活性炭は、前記の吸着対象の分子を従前の活性炭吸着剤よりも効果的に吸着することである。 Furthermore, as mentioned above, activated carbon is also defined by the pore size of its pores. In the case of an adsorbent such as activated carbon, pores such as micropores, mesopores, and macropores are present. The adsorption targets and performance of activated carbon change depending on which range of pores is developed more. The activated carbon desired in the present invention is expected to adsorb nitrogen-containing low molecular weight ionic organic compounds such as indoxyl sulfate, aminoisobutyric acid, and tryptophan, which are representative of uremia-causing substances and their precursors. The activated carbon of the tablet-type adsorbent for oral administration of the present invention adsorbs the molecules to be adsorbed more effectively than conventional activated carbon adsorbents.

マクロ孔及びメソ孔側の割合が相対的に高められることにより、吸着対象は活性炭内部へ容易に侵入できる。また、比較的大きな分子である添加剤がメソ孔に吸着されたとしても、ミクロ孔への毒性物質の到達が阻害されにくい。そして、吸着対象はマクロ孔及びメソ孔に接続したミクロ孔に補足され、吸着は速く進む。通常、摂食から排泄までのうち、食物が消化により分解されて小腸内を流動する時間はおよそ6~10時間と考えられる。つまり、小腸内を流動する間に経口投与用錠剤型吸着剤(の活性炭)が目的の吸着対象である窒素を含有する低分子を吸着する必要がある。そこで、腸管内における効率良い吸着を勘案すると、短時間の吸着が望ましいといえる。これらのことから、活性炭のマクロ孔側の細孔を多く発達させることには意味がある。 By relatively increasing the proportion of macropores and mesopores, the adsorbent can easily penetrate into the activated carbon. Further, even if an additive having a relatively large molecule is adsorbed to the mesopores, the toxic substances are unlikely to be inhibited from reaching the micropores. Then, the adsorption target is captured by the micropores connected to the macropores and mesopores, and the adsorption progresses rapidly. Normally, it is thought that the time from ingestion to excretion for food to be broken down by digestion and flowing through the small intestine is approximately 6 to 10 hours. In other words, it is necessary for the tablet-type adsorbent (activated carbon) for oral administration to adsorb the nitrogen-containing low molecule that is the target adsorption target while flowing through the small intestine. Therefore, in consideration of efficient adsorption within the intestinal tract, short-time adsorption is desirable. For these reasons, it is meaningful to develop more pores on the macropore side of activated carbon.

これらの指標に加えて、平均細孔直径も挙げられる。そこで、平均細孔直径は1.5~2.5nmの範囲とするのがよい。活性炭吸着剤の平均細孔直径が当該範囲内に調整されることにより、分子量数十ないし数百の比較的低分子のイオン性有機化合物の吸着はさらに良好となる。同時に、活性炭は分子量数千ないし数万の酵素、多糖類等の生体に必要な高分子化合物の吸着を抑制できる。活性炭の平均細孔直径が2.5nmを越える場合、酵素、多糖類等の高分子を吸着する細孔が多く存在してしまうため好ましくない。また、活性炭の平均細孔直径が1.5nm未満であると、細孔容積自体が減少し、吸着力を低下させるおそれがある。 In addition to these indicators, the average pore diameter may also be mentioned. Therefore, the average pore diameter is preferably in the range of 1.5 to 2.5 nm. By adjusting the average pore diameter of the activated carbon adsorbent within this range, the adsorption of relatively low-molecular ionic organic compounds with a molecular weight of several tens to several hundreds becomes even better. At the same time, activated carbon can suppress the adsorption of macromolecular compounds necessary for living organisms, such as enzymes and polysaccharides, which have a molecular weight of several thousand to tens of thousands. If the average pore diameter of the activated carbon exceeds 2.5 nm, it is not preferable because there are many pores that adsorb polymers such as enzymes and polysaccharides. Furthermore, if the average pore diameter of the activated carbon is less than 1.5 nm, the pore volume itself decreases, which may reduce the adsorption power.

前述の活性炭は、経口投与を目的とした薬剤として用いられるのであって、腎疾患又は肝疾患の治療剤又は予防剤となる。活性炭の表面に発達した細孔内に疾患、慢性症状の原因物質が吸着、保持され、体外へ排出されることにより、症状悪化は抑制され、病態改善につながる。さらに、先天的あるいは後天的に代謝異常又はそのおそれのある場合、予め活性炭を内服することにより、疾患、慢性症状の原因物質の体内濃度は下げられる。そこで、症状悪化を防ぐ予防としての服用も考えられる。 The above-mentioned activated carbon is used as a drug for oral administration, and serves as a therapeutic or preventive agent for kidney disease or liver disease. The causative substances of diseases and chronic symptoms are adsorbed and retained within the pores developed on the surface of activated carbon, and are excreted from the body, thereby suppressing the worsening of symptoms and leading to improvement of the disease state. Furthermore, in cases where there is a congenital or acquired metabolic abnormality or a risk of such abnormality, by orally ingesting activated charcoal in advance, the concentration of the causative agent of the disease or chronic symptoms in the body can be lowered. Therefore, taking it as a preventive measure to prevent worsening of symptoms may be considered.

腎疾患として、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、さらに、透析前の軽度腎不全を挙げることができる。肝疾患として、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振戦(しんせん)、脳症、代謝異常、機能異常を挙げることができる。 Kidney diseases include, for example, chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, and interstitial nephritis. , tubulopathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, hypertensive syndrome, or secondary renal disease associated with the above-mentioned primary disease, as well as mild renal failure before dialysis. Examples of liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, cirrhosis, liver cancer, autoimmune hepatitis, drug-allergic liver damage, primary biliary cirrhosis, and tremor. ), encephalopathy, metabolic abnormalities, and functional abnormalities.

活性炭を経口投与用吸着剤として使用する際の投与量は、年齢、性別、体格又は病状等に影響されるため一律の規定は難しい。しかし、一般にヒトを対象とする場合、活性炭の重量換算で1日当り1~20g、2~4回の服用が想定される。体積にすると2~6cm3を一度に服用する必要があり、患者にとっては苦痛が大きい。そこで、錠剤型にすることにより、少しでも服用しやすくし患者の負担の軽減を図ることとした。 When using activated carbon as an adsorbent for oral administration, it is difficult to set a uniform dosage because it is influenced by age, sex, physique, medical condition, etc. However, in general, when targeting humans, it is assumed that the weight of activated charcoal is 1 to 20 g per day, and the dosage is 2 to 4 times. In terms of volume, it is necessary to take 2 to 6 cm 3 at a time, which is very painful for the patient. Therefore, we decided to make it in tablet form to make it easier to take and to reduce the burden on patients.

活性炭は、その性質上、従来の製法によっては打錠成形が不可能であるため、水等の溶媒を介した結合剤の結着力により錠剤型へと成形を行う。結合剤としての添加剤を用いて錠剤型へ成形すると、添加剤が活性炭表面の細孔を覆うことにより、細孔が閉塞して活性炭の吸着性能を低下させるきらいがある。そして、錠剤型への成形に起因して活性炭の吸着性能が低下すると、服用量がかえって増加してしまうおそれがあり、患者の服用負担が増えてしまう。つまり、錠剤型の成形に際し、活性炭の吸着性能の低下を抑制する必要がある。 Due to its nature, activated carbon cannot be compressed into tablets using conventional manufacturing methods, so it is molded into tablets using the binding force of a binder via a solvent such as water. When molding into a tablet using an additive as a binder, the additive covers the pores on the surface of the activated carbon, which tends to clog the pores and reduce the adsorption performance of the activated carbon. If the adsorption performance of activated carbon decreases due to the formation into a tablet shape, there is a risk that the dose will increase, which increases the burden on patients to take the drug. In other words, when forming a tablet, it is necessary to suppress the deterioration of the adsorption performance of activated carbon.

そこで、前述の通り結合剤としての添加剤の添加量を1.0重量%とし、ごく少量の添加剤により活性炭を錠剤型に成形する。そして、少量の添加剤によっても成形可能とするために、活性炭の充填密度を0.3~0.5g/mlとし、活性炭を錠剤型へ成形が可能となるとともに活性炭の吸着性能の低下を抑制することができる。さらに、活性炭のミクロ孔容積の和に対するメソ孔容積の和の容積比(Vm)を一定以下とすることにより、錠剤型に成形した場合における活性炭の吸着性能の低下を抑制する。 Therefore, as described above, the amount of the additive as a binder added is 1.0% by weight, and the activated carbon is formed into a tablet shape using a very small amount of the additive. In order to enable molding even with a small amount of additives, the packing density of the activated carbon is set to 0.3 to 0.5 g/ml, making it possible to mold the activated carbon into a tablet shape and suppressing the deterioration of the adsorption performance of the activated carbon. can do. Further, by controlling the volume ratio (V m ) of the sum of the mesopore volumes to the sum of the micropore volumes of the activated carbon to be below a certain level, the deterioration of the adsorption performance of the activated carbon when formed into a tablet shape is suppressed.

結合剤としての添加剤は、カルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースの少なくとも1種類であって、これら添加剤によれば少量の添加量であっても活性炭を錠剤型に成形することが可能となるため、細粒型の吸着剤と比較して服用量ないし服用体積の増加を抑制することができる。添加剤は上記の1種類を用いてもよいし、両者を混合したり、他の添加剤を混合することもできる。また、錠剤の崩壊性を補填する目的で、崩壊剤を併用することもできる。 The additive as a binder is at least one type of sodium carboxymethyl cellulose or hydroxyethyl cellulose, and these additives make it possible to form activated carbon into a tablet shape even if the amount added is small. Compared to fine-grain adsorbents, it is possible to suppress increases in the dose or volume to be taken. One of the above additives may be used, or both may be mixed, or other additives may be mixed. Moreover, a disintegrant can also be used in combination for the purpose of compensating for the disintegrability of the tablet.

[活性炭の調製]
試作例の経口投与用錠剤型吸着剤の作成に際し、下記の活性炭1~5を使用した。試作例に対応するフェノール樹脂由来の活性炭1~5を、原料のフェノール樹脂を炭化し、賦活して調製した。
[Preparation of activated carbon]
The following activated carbons 1 to 5 were used in the production of a prototype tablet-type adsorbent for oral administration. Activated carbons 1 to 5 derived from phenolic resin corresponding to the prototype examples were prepared by carbonizing and activating the raw material phenolic resin.

<活性炭1>
1lのセパラブルフラスコ内に90%フェノール160.0重量部に、37%ホルムアルデヒド111.8重量部、酸性触媒としてのシュウ酸0.7重量部、乳化剤としてのアラビアゴム2.5重量部、水168.8重量部を加えて95℃以上に加熱して適宜重合させた。次に、90%フェノール147.0重量部、ホルムアルデヒド143.1重量部、塩基性触媒としてのヘキサメチレンテトラミン19.3重量部とトリエチレンテトラミン8.3重量部、水41.4重量部を同セパラブルフラスコ内に投入し、60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してフェノール樹脂を得た。該フェノール樹脂100gを円筒状レトルト電気炉に入れて窒素を封入した後、100℃/1時間で昇温し、900℃になるまで加熱した。その後、炉内に水蒸気を注入して900℃で2時間維持して賦活化し、活性炭1を得た。
<Activated carbon 1>
In a 1 liter separable flask, 160.0 parts by weight of 90% phenol, 111.8 parts by weight of 37% formaldehyde, 0.7 parts by weight of oxalic acid as an acidic catalyst, 2.5 parts by weight of gum arabic as an emulsifier, and water. 168.8 parts by weight was added and heated to 95° C. or higher to appropriately polymerize. Next, 147.0 parts by weight of 90% phenol, 143.1 parts by weight of formaldehyde, 19.3 parts by weight of hexamethylenetetramine and 8.3 parts by weight of triethylenetetramine as basic catalysts, and 41.4 parts by weight of water were added in the same manner. The mixture was placed in a separable flask and heated for 1 hour while maintaining the temperature at 60°C to proceed with the reaction. Thereafter, the mixture was heated to 95° C. or higher and refluxed for 4 hours to obtain a phenol resin. 100 g of the phenol resin was placed in a cylindrical retort electric furnace and nitrogen was sealed in it, and then the temperature was raised at 100°C/1 hour until it reached 900°C. Thereafter, steam was injected into the furnace and the temperature was maintained at 900° C. for 2 hours for activation, thereby obtaining activated carbon 1.

<活性炭2>
1lのセパラブルフラスコ内に90%フェノール98.0重量部に、37%ホルムアルデヒド53.2重量部、酸触媒としてのシュウ酸0.4重量部、乳化剤としてのアラビアゴム1.6重量部、水147.9重量部を加えて95℃以上に加熱して適宜重合させた。次に、90%フェノール189.0重量部、37%ホルムアルデヒド220.3重量部、塩基性触媒としてのヘキサメチレンテトラミン18.1重量部とトリエチレンテトラミン7.7重量部、水38.7重量部を同セパラブルフラスコ内に投入し、60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してフェノール樹脂を得た。該フェノール樹脂を用いた以外は活性炭1と同様とし、活性炭2を得た。
<Activated carbon 2>
In a 1-liter separable flask, 98.0 parts by weight of 90% phenol, 53.2 parts by weight of 37% formaldehyde, 0.4 parts by weight of oxalic acid as an acid catalyst, 1.6 parts by weight of gum arabic as an emulsifier, and water. 147.9 parts by weight was added and heated to 95° C. or higher to appropriately polymerize. Next, 189.0 parts by weight of 90% phenol, 220.3 parts by weight of 37% formaldehyde, 18.1 parts by weight of hexamethylenetetramine and 7.7 parts by weight of triethylenetetramine as basic catalysts, and 38.7 parts by weight of water. was put into the same separable flask and heated for 1 hour while maintaining the temperature at 60°C to proceed with the reaction. Thereafter, the mixture was heated to 95° C. or higher and refluxed for 4 hours to obtain a phenol resin. Activated carbon 2 was obtained in the same manner as activated carbon 1 except that the phenol resin was used.

<活性炭3>
1lのセパラブルフラスコ内に90%フェノール163.0重量部に、37%ホルムアルデヒド88.6重量部、酸性触媒としてのシュウ酸0.7重量部、乳化剤としてのアラビアゴム2.2重量部、水152.6重量部を加えて95℃以上に加熱して適宜重合させた。次に、90%フェノール126.6重量部、37%ホルムアルデヒド177.1重量部、塩基性触媒としてのヘキサメチレンテトラミン18.2重量部とトリエチレンテトラミン7.8重量部、水44.0重量部を同セパラブルフラスコ内に投入し、60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してフェノール樹脂を得た。該フェノール樹脂を用いた以外は活性炭1と同様とし、活性炭3を得た。
<Activated carbon 3>
In a 1 liter separable flask, 163.0 parts by weight of 90% phenol, 88.6 parts by weight of 37% formaldehyde, 0.7 parts by weight of oxalic acid as an acidic catalyst, 2.2 parts by weight of gum arabic as an emulsifier, and water. 152.6 parts by weight was added and heated to 95° C. or higher to appropriately polymerize. Next, 126.6 parts by weight of 90% phenol, 177.1 parts by weight of 37% formaldehyde, 18.2 parts by weight of hexamethylenetetramine and 7.8 parts by weight of triethylenetetramine as basic catalysts, and 44.0 parts by weight of water. was put into the same separable flask and heated for 1 hour while maintaining the temperature at 60°C to proceed with the reaction. Thereafter, the mixture was heated to 95° C. or higher and refluxed for 4 hours to obtain a phenol resin. Activated carbon 3 was obtained in the same manner as activated carbon 1 except that the phenol resin was used.

<活性炭4>
フェノール樹脂(リグナイト株式会社製、「LPS-1046」)500gを円筒状レトルト電気炉に投入して窒素を封入した後、100℃/1時間で昇温し、600℃を1時間維持して炉内のフェノール樹脂を炭化した。その後、炭化物を900℃に加熱し炉内に水蒸気を注入して900℃で5時間維持して賦活化して活性炭Aを得た。さらに、該活性炭A80gを円筒状レトルト電気炉に投入して窒素を封入した後、100℃/1時間で昇温し、900℃になるまで加熱した。その後、炉内に水蒸気を注入して900℃で0.5時間維持してさらに賦活化し、活性炭4を得た。
<Activated carbon 4>
After putting 500 g of phenol resin (manufactured by Lignite Co., Ltd., "LPS-1046") into a cylindrical retort electric furnace and sealing it with nitrogen, the temperature was raised at 100°C for 1 hour, and the temperature was maintained at 600°C for 1 hour. The phenolic resin inside was carbonized. Thereafter, the carbide was heated to 900° C., steam was injected into the furnace, and the temperature was maintained at 900° C. for 5 hours for activation to obtain activated carbon A. Further, 80 g of the activated carbon A was put into a cylindrical retort electric furnace and nitrogen was sealed therein, and then the temperature was raised at a rate of 100°C/1 hour until it reached 900°C. Thereafter, steam was injected into the furnace and maintained at 900° C. for 0.5 hours for further activation, and activated carbon 4 was obtained.

<活性炭5>
活性炭4の調製過程において作成した活性炭Aを使用し、該活性炭A80gを円筒状レトルト電気炉に投入して窒素を封入した後、100℃/1時間で昇温し、900℃になるまで加熱した。その後、炉内に水蒸気を注入して900℃で1時間維持してさらに賦活化し、活性炭5を得た。
<Activated carbon 5>
Using the activated carbon A created in the process of preparing activated carbon 4, 80 g of the activated carbon A was placed in a cylindrical retort electric furnace, nitrogen was sealed in it, and the temperature was raised at 100°C/1 hour until it reached 900°C. . Thereafter, steam was injected into the furnace and maintained at 900° C. for 1 hour for further activation, to obtain activated carbon 5.

[活性炭の測定]
〔BET比表面積〕
比表面積(m2/g)は、自動比表面積/細孔分布測定装置(マイクロトラック・ベル株式会社製、「BELSORP-miniII」)を使用して77Kにおける窒素吸着等温線を測定し、BET法により求めた(BET比表面積)。
[Activated carbon measurement]
[BET specific surface area]
The specific surface area (m 2 /g) was determined by measuring the nitrogen adsorption isotherm at 77K using an automatic specific surface area/pore distribution measuring device (manufactured by Microtrac Bell Co., Ltd., "BELSORP-mini II"), and using the BET method. (BET specific surface area).

〔充填密度〕
充填密度(g/ml)は、JIS K 1474(2014)に準拠して測定した。
[Filling density]
The packing density (g/ml) was measured according to JIS K 1474 (2014).

〔平均粒子径〕
平均粒子径(μm)は、レーザー光散乱式粒度分布測定装置(株式会社島津製作所製、「SALD3000S」)を使用して測定し、レーザー回折・散乱法によって求めた粒度分布における積算値50%における粒径とした。
[Average particle size]
The average particle diameter (μm) is measured using a laser light scattering particle size distribution analyzer (Shimadzu Corporation, "SALD3000S"), and is calculated at 50% of the integrated value of the particle size distribution determined by the laser diffraction/scattering method. Particle size.

〔ミクロ孔容積〕
本明細書において、ミクロ孔は3nm未満の細孔直径を有する細孔とし、ミクロ孔容積の和(Vmic)(ml/g)は、細孔直径3nm未満の細孔容積値をミクロ孔容積の和(ml/g)として求めた。自動比表面積/細孔分布測定装置(マイクロトラック・ベル株式会社製、「BELSORP-miniII」)を用いて、77Kにおける窒素吸着等温線を測定した。得られた吸着等温線から、付属の解析ソフトを用い、Saito-Foleyの件三色により細孔直径3nm未満の範囲を対象として算出した。計算に使用した各種パラメータは以下のとおりである。
吸着質分子の直径:0.3000nm
吸着剤原子の直径:0.3400nm
吸着状態にある吸着質の単位表面積当たりの分子数:8.5200E+18molecules/m2
吸着剤の単位表面積当たりの原子数:1.3100E+19molecules/m2
吸着質分子の磁化率:3.2500E-29cm3
吸着剤分子の磁化率:1.3000E-29cm3
吸着質分子の分極率:1.6300E-24cm3
吸着剤分子の分極率:2.5000E-24cm3
[Micropore volume]
In this specification, micropores are pores with a pore diameter of less than 3 nm, and the sum of micropore volumes (V mic ) (ml/g) is defined as the pore volume value of pores with a pore diameter of less than 3 nm. It was calculated as the sum of (ml/g). The nitrogen adsorption isotherm at 77K was measured using an automatic specific surface area/pore distribution measuring device ("BELSORP-mini II", manufactured by Microtrac Bell Co., Ltd.). From the obtained adsorption isotherm, calculations were made using the attached analysis software using the Saito-Foley three-color method, targeting a range of pore diameters of less than 3 nm. The various parameters used in the calculation are as follows.
Diameter of adsorbate molecule: 0.3000nm
Adsorbent atom diameter: 0.3400nm
Number of molecules per unit surface area of adsorbate in adsorption state: 8.5200E+18 molecules/m 2
Number of atoms per unit surface area of adsorbent: 1.3100E+19 molecules/m 2
Magnetic susceptibility of adsorbate molecules: 3.2500E-29cm 3
Magnetic susceptibility of adsorbent molecules: 1.3000E- 29cm3
Polarizability of adsorbate molecules: 1.6300E- 24cm3
Polarizability of adsorbent molecules: 2.5000E- 24cm3

〔メソ孔容積〕
本明細書において、メソ孔は3~50nmの細孔直径を有する細孔とし、メソ孔容積の和(Vmet)(ml/g)は、「オートポア9500」(株式会社島津製作所製)を使用し、接触角130°、表面張力484ダイン/cm(4.84mN/m)に設定し、細孔直径3~50nmの水銀圧入法による細孔容積値をメソ孔容積の和(ml/g)として求めた。
[Mesopore volume]
In this specification, mesopores are pores with a pore diameter of 3 to 50 nm, and the sum of mesopore volumes (V met ) (ml/g) is determined using "Autopore 9500" (manufactured by Shimadzu Corporation). The contact angle was set to 130°, the surface tension was set to 484 dynes/cm (4.84 mN/m), and the pore volume value by mercury intrusion method with a pore diameter of 3 to 50 nm was calculated as the sum of the mesopore volumes (ml/g). I asked for it as.

〔容積比〕
容積比(Vm)は、ミクロ孔容積の和(Vmic)(ml/g)をメソ孔容積の和(Vmet)(ml/g)で除した値であって、上記(i)式から算出した。
[Volume ratio]
The volume ratio (V m ) is the value obtained by dividing the sum of micropore volumes (V mic ) (ml/g) by the sum of mesopore volumes (V met ) (ml/g), and is calculated by the above formula (i). Calculated from.

〔マクロ孔容積〕
本明細書において、マクロ孔は50~15000nmの細孔直径を有する細孔とし、マクロ孔容積の和(ml/g)は、「オートポア9500」(株式会社島津製作所製)を使用し、接触角130°、表面張力484ダイン/cm(4.84mN/m)に設定し、細孔直径50~15000nmの水銀圧入法による細孔容積値をマクロ孔容積の和(ml/g)として求めた。
[Macropore volume]
In this specification, macropores are pores with a pore diameter of 50 to 15,000 nm, and the sum of macropore volumes (ml/g) is determined by using "Autopore 9500" (manufactured by Shimadzu Corporation) and contact angle The pore volume value was determined as the sum of the macropore volumes (ml/g) by mercury porosimetry with a pore diameter of 50 to 15,000 nm at a temperature of 130° and a surface tension of 484 dynes/cm (4.84 mN/m).

活性炭1~5の物性は表1の通りである。表1の上から順に、BET比表面積(m2/g)、充填密度(g/ml)、平均粒子径(μm)、ミクロ孔容積の和(Vmic)(ml/g)、メソ孔容積の和(Vmet)(ml/g)、容積比(Vm)、マクロ孔容積の和(ml/g)である。 The physical properties of activated carbons 1 to 5 are shown in Table 1. From the top of Table 1, BET specific surface area (m 2 /g), packing density (g/ml), average particle diameter (μm), sum of micropore volumes (V mic ) (ml/g), mesopore volume (V met ) (ml/g), the volume ratio (V m ), and the sum of macropore volumes (ml/g).

Figure 0007438897000002
Figure 0007438897000002

[使用添加剤]
発明者は、各試作例の経口投与用錠剤型吸着剤を得るため、下記の添加剤を用いた。
・カルボキシメチルセルロースナトリウム(CMC-Na):(株式会社ダイセル製)
・ヒドロキシエチルセルロース(HEC):(住友精化株式会社製)
・プルラン(PUL):(株式会社林原製)
・ヒドロキシプロピルセルロース(HPC):(日本曹達株式会社製)
[Additives used]
The inventor used the following additives to obtain tablet-type adsorbents for oral administration of each trial production example.
・Carboxymethylcellulose sodium (CMC-Na): (manufactured by Daicel Corporation)
・Hydroxyethyl cellulose (HEC): (manufactured by Sumitomo Seika Co., Ltd.)
・Pullulan (PUL): (manufactured by Hayashibara Co., Ltd.)
・Hydroxypropylcellulose (HPC): (manufactured by Nippon Soda Co., Ltd.)

<試作例1>
活性炭1を0.3018gと添加剤であるカルボキシメチルセルロースナトリウム(CMC-Na)(0.6%)0.0019gと水0.3177gとを混和して練合物とし、直径13mm、深さ6mmの金型(成形型)に充填して成形した。金型を乾燥機内に静置したのち、機内温度100℃で1時間以上加熱乾燥し、金型から取り出して試作例1の経口投与用錠剤型吸着剤とした。
<Prototype example 1>
0.3018 g of activated carbon 1, 0.0019 g of sodium carboxymethylcellulose (CMC-Na) (0.6%) as an additive, and 0.3177 g of water were mixed to make a mixture, and the mixture was made into a mixture of 13 mm in diameter and 6 mm in depth. It was filled into a mold (molding mold) and molded. After the mold was left in a dryer, it was heated and dried at an internal temperature of 100° C. for 1 hour or more, and then taken out from the mold to prepare a tablet-shaped adsorbent for oral administration as Prototype Example 1.

<試作例2>
活性炭1を0.3003gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.9%)0.0028gと水0.3827gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例2の経口投与用錠剤型吸着剤とした。
<Prototype example 2>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.3003g, sodium carboxymethyl cellulose (CMC-Na) (0.9%) 0.0028g, and water 0.3827g. The tablet-type adsorbent for oral administration of Example 2 was prepared.

<試作例3>
活性炭1を0.2987gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(1.5%)0.0045gと水0.3532gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例3の経口投与用錠剤とした。
<Prototype example 3>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.2987g, sodium carboxymethylcellulose (CMC-Na) (1.5%) 0.0045g, and water 0.3532g. The tablets for oral administration of Example 3 were prepared.

<試作例4>
活性炭1を0.2976gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(2.0%)0.0060gと水0.3694gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例4の経口投与用錠剤とした。
<Prototype example 4>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.2976g, sodium carboxymethyl cellulose (CMC-Na) (2.0%) 0.0060g, and water 0.3694g. The tablets for oral administration of Example 4 were prepared.

<試作例5>
活性炭2を0.3436gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.6%)0.0021gと水0.3293gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例5の経口投与用錠剤とした。
<Prototype example 5>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3436g, sodium carboxymethyl cellulose (CMC-Na) (0.6%) 0.0021g, and water 0.3293g. The tablets for oral administration of Example 5 were prepared.

<試作例6>
活性炭2を0.3446gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.9%)0.0032gと水0.3617gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例6の経口投与用錠剤とした。
<Prototype example 6>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3446g, sodium carboxymethylcellulose (CMC-Na) (0.9%) 0.0032g, and water 0.3617g. The tablets for oral administration of Example 6 were prepared.

<試作例7>
活性炭2を0.3408gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(1.5%)0.051gと水0.3438gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例7の経口投与用錠剤とした。
<Prototype example 7>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3408g, sodium carboxymethylcellulose (CMC-Na) (1.5%) 0.051g, and water 0.3438g. The tablets for oral administration of Example 7 were prepared.

<試作例8>
活性炭2を0.3405gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(2.0%)0.0069gと水0.3310gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例8の経口投与用錠剤とした。
<Prototype example 8>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3405g, sodium carboxymethyl cellulose (CMC-Na) (2.0%) 0.0069g, and water 0.3310g. The tablets for oral administration of Example 8 were prepared.

<試作例9>
活性炭3を0.3759gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.6%)0.0023gと水0.3317gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例9の経口投与用錠剤とした。
<Prototype example 9>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3759g, sodium carboxymethyl cellulose (CMC-Na) (0.6%) 0.0023g, and water 0.3317g. The tablets for oral administration of Example 9 were prepared.

<試作例10>
活性炭3を0.3566gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.9%)0.0034gと水0.3566gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例10の経口投与用錠剤とした。
<Prototype example 10>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3566g, sodium carboxymethylcellulose (CMC-Na) (0.9%) 0.0034g, and water 0.3566g. The tablets for oral administration of Example 10 were prepared.

<試作例11>
活性炭3を0.3713gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(1.5%)0.0057gと水0.3432gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例11の経口投与用錠剤とした。
<Prototype example 11>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3713g, sodium carboxymethylcellulose (CMC-Na) (1.5%) 0.0057g, and water 0.3432g. The tablets for oral administration of Example 11 were prepared.

<試作例12>
活性炭3を0.3712gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(2.0%)0.0076gと水0.3941gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例12の経口投与用錠剤とした。
<Prototype example 12>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3712g, sodium carboxymethylcellulose (CMC-Na) (2.0%) 0.0076g, and water 0.3941g. The tablets for oral administration of Example 12 were prepared.

<試作例13>
活性炭4を0.5686gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.6%)0.0034gと水0.3953gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例13の経口投与用錠剤とした。
<Prototype example 13>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 4 was 0.5686g, sodium carboxymethylcellulose (CMC-Na) (0.6%) 0.0034g, and water 0.3953g. The tablets for oral administration of Example 13 were prepared.

<試作例14>
活性炭4を0.5717gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.9%)0.0052gと水0.3518gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例14の経口投与用錠剤とした。
<Prototype example 14>
Prototype production was conducted in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 4 was 0.5717g, sodium carboxymethyl cellulose (CMC-Na) (0.9%) 0.0052g, and water 0.3518g. The tablets for oral administration of Example 14 were prepared.

<試作例15>
活性炭4を0.5629gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(1.5%)0.0086gと水0.4135gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例15の経口投与用錠剤とした。
<Prototype example 15>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 4 was 0.5629g, sodium carboxymethylcellulose (CMC-Na) (1.5%) 0.0086g, and water 0.4135g. The tablets for oral administration of Example 15 were prepared.

<試作例16>
活性炭4を0.5600gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(2.0%)0.0115gと水0.4316gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例16の経口投与用錠剤とした。
<Prototype example 16>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 4 was 0.5600g, sodium carboxymethyl cellulose (CMC-Na) (2.0%) 0.0115g, and water 0.4316g. The tablets for oral administration of Example 16 were prepared.

<試作例17>
活性炭5を0.5213gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.6%)0.0031gと水0.3546gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例17の経口投与用錠剤とした。
<Prototype example 17>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5213g, sodium carboxymethylcellulose (CMC-Na) (0.6%) 0.0031g, and water 0.3546g. The tablets for oral administration of Example 17 were prepared.

<試作例18>
活性炭5を0.5255gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(0.9%)0.0047gと水0.4021gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例18の経口投与用錠剤とした。
<Prototype example 18>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5255g, sodium carboxymethylcellulose (CMC-Na) (0.9%) 0.0047g, and water 0.4021g. The tablets for oral administration of Example 18 were prepared.

<試作例19>
活性炭5を0.5156gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(1.5%)0.0079gと水0.4666gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例19の経口投与用錠剤とした。
<Prototype example 19>
Prototype production was conducted in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5156g, sodium carboxymethylcellulose (CMC-Na) (1.5%) 0.0079g, and water 0.4666g. The tablets for oral administration of Example 19 were prepared.

<試作例20>
活性炭5を0.5132gとし、カルボキシメチルセルロースナトリウム(CMC-Na)(2.0%)0.0105gと水0.4269gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例20の経口投与用錠剤とした。
<Prototype example 20>
Prototype production was carried out in the same manner as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5132g, sodium carboxymethyl cellulose (CMC-Na) (2.0%) 0.0105g, and water 0.4269g. The tablets for oral administration of Example 20 were prepared.

<試作例21>
活性炭1を0.3019gとし、ヒドロキシエチルセルロース(HEC)(0.6%)0.0018gと水0.2708gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例21の経口投与用錠剤型吸着剤とした。
<Prototype example 21>
The tablet adsorbent for oral administration of Prototype Example 1 was the same as the tablet-type adsorbent for oral administration of Prototype Example 1, except that activated carbon 1 was 0.3019 g, hydroxyethyl cellulose (HEC) (0.6%) 0.0018 g, and water 0.2708 g. It was made into a tablet-type adsorbent for oral administration.

<試作例22>
活性炭1を0.3009gとし、ヒドロキシエチルセルロース(HEC)(0.9%)0.0027gと水0.2862gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例22の経口投与用錠剤型吸着剤とした。
<Prototype example 22>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that the activated carbon 1 was 0.3009 g, 0.0027 g of hydroxyethyl cellulose (HEC) (0.9%), and 0.2862 g of water. It was made into a tablet-type adsorbent for oral administration.

<試作例23>
活性炭1を0.2982gとし、ヒドロキシエチルセルロース(HEC)(1.5%)0.0045gと水0.2777gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例23の経口投与用錠剤とした。
<Prototype example 23>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 1 was 0.2982 g, hydroxyethyl cellulose (HEC) (1.5%) 0.0045 g, and water was 0.2777 g. It was made into a tablet for oral administration.

<試作例24>
活性炭1を0.2970gとし、ヒドロキシエチルセルロース(HEC)(2.0%)0.0060gと水0.3180gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例24の経口投与用錠剤とした。
<Prototype example 24>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 1 was 0.2970 g, hydroxyethyl cellulose (HEC) (2.0%) 0.0060 g, and water was 0.3180 g. It was made into a tablet for oral administration.

<試作例25>
活性炭2を0.3438gとし、ヒドロキシエチルセルロース(HEC)(0.6%)0.0021gと水0.3295gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例25の経口投与用錠剤とした。
<Prototype example 25>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 2 was 0.3438 g, hydroxyethyl cellulose (HEC) (0.6%) 0.0021 g, and water was 0.3295 g. It was made into a tablet for oral administration.

<試作例26>
活性炭2を0.3425gとし、ヒドロキシエチルセルロース(HEC)(0.9%)0.0032gと水0.2979gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例26の経口投与用錠剤とした。
<Prototype example 26>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 2 was 0.3425 g, hydroxyethyl cellulose (HEC) (0.9%) 0.0032 g, and water was 0.2979 g. It was made into a tablet for oral administration.

<試作例27>
活性炭2を0.3415gとし、ヒドロキシエチルセルロース(HEC)(1.5%)0.0052gと水0.2941gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例27の経口投与用錠剤とした。
<Prototype example 27>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 2 was 0.3415 g, hydroxyethyl cellulose (HEC) (1.5%) 0.0052 g, and water was 0.2941 g. It was made into a tablet for oral administration.

<試作例28>
活性炭2を0.3398gとし、ヒドロキシエチルセルロース(HEC)(2.0%)0.0070gと水0.3163gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例28の経口投与用錠剤とした。
<Prototype example 28>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 2 was 0.3398 g, hydroxyethyl cellulose (HEC) (2.0%) 0.0070 g, and water was 0.3163 g. It was made into a tablet for oral administration.

<試作例29>
活性炭3を0.3763gとし、ヒドロキシエチルセルロース(HEC)(0.6%)0.0024gと水0.2992gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例29の経口投与用錠剤とした。
<Prototype example 29>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 3 was 0.3763 g, hydroxyethyl cellulose (HEC) (0.6%) 0.0024 g, and water was 0.2992 g. It was made into a tablet for oral administration.

<試作例30>
活性炭3を0.3739gとし、ヒドロキシエチルセルロース(HEC)(0.9%)0.0034gと水0.2702gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例30の経口投与用錠剤とした。
<Prototype example 30>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 3 was 0.3739 g, hydroxyethyl cellulose (HEC) (0.9%) 0.0034 g, and water was 0.2702 g. It was made into a tablet for oral administration.

<試作例31>
活性炭3を0.3703gとし、ヒドロキシエチルセルロース(HEC)(1.5%)0.0058gと水0.3268gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例31の経口投与用錠剤とした。
<Prototype example 31>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 3 was 0.3703 g, hydroxyethyl cellulose (HEC) (1.5%) 0.0058 g, and water was 0.3268 g. It was made into a tablet for oral administration.

<試作例32>
活性炭3を0.3698gとし、ヒドロキシエチルセルロース(HEC)(2.0%)0.0076gと水0.3202gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例32の経口投与用錠剤とした。
<Prototype example 32>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 3 was 0.3698 g, hydroxyethyl cellulose (HEC) (2.0%) 0.0076 g, and water was 0.3202 g. It was made into a tablet for oral administration.

<試作例33>
活性炭4を0.5683gとし、ヒドロキシエチルセルロース(HEC)(0.6%)0.0034gと水0.03090gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例33の経口投与用錠剤とした。
<Prototype example 33>
The tablet adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 3, except that activated carbon 4 was 0.5683 g, hydroxyethyl cellulose (HEC) (0.6%) 0.0034 g, and water was 0.03090 g. It was made into a tablet for oral administration.

<試作例34>
活性炭4を0.5718gとし、ヒドロキシエチルセルロース(HEC)(0.9%)0.0052gと水0.3218gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例34の経口投与用錠剤とした。
<Prototype example 34>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 4 was 0.5718 g, hydroxyethyl cellulose (HEC) (0.9%) 0.0052 g, and water was 0.3218 g. It was made into a tablet for oral administration.

<試作例35>
活性炭4を0.5629gとし、ヒドロキシエチルセルロース(HEC)(1.5%)0.0087gと水0.3733gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例35の経口投与用錠剤とした。
<Prototype example 35>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 4 was 0.5629 g, hydroxyethyl cellulose (HEC) (1.5%) 0.0087 g, and water was 0.3733 g. It was made into a tablet for oral administration.

<試作例36>
活性炭4を0.5615gとし、ヒドロキシエチルセルロース(HEC)(2.0%)0.0115gと水0.4142gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例36の経口投与用錠剤とした。
<Prototype example 36>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 4 was 0.5615 g, hydroxyethyl cellulose (HEC) (2.0%) 0.0115 g, and water was 0.4142 g. It was made into a tablet for oral administration.

<試作例37>
活性炭5を0.5212gとし、ヒドロキシエチルセルロース(HEC)(0.6%)0.0032gと水0.4607gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例37の経口投与用錠剤とした。
<Prototype example 37>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 5 was 0.5212 g, hydroxyethyl cellulose (HEC) (0.6%) (0.0032 g), and water was 0.4607 g. It was made into a tablet for oral administration.

<試作例38>
活性炭5を0.5267gとし、ヒドロキシエチルセルロース(HEC)(0.9%)0.0048gと水0.3348gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例38の経口投与用錠剤とした。
<Prototype example 38>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 5 was 0.5267 g, hydroxyethyl cellulose (HEC) (0.9%) 0.0048 g, and water was 0.3348 g. It was made into a tablet for oral administration.

<試作例39>
活性炭5を0.5154gとし、ヒドロキシエチルセルロース(HEC)(1.5%)0.0078gと水0.4147gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例39の経口投与用錠剤とした。
<Prototype example 39>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 5 was 0.5154 g, hydroxyethyl cellulose (HEC) (1.5%) 0.0078 g, and water was 0.4147 g. It was made into a tablet for oral administration.

<試作例40>
活性炭5を0.5128gとし、ヒドロキシエチルセルロース(HEC)(2.0%)0.0105gと水0.4258gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例40の経口投与用錠剤とした。
<Prototype example 40>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 5 was 0.5128 g, hydroxyethyl cellulose (HEC) (2.0%) 0.0105 g, and water was 0.4258 g. It was made into a tablet for oral administration.

<試作例41>
活性炭1を0.3002gとし、プルラン(PUL)(0.6%)0.0019gと水0.3341gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例41の経口投与用錠剤型吸着剤とした。
<Prototype example 41>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.3002 g, pullulan (PUL) (0.6%) 0.0019 g, and water was 0.3341 g. It was made into a tablet-type adsorbent for administration.

<試作例42>
活性炭1を0.2999gとし、プルラン(PUL)(0.9%)0.0027gと水0.3251gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例42の経口投与用錠剤型吸着剤とした。
<Prototype example 42>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.2999 g, pullulan (PUL) (0.9%) 0.0027 g, and water was 0.3251 g. It was made into a tablet-type adsorbent for administration.

<試作例43>
活性炭2を0.3441gとし、プルラン(PUL)(0.6%)0.0021gと水0.3694gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例43の経口投与用錠剤型吸着剤とした。
<Prototype example 43>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3441 g, pullulan (PUL) (0.6%) 0.0021 g, and water was 0.3694 g. It was made into a tablet-type adsorbent for administration.

<試作例44>
活性炭2を0.3420gとし、プルラン(PUL)(0.9%)0.0032gと水0.3657gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例44の経口投与用錠剤型吸着剤とした。
<Prototype example 44>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3420 g, pullulan (PUL) (0.9%) 0.0032 g, and water was 0.3657 g. It was made into a tablet-type adsorbent for administration.

<試作例45>
活性炭3を0.3764gとし、プルラン(PUL)(0.6%)0.0024gと水0.3500gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例45の経口投与用錠剤型吸着剤とした。
<Prototype example 45>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3764 g, pullulan (PUL) (0.6%) 0.0024 g, and water was 0.3500 g. It was made into a tablet-type adsorbent for administration.

<試作例46>
活性炭3を0.3748gとし、プルラン(PUL)(0.9%)0.0034gと水0.3770gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例46の経口投与用錠剤型吸着剤とした。
<Prototype example 46>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3748 g, pullulan (PUL) (0.9%) 0.0034 g, and water was 0.3770 g. It was made into a tablet-type adsorbent for administration.

<試作例47>
活性炭4を0.5687gとし、プルラン(PUL)(0.6%)0.0034gと水0.3993gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例47の経口投与用錠剤型吸着剤とした。
<Prototype example 47>
The tablet-type adsorbent for oral administration of Prototype Example 1 was the same as that of Prototype Example 1, except that activated carbon 4 was 0.5687 g, pullulan (PUL) (0.6%) 0.0034 g, and water was 0.3993 g. It was made into a tablet-type adsorbent for administration.

<試作例48>
活性炭4を0.5730gとし、プルラン(PUL)(0.9%)0.0052gと水0.4362gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例48の経口投与用錠剤型吸着剤とした。
<Prototype example 48>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 4 was 0.5730 g, pullulan (PUL) (0.9%) 0.0052 g, and water was 0.4362 g. It was made into a tablet-type adsorbent for administration.

<試作例49>
活性炭5を0.5219gとし、プルラン(PUL)(0.6%)0.0032gと水0.3991gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例49の経口投与用錠剤型吸着剤とした。
<Prototype example 49>
The tablet-type adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5219g, pullulan (PUL) (0.6%) 0.0032g, and water was 0.3991g. It was made into a tablet-type adsorbent for administration.

<試作例50>
活性炭5を0.5224gとし、プルラン(PUL)(0.9%)0.0048gと水0.4042gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例50の経口投与用錠剤型吸着剤とした。
<Prototype example 50>
The tablet adsorbent for oral administration in Prototype Example 1 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5224 g, pullulan (PUL) (0.9%) 0.0048 g, and water was 0.4042 g. It was made into a tablet-type adsorbent for administration.

<試作例51>
活性炭1を0.3018gとし、ヒドロキシプロピルセルロース(HPC)(0.6%)0.0018gと水0.2880gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例51の経口投与用錠剤型吸着剤とした。
<Prototype example 51>
Prototype Example 51 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.3018g, hydroxypropyl cellulose (HPC) (0.6%) 0.0018g, and water 0.2880g. It was made into a tablet-type adsorbent for oral administration.

<試作例52>
活性炭1を0.3008gとし、ヒドロキシプロピルセルロース(HPC)(0.9%)0.0027gと水0.2811gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例52の経口投与用錠剤型吸着剤とした。
<Prototype example 52>
Prototype Example 52 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 1 was 0.3008g, hydroxypropylcellulose (HPC) (0.9%) 0.0027g, and water 0.2811g. It was made into a tablet-type adsorbent for oral administration.

<試作例53>
活性炭2を0.3443gとし、ヒドロキシプロピルセルロース(HPC)(0.6%)0.0021gと水0.3282gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例53の経口投与用錠剤型吸着剤とした。
<Prototype example 53>
Prototype Example 53 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3443g, hydroxypropyl cellulose (HPC) (0.6%) 0.0021g, and water 0.3282g. It was made into a tablet-type adsorbent for oral administration.

<試作例54>
活性炭2を0.3440gとし、ヒドロキシプロピルセルロース(HPC)(0.9%)0.0031gと水0.3055gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例54の経口投与用錠剤型吸着剤とした。
<Prototype example 54>
Prototype Example 54 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 2 was 0.3440 g, hydroxypropyl cellulose (HPC) (0.9%) 0.0031 g, and water 0.3055 g. It was made into a tablet-type adsorbent for oral administration.

<試作例55>
活性炭3を0.3744gとし、ヒドロキシプロピルセルロース(HPC)(0.6%)0.0023gと水0.3561gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例55の経口投与用錠剤型吸着剤とした。
<Prototype example 55>
Prototype Example 55 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 3 was 0.3744g, hydroxypropyl cellulose (HPC) (0.6%) 0.0023g, and water 0.3561g. It was made into a tablet-type adsorbent for oral administration.

<試作例56>
活性炭3を0.3754gとし、ヒドロキシプロピルセルロース(HPC)(0.9%)0.0035gと水0.2491gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例56の経口投与用錠剤型吸着剤とした。
<Prototype example 56>
Prototype Example 56 was the same as the tablet-type adsorbent for oral administration of Prototype Example 1, except that activated carbon 3 was 0.3754 g, hydroxypropyl cellulose (HPC) (0.9%) 0.0035 g, and water 0.2491 g. It was made into a tablet-type adsorbent for oral administration.

<試作例57>
活性炭4を0.5687gとし、ヒドロキシプロピルセルロース(HPC)(0.6%)0.0035gと水0.3141gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例57の経口投与用錠剤型吸着剤とした。
<Prototype example 57>
Prototype Example 57 was the same as the tablet-type adsorbent for oral administration of Prototype Example 1, except that activated carbon 4 was 0.5687g, hydroxypropyl cellulose (HPC) (0.6%) 0.0035g, and water 0.3141g. It was made into a tablet-type adsorbent for oral administration.

<試作例58>
活性炭4を0.5732gとし、ヒドロキシプロピルセルロース(HPC)(0.9%)0.0052gと水0.2952gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例58の経口投与用錠剤型吸着剤とした。
<Prototype example 58>
Prototype Example 58 was the same as the tablet-type adsorbent for oral administration of Prototype Example 1, except that activated carbon 4 was 0.5732g, hydroxypropyl cellulose (HPC) (0.9%) 0.0052g, and water 0.2952g. It was made into a tablet-type adsorbent for oral administration.

<試作例59>
活性炭5を0.5217gとし、ヒドロキシプロピルセルロース(HPC)(0.6%)0.0032gと水0.4189gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例59の経口投与用錠剤型吸着剤とした。
<Prototype example 59>
Prototype Example 59 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1, except that activated carbon 5 was 0.5217g, hydroxypropylcellulose (HPC) (0.6%) 0.0032g, and water 0.4189g. It was made into a tablet-type adsorbent for oral administration.

<試作例60>
活性炭5を0.5248gとし、ヒドロキシプロピルセルロース(HPC)(0.9%)0.0047gと水0.3689gとした以外は試作例1の経口投与用錠剤型吸着剤と同様とし、試作例60の経口投与用錠剤型吸着剤とした。
<Prototype example 60>
Prototype Example 60 was the same as the tablet-type adsorbent for oral administration in Prototype Example 1 except that activated carbon 5 was 0.5248g, hydroxypropylcellulose (HPC) (0.9%) 0.0047g, and water 0.3689g. It was made into a tablet-type adsorbent for oral administration.

[経口投与用錠剤型吸着剤の測定]
〔成形性〕
成形性として、各試作例が錠剤型に成形可能であったものを「〇」、錠剤型に成形できなかったり、金型から取り出す過程で欠損や割れ等の不具合が生じたものを「×」とした。
[Measurement of tablet-type adsorbent for oral administration]
[Moldability]
For moldability, each prototype was rated "○" if it could be molded into a tablet shape, and "x" if it could not be molded into a tablet shape or had defects such as chips or cracks during the process of taking it out of the mold. And so.

〔硬度〕
硬度(N)は、デジタル硬度計(アズワン株式会社製、「KHT-40N」)を用い、経口投与用錠剤型吸着剤が破壊された時点での破壊強度を硬度として測定した。
〔hardness〕
The hardness (N) was measured using a digital hardness meter (manufactured by As One Corporation, "KHT-40N"), and the breaking strength at the time when the tablet-type adsorbent for oral administration was broken was measured as hardness.

各試作例の物性は表2~16の通りである。上記錠剤型成形の可否、硬度(N)とともに、組成として、使用した活性炭の種類、添加剤の種類、添加剤の濃度(%)、固液比(ml/g)を示した。なお、固液比は、試作によした水の容積を活性炭及び添加剤の合計重量で除した値である。添加剤にカルボキシメチルセルロースナトリウム(CMC-Na)を使用した試作例1~20の結果を表2~6、ヒドロキシエチルセルロース(HEC)を使用した試作例21~40の結果を表7~11、プルラン(PUL)を使用した試作例41~50の結果を表12~14、ヒドロキシプロピルセルロース(HPC)を使用した試作例51~60の結果を表14~16に示す。 The physical properties of each prototype are shown in Tables 2 to 16. In addition to the feasibility of tablet molding and the hardness (N), the composition includes the type of activated carbon used, the type of additive, the concentration (%) of the additive, and the solid-liquid ratio (ml/g). Note that the solid-liquid ratio is the value obtained by dividing the volume of water used in the trial production by the total weight of activated carbon and additives. Tables 2 to 6 show the results of prototype examples 1 to 20 using sodium carboxymethyl cellulose (CMC-Na) as an additive, Tables 7 to 11 show the results of prototype examples 21 to 40 using hydroxyethyl cellulose (HEC), The results of Prototype Examples 41 to 50 using PUL) are shown in Tables 12 to 14, and the results of Prototype Examples 51 to 60 using hydroxypropyl cellulose (HPC) are shown in Tables 14 to 16.

Figure 0007438897000003
Figure 0007438897000003

Figure 0007438897000004
Figure 0007438897000004

Figure 0007438897000005
Figure 0007438897000005

Figure 0007438897000006
Figure 0007438897000006

Figure 0007438897000007
Figure 0007438897000007

Figure 0007438897000008
Figure 0007438897000008

Figure 0007438897000009
Figure 0007438897000009

Figure 0007438897000010
Figure 0007438897000010

Figure 0007438897000011
Figure 0007438897000011

Figure 0007438897000012
Figure 0007438897000012

Figure 0007438897000013
Figure 0007438897000013

Figure 0007438897000014
Figure 0007438897000014

Figure 0007438897000015
Figure 0007438897000015

Figure 0007438897000016
Figure 0007438897000016

Figure 0007438897000017
Figure 0007438897000017

[吸着性能評価]
発明者は、尿毒症等の原因となり得る窒素を含有する化合物の吸着率を測定する吸着試験を行った。そこで、含窒素低分子化合物から毒性物質として「インドール」、「インドール酢酸」、「インドキシル硫酸」及び「トリプトファン」の4種類の物質を選択し、活性炭1~5及び各試作例の経口投与用錠剤型吸着剤について、当該4種の分子の吸着率(%)を測定した。
[Adsorption performance evaluation]
The inventor conducted an adsorption test to measure the adsorption rate of nitrogen-containing compounds that can cause uremia and the like. Therefore, we selected four types of toxic substances from nitrogen-containing low-molecular compounds: "indole,""indole acetic acid,""indoxylsulfate," and "tryptophan," and used activated carbons 1 to 5 and each prototype for oral administration. The adsorption rate (%) of the four types of molecules was measured for the tablet-shaped adsorbent.

該4種類の物質の吸着率については、pH7.4のリン酸緩衝液に前記の物質をそれぞれ溶解して0.1g/lの濃度の標準溶液を調製した。
インドールの標準溶液50mlに、予め静置乾燥機内120℃で15分以上加熱乾燥させた粒状の活性炭1~5をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドール酢酸の標準溶液50mlに、予め静置乾燥機内120℃で15分以上加熱乾燥させた粒状の活性炭1~5をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドキシル硫酸の標準溶液50mlに、予め静置乾燥機内120℃で15分以上加熱乾燥させた粒状の活性炭1~5をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
トリプトファンの標準溶液50mlに、予め静置乾燥機内120℃で15分以上加熱乾燥させた活性炭1~5をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
Regarding the adsorption rates of the four types of substances, standard solutions with a concentration of 0.1 g/l were prepared by dissolving each of the above substances in a phosphate buffer solution of pH 7.4.
To 50 ml of a standard solution of indole, 0.01 g of each of granular activated carbons 1 to 5, which had been heat-dried in advance at 120° C. for 15 minutes or more in a static dryer, was added, followed by contact shaking at a temperature of 37° C. for 3 hours.
To 50 ml of a standard solution of indole acetic acid was added 0.01 g each of granular activated carbons 1 to 5, which had been heat-dried in advance at 120° C. for 15 minutes or more in a static dryer, and subjected to contact shaking at a temperature of 37° C. for 3 hours.
To 50 ml of a standard solution of indoxyl sulfuric acid, 0.01 g each of granular activated carbon 1 to 5, which had been heat-dried in advance at 120° C. for 15 minutes or more in a static dryer, was added, followed by contact shaking at a temperature of 37° C. for 3 hours.
To 50 ml of a standard solution of tryptophan, 0.01 g of each of activated carbons 1 to 5, which had been heat-dried in advance at 120° C. for 15 minutes or more in a static dryer, was added, followed by contact shaking at a temperature of 37° C. for 3 hours.

その後、濾過して得た濾液について、分光光度計(株式会社島津製作所、「UVmini-1240」)を用い、吸光光度法により279nmの吸光度を測定した。各被吸着物質の吸着率(%)は(ii)式より求めた。 Thereafter, the absorbance at 279 nm of the filtrate obtained by filtration was measured by spectrophotometry using a spectrophotometer (Shimadzu Corporation, "UVmini-1240"). The adsorption rate (%) of each adsorbed substance was determined from equation (ii).

Figure 0007438897000018
Figure 0007438897000018

活性炭1~5の各物質の吸着率を表17に示した。 Table 17 shows the adsorption rate of each substance in activated carbons 1 to 5.

Figure 0007438897000019
Figure 0007438897000019

そして、経口投与用錠剤型吸着剤の吸着率をそれぞれ使用した各活性炭の吸着率で除して吸着性能の低下の程度を吸着比として算出した。添加剤にカルボキシメチルセルロースナトリウム(CMC-Na)を使用した試作例1~20の結果を表18~22、ヒドロキシエチルセルロース(HEC)を使用した試作例21~40の結果を表23~27、プルラン(PUL)を使用した試作例41~50の結果を表28~30、ヒドロキシプロピルセルロース(HPC)を使用した試作例51~60の結果を表30~32に示す。 Then, the degree of decrease in adsorption performance was calculated as the adsorption ratio by dividing the adsorption rate of the tablet-type adsorbent for oral administration by the adsorption rate of each activated carbon used. Tables 18 to 22 show the results of prototype examples 1 to 20 using sodium carboxymethyl cellulose (CMC-Na) as an additive, Tables 23 to 27 show the results of prototype examples 21 to 40 using hydroxyethyl cellulose (HEC), The results of Prototype Examples 41 to 50 using PUL) are shown in Tables 28 to 30, and the results of Prototype Examples 51 to 60 using hydroxypropyl cellulose (HPC) are shown in Tables 30 to 32.

各試作例の経口投与用錠剤型吸着剤の吸着率については、経口投与用錠剤型吸着剤をスパーテルを用いて適度に解砕した後、静置乾燥機内120℃で15分以上加熱乾燥させた。その後、添加剤を除いた実質活性炭総量で0.01gの解砕した経口投与用錠剤型吸着剤を該4種の物質の標準溶液50mlに添加し、37℃の温度で3時間接触振とうした。その後、濾過して得た濾液について、分光光度計(株式会社島津製作所、「UVmini-1240」)を用い、吸光光度法により279nmの吸光度を測定した。各被吸着物質の吸着率(%)は上記(ii)式より求めた。 Regarding the adsorption rate of each prototype tablet-type adsorbent for oral administration, the tablet-type adsorbent for oral administration was appropriately crushed using a spatula, and then heated and dried at 120°C for 15 minutes or more in a stationary dryer. . Thereafter, 0.01 g of the crushed tablet-type adsorbent for oral administration, which is the actual total amount of activated carbon excluding additives, was added to 50 ml of standard solutions of the four substances, and the mixture was subjected to contact shaking at a temperature of 37° C. for 3 hours. . Thereafter, the absorbance at 279 nm of the filtrate obtained by filtration was measured by spectrophotometry using a spectrophotometer (Shimadzu Corporation, "UVmini-1240"). The adsorption rate (%) of each adsorbed substance was determined from the above equation (ii).

Figure 0007438897000020
Figure 0007438897000020

Figure 0007438897000021
Figure 0007438897000021

Figure 0007438897000022
Figure 0007438897000022

Figure 0007438897000023
Figure 0007438897000023

Figure 0007438897000024
Figure 0007438897000024

Figure 0007438897000025
Figure 0007438897000025

Figure 0007438897000026
Figure 0007438897000026

Figure 0007438897000027
Figure 0007438897000027

Figure 0007438897000028
Figure 0007438897000028

Figure 0007438897000029
Figure 0007438897000029

Figure 0007438897000030
Figure 0007438897000030

Figure 0007438897000031
Figure 0007438897000031

Figure 0007438897000032
Figure 0007438897000032

Figure 0007438897000033
Figure 0007438897000033

Figure 0007438897000034
Figure 0007438897000034

[結果・考察]
表2~16に示されるように、添加剤である結合剤の添加量を錠剤型吸着剤100重量%に対し、0.6重量%とした場合にあっては、プルランとヒドロキシプロピルセルロースを用いた試作例41,43,45,51,53,55,57,59において錠剤型に成形することができなかった。添加剤の濃度が低いため、結合剤の結合力が十分に発揮されなかったと考えられる。結合剤としてカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースを使用した試作例1~40にあっては、いずれも良好に錠剤型に成形することが可能であったため、低い濃度における結合力の高い結合剤として、カルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースが好適であることが示された。
[Results/Discussion]
As shown in Tables 2 to 16, pullulan and hydroxypropylcellulose were used when the amount of binder added was 0.6% by weight based on 100% by weight of the tablet-type adsorbent. In trial production examples 41, 43, 45, 51, 53, 55, 57, and 59, it was not possible to form the tablet into a tablet shape. It is thought that the binding force of the binder was not sufficiently exerted because the concentration of the additive was low. Prototypes 1 to 40 using sodium carboxymethyl cellulose or hydroxyethyl cellulose as the binder were all able to be formed into tablets well. Sodium methylcellulose or hydroxyethylcellulose has been shown to be suitable.

また、結合剤は濃度を高めた方が当然に錠剤型吸着剤の硬度が高くなる傾向があったものの、結合剤としてカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースを使用し、添加量が1.0重量%よりも低い0.9重量%の試作例2,6,10,14,18、22,26,30,34,38にあっては、いずれも硬度が10Nよりも高くなり、取り回しの良く錠剤型吸着剤としてより好適となることが示された。また、該結合剤の添加量が0.6重量部である試作例1,5,13,17,25,29,37にあっても硬度は10N以上となり、試作例9及び21についてはおおよそ硬度が10Nであり、少量の添加量であっても十分な成形性が確保されることが理解された。 In addition, although there was a tendency for the hardness of the tablet-type adsorbent to increase as the concentration of the binder was increased, we used carboxymethyl cellulose sodium or hydroxyethyl cellulose as the binder, and the amount added was 1.0% by weight. In the prototype examples 2, 6, 10, 14, 18, 22, 26, 30, 34, and 38, which have a low hardness of 0.9% by weight, the hardness is higher than 10N, and the tablet type adsorption is easy to handle. It was shown that it is more suitable as an agent. In addition, even in prototype examples 1, 5, 13, 17, 25, 29, and 37, in which the amount of the binder added was 0.6 parts by weight, the hardness was 10 N or more, and in prototype examples 9 and 21, the hardness was approximately was 10N, and it was understood that sufficient moldability was ensured even with a small amount added.

特に、カルボキシメチルセルロースナトリウムを結合剤として使用した試作例において、1.5重量%と2.0重量%の濃度で添加した場合には、硬度が1.5重量%の添加量の試作例の方が高いことがあり、結合剤の添加量を一定量以上としても変化がないことが理解された。 In particular, in a prototype example using sodium carboxymethylcellulose as a binder, when it was added at concentrations of 1.5% and 2.0% by weight, the hardness of the prototype example with an addition amount of 1.5% by weight was higher. It was understood that the amount of binder may be high, and that there is no change even if the amount of binder added is above a certain amount.

次に、表18~22に示される結合剤としてカルボキシメチルセルロースナトリウムを用いた試作例1~20に示されるように、充填密度の低い活性炭である活性炭1~3を使用した試作例1~12と充填密度の高い活性炭である活性炭4,5を使用した試作例13~20とを比較すると、特に活性炭4,5を使用した試作例13~20のインドール酢酸とインドキシル硫酸の吸着率及び吸着比が著しく劣る結果となった。充填密度が高い活性炭は炭部分が多く細孔が少ないことから、ごく少量であっても添加剤による細孔の閉塞が吸着率に与える影響が大きく、活性炭原料の吸着性能から錠剤型に成形した時の吸着性能の低下が大きくなったと考えられる。このことから、錠剤型吸着剤に用いる活性炭は充填密度の低いもの、特には充填密度が0.3~0.5g/mlとするのがよい。 Next, as shown in Tables 18 to 22, Prototype Examples 1 to 20 using sodium carboxymethyl cellulose as the binder, and Prototype Examples 1 to 12 using activated carbons 1 to 3, which are activated carbons with low packing density, and When comparing prototype examples 13 to 20 using activated carbon 4 and 5, which are activated carbons with a high packing density, the adsorption rate and adsorption ratio of indole acetic acid and indoxyl sulfuric acid were particularly high in prototype examples 13 to 20, which used activated carbon 4 and 5. The results were significantly inferior. Activated carbon with a high packing density has many carbon parts and few pores, so even if the pores are blocked by additives in a very small amount, it has a large effect on the adsorption rate, so it was formed into a tablet shape based on the adsorption performance of the activated carbon raw material. It is thought that the drop in adsorption performance became greater when the temperature was lowered. For this reason, it is preferable that the activated carbon used in the tablet-type adsorbent has a low packing density, particularly a packing density of 0.3 to 0.5 g/ml.

さらには、活性炭に形成された細孔のバランスも毒性物質の吸着性能及び錠剤型に成形した場合の吸着性能の低下の抑制に寄与することが理解された。容積比(Vm)が小さいということは、ミクロ孔とメソ孔がそれぞれバランスよく発達していることを示し、マクロ孔が十分に存在するとともに、メソ孔が一定以上存在することによって、吸着対象である各毒性物質がマクロ孔からメソ孔を介してスムーズにミクロ孔へと到達して吸着されることが可能となる。さらには、結合剤により一定程度の細孔が閉塞されると考えられるため、通常の活性炭よりもメソ孔が多く発達している活性炭を用いる方が、錠剤型に成形した時の吸着性能の低下を抑制することができると考えられる。このことから、ミクロ孔容積の和に対するメソ孔容積の和の容積比(Vm)を5.0以下の活性炭を用いるのがよい。 Furthermore, it was understood that the balance of pores formed in activated carbon also contributes to the adsorption performance of toxic substances and to suppressing the decrease in adsorption performance when formed into a tablet shape. A small volume ratio (V m ) indicates that micropores and mesopores have developed in a well-balanced manner. Each toxic substance can smoothly reach the micropores from the macropores through the mesopores and be adsorbed. Furthermore, since it is thought that a certain degree of pores are blocked by the binder, it is better to use activated carbon, which has more developed mesopores than normal activated carbon, to reduce adsorption performance when formed into a tablet shape. It is thought that it is possible to suppress the From this, it is preferable to use activated carbon in which the volume ratio (V m ) of the sum of mesopore volumes to the sum of micropore volumes is 5.0 or less.

加えて、表23~27に示される結合剤としてヒドロキシエチルセルロースを用いた試作例21~40に示されるように、充填密度及び容積比に加え、比表面積が1400m2/g以上とすると、インドール酢酸の吸着性能の低下をより抑制することができることが分かった。 In addition, as shown in Prototype Examples 21 to 40 using hydroxyethyl cellulose as a binder shown in Tables 23 to 27, in addition to the packing density and volume ratio, if the specific surface area is 1400 m 2 /g or more, indole acetic acid It was found that the deterioration of adsorption performance can be further suppressed.

結合剤の種類について、表18~32に示され、前述した通り、プルラン及びヒドロキシプロピルセルロースは少ない添加量による錠剤型への成形にはあまり適さないことと、カルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースを使用した試作例と、プルラン又はヒドロキシプロピルセルロースを使用した試作例とを比較して、活性炭原料の吸着性能から錠剤型に成形した時の吸着性能の低下が大きくなった。このため、少ない添加量でも活性炭を錠剤型に成形することが可能であり、さらに活性炭の吸着性能の低下を抑制することができる結合剤としての添加剤には、カルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースが好適であることが示された。 The types of binders are shown in Tables 18 to 32, and as mentioned above, pullulan and hydroxypropyl cellulose are not very suitable for forming into tablets with small amounts added, and sodium carboxymethyl cellulose or hydroxyethyl cellulose was used. Comparing the prototype example and the prototype example using pullulan or hydroxypropyl cellulose, it was found that the adsorption performance of the activated carbon raw material deteriorated significantly when molded into a tablet shape. For this reason, sodium carboxymethylcellulose or hydroxyethylcellulose is suitable as a binder additive that can form activated carbon into a tablet shape even with a small amount of addition, and can also suppress a decline in the adsorption performance of activated carbon. It was shown that

表18~20,23~25に示される通り、結合剤としての添加剤の配合量が1重量%以下とすると、活性炭原料の吸着性能から錠剤型に成形した時の吸着性能の低下が抑えられることが示された。結合剤により活性炭の細孔が閉塞されることによる吸着性能の低下は、結合剤の添加量を減らすことにより抑制されるのは容易に理解される。しかしながら、表1~32に示される活性炭の物性や各試作例の錠剤型吸着剤の測定結果を鑑みれば、結合剤の添加量のみによらず、原料となる活性炭の物性や結合剤の種類も吸着性能の低下の抑制に寄与することがわかった。 As shown in Tables 18 to 20 and 23 to 25, when the amount of additive as a binder is 1% by weight or less, the deterioration of the adsorption performance of the activated carbon raw material when molded into a tablet shape can be suppressed. It was shown that It is easily understood that the decrease in adsorption performance due to the pores of activated carbon being blocked by the binder can be suppressed by reducing the amount of binder added. However, considering the physical properties of activated carbon shown in Tables 1 to 32 and the measurement results of the tablet-type adsorbents of each prototype, it is clear that the physical properties of the raw activated carbon and the type of binder do not depend only on the amount of binder added. It was found that this contributes to suppressing the decline in adsorption performance.

[まとめ]
以上、各試作例で示されたように、充填密度が低い活性炭を元炭とし、添加剤としてカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースをごく少量添加して錠剤型に成形された錠剤型吸着剤は、元炭の毒性物質の吸着性能の低下が抑制されることが可能であることが分かった。また、ミクロ孔容積の和に対するメソ孔容積の和の容積比を小さくすることにより、添加剤がマクロ孔又はメソ孔に吸着されたとしても毒性物質のミクロ孔への到達が阻害されにくくなり、経口投与用錠剤型吸着剤の吸着性能の低下の抑制に寄与することが理解された。添加剤としてカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースを使用することにより、ごく少量であっても一定の硬度を有し、錠剤型吸着剤に好適であることが示された。
[summary]
As shown in the above prototype examples, the tablet-shaped adsorbent is formed into a tablet by using activated carbon with a low packing density as the base carbon and adding a very small amount of sodium carboxymethyl cellulose or hydroxyethyl cellulose as an additive. It was found that the decline in the adsorption performance of charcoal for toxic substances can be suppressed. In addition, by reducing the volume ratio of the sum of mesopore volumes to the sum of micropore volumes, even if additives are adsorbed to macropores or mesopores, it becomes difficult for toxic substances to reach micropores. It was understood that this contributes to suppressing the decline in adsorption performance of tablet-type adsorbents for oral administration. It was shown that by using sodium carboxymethylcellulose or hydroxyethylcellulose as an additive, it has a certain hardness even in a very small amount, and is suitable for a tablet-type adsorbent.

本発明の経口投与用錠剤型吸着剤は、毒性物質の吸着性能の高い吸着剤としての活性炭の吸着性能の低下を抑制することができることから、服用しやすくなるとともに服用量や体積の増加を抑え、患者の服用負担の軽減を図ることができる。また、服用が容易になることから、経口投与により消化器官に達し、尿毒症、腎機能、肝機能障害等の原因となる窒素を含有する化合物を迅速に吸着でき、治療剤又は予防剤として有望である。 The tablet-type adsorbent for oral administration of the present invention can suppress the decline in the adsorption performance of activated carbon, which is an adsorbent with high adsorption performance for toxic substances, making it easier to take and suppressing increases in dosage and volume. , it is possible to reduce the burden of medication on patients. In addition, since it is easy to take, it is possible to quickly adsorb nitrogen-containing compounds that reach the digestive tract and cause uremia, renal function, liver dysfunction, etc. through oral administration, and is therefore promising as a therapeutic or preventive agent. It is.

Claims (4)

吸着剤としての活性炭と、結合剤としての添加剤とを含む経口投与用の錠剤型吸着剤であって、
前記活性炭の平均粒子径が20~1000μmであり、充填密度が0.3~0.5g/mlであり、
前記添加剤がカルボキシメチルセルロースナトリウム又はヒドロキシエチルセルロースの少なくとも1種類を含み、前記錠剤型吸着剤100重量%に対して1.0重量%以下添加されてなる
ことを特徴とする経口投与用錠剤型吸着剤。
A tablet-type adsorbent for oral administration comprising activated carbon as an adsorbent and an additive as a binder,
The average particle diameter of the activated carbon is 20 to 1000 μm, and the packing density is 0.3 to 0.5 g/ml,
A tablet-type adsorbent for oral administration, characterized in that the additive contains at least one of sodium carboxymethylcellulose or hydroxyethylcellulose, and is added in an amount of 1.0% by weight or less based on 100% by weight of the tablet-type adsorbent. .
前記錠剤型吸着剤の硬度が10N以上である請求項1に記載の経口投与用錠剤型吸着剤。 The tablet-type adsorbent for oral administration according to claim 1, wherein the tablet-type adsorbent has a hardness of 10N or more. 前記活性炭の下記の(i)式に規定するミクロ孔容積(Vmic)に対するメソ孔容積(Vmet)の容積比(Vm)が5.0以下である請求項1又は2に記載の経口投与用錠剤型吸着剤。
Figure 0007438897000035
The oral cavity according to claim 1 or 2, wherein the volume ratio (V m ) of the mesopore volume (V met ) to the micropore volume (V mic ) defined by the following formula (i) of the activated carbon is 5.0 or less. Tablet type adsorbent for administration.
Figure 0007438897000035
前記活性炭がフェノール樹脂の樹脂炭化物であることを特徴とする請求項1ないし3のいずれか1項に記載の経口投与用錠剤型吸着剤。 The tablet-type adsorbent for oral administration according to any one of claims 1 to 3, wherein the activated carbon is a resin charcoal of a phenolic resin.
JP2020142439A 2020-08-26 2020-08-26 Tablet type adsorbent for oral administration Active JP7438897B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020142439A JP7438897B2 (en) 2020-08-26 2020-08-26 Tablet type adsorbent for oral administration
JP2024020185A JP2024040422A (en) 2020-08-26 2024-02-14 Tablet type adsorbent for oral administration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142439A JP7438897B2 (en) 2020-08-26 2020-08-26 Tablet type adsorbent for oral administration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024020185A Division JP2024040422A (en) 2020-08-26 2024-02-14 Tablet type adsorbent for oral administration

Publications (2)

Publication Number Publication Date
JP2022038117A JP2022038117A (en) 2022-03-10
JP7438897B2 true JP7438897B2 (en) 2024-02-27

Family

ID=80497908

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020142439A Active JP7438897B2 (en) 2020-08-26 2020-08-26 Tablet type adsorbent for oral administration
JP2024020185A Pending JP2024040422A (en) 2020-08-26 2024-02-14 Tablet type adsorbent for oral administration

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024020185A Pending JP2024040422A (en) 2020-08-26 2024-02-14 Tablet type adsorbent for oral administration

Country Status (1)

Country Link
JP (2) JP7438897B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039381A1 (en) 2002-11-01 2004-05-13 Kureha Chemical Industry Co., Ltd. Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases
JP2006131461A (en) 2004-11-08 2006-05-25 Japan Organo Co Ltd Activated carbon, its manufacturing method, and renal disease therapeutic drug
JP2008303193A (en) 2007-06-11 2008-12-18 Teikoku Medix Kk Adsorbing agent for medical use
WO2012121202A1 (en) 2011-03-04 2012-09-13 株式会社クレハ Tablet-type composition for oral administration and method for producing same
JP5169056B2 (en) 2007-07-31 2013-03-27 日産自動車株式会社 Fuel cell system and its operation stop method
WO2016031908A1 (en) 2014-08-27 2016-03-03 株式会社クレハ Adsorbent for oral administration, therapeutic agent for renal diseases and therapeutic agent for hepatic diseases
WO2017170764A1 (en) 2016-04-01 2017-10-05 株式会社クレハ Tablet containing spherical adsorptive carbon for oral administration and production method thereof
WO2017170762A1 (en) 2016-04-01 2017-10-05 株式会社クレハ Tablet containing spherical adsorptive carbon for oral administration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039381A1 (en) 2002-11-01 2004-05-13 Kureha Chemical Industry Co., Ltd. Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases
JP2006131461A (en) 2004-11-08 2006-05-25 Japan Organo Co Ltd Activated carbon, its manufacturing method, and renal disease therapeutic drug
JP2008303193A (en) 2007-06-11 2008-12-18 Teikoku Medix Kk Adsorbing agent for medical use
JP5169056B2 (en) 2007-07-31 2013-03-27 日産自動車株式会社 Fuel cell system and its operation stop method
WO2012121202A1 (en) 2011-03-04 2012-09-13 株式会社クレハ Tablet-type composition for oral administration and method for producing same
WO2016031908A1 (en) 2014-08-27 2016-03-03 株式会社クレハ Adsorbent for oral administration, therapeutic agent for renal diseases and therapeutic agent for hepatic diseases
WO2017170764A1 (en) 2016-04-01 2017-10-05 株式会社クレハ Tablet containing spherical adsorptive carbon for oral administration and production method thereof
WO2017170762A1 (en) 2016-04-01 2017-10-05 株式会社クレハ Tablet containing spherical adsorptive carbon for oral administration

Also Published As

Publication number Publication date
JP2024040422A (en) 2024-03-25
JP2022038117A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
TWI319985B (en) Adsorbent for oral administration, agent for treating or preventing renal disease, and agent for treating or preventing liver disease
JP5701971B2 (en) Tablet-type composition for oral administration and method for producing the same
JP5984352B2 (en) Method for producing pharmaceutical adsorbent for oral administration
JPWO2006123618A1 (en) Oxidative stress inhibitor
JP5352378B2 (en) Adsorbent for oral administration with excellent adsorption characteristics
TWI341732B (en) Adsorbent for oral administration,agent for treating or preventing renal disease, and
JP7438897B2 (en) Tablet type adsorbent for oral administration
JP2010208969A (en) Lifespan-extending agent
CN113874320B (en) Method for producing activated carbon adsorbent
JP5985027B2 (en) Method for producing pharmaceutical adsorbent for oral administration
JP7000108B2 (en) Method for manufacturing adsorbent for oral administration
JP7228498B2 (en) Method for producing phenolic resin
JP6637573B2 (en) Adsorbent production method
WO2020085282A1 (en) Method for producing phenolic resin
JP2021161100A (en) Tablet-type adsorbent for oral administration
JP7061640B2 (en) Method for manufacturing activated carbon adsorbent
JP7244617B2 (en) Method for producing adsorbent for oral administration
JP4311923B2 (en) Treatment or prevention agent for liver disease for oral administration
JP6386571B2 (en) Orally administered pharmaceutical adsorbent with increased strength
KR100600635B1 (en) Adsorbent for oral administration, and pharmaceutical composition containing same
AU2003204621A1 (en) Adsorbent for oral administration

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7438897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150