JP2019107415A - White structure and its manufacturing method - Google Patents

White structure and its manufacturing method Download PDF

Info

Publication number
JP2019107415A
JP2019107415A JP2017244190A JP2017244190A JP2019107415A JP 2019107415 A JP2019107415 A JP 2019107415A JP 2017244190 A JP2017244190 A JP 2017244190A JP 2017244190 A JP2017244190 A JP 2017244190A JP 2019107415 A JP2019107415 A JP 2019107415A
Authority
JP
Japan
Prior art keywords
alloy substrate
titanium alloy
titanium
substrate
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017244190A
Other languages
Japanese (ja)
Other versions
JP6991480B2 (en
Inventor
永理 三浦
Eri Miura
永理 三浦
恭兵 内田
Kyohei Uchida
恭兵 内田
直史 大津
Tadashi Otsu
直史 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitami Institute of Technology NUC
University of Hyogo
Original Assignee
Kitami Institute of Technology NUC
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitami Institute of Technology NUC, University of Hyogo filed Critical Kitami Institute of Technology NUC
Priority to JP2017244190A priority Critical patent/JP6991480B2/en
Publication of JP2019107415A publication Critical patent/JP2019107415A/en
Application granted granted Critical
Publication of JP6991480B2 publication Critical patent/JP6991480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a white structure that has a titanium oxide layer having a sufficient film thickness, and has the hue being almost crown coloration.SOLUTION: A white structure concerning the present invention includes a titanium alloy substrate, and a titanium oxide layer having a film thickness of 40 μm or more based on an anatase type titanium dioxide on the surface of the titanium alloy substrate. The white structure has the clarity (L*) of 80 or more and exhibits white.SELECTED DRAWING: Figure 2

Description

本発明は、チタン合金基板の表面にチタン酸化物層を有する白色構造体に関する。   The present invention relates to a white structure having a titanium oxide layer on the surface of a titanium alloy substrate.

齲蝕や歯周病などの歯科疾患による健全歯の欠損を補綴する歯科補綴や、歯列矯正においては、レジン、セラミクス、金属等で構成される歯科用デバイスが使用されることが多い。これらの主たる目的は当然の事ながら、咬合や発語等の口腔機能の回復あるいは改善であるが、近年におけるユーザーの美意識の向上、即ち審美性に係る「見た目」の改善または回復も重要とされる。   In dental prostheses for prostheticing the loss of healthy teeth due to dental diseases such as caries and periodontal diseases, and in orthodontics, dental devices composed of resin, ceramics, metals and the like are often used. The main purpose of these is, of course, the restoration or improvement of oral functions such as occlusion and speech, but the improvement of the user's aesthetic awareness in recent years, that is, the improvement or restoration of "look" related to esthetics is also important. Ru.

例えば、メタルボンドポーセレンクラウンは、特に目立ちやすい前歯で使用される人工歯冠である。これらは、強度や靭性、加工性に優れる金属を支台歯として、その上に、歯と色が近く耐摩耗性に優れる陶材を焼付けて欠損部を補綴するものである。陶材は、隣接する健全歯と色調をあわせるため、何層にも透明度や色調の異なるものを焼付けて作製される。すなわち、メタルボンドポーセレンクラウンは、見えないところは金属製、見えるところは審美性の高いセラミクス製という複合材料であるが、焼付界面の剥離が実用上の問題として挙げられる。また、レジンで被覆するレジン前装冠もあるが、先のメタルボンドポーセレンクラウンと同様に界面強度に加えてレジンの耐久性の低さが問題となる。   For example, metal bonded porcelain crowns are artificial crowns that are used with particularly visible front teeth. In these methods, a metal excellent in strength, toughness, and processability is used as an abutment tooth, and a porcelain material close in color to the tooth and excellent in abrasion resistance is baked on the abutment tooth to procure a defective portion. Porcelain is manufactured by baking different layers of transparency and color to match the tone with adjacent healthy teeth. That is, although the metal bond porcelain crown is a composite material in which the invisible part is made of metal and the visible part is made of ceramic with high aesthetics, peeling of the baking interface is mentioned as a practical problem. There is also a resin front crown coated with a resin, but the low durability of the resin becomes a problem in addition to the interfacial strength as in the case of the metal bond porcelain crown described above.

近年の審美性重視の流れから、ここ数年で先に述べた人工歯では、支台歯もセラミクス製にしたオールセラミクスクラウンも台頭してきている。また、連結冠(ブリッジ)は、ファイバーコアなどレジンと無機材料との複合材等がある。このような人工歯冠の非金属化は、優れたレジン(樹脂材料)やセラミクス、無機−有機ハイブリット材料が開発されたお陰であるが、機械的性質や耐久性はまだ金属には及ばない。クラウンやインレー等の人工歯冠以外の歯科用デバイスでも、義歯床やインプラント、ブラケットや矯正アーチワイヤ等、靭性や弾性、強度等の他の素材に比べて金属を使用する方がより有利となる部材は多い。   From the recent trend of emphasis on esthetics, in the artificial teeth mentioned in the last few years, all-ceramic crowns, in which the abutment teeth are made of ceramics, are also emerging. The connection crown (bridge) is a composite material of resin and inorganic material such as fiber core. Such non-metallization of artificial crowns has been achieved thanks to the development of excellent resins (resin materials), ceramics, and inorganic-organic hybrid materials, but their mechanical properties and durability have not reached that of metals. Other dental devices such as crowns and inlays that use metal compared to other materials such as toughness, elasticity, strength, etc., such as dentures, implants, brackets, orthodontic archwires, etc. There are many.

一方で、患者のQOLへの関心の高まりに伴い、安全性や欠損機能回復だけでなく外観の回復、すなわち歯科材料の審美性向上への要求はますます高まっていることから、金属と遜色の無い強度や靭性を持ち、尚且つ金属色を白色で被覆した材料の登場が望まれている。   On the other hand, with the rising interest in patients' quality of life, not only safety and defect function recovery but also appearance recovery, that is, the demand for improvement in the aesthetics of dental materials is increasing, so metal and amber color The appearance of a material which has no strength and toughness and is coated with a metallic color in white is desired.

本発明者らは、Tiや生体用β型Ti合金Ti−29Nb−13Ta−4.6Zr(Ti:Nb:Ta:Zr=53.4:29:13:4.6)合金やTi−36Nb−2Ta−3Zr−0.3O(Ti:Nb:Ta:Zr:O=58.7:36:2:3:0.3)合金において、高温酸化処理により生成する白色被膜による金属表面の白色化に成功している。その製造法は、既に出願を行っている(例えば、特許文献1及び特許文献2参照。)。
これらの先行技術は、主にTi−29Nb−13Ta−4.6Zr合金等のTi合金を白色化する技術であり、歯科材料としての用途を想定している。
The inventors of the present invention have found that Ti and β-type Ti alloy for living body Ti-29Nb-13Ta-4.6Zr (Ti: Nb: Ta: Zr = 53.4: 29: 13: 4.6) alloy and Ti-36Nb- For whitening of metal surface by white film formed by high temperature oxidation treatment in 2Ta-3Zr-0.3O (Ti: Nb: Ta: Zr: O = 58.7: 36: 2: 3: 0.3) alloy It is successful. The manufacturing method has already filed an application (for example, refer to patent documents 1 and patent documents 2).
These prior art techniques are mainly techniques for whitening a Ti alloy such as a Ti-29Nb-13Ta-4.6Zr alloy, and assume use as a dental material.

また、生成した皮膜の安全性についてであるが、Ti酸化物の高温相であるルチル型TiOは、白色顔料「チタンホワイト」として塗料や化粧品成分として従来より使用されている。また、食品添加物の一つとしても既に利用されていることから、TiO自体の安全性は高い。さらに、ルチル型TiOは、細胞毒性試験においても、生体安全性の高い基板のTi−29Nb−13Ta−4.6Zrと同程度の安全性を持つ。 Regarding the safety of the formed film, rutile type TiO 2 which is a high temperature phase of Ti oxide is conventionally used as a white pigment “titanium white” as a paint or a cosmetic component. In addition, since it is already used as one of the food additives, the safety of TiO 2 itself is high. Furthermore, even in the cytotoxicity test, rutile TiO 2 has the same level of safety as Ti-29Nb-13Ta-4.6Zr, which is a highly biosafe substrate.

工業用純Ti(CP Ti)等のいわゆる純Tiでは、高温酸化によってルチル型TiOで構成される酸化被膜が金属表面に形成される。このルチル型TiOは、L*a*b*表色系で算出したその明度L*としては、70〜85と日本人の歯冠色と同程度かそれ以上である。 In so-called pure Ti such as industrial pure Ti (CP Ti), an oxide film composed of rutile TiO 2 is formed on the metal surface by high temperature oxidation. The lightness L * of this rutile TiO 2 calculated in the L * a * b * color system is 70 to 85, which is equivalent to or higher than that of the Japanese crown color.

このTi基板上に生成させた高温酸化物の色調は、白さを示す明度L*が80程度あり、青−黄色を示すb*が8前後、赤−緑色を示すa*がほぼ0であることから、肉眼ではわずかに黄色がかった白に見える。L*とb*は、膜厚によりある程度プラス(+)側に制御が可能である。   The color tone of the high-temperature oxide formed on this Ti substrate has a lightness L * of about 80 indicating whiteness, b * of about 8 indicating blue-yellow, and a * of about 0 indicating red-green. From that, it looks slightly yellowish white to the naked eye. L * and b * can be controlled to some extent on the plus (+) side by the film thickness.

一方、Ti基板上に高温酸化皮膜を生成させた場合、高温条件に伴いTi基板内へ酸素が拡散し、基板の脆化により機械的特性、特に延性が低下する。このことから、基板への酸素拡散を抑制しつつ、Ti表面に白色酸化被膜を生成する技術が求められている。   On the other hand, when a high temperature oxide film is formed on a Ti substrate, oxygen diffuses into the Ti substrate with high temperature conditions, and the mechanical properties, particularly the ductility, are reduced due to the embrittlement of the substrate. From this, the technique which forms a white oxide film in Ti surface is calculated | required, suppressing oxygen diffusion to a board | substrate.

Ti基板上に酸化物を形成する方法として、高温酸化以外の酸化法としては、例えば、陽極酸化法、プラズマ窒化法、スパッタコーティング法、パルスレーザー照射法等が挙げられるが、それらの中で陽極酸化法が装置の規模やコスト面で優れている。   As a method of forming an oxide on a Ti substrate, as an oxidation method other than high temperature oxidation, for example, an anodic oxidation method, plasma nitriding method, sputter coating method, pulse laser irradiation method and the like can be mentioned. The oxidation method is excellent in the scale and cost of the apparatus.

従来の陽極にTi基板を用いた陽極酸化法では、低電圧でナノスケール厚の様々なカラーバリエーションを示すTiO被膜が形成されている。さらに近年では、ナノチューブ構造やナノポーラス構造のTiO被膜が研究されており、その光触媒への活用に注目が集まっている。 In the anodic oxidation method using a Ti substrate for the conventional anode, a TiO 2 film is formed which exhibits various color variations of nanoscale thickness at low voltage. Furthermore, in recent years, a TiO 2 film having a nanotube structure or a nanoporous structure has been studied, and its application to photocatalysts has attracted attention.

特開2013−147439号公報JP, 2013-147439, A 米国特許出願公開2013/180627号US Patent Application Publication 2013/180627

従来の高温酸化により生成したTNTZ酸化被膜には歯冠色と比較して明度と黄色味が不足していた。本発明者の解析によれば、これは生成する被膜が十分な膜厚を得ていないためであった。   The TNTZ oxide film formed by the conventional high temperature oxidation was lacking in lightness and yellowishness as compared with the crown color. According to the analysis of the inventor, this was because the film to be formed did not have a sufficient film thickness.

また、従来の高温酸化では、高温酸化で基板に拡散した酸素が基板自体に固溶し、基板の機械的特性、特に延性を低下させるという問題があった。   Further, in the conventional high temperature oxidation, oxygen diffused to the substrate by the high temperature oxidation forms a solid solution in the substrate itself, and there is a problem that the mechanical characteristics of the substrate, in particular, the ductility is lowered.

本発明の目的は、チタン合金基板には酸素を拡散、固溶させることなく、十分な膜厚を有するチタン酸化物層を有し、歯冠色に近い色相を有する白色構造体を提供することである。   An object of the present invention is to provide a white structure having a titanium oxide layer having a sufficient film thickness without diffusing oxygen and causing solid solution in a titanium alloy substrate, and having a hue close to a crown color. It is.

本発明に係る白色構造体は、チタン合金基板と、
前記チタン合金基板の表面のアナターゼ型の二酸化チタンを主成分とする膜厚40μm以上のチタン酸化物層と、
を備え、
明度(L*)が80以上で白色を呈する。
The white structure according to the present invention comprises a titanium alloy substrate,
A titanium oxide layer mainly composed of anatase type titanium dioxide on the surface of the titanium alloy substrate and having a thickness of 40 μm or more;
Equipped with
It exhibits white when the lightness (L *) is 80 or more.

本発明に係る白色構造体の製造方法は、チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を有する白色構造体の製造方法であって、
チタン合金基板を電解液に陽極として浸漬し、前記電解液に陰極を浸漬する工程と、
陽極である前記チタン合金基板と電解液に浸漬した陰極との間に電流を流して陽極酸化法によって前記チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を形成する工程と、
を含み、
前記電解液としてホウ酸アンモニウム塩を含み、
前記陽極酸化法によってチタン酸化物層を形成する工程において、電流密度25mA/cm以上、50mA/cm以下の電流を前記チタン合金基板に流す。
The method for producing a white structure according to the present invention is a method for producing a white structure having a titanium oxide layer mainly composed of titanium dioxide on the surface of a titanium alloy substrate,
Immersing the titanium alloy substrate in the electrolyte as an anode, and immersing the cathode in the electrolyte;
Forming a titanium oxide layer mainly composed of titanium dioxide on the surface of the titanium alloy substrate by an anodic oxidation method by supplying an electric current between the titanium alloy substrate as an anode and a cathode immersed in an electrolytic solution;
Including
It contains an ammonium borate salt as the electrolytic solution,
In the step of forming a titanium oxide layer by the anodic oxidation method, a current having a current density of 25 mA / cm 2 or more and 50 mA / cm 2 or less is applied to the titanium alloy substrate.

本発明に係る白色構造体によれば、チタン合金基板の表面にアナターゼ型の二酸化チタンを主成分とする膜厚40μm以上のチタン酸化物層を有し、明度(L*)が80以上で白色を呈する。   According to the white structure according to the present invention, the surface of the titanium alloy substrate has a titanium oxide layer having a film thickness of 40 μm or more mainly composed of titanium dioxide of anatase type and has whiteness with a lightness (L *) of 80 or more. Present.

本発明に係る白色構造体の製造方法によれば、常温での陽極酸化法であるので基板への酸素の拡散及び固溶を抑制でき、基板の機械的特性の低下を抑制できる。   According to the method for producing a white structure according to the present invention, since the anodic oxidation method is performed at normal temperature, diffusion and solid solution of oxygen to the substrate can be suppressed, and deterioration of mechanical properties of the substrate can be suppressed.

陽極酸化法における電解槽の構成を示す概略図である。It is the schematic which shows the structure of the electrolytic vessel in an anodic oxidation method. 実施の形態1に係る白色構造体の構造を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a structure of a white structure according to Embodiment 1. 実施の形態1で得られた白色構造体の断面のSEM写真である。6 is a SEM photograph of the cross section of the white structure obtained in Embodiment 1. 図3Aのチタン酸化物層の断面のSEM写真である。It is a SEM photograph of the cross section of the titanium oxide layer of FIG. 3A. 陽極酸化法における陽極であるチタン合金基板に流れる直流電流の電流密度を種々変化させた場合の表面の変化を示す写真である。It is a photograph which shows the change of the surface at the time of changing the current density of direct current which flows into the titanium alloy substrate which is an anode in an anodic oxidation method variously. 直流電流の電流密度が20mA/cmである場合の陽極であるチタン合金基板の表面を示す写真である。It is a photograph which shows the surface of a titanium alloy substrate which is an anode in case current density of direct current is 20 mA / cm 2 . 直流電流の電流密度が60mA/cmである場合の陽極であるチタン合金基板の表面を示す写真である。It is a photograph which shows the surface of the titanium alloy substrate which is an anode in case current density of direct current is 60 mA / cm 2 . 直流電流の電流密度が80mA/cmである場合の陽極であるチタン合金基板の表面を示す写真である。It is a photograph which shows the surface of a titanium alloy substrate which is an anode in case current density of direct current is 80 mA / cm 2 . 陽極酸化法における陽極であるチタン合金基板に流れる直流電流の電流密度と、表面の明度L値及びチタン酸化物層の厚さと、の関係を示す図である。It is a figure which shows the relationship between the current density of direct current which flows into the titanium alloy board | substrate which is an anode in an anodic oxidation method, the brightness L value of the surface, and the thickness of a titanium oxide layer. 陽極酸化法における陽極であるチタン合金基板に直流電流を流す時間ごとの表面の変化を示す写真である。It is a photograph which shows the change of the surface for every time which applies a direct current to the titanium alloy substrate which is an anode in an anodic oxidation method. 陽極酸化法における陽極であるチタン合金基板に直流電流を流す時間とチタン酸化物層の厚さとの関係を示す図である。It is a figure which shows the relationship of the time of flowing a direct current through the titanium alloy board | substrate which is an anode in an anodic oxidation method, and the thickness of a titanium oxide layer. 実施の形態1で得られた白色構造体の表面のX線回折パターンを示す図である。FIG. 2 is a view showing an X-ray diffraction pattern of the surface of the white structure obtained in Embodiment 1. 陽極酸化被膜と高温酸化被膜との色調を対比する図である。It is a figure which contrasts the color tone of an anodic oxide film and a high temperature oxide film. 陽極酸化法における陽極であるチタン合金基板に流れる直流電流の電流密度と、得られる酸化被膜の色調との関係を示す図である。It is a figure which shows the relationship between the current density of direct current which flows into the titanium alloy board | substrate which is an anode in an anodic oxidation method, and the color tone of the oxide film obtained. チタン合金基板であるTNTZ基板について、高温酸化被膜の構造を示す断面のSEM写真である。It is a SEM photograph of the cross section which shows the structure of a high temperature oxide film about the TNTZ board | substrate which is a titanium alloy board | substrate. チタン合金基板について、高温酸化を行った場合と陽極酸化を行った場合の基板表面から深さ5μmでの酸素濃度を対比する図である。It is a figure which contrasts the oxygen concentration in the depth of 5 micrometers from the substrate surface at the time of performing high temperature oxidation, and performing anodic oxidation about a titanium alloy substrate. チタン合金基板について、未処理の場合と、陽極酸化を行った場合と、高温酸化を行った場合との酸化膜/金属基板界面からおよそ10μm基板側で取得したビッカース硬度の値を対比する図である。In the figure which compares the value of Vickers hardness acquired about 10 μm substrate side from the oxide film / metal substrate interface of the case of untreated case, the case of anodic oxidation, and the case of high temperature oxidation about titanium alloy substrate. is there.

第1の態様に係る白色構造体は、チタン合金基板と、
前記チタン合金基板の表面のアナターゼ型の二酸化チタンを主成分とする膜厚40μm以上のチタン酸化物層と、
を備え、
明度(L*)が80以上で白色を呈する。
The white structure according to the first aspect is a titanium alloy substrate,
A titanium oxide layer mainly composed of anatase type titanium dioxide on the surface of the titanium alloy substrate and having a thickness of 40 μm or more;
Equipped with
It exhibits white when the lightness (L *) is 80 or more.

第2の態様に係る白色構造体は、上記第1の態様において、前記チタン合金基板は、Ti−Nb−Ta−Zr合金からなるものであってもよい。   In the white structure according to the second aspect, in the first aspect, the titanium alloy substrate may be made of a Ti-Nb-Ta-Zr alloy.

第3の態様に係る白色構造体は、上記第1又は第2の態様において、前記チタン酸化物層の色調は、明度(L*)が80以上、赤−緑色相(a*)が−2以上、黄−青色相(b*)が10以上の値を有してもよい。   In the white structure according to the third aspect, in the first or second aspect, the color tone of the titanium oxide layer is 80 or more in lightness (L *) and -2 in red-green phase (a *). As described above, the yellow-blue phase (b *) may have a value of 10 or more.

第4の態様に係る白色構造体は、上記第1から第3のいずれかの態様において、前記チタン酸化物層と前記チタン合金基板との界面から10μmの前記チタン合金基板側の面について、荷重0.1Nでのビッカース硬度が未処理の場合に対して+30%以内の範囲内であってもよい。   In the white structure according to the fourth aspect, in any one of the first to third aspects, the load is applied to the surface on the titanium alloy substrate side at 10 μm from the interface between the titanium oxide layer and the titanium alloy substrate. The Vickers hardness at 0.1 N may be within + 30% of that in the untreated case.

第5の態様に係る白色構造体の製造方法は、チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を有する白色構造体の製造方法であって、
チタン合金基板を電解液に陽極として浸漬し、前記電解液に陰極を浸漬する工程と、
陽極である前記チタン合金基板と電解液に浸漬した陰極との間に電流を流して陽極酸化法によって前記チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を形成する工程と、
を含み、
前記陽極酸化法によってチタン酸化物層を形成する工程において、電流密度25mA/cm以上、50mA/cm以下の電流を前記チタン合金基板に流す。
The method for producing a white structure according to the fifth aspect is a method for producing a white structure having a titanium oxide layer mainly composed of titanium dioxide on the surface of a titanium alloy substrate,
Immersing the titanium alloy substrate in the electrolyte as an anode, and immersing the cathode in the electrolyte;
Forming a titanium oxide layer mainly composed of titanium dioxide on the surface of the titanium alloy substrate by an anodic oxidation method by supplying an electric current between the titanium alloy substrate as an anode and a cathode immersed in an electrolytic solution;
Including
In the step of forming a titanium oxide layer by the anodic oxidation method, a current having a current density of 25 mA / cm 2 or more and 50 mA / cm 2 or less is applied to the titanium alloy substrate.

第6の態様に係る白色構造体の製造方法は、上記第5の態様において、前記チタン合金基板として、Ti−Nb−Ta−Zr合金基板を用いると共に、前記電解液としてホウ酸アンモニウム塩を含む電解液を用いてもよい。   In the method for producing a white structure according to the sixth aspect, in the fifth aspect, a Ti—Nb—Ta—Zr alloy substrate is used as the titanium alloy substrate, and an ammonium borate salt is contained as the electrolytic solution. An electrolytic solution may be used.

<本発明に至った経緯について>
工業用TiおよびTi合金は、ステンレス鋼やCo−Cr−Mo合金と共に主要な生体用合金であり、軽量、非磁性、優れた機械的特性、耐食性、生体適合性を有している。そのため、歯科分野では、人工歯根だけでなく、クラウン、義歯床、クラスプなどの様々な歯科デバイスに用いられる。ただし、Tiを含めた金属材料製の歯科デバイスは、その金属色によりセラミクスやレジンと比べて審美性、例えば、明るさや白さの点で劣る。
<About the process leading to the present invention>
Industrial Ti and Ti alloys are main bioalloys together with stainless steel and Co-Cr-Mo alloys, and have light weight, non-magnetic properties, excellent mechanical properties, corrosion resistance, and biocompatibility. Therefore, in the field of dentistry, it is used not only for artificial tooth roots but also for various dental devices such as crowns, dentures, clasps and the like. However, dental devices made of metallic materials including Ti are inferior in aesthetics such as brightness and whiteness to ceramics and resins due to their metallic color.

本発明者は、酸素存在下にて熱処理を施すことでTiやTi−Nb系合金の基板表面にTi酸化物(ルチル型TiO)を生成させ、金属に白色の審美性を付与する研究を行っており、これまでに上記特許文献1及び特許文献2を出願している。このTiOは、日焼け止め化粧品や食品添加物などにも使用されており、生体には安全な物質である。そこで、このTiO相を被膜として利用すれば、金属の歯科補綴製品の欠点である審美性の改善が期待できる。一方で、高温酸化時の基板脆化の課題が挙げられており、その主な原因として、金属基板への酸素拡散が挙げられる。 The inventors of the present invention have conducted researches to form Ti oxide (rutile TiO 2 ) on the substrate surface of Ti and Ti-Nb based alloys by heat treatment in the presence of oxygen, and to give the metal a white esthetic. U.S. Pat. No. 6,097, 806, and the patent documents 1 and 2 have been filed so far. This TiO 2 is also used in sunscreen cosmetics and food additives, and is a substance safe to the living body. Therefore, if this TiO 2 phase is used as a film, improvement of the aesthetics which is a drawback of metal dental prosthetic products can be expected. On the other hand, the problem of substrate embrittlement at the time of high temperature oxidation is mentioned, and oxygen diffusion to a metal substrate is mentioned as the main cause.

そこで、本発明者は、熱処理によらない常温での白色酸化被膜生成プロセスとして、陽極酸化に注目し、従来、薄膜しか得られなかった陽極酸化法についてあらゆる視点から改善改良を図った結果、圧膜のチタン酸化物層を得ることができ、本発明に至ったものである。   Therefore, the present inventors focused attention on anodic oxidation as a white oxide film formation process at normal temperature not by heat treatment, and as a result of improving and improving the anodic oxidation method from which only thin films were conventionally obtained, It is possible to obtain a titanium oxide layer of a film, and to arrive at the present invention.

以下、実施の形態に係る白色構造体及びその製造方法について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。   Hereinafter, a white structure according to an embodiment and a method of manufacturing the same will be described with reference to the attached drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
<白色構造体>
図2は、実施の形態1に係る白色構造体20の構造を示す概略断面図である。図3Aは、実施の形態1で得られた白色構造体20の断面のSEM写真である。図3Bは、図3Aのチタン酸化物層14の断面のSEM写真である。
この白色構造体20は、チタン合金基板12と、チタン合金基板12の表面のアナターゼ型の二酸化チタンを主成分とする膜厚40μm以上のチタン酸化物層14と、を備える。また、明度(L*)が80以上で白色を呈する。
Embodiment 1
<White structure>
FIG. 2 is a schematic cross-sectional view showing the structure of the white structure 20 according to the first embodiment. FIG. 3A is a SEM photograph of a cross section of white structure 20 obtained in the first embodiment. FIG. 3B is a SEM photograph of a cross section of the titanium oxide layer 14 of FIG. 3A.
The white structure 20 includes a titanium alloy substrate 12 and a titanium oxide layer 14 having a film thickness of 40 μm or more and mainly containing anatase-type titanium dioxide on the surface of the titanium alloy substrate 12. In addition, when the lightness (L *) is 80 or more, it exhibits white.

図9は、実施の形態1で得られた白色構造体20の表面のX線回折パターンを示す図である。図10は、陽極酸化被膜と高温酸化被膜との色調を対比する図である。図12は、チタン合金基板であるTNTZ基板について、高温酸化被膜の構造を示す断面のSEM写真である。図13は、チタン合金基板について、高温酸化を行った場合と陽極酸化を行った場合の基板表面から深さ5μmでの酸素濃度を対比する図である。図14は、チタン合金基板について、未処理の場合と、陽極酸化を行った場合と、高温酸化を行った場合との酸化膜/金属基板界面からおよそ10μm基板側で取得したビッカース硬度の値を対比する図である。   FIG. 9 is a diagram showing an X-ray diffraction pattern of the surface of the white structure 20 obtained in the first embodiment. FIG. 10 is a view comparing the color tone of the anodized film and the high temperature oxidized film. FIG. 12 is a SEM photograph of a cross section showing the structure of a high temperature oxide film on a TNTZ substrate which is a titanium alloy substrate. FIG. 13 is a view comparing oxygen concentration at a depth of 5 μm from the substrate surface in the case of performing high temperature oxidation and in the case of performing anodic oxidation on a titanium alloy substrate. FIG. 14 shows values of Vickers hardness values obtained on the side of an about 10 μm substrate from the oxide film / metal substrate interface in the case of an untreated, anodized, and a case of high temperature oxidation for titanium alloy substrates. It is a figure to contrast.

この白色構造体20は、チタン合金基板12の表面に陽極酸化法によって生成したチタン酸化物層14を有する。このチタン酸化物層14は、図9のX線回折パターンに示すように、アナターゼ型TiOを主成分とする。そこで、光触媒活性を有するので、光触媒用途にも利用できる。 The white structure 20 has a titanium oxide layer 14 formed on the surface of a titanium alloy substrate 12 by anodic oxidation. The titanium oxide layer 14 contains anatase-type TiO 2 as a main component, as shown in the X-ray diffraction pattern of FIG. Therefore, since they have photocatalytic activity, they can be used for photocatalyst applications.

また、チタン合金基板として、Ti−Nb−Ta−Zr合金基板を用いてもよい。Ti−Nb−Ta−Zr合金基板は、例えば、Ti−29Nb−13Ta−4.6Zr(TNTZ)の組成を有する。   Alternatively, a Ti-Nb-Ta-Zr alloy substrate may be used as the titanium alloy substrate. The Ti-Nb-Ta-Zr alloy substrate has, for example, a composition of Ti-29Nb-13Ta-4.6Zr (TNTZ).

さらに、このチタン酸化物層14は、図3Bの拡大断面SEM写真に示すように、チタン合金基板12の表面に垂直及び水平方向にわたって幅100nm以上1000nm以下であって幅/厚さの比が2以上の偏平な空洞16が複数配列されている(例えば、「ボイド配列構造」)。偏平な空洞16は、幅及び高さが同じ大きさの空洞に限られず、様々な大きさであってもよい。また、図3Bに示されるように、各空洞16は、曲面を有してもよい。さらに、空洞160を支持する柱状部について、幅が33nm〜203nmであって、幅の平均値は95nmである。また、各層は、厚さ50nm〜500nmである。なお、図12に示すように、TNTZ基板では、高温酸化した場合には緻密なチタン酸化物層が形成され、上記のような偏平な空洞が垂直及び水平方向に配列されるボイド配列構造は得られない。   Furthermore, as shown in the enlarged cross-sectional SEM photograph of FIG. 3B, the titanium oxide layer 14 has a width of 100 nm to 1000 nm in the vertical and horizontal directions on the surface of the titanium alloy substrate 12 and a width / thickness ratio of 2 A plurality of flat cavities 16 as described above are arrayed (for example, "void array structure"). The flat cavities 16 are not limited to cavities of the same size in width and height, but may be of various sizes. Also, as shown in FIG. 3B, each cavity 16 may have a curved surface. Furthermore, the width of the columnar part supporting the cavity 160 is 33 nm to 203 nm, and the average value of the width is 95 nm. Each layer is 50 nm to 500 nm in thickness. As shown in FIG. 12, in the TNTZ substrate, a dense titanium oxide layer is formed when oxidized at a high temperature, and a void array structure in which the flat cavities as described above are arrayed vertically and horizontally is obtained. I can not.

また、チタン酸化物層14の色調は、図10の陽極酸化被膜の項に示すように、明度(L*)が80以上、赤−緑色相(a*)が−2以上、黄−青色相(b*)が10以上の値を有する。そこで、この白色構造体によれば、十分な膜厚を有するチタン酸化物層を有し、歯冠色に近い色相を得ることができる。なお、明度(L*)は80以上、さらには90以上であることが好ましい。   The color tone of the titanium oxide layer 14 is, as shown in the section of the anodized film in FIG. 10, the lightness (L *) is 80 or more, the red-green phase (a *) is -2 or more, yellow-blue phase (B *) has a value of 10 or more. Therefore, according to this white structure, it is possible to obtain a hue close to the crown color by having a titanium oxide layer having a sufficient film thickness. The lightness (L *) is preferably 80 or more, more preferably 90 or more.

また、この白色構造体20によれば、図13に示すように、高温酸化に比べて基板への酸素の拡散及び固溶を低く抑えることができる。そこで、この白色構造体によれば、基板への酸素の拡散及び固溶を低く抑えることができる。さらに、図14に示すように、未処理の場合のビッカース硬度が191Hvであるのに対して、陽極酸化による場合の硬度が231Hvである。一方、高温酸化の場合の硬度は563Hvと未処理の場合の約3倍程度である。これは、陽極酸化では、上記のようにチタン合金基板への酸素拡散が抑制されているので、チタン合金基板の脆化が抑制されているものと考えられる。そのため、曲げ加工を要する矯正ワイヤ等への応用も可能である。
この白色構造体は、チタン酸化物層とチタン合金基板との界面から10μmのチタン合金基板側の面について、荷重0.1Nでのビッカース硬度が未処理の場合に対して+30%以内の範囲内であることが好ましい。さらに、+20%以内であることが好ましい。
Further, according to this white structure 20, as shown in FIG. 13, the diffusion and the solid solution of oxygen to the substrate can be suppressed to a low level as compared with the high temperature oxidation. Therefore, according to this white structure, diffusion and solid solution of oxygen to the substrate can be suppressed to a low level. Furthermore, as shown in FIG. 14, the hardness in the case of anodic oxidation is 231 Hv, while the Vickers hardness in the case of no treatment is 191 Hv. On the other hand, the hardness in the case of high temperature oxidation is 563 Hv, which is about 3 times that in the case of no treatment. This is considered to be that the embrittlement of the titanium alloy substrate is suppressed because the oxygen diffusion to the titanium alloy substrate is suppressed as described above in the anodic oxidation. Therefore, the application to the correction wire etc. which require a bending process is also possible.
This white structure is within + 30% of the case where the Vickers hardness at a load of 0.1 N is not treated for the surface on the titanium alloy substrate side of 10 μm from the interface between the titanium oxide layer and the titanium alloy substrate. Is preferred. Furthermore, it is preferable to be within + 20%.

<白色構造体の製造方法>
図1は、陽極酸化法における電解槽10の構成を示す概略図である。本発明者は、陽極酸化により生成する白色被膜は、高温酸化により生成する被膜と比較した場合に、より肥厚化が期待されるので、より歯冠色に近づけることが可能と考えた。
この白色構造体の製造方法は、チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を有する白色構造体の製造方法である。この白色構造体の製造方法は、以下の各工程を含む。
(a)チタン合金基板1を電解液5に陽極として浸漬し、電解液5に陰極2を浸漬する。上記電解液としてホウ酸アンモニウム塩を含む。なお、その他の塩を含んでもよい。
(b)次に、陽極であるチタン合金基板1と電解液5に浸漬した陰極2との間に電流を流す。この場合において、電流密度25mA/cm以上、50mA/cm以下の電流をチタン合金基板1に流す。
これによって、陽極酸化法によりチタン合金基板1の表面に二酸化チタンを主成分とするチタン酸化物層が形成される。
<Method of manufacturing white structure>
FIG. 1 is a schematic view showing the configuration of the electrolytic cell 10 in the anodic oxidation method. The present inventors considered that the white film produced by anodization can be made closer to the crown color since thickening is expected more when compared to a film produced by high temperature oxidation.
The method for producing this white structure is a method for producing a white structure having a titanium oxide layer mainly composed of titanium dioxide on the surface of a titanium alloy substrate. The method for producing this white structure includes the following steps.
(A) The titanium alloy substrate 1 is immersed in the electrolyte 5 as an anode, and the cathode 2 is immersed in the electrolyte 5. An ammonium borate salt is contained as the above-mentioned electrolytic solution. In addition, other salts may be included.
(B) Next, an electric current is applied between the titanium alloy substrate 1 as the anode and the cathode 2 immersed in the electrolytic solution 5. In this case, a current of 25 mA / cm 2 or more and 50 mA / cm 2 or less is applied to the titanium alloy substrate 1.
Thus, a titanium oxide layer containing titanium dioxide as a main component is formed on the surface of the titanium alloy substrate 1 by the anodic oxidation method.

また、チタン合金基板として、Ti−Nb−Ta−Zr合金基板を用いてもよい。Ti−Nb−Ta−Zr合金基板は、例えば、Ti−29Nb−13Ta−4.6Zr(TNTZ)の組成を有する。この場合には、ホウ酸アンモニウム塩を含む電解液を用いることによって、陽極酸化で電流密度が25mA/cm以上であって、50mA/cm以下の条件で、膜厚40μm以上、明度(L*)が80以上の白色を呈し表面が均一なチタン酸化物層を生成させることができる。 Alternatively, a Ti-Nb-Ta-Zr alloy substrate may be used as the titanium alloy substrate. The Ti-Nb-Ta-Zr alloy substrate has, for example, a composition of Ti-29Nb-13Ta-4.6Zr (TNTZ). In this case, by using an electrolytic solution containing an ammonium borate salt, the film thickness is 40 μm or more and the lightness (L at a current density of 25 mA / cm 2 or more and 50 mA / cm 2 or less in anodic oxidation. *) It is possible to produce a titanium oxide layer having a white color of 80 or more and a uniform surface.

さらに、チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を形成する工程の後、大気中にて400℃以上600℃以下での熱処理工程をさらに含んでもよい。   Furthermore, after the process of forming the titanium oxide layer which has titanium dioxide as a main component on the surface of a titanium alloy substrate, you may further include the heat treatment process in 400 degreeC-600 degreeC in air | atmosphere.

図4は、陽極酸化法における陽極であるチタン合金基板1に流れる直流電流の電流密度を種々変化させた場合の表面の変化を示す写真である。図5Aは、直流電流の電流密度が20mA/cmである場合の陽極であるチタン合金基板1の表面を示す写真である。図5Bは、直流電流の電流密度が60mA/cmである場合の陽極であるチタン合金基板1の表面を示す写真である。図5Cは、直流電流の電流密度が80mA/cmである場合の陽極であるチタン合金基板1の表面を示す写真である。図6は、陽極酸化法における陽極であるチタン合金基板1に流れる直流電流の電流密度とチタン酸化物層の厚さとの関係を示す図である。なお、チタン酸化物層の厚さは、断面を見て厚みの大きい部分の厚さを何カ所か計測して平均値を得ている。
図5Aに示すように、電流密度20mA/cmではナノスケール厚の膜しか得られず、厚膜は得られない。また、図5Bに示すように、電流密度60mA/cmでは、膜表面にムラがみられ、酸化膜が一部剥がれている。さらに、図5Cに示すように、電流密度80mA/cmでは、電流密度60mA/cmと同様に膜表面にムラがみられ、酸化膜が一部剥がれている。また、電流密度75mA/cmでは、図4(e)の写真に示すように、生成酸化物が顆粒状に付着したようになり、不均一な被膜となる。そこで、均一な白色被膜を得るためには60mA/cmより低い電流密度、具体的には電流密度50mA/cm以下とすることが適当である。
また、図6に示すように、電流密度20mA/cmではナノスケール厚の膜しか得られず、電流密度25mA/cm以上で膜厚約40μm以上のチタン酸化物層が得られ、電流密度50mA/cmまでは厚さが漸増している。さらに電流密度が増すと、電流密度60mA/cm以上では、膜表面にムラがみられるようになり、酸化膜の一部が剥がれている。電流密度75mA/cm以上では膜厚は大幅に増えるものの、顆粒状の部分が含まれるなど、安定した酸化膜が得られない。
そこで、電流密度が25mA/cm以上であって、50mA/cm以下の条件で、膜厚約40μm以上、明度(L*)が80以上の白色を呈し表面が均一なチタン酸化物層を得ることができる。
FIG. 4 is a photograph showing the change of the surface when the current density of the direct current flowing to the titanium alloy substrate 1 which is the anode in the anodic oxidation method is variously changed. FIG. 5A is a photograph showing the surface of titanium alloy substrate 1 which is an anode when the current density of direct current is 20 mA / cm 2 . FIG. 5B is a photograph showing the surface of the titanium alloy substrate 1 as the anode when the current density of direct current is 60 mA / cm 2 . FIG. 5C is a photograph showing the surface of titanium alloy substrate 1 which is an anode when the current density of direct current is 80 mA / cm 2 . FIG. 6 is a view showing the relationship between the current density of direct current flowing to the titanium alloy substrate 1 which is the anode in the anodic oxidation method and the thickness of the titanium oxide layer. In addition, the thickness of the titanium oxide layer is obtained by measuring the thickness of a portion having a large thickness in cross section and obtaining an average value.
As shown in FIG. 5A, at a current density of 20 mA / cm 2 , only a film of nanoscale thickness can be obtained, and a thick film can not be obtained. Further, as shown in FIG. 5B, at a current density of 60 mA / cm 2 , unevenness is observed on the film surface, and the oxide film is partly peeled off. Furthermore, as shown in FIG. 5C, the current density of 80 mA / cm 2, current density of 60 mA / cm 2 and similarly unevenness was observed in the film surface, the oxide film is peeled off partially. In addition, at a current density of 75 mA / cm 2 , as shown in the photograph of FIG. 4 (e), the formed oxide appears to be attached in the form of granules, resulting in a non-uniform film. Therefore, uniform white coating lower current density than 60 mA / cm 2 in order to obtain, in particular it is appropriate to current density 50 mA / cm 2 or less.
Further, as shown in FIG. 6, only a film of nanoscale thickness can be obtained at a current density of 20 mA / cm 2 , and a titanium oxide layer with a film thickness of about 40 μm or more at a current density of 25 mA / cm 2 or more can be obtained. The thickness gradually increases up to 50 mA / cm 2 . When the current density further increases, unevenness in the film surface is observed at a current density of 60 mA / cm 2 or more, and a part of the oxide film is peeled off. When the current density is 75 mA / cm 2 or more, although the film thickness is greatly increased, a stable oxide film can not be obtained because, for example, granular portions are included.
Therefore, a titanium oxide layer exhibiting a white color with a film thickness of about 40 μm or more and a lightness (L *) of 80 or more and a current density of 25 mA / cm 2 or more and 50 mA / cm 2 or less You can get it.

図7は、陽極酸化法における陽極であるチタン合金基板1に直流電流を流す時間ごとの表面の変化を示す写真である。図8は、陽極酸化法における陽極であるチタン合金基板1に直流電流を流す時間とチタン酸化物層の厚さとの関係を示す図である。   FIG. 7 is a photograph showing the change of the surface with time when a direct current is applied to the titanium alloy substrate 1 which is the anode in the anodic oxidation method. FIG. 8 is a view showing the relationship between the time for flowing a direct current to the titanium alloy substrate 1 which is the anode in the anodic oxidation method and the thickness of the titanium oxide layer.

電解時間1000秒(16分40秒)では、図7(a)に示すように、ナノスケール厚であり、μmオーダの膜厚の酸化物層を得ることができない。電解時間2300秒(38分20秒)では、図7(b)に示すように白色被膜が形成されているものの十分な膜厚が得られない。図8に示すように、膜厚40μmを得るには、電解時間3600秒(60分)以上、さらに、電解時間5400秒(90分)とすることが好ましい。なお、このときの電圧と時間との関係を示す時間−電圧曲線において、2300秒と3600秒との間で電圧の微少振動(セレーション)が観察される。そこで、この時間領域でチタン酸化物層の肥厚化が進むと考えられる。なお、陽極酸化によるチタン合金基板のチタン酸化物層の色調は、酸化物自身の色と被膜の厚みで決まる。歯冠色に近づけるために必要な明度(L*)と黄色味(+b*)は、被膜の肥厚化により上昇する。   In the electrolysis time of 1000 seconds (16 minutes and 40 seconds), as shown in FIG. 7A, it is impossible to obtain an oxide layer having a nanoscale thickness and a film thickness on the order of μm. At an electrolysis time of 2300 seconds (38 minutes and 20 seconds), although a white film is formed as shown in FIG. 7B, a sufficient film thickness can not be obtained. As shown in FIG. 8, in order to obtain a film thickness of 40 μm, it is preferable to set the electrolysis time to 3600 seconds (60 minutes) or more, and further to set the electrolysis time to 5400 seconds (90 minutes). In the time-voltage curve showing the relationship between the voltage and time at this time, minute oscillation (serration) of the voltage is observed between 2300 seconds and 3600 seconds. Therefore, it is considered that thickening of the titanium oxide layer proceeds in this time region. The color tone of the titanium oxide layer of the titanium alloy substrate by anodic oxidation is determined by the color of the oxide itself and the thickness of the film. The lightness (L *) and yellowness (+ b *) required to approach the crown color increase due to the thickening of the film.

この白色構造体の製造方法によれば、チタン合金基板、好ましくはTNTZ基板を陽極酸化し、基板表面に白色酸化被膜を生成させることでTNTZ基板を白色化することができる。陽極酸化時間の増加に伴い生成酸化被膜は厚膜化する。具体的には、電解時間約1.5hの陽極酸化処理を行うことで酸化被膜は歯冠色により近い明度(L*)と黄色味(b*)を有する膜厚となる。これによって、歯科材料としての審美性への高い要求に答えることが可能となる。更に、常温での陽極酸化法によってチタン酸化物層を形成することによって、TNTZ基板へ拡散する酸素を抑制することができる。そこで、酸素の拡散に起因する基板の脆化を防ぎ、TNTZが持つ本来の機械的性質を維持することが期待できる。   According to this method for producing a white structure, the TNTZ substrate can be whitened by anodizing a titanium alloy substrate, preferably a TNTZ substrate, and forming a white oxide film on the substrate surface. As the anodic oxidation time increases, the formed oxide film thickens. Specifically, by performing anodizing treatment for an electrolysis time of about 1.5 h, the oxide film becomes a film thickness having brightness (L *) and yellowishness (b *) closer to the crown color. This makes it possible to respond to the high demand for aesthetics as a dental material. Furthermore, oxygen diffused to the TNTZ substrate can be suppressed by forming the titanium oxide layer by anodic oxidation at normal temperature. Therefore, it can be expected to prevent the embrittlement of the substrate due to the diffusion of oxygen and to maintain the original mechanical properties possessed by TNTZ.

(実施例)
以下に、陽極酸化を用いたTNTZ基板上への白色のチタン酸化物被膜生成の実施例について説明する。
(Example)
In the following, an example of the formation of a white titanium oxide film on a TNTZ substrate using anodic oxidation is described.

<試料作製>
Ti−29Nb−13Ta−4.6Zr(以下、TNTZ)の丸棒(φ13)を厚さ1mmにファインカッターで切断した。その後、面性状を一様とするため、エメリー紙を用いて#1500まで研磨した。さらに、表面酸化物を除去するために酸洗剤に90秒浸漬した後、陽極クリップに試料を吊るすため、試料にスポット溶接でTiワイヤを溶接した。その後アセトン中で超音波洗浄し、乾燥させた。陽極酸化処理前には、試験片裏面と側面にフロンマスクによるマスキング塗装を行った。
<Sample preparation>
A round bar (φ13) of Ti-29Nb-13Ta-4.6Zr (hereinafter, TNTZ) was cut to a thickness of 1 mm with a fine cutter. After that, in order to make the surface properties uniform, it was polished to # 1500 using emery paper. Furthermore, after dipping for 90 seconds in an acid detergent to remove surface oxides, a Ti wire was welded to the sample by spot welding in order to suspend the sample on the anode clip. It was then ultrasonically washed in acetone and dried. Before anodizing treatment, a fluorocarbon mask was used for masking coating on the back surface and the side surface of the test piece.

<陽極酸化処理>
陽極をTNTZ基板とし、陰極をPtとして、電解液中で20、25、30、40、50、60、75、80mA/cmの電流密度の電流を陽極に流し陽極酸化処理を行った。陽極酸化時間は最大で5400秒(90分)とした。陽極酸化処理中は、デジタルマルチメータで電圧を測定した。陽極酸化後、試料を純水中で超音波洗浄し、その後、アナターゼ相の結晶化促進の目的で723K(450℃)にて5時間の焼鈍を行った。50mA/cmにて異なる陽極酸化時間における試料の表面写真を図7に示す。また、電解時間5400秒(90分)で固定し、異なる電流密度で陽極酸化した写真を図4に示す。図7(a)に示すように、電解時間1000秒(16分40秒)では溶接部周辺や試料辺縁部を除き灰色被膜に覆われていた。図7(b)〜(d)に示すように、電解時間が2300秒(38分20秒)以降では白色被膜の生成が確認された。図8に示すように、電解時間増加に伴い試料表面全体に均一に被膜が形成された。図4では、25mA/cm以上の何れの電解条件においても、表面には黄味がかった白色の被膜が形成されたが、75mA/cmの条件では生成酸化物が顆粒状に付着したようになり、不均一な被膜となった。従って、均一な白色被膜を得るためには75mA/cmより低い電流密度の処理が適当である。また、図5Aに示すように、電流密度20mA/cmではナノスケール厚の膜しか得られず、厚膜は得られなかった。また、図5Bに示すように、電流密度60mA/cmでは、膜表面にムラがみられ、酸化膜が一部剥がれている。さらに、図5Cに示すように、電流密度80mA/cmでは、電流密度60mA/cmと同様に膜表面にムラがみられ、酸化膜が一部剥がれている。
そこで、電流密度として25mA/cm以上であって、50mA/cm以下の条件で、膜厚40μm以上、明度(L*)が80以上の白色を呈し表面が均一なチタン酸化物層を得ることができる。
<Anodizing treatment>
An anodic oxidation treatment was carried out by passing a current having a current density of 20, 25, 30, 40, 50, 60, 75, 80 mA / cm 2 in the electrolytic solution, using the anode as a TNTZ substrate and the cathode as Pt. The anodic oxidation time was 5400 seconds (90 minutes) at the maximum. During the anodizing process, the voltage was measured with a digital multimeter. After anodic oxidation, the sample was subjected to ultrasonic cleaning in pure water, and then annealing was performed at 723 K (450 ° C.) for 5 hours for the purpose of promoting crystallization of the anatase phase. A surface photograph of the sample at different anodic oxidation times at 50 mA / cm 2 is shown in FIG. Further, a photograph fixed at an electrolysis time of 5400 seconds (90 minutes) and anodized at different current densities is shown in FIG. As shown to Fig.7 (a), in electrolysis time 1000 second (16 minutes 40 seconds), it covered with the gray film except the welding part periphery and the sample edge part. As shown to FIG.7 (b)-(d), formation of the white film was confirmed after electrolysis time 2300 second (38 minutes 20 second). As shown in FIG. 8, the film was uniformly formed on the entire surface of the sample as the electrolysis time increased. In FIG. 4, a yellowish white film was formed on the surface under any electrolytic condition of 25 mA / cm 2 or more, but the formed oxide was adhered in the form of granules under the condition of 75 mA / cm 2. It became an uneven film. Therefore, treatment with a current density lower than 75 mA / cm 2 is appropriate to obtain a uniform white film. Also, as shown in FIG. 5A, at a current density of 20 mA / cm 2 , only a film of nanoscale thickness was obtained, and no thick film was obtained. Further, as shown in FIG. 5B, at a current density of 60 mA / cm 2 , unevenness is observed on the film surface, and the oxide film is partly peeled off. Furthermore, as shown in FIG. 5C, the current density of 80 mA / cm 2, current density of 60 mA / cm 2 and similarly unevenness was observed in the film surface, the oxide film is peeled off partially.
Therefore, a titanium oxide layer exhibiting a white color with a film thickness of 40 μm or more and a lightness (L *) of 80 or more is obtained under a condition of 25 mA / cm 2 or more and 50 mA / cm 2 or less as a current density. be able to.

<酸化被膜構成相の同定>
図9は、実施の形態1で得られた白色構造体の表面のX線回折パターンを示す図である。
陽極酸化処理後(電流密度50mA/cm、電解時間5400秒(90分))の試料表面の相同定をX線回折装置により行った。X線回折はCu管球を用い、電圧40kVおよび電流20mA、回折角2θ=30°〜80°の範囲で行った。得られた酸化被膜表面のX線回折ピークを図9に示す。同定されたアナターゼ型TiOのピークは、白色酸化被膜からのものであり、β−Tiのピークは、TNTZ基板からのものである。高温酸化で生成するTiO被膜は主にルチル型構造を有しているのに対し、図9に示すように、今回生成したTiO被膜は主にアナターゼ構造を有している。そこで、光触媒活性にも期待できる。
<Identification of oxide film composition phase>
FIG. 9 is a diagram showing an X-ray diffraction pattern of the surface of the white structure obtained in Embodiment 1.
The phase identification of the sample surface after anodic oxidation treatment (current density 50 mA / cm 2 , electrolysis time 5400 seconds (90 minutes)) was performed by an X-ray diffractometer. The X-ray diffraction was performed using a Cu tube at a voltage of 40 kV, a current of 20 mA, and a diffraction angle 2θ of 30 ° to 80 °. The X-ray diffraction peak of the obtained oxide film surface is shown in FIG. The identified anatase type TiO 2 peak is from the white oxide film, and the β-Ti peak is from the TNTZ substrate. While the TiO 2 film formed by high temperature oxidation mainly has a rutile structure, as shown in FIG. 9, the TiO 2 film formed this time mainly has an anatase structure. Therefore, the photocatalytic activity can also be expected.

<分光測色計による酸化被膜色の測定>
図10は、陽極酸化被膜と高温酸化被膜との色調を対比する図である。図11は、陽極酸化法における陽極であるチタン合金基板に流れる直流電流の電流密度と、得られる酸化被膜の色調との関係を示す図である。
色調の定量評価をするため、分光測色計を用いて表面酸化被膜の測色を行って、L*a*b*表色系で数値化した。ここで、L*は明度に対応し、a*は赤−緑の色相に対応し、b*は黄−青の色相に対応している。測色計は、コニカミノルタ製のCM−5を用いた。
陽極酸化被膜と高温酸化被膜とのそれぞれの各条件の試料において、3か所の測定を行い、それらの平均値をプロットした。色の評価基準は、日本人の上顎中切歯の中心部の実測平均値(L*=75、a*=6、b*=16)とし、目標の値とした。図10に、高温酸化(酸化温度:1000℃、保持時間:1800秒(30分))と、XRD測定と同じ酸化条件における陽極酸化により生成した各試料被膜の明度L*、赤−緑a*、黄−青b*の相関を示す。陽極酸化被膜は、高温酸化被膜と比較してL*、b*が上昇し、日本人の歯冠色に近づいたものと考えられる。b*は、膜厚増加に伴い上昇すると報告されており、厚膜が得られる陽極酸化被膜は色調の点においても高温酸化被膜よりも歯科材料に適している。
<Measurement of oxide film color by spectrocolorimeter>
FIG. 10 is a view comparing the color tone of the anodized film and the high temperature oxidized film. FIG. 11 is a view showing the relationship between the current density of direct current flowing to the titanium alloy substrate which is the anode in the anodic oxidation method and the color tone of the obtained oxide film.
In order to evaluate the color tone quantitatively, colorimetry of the surface oxide film was performed using a spectrocolorimeter, and digitization was performed using the L * a * b * color system. Here, L * corresponds to the lightness, a * corresponds to the red-green hue, and b * corresponds to the yellow-blue hue. As a colorimeter, CM-5 manufactured by Konica Minolta was used.
Three measurements were made on samples of each of the anodic oxide film and the high temperature oxide film, and their average values were plotted. The evaluation criteria of color were taken as the target value, with the average value measured at the center of the upper central incisors of Japanese (L * = 75, a * = 6, b * = 16). In FIG. 10, the lightness L * and red-green a * of each sample film formed by anodic oxidation under the same oxidation conditions as high temperature oxidation (oxidation temperature: 1000 ° C., retention time: 1800 seconds (30 minutes)). , Yellow-blue b * correlation. It is considered that the anodized film has L * and b * increased in comparison with the high temperature oxidized film, and approaches the crown color of the Japanese. b * is reported to increase as the film thickness increases, and the anodized film from which a thick film is obtained is more suitable for dental materials than the high temperature oxide film in terms of color tone.

図4で示した試料について、電流密度と色調の関係を図11に示す。図6に示したように、電流密度の上昇に伴い膜厚は増加したが、陽極酸化の場合、電流密度の上昇に対してa*、b*のいずれの色調についても大きな変化は見られなかった。高温酸化による酸化膜厚さと色調の関係の調査結果では、膜厚増加に伴いL*は上昇し、膜厚約13μm〜15μmでL*が75を超えて白色と視認可能となるが、膜厚がおよそ25μmを超えるとL*の上昇は緩やかになり、膜厚増加に伴い殆ど同じか僅かに低下する。従って、膜厚が40μm以上の本実施例では、高温酸化の場合と同様に、膜厚増加に対してL*がほぼ同じか、膜厚増加につれてL*が緩やかに減少する領域にあると考えられる。   The relationship between current density and color tone is shown in FIG. 11 for the sample shown in FIG. As shown in FIG. 6, the film thickness increased as the current density increased, but in the case of anodic oxidation, no significant change was observed in any of the color tones a * and b * with respect to the increase in current density. The According to the result of the investigation of the relation between the oxide film thickness and the color tone by high temperature oxidation, L * increases with the increase of film thickness and L * becomes over 75 at film thickness of about 13 μm to 15 μm and it becomes visible as white When L exceeds about 25 μm, the rise of L * becomes moderate, and almost the same or slightly lower as the film thickness increases. Therefore, in the present example having a film thickness of 40 μm or more, as in the case of high temperature oxidation, it is considered that L * is substantially equal to the film thickness increase or in a region where L * gradually decreases with the film thickness increase. Be

<断面観察>
電流密度50mA/cm、電解時間5400秒(90分)にて陽極酸化した酸化被膜の断面観察結果を図3A及び図3Bに示す。被膜を拡大すると、偏平な空洞が周期的に配列する構造が観察された。高温酸化被膜の膜厚が平均約13μm〜18μmであるのに対し、陽極酸化被膜は平均して60μmを越える厚膜を得た。この厚膜から、上述の通り日本人平均歯冠色に近い色調を得ることが出来た。
<Sectional observation>
The cross-sectional observation results of the oxide film anodized at a current density of 50 mA / cm 2 and an electrolysis time of 5400 seconds (90 minutes) are shown in FIGS. 3A and 3B. When the coating was expanded, a structure in which flat cavities were periodically arranged was observed. While the film thickness of the high temperature oxide film is about 13 μm to 18 μm on average, the anodized film obtained a thick film exceeding 60 μm on average. From this thick film, it was possible to obtain a color tone close to the Japanese average crown color as described above.

<酸化被膜断面観察>
図6は、SEM断面観察にて計測した酸化膜厚の電流密度との関係(電解時間5400秒(90分))を示す図である。
酸化被膜厚さの測定を、走査型電子顕微鏡(SEM)を用いて断面観察により行った。
図6に示すように、電流密度25mA/cmで既に40μm程度の膜厚を有し、電流密度上昇に伴い徐々に膜厚が増加し、50mA/cmまで漸増して60μmに達する。さらに電流密度が増すと、電流密度60mA/cmでは中心厚さは90μm程度に達するものの、厚さのばらつきが大きくなり、ムラがあることがわかる。さらに電流密度75mA/cmでは200μm近くまで急激に膜厚が増加したことがわかる。電流密度80mA/cmではむしろ75mA/cmの場合より膜厚が低下するように見える。これは一部に剥がれを生じている可能性がある。なお、電流密度75mA/cm以上の場合の急激な膜厚増加は、図4(e)に示すように、顆粒状の粗い膜の形成に伴う被膜内のボイド形成による見かけの膜厚増加によると考えられる。一方、電流密度20mA/cmでは、ナノスケール厚の膜しか得られず、厚膜のチタン酸化物層は得られなかった。
<Oxide film cross section observation>
FIG. 6 is a diagram showing the relationship between the oxide film thickness and the current density measured by SEM cross-sectional observation (electrolysis time 5400 seconds (90 minutes)).
The measurement of the oxide film thickness was performed by cross-sectional observation using a scanning electron microscope (SEM).
As shown in FIG. 6, the film thickness is already about 40 μm at a current density of 25 mA / cm 2 , and the film thickness gradually increases as the current density increases, and gradually increases to 50 mA / cm 2 to reach 60 μm. When the current density further increases, although the center thickness reaches about 90 μm at a current density of 60 mA / cm 2 , the thickness variation is large and it can be seen that there is unevenness. Further, it can be seen that the film thickness rapidly increases to near 200 μm at a current density of 75 mA / cm 2 . At a current density of 80 mA / cm 2 , the film thickness seems to be reduced rather than at 75 mA / cm 2 . This may have caused part peeling. In addition, as shown in FIG. 4 (e), the rapid increase in film thickness in the case of current density 75 mA / cm 2 or more is due to the apparent film thickness increase due to the void formation in the film accompanying the formation of granular rough film. it is conceivable that. On the other hand, at a current density of 20 mA / cm 2 , only a film of nanoscale thickness was obtained, and a thick titanium oxide layer was not obtained.

<金属基板への酸素拡散比較>
図13は、高温酸化試料及び陽極酸化試料について、各々酸化被膜−基板界面より基板側の5μm深さ地点での酸素のEPMAによる定量分析結果を示す図である。
酸化条件は、高温酸化が酸化温度1000℃、保持時間1800秒(30分)である。一方、陽極酸化法では、電流密度50mA/cm、電解時間5400秒(90分)である。高温酸化試料では、界面から基板側の5μm深さの酸素濃度が約8重量%であるのに対し、今回作製した陽極酸化による試料では、界面から基板側の5μm深さの酸素濃度が約2重量%であった。すなわち、常温の酸化法である陽極酸化法を用いることで、基板への酸素拡散及び固溶が抑制された。
<Comparison of oxygen diffusion to metal substrate>
FIG. 13 is a view showing the results of quantitative analysis of oxygen by EPMA at a point 5 μm deep on the substrate side from the oxide film-substrate interface for each of the high temperature oxidation sample and the anodized sample.
The oxidation conditions are high-temperature oxidation at an oxidation temperature of 1000 ° C. and a holding time of 1800 seconds (30 minutes). On the other hand, in the anodic oxidation method, the current density is 50 mA / cm 2 and the electrolysis time is 5400 seconds (90 minutes). In the high temperature oxidation sample, the oxygen concentration of 5 μm deep on the substrate side from the interface is about 8% by weight, while in the anodic oxidation sample prepared this time, the oxygen concentration of 5 μm deep on the substrate side from the interface is about 2 It was% by weight. That is, oxygen diffusion and solid solution to the substrate were suppressed by using the anodic oxidation method which is an oxidation method at normal temperature.

<ビッカース硬度比較>
図14は、チタン合金基板について、高温酸化を行った場合と陽極酸化を行った場合の酸化膜/金属基板界面からおよそ10μm基板側で取得したビッカース硬度の値を対比する図である。ビッカース硬度は、マイクロビッカース硬度計で荷重0.1N、酸化膜/金属基板界面からおよそ10μm基板側で取得した。図14に示すように、未処理の場合のビッカース硬度は191Hvであった。陽極酸化の場合には231Hv程度と、未処理の場合に対しておよそ+17%程度の増加に留まっていた。一方、高温酸化の場合にはビッカース硬度が563Hvと未処理の場合の約3倍程度となっていた。これは、高温酸化の場合のほうが陽極酸化の場合より界面の酸素濃度が低いため、硬さが増していると考えられる。つまり、高温酸化のほうが基板への酸素拡散が進行し、より脆化が進行しており、一方、陽極酸化のほうが基板への酸素拡散が抑制されているので脆化を抑制できていると考えられる。
<Vickers hardness comparison>
FIG. 14 is a graph comparing Vickers hardness values obtained on the side of an about 10 μm substrate from the oxide film / metal substrate interface in the case of performing high temperature oxidation and performing anodic oxidation on a titanium alloy substrate. The Vickers hardness was obtained with a micro Vickers hardness tester at a load of 0.1 N and at a substrate side of approximately 10 μm from the oxide film / metal substrate interface. As shown in FIG. 14, the Vickers hardness in the case of no treatment was 191 Hv. In the case of anodization, it remained at about 231 Hv, and about + 17% increase compared with the case of no treatment. On the other hand, in the case of high temperature oxidation, the Vickers hardness was 563 Hv, which was about 3 times that in the case of no treatment. This is considered that the hardness is increased because the oxygen concentration at the interface is lower in the case of high temperature oxidation than in the case of anodization. That is, oxygen diffusion to the substrate proceeds and embrittlement progresses more in the case of high temperature oxidation, while it is considered that embrittlement can be suppressed because oxygen diffusion in the substrate is suppressed in the anodic oxidation. Be

なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。   Note that the present disclosure includes appropriate combinations of any of the various embodiments and / or examples described above, and the respective embodiments and / or examples. The effects of the embodiment can be exhibited.

本発明は、歯科治療・矯正の領域において、単に耐久性等の機能面のみならず、近年特にニーズの高い審美性領域において、「白く輝く健康な歯」を実現するために極めて有効な可能性を秘めるものである。   The present invention is extremely effective in realizing "white and healthy teeth" not only in functional areas such as durability but also in the aesthetic area where the needs are particularly high in the field of dental treatment and correction. The secret of

歯科医療分野では、近年では貴金属相場の不安定さや、より自然さを求める患者の要望の高まり、レジンやセラミクスの高機能化に伴い、金属から非金属の需要が伸びている。しかし、先の特性では未だ金属に利があり、以前より歯科医療従事者の間では、金属の優れた機械的性質と寸法安定性に、審美性を兼ね備えた「白い金属」が切望されている。本発明により、Ti合金においてその「白い金属」を現実にし、患者だけでなく、歯科医師や技工士にとっても、従来材より高い満足と操作性を提供する技術となる。更に、歯科補綴物の作製は、これまでの技工士による総手作業から、CAD/CAMや3Dプリンターを用いたオートメーション化へとシフトしている。陽極酸化はシンプルな形状のみならず、複雑な形状を有する歯科補綴物へも全面に安定した白色化を行え、更にマスキング等で白色化部分を制限することも可能である。本技術は、プロセス自体が比較的簡便であり、他の酸化技術と比較して作製時間短縮やコスト削減の効果を有すると共に、生成するTiO被膜がアナターゼ構造を有する。このことから光触媒機能にも期待できる高付加価値の補綴物の提供が可能になる。 In the dental care field, in recent years, demand for metals and nonmetals has been growing along with the instability of precious metal prices, the increasing demand of patients seeking more naturalness, and the sophistication of resins and ceramics. However, the above properties still favor metals, and dental workers have long been keen on the "white metals" that combine aesthetics with the excellent mechanical properties and dimensional stability of metals. . According to the present invention, this "white metal" is realized in Ti alloy, and it becomes a technology that provides higher satisfaction and operability than conventional materials not only for patients but also for dentists and technicians. In addition, the production of dental prostheses has shifted from the total manual work by traditional technicians to automation using CAD / CAM and 3D printers. Anodization can perform stable whitening on the entire surface not only of a simple shape but also of a dental prosthesis having a complicated shape, and it is also possible to limit the whitened portion by masking or the like. The present technology is relatively simple in the process itself, and has effects of shortening the production time and cost as compared with other oxidation technologies, and the produced TiO 2 film has an anatase structure. This makes it possible to provide a high-value-added prosthesis that can also be expected to have a photocatalytic function.

1 陽極(チタン合金基板)
2 陰極
3 直流電源
4 スイッチ
5 電解液
10 電解槽
12 チタン合金基板
14 チタン酸化物層
16 空洞
20 白色構造体
1 Anode (titanium alloy substrate)
Reference Signs List 2 cathode 3 DC power supply 4 switch 5 electrolyte 10 electrolytic cell 12 titanium alloy substrate 14 titanium oxide layer 16 cavity 20 white structure

Claims (6)

チタン合金基板と、
前記チタン合金基板の表面のアナターゼ型の二酸化チタンを主成分とする膜厚40μm以上のチタン酸化物層と、
を備え、
明度(L*)が80以上で白色を呈する、白色構造体。
Titanium alloy substrate,
A titanium oxide layer mainly composed of anatase type titanium dioxide on the surface of the titanium alloy substrate and having a thickness of 40 μm or more;
Equipped with
A white structure exhibiting a white color at a lightness (L *) of 80 or more.
前記チタン合金基板は、Ti−Nb−Ta−Zr合金からなる、請求項1に記載の白色構造体。   The white structure according to claim 1, wherein the titanium alloy substrate is made of a Ti-Nb-Ta-Zr alloy. 前記チタン酸化物層の色調は、明度(L*)が80以上、赤−緑色相(a*)が−2以上、黄−青色相(b*)が10以上の値を有する、請求項1又は2に記載の白色構造体。   The color tone of the titanium oxide layer has a lightness (L *) of 80 or more, a red-green phase (a *) of -2 or more, and a yellow-blue phase (b *) of 10 or more. Or the white structure as described in 2. 前記チタン酸化物層と前記チタン合金基板との界面から10μmの前記チタン合金基板側の面について、荷重0.1Nでのビッカース硬度が未処理の場合に対して+30%以内の範囲内である、請求項1から3のいずれか一項に記載の白色構造体。   The Vickers hardness at a load of 0.1 N is within a range of + 30% or less with respect to the untreated case with respect to the surface on the titanium alloy substrate side of 10 μm from the interface between the titanium oxide layer and the titanium alloy substrate. The white structure according to any one of claims 1 to 3. チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を有する白色構造体の製造方法であって、
チタン合金基板を電解液に陽極として浸漬し、前記電解液に陰極を浸漬する工程と、
陽極である前記チタン合金基板と電解液に浸漬した陰極との間に電流を流して陽極酸化法によって前記チタン合金基板の表面に二酸化チタンを主成分とするチタン酸化物層を形成する工程と、
を含み、
前記陽極酸化法によってチタン酸化物層を形成する工程において、電流密度25mA/cm以上、50mA/cm以下の電流を前記チタン合金基板に流す、
白色構造体の製造方法。
A method for producing a white structure having a titanium oxide layer mainly composed of titanium dioxide on the surface of a titanium alloy substrate,
Immersing the titanium alloy substrate in the electrolyte as an anode, and immersing the cathode in the electrolyte;
Forming a titanium oxide layer mainly composed of titanium dioxide on the surface of the titanium alloy substrate by an anodic oxidation method by supplying an electric current between the titanium alloy substrate as an anode and a cathode immersed in an electrolytic solution;
Including
In the step of forming a titanium oxide layer by the anodic oxidation method, a current having a current density of 25 mA / cm 2 or more and 50 mA / cm 2 or less is supplied to the titanium alloy substrate.
Method for producing a white structure.
前記チタン合金基板として、Ti−Nb−Ta−Zr合金基板を用いると共に、前記電解液としてホウ酸アンモニウム塩を含む電解液を用いる、請求項5に記載の白色構造体の製造方法。   The method for manufacturing a white structure according to claim 5, wherein a Ti-Nb-Ta-Zr alloy substrate is used as the titanium alloy substrate, and an electrolyte containing an ammonium borate salt is used as the electrolyte.
JP2017244190A 2017-12-20 2017-12-20 White structure and its manufacturing method Active JP6991480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017244190A JP6991480B2 (en) 2017-12-20 2017-12-20 White structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017244190A JP6991480B2 (en) 2017-12-20 2017-12-20 White structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019107415A true JP2019107415A (en) 2019-07-04
JP6991480B2 JP6991480B2 (en) 2022-02-03

Family

ID=67178368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244190A Active JP6991480B2 (en) 2017-12-20 2017-12-20 White structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6991480B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176339A (en) * 1985-01-29 1986-08-08 京セラ株式会社 Blade shaped bone implant
JP2008221088A (en) * 2007-03-09 2008-09-25 Yokohama National Univ Oxide catalyst and decomposition method of organic component in gas using the same
JP2013147439A (en) * 2012-01-18 2013-08-01 Nagoya Institute Of Technology Method for whitely coating titanium alloy
JP3209960U (en) * 2015-10-30 2017-04-20 アップル インコーポレイテッド Anodized film with improved characteristics
JP2017141223A (en) * 2016-02-08 2017-08-17 公立大学法人兵庫県立大学 COMPOSITE LAYERED STRUCTURE UTILIZING SELF-ORGANIZED LAYERED STRUCTURE OF HIGH TEMPERATURE OXIDIZED TiO2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176339A (en) * 1985-01-29 1986-08-08 京セラ株式会社 Blade shaped bone implant
JP2008221088A (en) * 2007-03-09 2008-09-25 Yokohama National Univ Oxide catalyst and decomposition method of organic component in gas using the same
JP2013147439A (en) * 2012-01-18 2013-08-01 Nagoya Institute Of Technology Method for whitely coating titanium alloy
JP3209960U (en) * 2015-10-30 2017-04-20 アップル インコーポレイテッド Anodized film with improved characteristics
JP2017141223A (en) * 2016-02-08 2017-08-17 公立大学法人兵庫県立大学 COMPOSITE LAYERED STRUCTURE UTILIZING SELF-ORGANIZED LAYERED STRUCTURE OF HIGH TEMPERATURE OXIDIZED TiO2

Also Published As

Publication number Publication date
JP6991480B2 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
ES2573290T3 (en) Metal manufacturing method with biocidal properties
US5354390A (en) Process for obtaining tissue-protective implants prepared from titanium or a titanium-base microalloy
Nakajima et al. Titanium in Dentistry Development and Research in the USA
Sowa et al. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions
US20090092943A1 (en) Method for manufacturing metal with ceramic coating
US8057657B2 (en) Treatment of an osteointegrative interface
Uporabo A review of the surface modifications of titanium alloys for biomedical applications
US20130180627A1 (en) Composite material for dental prosthesis and method for manufacturing the same
Katahira et al. Generation of bio-compatible titanium alloy surfaces by laser-induced wet treatment
US20110311946A1 (en) Mutallic dental implants and prosphetic appliance having colored ceramic surfaces
JP6991480B2 (en) White structure and its manufacturing method
KR101448148B1 (en) Titanium-based Alloy Comprising Titanium-Niobium-Tantalum and Dental Implant Containing the Same
EP1515759A1 (en) An osteointegrative interface for implantable prostheses and method for its manufacture
Strnad et al. Influence of surface preparation on morphology of self-organized nanotubular oxide layers developed on Ti6Al4V alloy
EP2180083B1 (en) Surface treatment for titanium, alloys, containing titanium, alloys containing titatnium oxides, for medical, surgical and implantological use
US20050214709A1 (en) Metallic archwires and dental crowns of various colors and their preparation methods
JP6879540B2 (en) Composite layered structure utilizing the self-assembled layered structure of high temperature oxidized TiO2
KR101042405B1 (en) HA coating methods after two-step surface modification of dental implant for bioactivity
US7704073B2 (en) Orthodontic archwires of various colors and their preparation methods
Manole et al. The electrochemical stability in NaCl solution of nanotubes and nanochannels elaborated on a new Ti-20Zr-5Ta-2Ag alloy
US20090186313A1 (en) Metallic dental devices with tooth colors and their preparation methods
Shoreibah Preparation and Characterization of TiO2-SiO2 Bioceramic Coating on Ti Alloy via Electrochemical Anodization and Its Effect on Corrosion Resistance
Rodriguez Titanium Ion Leakage in Regard to Anodized Titanium: Pilot Study
KR20030091786A (en) Method for modifying surfaces of titanium implant by micro-arc oxidation
Manjaiah et al. Surface engineering of titanium for biomedical applications by anodizing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6991480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350