JP2019105823A - Method for designing lens for eyeglasses and lens for glasses - Google Patents

Method for designing lens for eyeglasses and lens for glasses Download PDF

Info

Publication number
JP2019105823A
JP2019105823A JP2018148917A JP2018148917A JP2019105823A JP 2019105823 A JP2019105823 A JP 2019105823A JP 2018148917 A JP2018148917 A JP 2018148917A JP 2018148917 A JP2018148917 A JP 2018148917A JP 2019105823 A JP2019105823 A JP 2019105823A
Authority
JP
Japan
Prior art keywords
lens
depth
degrees
power
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018148917A
Other languages
Japanese (ja)
Other versions
JP6803615B2 (en
Inventor
泰史 宮島
Yasushi Miyajima
泰史 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Optical Industrial Co Ltd
Original Assignee
Itoh Optical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Optical Industrial Co Ltd filed Critical Itoh Optical Industrial Co Ltd
Publication of JP2019105823A publication Critical patent/JP2019105823A/en
Application granted granted Critical
Publication of JP6803615B2 publication Critical patent/JP6803615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Eyeglasses (AREA)

Abstract

To provide a method for designing a lens for eyeglasses where a front lens surface is set with a radius of curvature of 150 mm or less, and with which it is possible to obtain a greater depth of field extension effect in a region close to lens periphery than possible before.SOLUTION: A combination is made from an average power stabilization component, expressed by Br+Cr+Dr+Er(where, r is the distance from an axis z, and B, C, D, E are constants), the axis z representing an axis in the longitudinal direction passing through the optical center of a lens, which suppresses a change of average power in a lens plane, a depth of field extension component expressed by Ar(where, A is a constant), which extends the depth of field, and further a camber angle correction component, expressed on a plurality of divided lines radially extending from the optical center by F(θ)r+G(θ)r+H(θ)r+I(θ)r(where, F(θ), G(θ), H(θ), I(θ) are constants, θ is an angle from an axis x orthogonal to the axis z), which works so as to cancel out a change of average power that occurs when the optical axis of the lens is titled at a prescribed camber angle, the combination being added to the z coordinate value of rear surface 2 of the lens that is determined on the basis of prescribed power.SELECTED DRAWING: Figure 11

Description

本発明は、被写界深度延長効果を備えた眼鏡用レンズおよびその設計方法に関し、特にレンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズおよびその設計方法に関する。   The present invention relates to an eyeglass lens having a depth-of-field extension effect, and more particularly, to an eyeglass lens in which the front surface of the lens is set to have a curvature radius of 150 mm or less and a design method thereof.

下記特許文献1には、レンズ中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定される屈折面のz座標値に、Ar3で表される焦点深度延長成分が付加された視力矯正用レンズが記載されている。このように焦点深度(被写界深度)延長成分が付加されたレンズは、ピントが合って見える範囲が広がるので、広い範囲でボケの少ない画像を得ることができる。また、眼鏡装用者は、眼の調整力を使ったピント合せの動作が軽減され、調節性疲労が減少する。このような焦点深度(被写界深度)延長成分が付加されたレンズは、動く物体の視認も容易となるため、特にスポーツ用レンズとして好適に用いることができる。 In the following Patent Document 1, assuming that the axis in the front-rear direction passing through the lens center is the z axis and the direction toward the rear of the lens is the positive direction of the z axis, , A vision correction lens to which the focal depth extension component represented by Ar 3 is added. As described above, the lens to which the focal depth (field depth) extension component is added expands the range viewed in focus, and therefore an image with less blur can be obtained in a wide range. In addition, in the spectacles wearer, the operation of focusing using the adjustment power of the eye is reduced, and the adjustment fatigue is reduced. A lens to which such a focal depth (depth of field) extension component is added facilitates visual recognition of a moving object, and thus can be particularly suitably used as a sports lens.

特開2016−206338号公報JP, 2016-206338, A

ところで、近年、レンズの前面を深いカーブとしたハイカーブレンズが提供されている。かかるハイカーブレンズは、顔面に沿うように装着することで視野の向上、異物・風の入り込みの軽減を図ることができ、特にスポーツ用レンズとして用いられる場合が多い。
このようなハイカーブレンズに、上述の被写界深度延長機能を付与すれば、スポーツ用レンズとしての付加価値をより高めることができる。
しかしながら、前面を深いカーブとしたレンズに、単に上述のAr3で表される被写界深度延長成分を付加しても、レンズ周縁に向かうにつれて被写界深度延長効果が小さくなってしまう問題があった。
By the way, in recent years, a high curve lens in which the front surface of the lens is a deep curve has been provided. Such a high curve lens can improve the visual field and reduce the entry of foreign matter and wind by being worn along the face, and is often used as a sports lens in particular.
By adding the above-described depth of field extension function to such a high curve lens, it is possible to further enhance the added value as a sport lens.
However, even if the above-mentioned depth-of-field extension component represented by Ar 3 is simply added to a lens whose front surface is a deep curve, the depth-of-field extension effect decreases toward the lens periphery. there were.

本発明は、このような問題を解決するものであり、レンズ周縁に近い領域において従来以上の被写界深度延長効果を得ることが可能な、レンズ前面が曲率半径150mm以下で設定されている眼鏡用レンズの設計方法及び眼鏡用レンズを提供することを目的とする。   The present invention solves such a problem, and it is an eyeglass whose lens front surface has a radius of curvature of 150 mm or less, which can obtain an effect of extending the depth of field more than conventional in a region near the lens periphery. It is an object of the present invention to provide a lens design method and an eyeglass lens.

本発明は、レンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズの設計方法であって、
レンズの光学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定されるレンズの後面のz座標値に、Br4+Cr6+Dr8+Er10(但し、rはz軸からの距離、B,C,D,Eは定数)で表され、レンズ面内の平均度数の変動を抑制する平均度数安定化成分を付加する第1の非球面成分付加工程と、
前記レンズの後面のz座標値に、Ar3(但し、Aは定数)で表され、被写界深度を延長させる被写界深度延長成分を付加する第2の非球面成分付加工程と、を備えていることを特徴とする。
The present invention is a method of designing a lens for spectacles, wherein the front surface of the lens is set to have a radius of curvature of 150 mm or less,
Assuming that the longitudinal axis passing through the optical center of the lens is the z axis and the direction toward the rear of the lens is the positive direction of the z axis, the z coordinate value of the rear surface of the lens determined based on the prescribed power is Br 4 + Cr 6 + Dr 8 + Er 10 (where r is the distance from the z axis, B, C, D and E are constants), and an average power stabilization component is added to suppress fluctuations in the average power in the lens surface. 1 aspheric component addition step,
A second aspheric component addition step of adding a depth-of-field extension component represented by Ar 3 (where A is a constant) and extending the depth of field to the z-coordinate value of the rear surface of the lens; It is characterized by having.

被写界深度延長の効果は、光学中心からレンズ周縁に向けて、レンズ面内の度数を変化させることで得ることができる。しかしながらAr3(Aは正の数)で表される非球面成分は、レンズ面内の度数を光学中心からレンズ周縁部に向けてマイナス側に変化させるのに対し、前面に曲率半径150mm以下の深いカーブが設定されているレンズでは、レンズ周縁に向かうにつれて度数がプラス側に変化するため、Ar3で表される非球面成分による被写界深度延長効果の一部が相殺され、レンズ周縁に近い領域での被写界深度延長効果が小さくなってしまっていた。 The effect of the depth of field extension can be obtained by changing the power in the lens surface from the optical center toward the lens peripheral edge. However, the aspheric surface component represented by Ar 3 (A is a positive number) changes the in-lens power in the negative direction from the optical center to the lens peripheral edge, but has a curvature radius of 150 mm or less on the front surface. In a lens in which a deep curve is set, the dioptric power changes toward the lens peripheral edge toward the lens peripheral edge, so a part of the depth-of-field extension effect by the aspheric surface component represented by Ar 3 is canceled out. The effect of extending the depth of field in the near area has become smaller.

そこで本発明では、先ずBr4+Cr6+Dr8+Er10で表される平均度数安定化成分を付加することにより、レンズ面内の各部における平均度数が略一定となるよう補正した上で、Ar3で表される被写界深度延長成分を付加するようになしたものである。本発明の設計方法によれば、レンズ周縁に近い領域での被写界深度延長効果の低下を抑制して、レンズ周縁に近い領域を通じて視認する場合であっても一定以上の被写界深度延長効果を得ることが可能な、レンズ前面が曲率半径150mm以下で設定されている眼鏡用レンズを提供することができる。 Therefore, in the present invention, the average dioptric power stabilizing component represented by Br 4 + Cr 6 + Dr 8 + Er 10 is first added to correct the average dioptric power in each part in the lens surface to be substantially constant, and then Ar 3 The depth of field extension component represented by is added. According to the design method of the present invention, it is possible to suppress the reduction in the depth of field extension effect in the area close to the lens periphery and extend the depth of field by a certain amount or more even when visualizing through the area close to the lens periphery It is possible to provide an eyeglass lens in which the lens front surface is set to have a curvature radius of 150 mm or less, which can obtain an effect.

また本発明の設計方法では、レンズの光学中心から放射状に延びるように設定された複数の分割線上において、F(θ)r4+G(θ)r6+H(θ)r8+I(θ)r10(但し、F(θ),G(θ),H(θ),I(θ)は定数、θは前記z軸と直交するx軸からの角度)で表され、装用者の正面視の視線に対し、レンズの光軸を所定のそり角で傾けた際に生じる平均度数の変化を打ち消すように働くそり角補正成分を、前記レンズの後面のz座標値に付加する第3の非球面成分付加工程を、更に備えておくことができる。
このようにすれば、これら第1,第2,第3の非球面成分付加工程で求めた各非球面成分を組合せて成るJ(θ)r3+K(θ)r4+L(θ)r6+M(θ)r8+N(θ)r10(但し、J(θ),K(θ),L(θ),M(θ) ,N(θ)は定数)で表される回転非対称の非球面成分が、前記レンズの後面の各分割線上のz座標値に付加される。
Further, in the design method of the present invention, F (θ) r 4 + G (θ) r 6 + H (θ) r 8 + I (θ) r is obtained on a plurality of dividing lines set so as to extend radially from the optical center of the lens. 10 (where F (θ), G (θ), H (θ), I (θ) are constants and θ is an angle from the x-axis orthogonal to the z-axis), and A third aspheric surface that adds to the z-coordinate value of the rear surface of the lens a warp angle correction component that works to cancel the change in average power that occurs when the optical axis of the lens is tilted at a predetermined warp angle with respect to the sight line. A component addition step can further be provided.
In this way, J (θ) r 3 + K (θ) r 4 + L (θ) r 6 formed by combining the respective aspheric surface components obtained in the first, second and third aspheric surface component addition steps. + M (θ) r 8 + N (θ) r 10 (where J (θ), K (θ), L (θ), M (θ), N (θ) are constants) A spherical component is added to the z-coordinate values on each parting line of the rear face of the lens.

レンズの前面が曲率半径150mm以下の深いカーブで設定されているレンズは、所定のそり角を有する眼鏡用フレームに装着される場合がある。このような場合、装用者の正面視の視線の方向とレンズの光軸方向との間にそり角に相当する傾きが生じ、その結果、装用者からみた平均度数が変化し、所定の被写界深度延長効果も得られなくなってしまう。このため本発明では、所定のそり角で傾けた際に生じる平均度数の変化を打ち消すように働くそり角補正成分を更に追加することにより、そり角に応じてレンズを傾斜させた場合でも、そり角がゼロの場合と同等もしくはこれに近似した被写界深度延長効果を得ることができる。   A lens in which the front surface of the lens is set by a deep curve having a curvature radius of 150 mm or less may be attached to an eyeglass frame having a predetermined deflection angle. In such a case, an inclination corresponding to the warpage angle occurs between the direction of the line of sight of the wearer and the direction of the optical axis of the lens, and as a result, the average dif- ference as seen from the wearer changes. The depth of field extension effect can not be obtained either. For this reason, according to the present invention, even if the lens is inclined according to the warpage angle by further adding a warpage angle correction component that works so as to cancel out the change of the average dioptricity caused when tilting at a predetermined warpage angle, It is possible to obtain a depth-of-field extension effect equal to or close to that when the angle is zero.

また本発明の設計方法では、前記レンズの後面を、被写界深度延長効果を発揮させる被写界深度延長領域と、それ以外の非被写界深度延長領域とに区画して、前記被写界深度延長領域に対して前記平均度数安定化成分および被写界深度延長成分を選択的に付加することができる。   Further, in the design method of the present invention, the rear surface of the lens is divided into a depth of field extension region that causes the depth of field extension effect to be exhibited and the other non-field depth extension regions, The average power stabilization component and the depth of field extension component can be selectively added to the depth of field extension region.

また本発明の設計方法では、被写界深度延長効果を発揮させる被写界深度延長領域を前記レンズの後面の周方向異なる位置に複数設定し、前記第2の非球面成分付加工程において、それぞれの被写界深度延長領域に異なる定数Aの値を設定することができる。   In the design method of the present invention, a plurality of depth-of-field extension regions for exerting the depth-of-field extension effect are set at different positions in the circumferential direction of the rear surface of the lens, and in the second aspheric component addition step. A different value of constant A can be set in the depth of field extension region of.

本発明の眼鏡用レンズは、レンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズであって、
前記レンズの全面もしくは一部に設定された被写界深度延長領域にて、
装用者の正面視の視線とレンズの光軸とを一致された状態で測定される平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量と、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量とが、ともに0.14〜0.46ディオプタの範囲内であることを特徴とする。
The spectacle lens of the present invention is a spectacle lens in which the front surface of the lens is set to have a curvature radius of 150 mm or less,
In the depth of field extension region set on the entire surface or a part of the lens,
The average dioptric power measured with the line of sight of the wearer in a front view and the optical axis of the lens being aligned changes from the optical center of the lens toward the lens peripheral edge to the negative side,
The power change in the first region where the rotational angle of the eye is in the range of 0 degrees to 20 degrees and the power change in the second region where the rotational angle of the eye is in the range of 20 degrees to 40 degrees are both 0.14 to It is characterized by being within the range of 0.46 diopters.

本発明の眼鏡用レンズによれば、レンズの光学中心からレンズ周縁に向けてマイナス側に変化させた被写界深度延長成分により、元の焦点のよりも遠方に被写界深度が延長されて、元の焦点のよりも遠方にある対象物にも容易にピントを合わせることができる。
なお、レンズの光学中心からレンズ周縁に向けての度数変化が大きい程、被写界深度延長効果自体は大きくなるが、レンズの中央部と周縁部とで大きな度数差が生じてしまう。本発明の眼鏡用レンズでは、それらのバランスを考慮して、レンズ中央側の第1領域、および、第1領域より外側の第2領域での度数変化量を、ともに0.14〜0.46ディオプタ(以降”D”とする場合がある)の範囲内とした。より好ましい範囲は0.15〜0.23ディオプタである。このようにすることでレンズの中央部と周縁部との間の度数差を抑えつつ、レンズ中央側の第1領域、および、第1領域より外側の第2領域で一定以上の被写界深度延長効果を得ることができる。
According to the spectacle lens of the present invention, the depth of field is extended farther than the original focus by the depth of field extension component which is changed from the optical center of the lens to the lens peripheral side toward the minus side. You can easily focus on an object that is farther than the original focus.
The greater the change in power from the optical center of the lens to the lens peripheral edge, the greater the depth-of-field extension effect itself, but the greater the power difference between the central portion and the peripheral portion of the lens. In the spectacle lens of the present invention, considering the balance between them, the power variation in the first region on the lens center side and the second region outside the first region are both 0.14 to 0.46. It was within the range of diopter (hereinafter sometimes referred to as "D"). A more preferred range is 0.15 to 0.23 diopters. In this way, while suppressing the power difference between the central portion and the peripheral portion of the lens, the first region at the center of the lens and the second region outside the first region have a certain depth of field or more. An extension effect can be obtained.

また本発明の眼鏡用レンズは、レンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズであって、
前記レンズの全面もしくは一部に設定された被写界深度延長領域にて、
装用者の正面視の視線に対しレンズの光軸を所定のそり角で傾けた状態で測定される平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量と、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量とが、ともに0.14〜0.46ディオプタの範囲内であることを特徴とする。
このようにすれば、所定のそり角を有する眼鏡用フレームに装着される場合でも、レンズの中央部と周縁部との間の度数差を抑えつつ、レンズ中央側の第1領域、および、第1領域より外側の第2領域で一定以上の被写界深度延長効果を得ることができる。
The spectacle lens of the present invention is a spectacle lens in which the front surface of the lens is set to have a radius of curvature of 150 mm or less.
In the depth of field extension region set on the entire surface or a part of the lens,
The average dioptric power measured when the optical axis of the lens is inclined at a predetermined deflection angle with respect to the line of sight of the wearer changes from the optical center of the lens to the lens peripheral edge toward the minus side,
The power change in the first region where the rotational angle of the eye is in the range of 0 degrees to 20 degrees and the power change in the second region where the rotational angle of the eye is in the range of 20 degrees to 40 degrees are both 0.14 to It is characterized by being within the range of 0.46 diopters.
In this way, even when mounted on an eyeglass frame having a predetermined deflection angle, the first region on the lens center side, while suppressing the power difference between the center portion and the peripheral portion of the lens, and A certain or more depth of field extension effect can be obtained in the second area outside the one area.

また本発明の眼鏡用レンズは、屈折率が1.608、レンズの前面が4.0〜4.9カーブで設定され、装用者の正面視の視線に対しレンズの光軸を10度のそり角で傾けた状態で用いられる眼鏡用レンズであって、
装用者の正面視の視線とレンズの光軸とを一致された状態で測定される平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の上下方向且つ回旋角0度〜20度の範囲の度数変化量が0.20〜0.25ディオプタ、眼球の上下方向且つ回旋角20度〜40度の範囲の度数変化量が0.60〜0.70ディオプタ、眼球の左右方向耳側且つ回旋角0度〜20度の範囲の度数変化量が0.20〜0.30ディオプタ、眼球の左右方向耳側且つ回旋角20度〜40度の範囲の度数変化量が0.50〜0.60ディオプタ、眼球の左右方向鼻側且つ回旋角0度〜20度の範囲の度数変化量が0.15〜0.25ディオプタ、眼球の左右方向鼻側且つ回旋角20度〜40度の範囲の度数変化量が0.50〜0.60ディオプタ、であることを特徴とする。
このようにすれば、10度のそり角を有する眼鏡用フレームに装着された場合に、レンズの中央部と周縁部との間の度数差を抑えつつ、レンズ中央側の回旋角0度〜20度の範囲の第1領域、および、第1領域より外側の回旋角20度〜40度の範囲の第2領域で一定以上の被写界深度延長効果を得ることができる。
The spectacle lens of the present invention has a refractive index of 1.608, a front surface of the lens is set by a curve of 4.0 to 4.9, and the optical axis of the lens is warped by 10 degrees with respect to the line of sight of the wearer. It is a lens for spectacles used in the state inclined by the angle,
The average dioptric power measured with the line of sight of the wearer in a front view and the optical axis of the lens being aligned changes from the optical center of the lens toward the lens peripheral edge to the negative side,
Vertical diopter of eyeball and diopter of 0.20 to 20 diopter, vertical diopter of eyeball and diopter of eyeball of 20 to 40 diopter of 0.60 ~ 0.70 diopter, lateral variation of eyeball from 0.20 to 0.30 diopter, lateral variation of eyeball from 20 to 40 degree Range of 0.50 to 0.60 diopters, the lateral side of the eye in the lateral direction and the rotational angle range of 0 to 20 degrees in the range of 0.15 to 0.25 diopters, the lateral direction of the eye It is characterized in that the frequency change amount on the nasal side and in the range of 20 degrees to 40 degrees of the rotation angle is 0.50 to 0.60 diopter.
In this way, when mounted on an eyeglass frame having a 10 degree warpage angle, the rotational angle between the central portion of the lens and the central portion is 0 to 20 while suppressing the power difference between the central portion and the peripheral portion of the lens. A certain depth of field extending effect can be obtained in the first region of the range of degrees and in the second region of the range of 20 degrees to 40 degrees of the turning angle outside the first region.

(a)は本発明の一実施形態の単焦点レンズの全体の概略図、(b)は同レンズの上半分を拡大した概略図である。(A) is the whole schematic of the single focus lens of one Embodiment of this invention, (b) is the schematic which expanded the upper half of the lens. 図1の単焦点レンズを説明するための図である。It is a figure for demonstrating the single focus lens of FIG. 被写界深度を説明するための図で、(a)は通常の単焦点レンズの場合、(b)は同実施形態に係る単焦点レンズの場合の説明図である。It is a figure for demonstrating the depth of field, (a) is an explanatory view in the case of the single focus lens which concerns on the case of the normal single focus lens, (b) concerning the embodiment. 図3とは異なる説明図で、(a)は明所における被写界深度、(b)は暗所における被写界深度、(c)は暗所において同実施形態に係るレンズを用いた場合の被写界深度、について説明するための図である。3 is an explanatory view different from FIG. 3, where (a) is the depth of field in a bright place, (b) is the depth of field in a dark place, and (c) is the lens according to the same embodiment in the dark It is a figure for demonstrating the depth of field of. 図1の単焦点レンズの効果を説明するための図である。It is a figure for demonstrating the effect of the single focus lens of FIG. 比較例のレンズ30aの平均度数分布等高線図である。It is an average power distribution contour map of the lens 30a of a comparative example. (a)は比較例のレンズ30bの平均度数分布等高線図、(b)はy軸方向に沿った断面での平均度数の変化を示した図である。(A) is a mean power distribution contour map of lens 30b of a comparative example, (b) is a figure showing change of the mean power in the section which met in the direction of the y-axis. (a)は実施例のレンズ30の平均度数分布等高線図、(b)はy軸方向に沿った断面での平均度数の変化を示した図である。(A) is an average power distribution contour map of the lens 30 of an Example, (b) is the figure which showed the change of the average power in the cross section which followed the y-axis direction. 実施例のレンズを用いて撮影した写真を、比較例のレンズを用いて撮影した写真とともに示した図である。It is the figure which showed the photograph image | photographed using the lens of the Example with the photograph image | photographed using the lens of the comparative example. そり角のある眼鏡用フレームについての説明図である。It is explanatory drawing about the flame | frame for spectacles with a sled angle. 本発明の他の実施形態の単焦点レンズを説明するための図である。It is a figure for demonstrating the single focus lens of other embodiment of this invention. 図11の単焦点レンズの設計方法についての説明図である。It is explanatory drawing about the design method of the single focus lens of FIG. 図12に続く設計方法についての説明図である。It is explanatory drawing about the design method following FIG. (a)は装用者の正面視の視線に対しレンズの光軸を10度傾けた状態で測定された実施例のレンズ50の平均度数分布等高線図、(b)はy軸方向に沿った断面での平均度数の変化を示した図である。(A) is an average power distribution contour map of the lens 50 of the embodiment measured in a state where the optical axis of the lens is inclined 10 degrees with respect to the line of sight of the wearer, and (b) is a cross section along the y-axis direction It is the figure which showed the change of the average frequency in. 装用者の正面視の視線とレンズの光軸とを一致された状態で測定された実施例のレンズ50の平均度数分布等高線図である。It is a mean power distribution contour map of the lens 50 of the Example measured in the state to which the gaze of a wearer's front view and the optical axis of the lens were made to correspond. 本発明の更に他の実施形態の単焦点レンズを説明するための図である。It is a figure for demonstrating the single focus lens of other embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明においては、レンズを用いた眼鏡を装用した装用者にとっての前後、左右、上下を、それぞれ、当該レンズにおける前後、左右、上下とする。   Hereinafter, embodiments of the present invention will be described based on the drawings. In the following description, front and rear, left and right, and upper and lower for the wearer wearing glasses using a lens are respectively front and rear, left and right, and upper and lower in the lens.

図1において、レンズ1は、装用者の視力を矯正するための単焦点レンズである。レンズ1は、後面2が式(i)で定義される凹面とされ、前面3が式(ii)で定義される凸面とされている。レンズ1では、前面3が曲率半径150mm以下で設定されている。なお、レンズ1の光学中心O(後面2では基点O1、前面3では基点O2)を通る前後方向の軸をz軸とし、レンズ1の後方に向かう方向をz軸の正方向とする。z軸はレンズ1の光軸に一致する。 In FIG. 1, a lens 1 is a single focus lens for correcting the vision of a wearer. In the lens 1, the back surface 2 is a concave surface defined by the equation (i), and the front surface 3 is a convex surface defined by the equation (ii). In the lens 1, the front surface 3 is set to have a radius of curvature of 150 mm or less. The axis in the front-rear direction passing through the optical center O of the lens 1 (the base point O 1 on the rear surface 2 and the base point O 2 on the front surface 3) is taken as the z axis, and the direction toward the rear of the lens 1 is taken as the positive direction of the z axis. The z axis coincides with the optical axis of the lens 1.

z=r2/(R1+(R1 2−Kr21/2)+δ1+δ2 …式(i)
z=r2/(R2+(R2 2−Kr21/2) …式(ii)
z = r 2 / (R 1 + (R 1 2 -Kr 2 ) 1/2 ) + δ 1 + δ 2 formula (i)
z = r 2 / (R 2 + (R 2 2 -Kr 2 ) 1/2 ) Formula (ii)

式(i)、(ii)のrは、z軸からの距離である。すなわち、後面2では基点O1、前面3では基点O2を中心として、z軸に直交する左右方向、上下方向の軸をそれぞれx軸、y軸とする直交座標系を考えた場合、r=(x2+y21/2である。R1、R2は面の頂点における曲率半径、Kは1、である。
また、後面2を定義する式(i)において、δ1は、Br4+Cr6+Dr8+Er10(但し、rはz軸からの距離、B,C,D,Eは定数)で表される平均度数安定化成分である。またδ2は、Ar3(但し、rはz軸からの距離、Aは定数)で表される被写界深度延長成分である。
したがって、本例のレンズ1は、前面3が球面、後面2が非球面となる。なお、R1、R2は、処方度数(本例ではS度数)によって決まる。ここでレンズ1は、近視者のための遠用レンズであるため、R1<R2である。
R in formulas (i) and (ii) is the distance from the z axis. That is, in the rear 2 base point O 1, around the reference point O 2 in the front 3, the left-right direction orthogonal to the z-axis, x-axis vertical axis, respectively, considering an orthogonal coordinate system with the y-axis, r = (X 2 + y 2 ) 1/2 . R 1 and R 2 are the radius of curvature at the vertex of the surface, and K is 1.
Further, in the formula (i) defining the rear face 2, δ 1 is represented by Br 4 + Cr 6 + Dr 8 + Er 10 (where r is a distance from the z axis, B, C, D, E are constants) It is an average frequency stabilization component. Further, δ 2 is a depth-of-field extension component represented by Ar 3 (where r is a distance from the z axis and A is a constant).
Therefore, in the lens 1 of this example, the front surface 3 is spherical and the rear surface 2 is aspheric. R 1 and R 2 are determined by the prescribed frequency (in this example, S frequency). Here, since the lens 1 is a distance lens for nearsighted people, R 1 <R 2 .

式(i)における平均度数安定化成分δ1は、レンズ面内の中央から周縁に向けて平均度数を略一定とする目的でレンズ後面に付加する非球面成分である。レンズの前面3を深いカーブで設定した場合、レンズの周縁に近い領域の度数はプラス側に変化する。この傾向は前面3のカーブがより深くなるほど顕著となる。本例では、前面3に曲率半径150mm以下の深いカーブを備えたレンズを設計するに際し、レンズ面内の平均度数を、一旦、略一定に補正する目的でレンズの後面2に平均度数安定化成分δ1を付加している。 The average dioptric power stabilizing component δ 1 in the formula (i) is an aspheric surface component added to the rear surface of the lens for the purpose of making the average dioptric power substantially constant from the center to the periphery in the lens surface. When the front surface 3 of the lens is set by a deep curve, the power of the region near the lens peripheral edge changes to the positive side. This tendency is more remarkable as the curve of the front surface 3 is deeper. In this example, when designing a lens having a deep curve with a radius of curvature of 150 mm or less on the front surface 3, an average power stabilization component on the rear surface 2 of the lens for the purpose of temporarily correcting the average power within the lens surface δ 1 is added.

一方、式(i)における被写界深度延長成分δ2は、レンズの光学中心からレンズ周縁に向けて、平均度数をマイナス側に漸次変化させる目的でレンズ後面に付加する非球面成分である。Ar3(但し、Aは正の数)で表される非球面成分は、平均度数が一定の面(平均度数変化の無い面)に対して付加することが、レンズ中央からレンズ周縁に向けて平均度数を略直線的に変化させるのに有効である。 On the other hand, the formula (i) depth of field extension component [delta] 2 in the direction from the optical center of the lens to the lens periphery, is a non-spherical component to be added to the lens rear surface in order to gradually vary the mean power to the minus side. The aspheric surface component represented by Ar 3 (where A is a positive number) is added to the surface with a constant average power (surface without average power change) from the lens center toward the lens edge It is effective to change the average frequency substantially linearly.

このように本例のレンズ1は、処方度数に基づいて決定されるレンズ後面2の屈折面(本例での曲率半径R1の球面。以下、元の球面ともいい、符号Sで示す。)に、平均度数安定化成分δ1と、被写界深度延長成分δ2とを付加したものである(図2参照)。 As described above, the lens 1 of this example is a refracting surface of the lens rear surface 2 determined based on the prescribed dioptric power (a spherical surface with a radius of curvature R 1 in this example. Hereinafter, it is also referred to as the original spherical surface and is indicated by the symbol S). To which the mean power stabilization component δ 1 and the depth of field extension component δ 2 are added (see FIG. 2).

次に、被写界深度延長の効果について説明する。
図3(a)で示すように、レンズ面内の度数が一定とされた通常のレンズ15(比較例)では、レンズ後方の結像位置Pに、焦点位置Dから発せられた光線ばかりが集まるため、焦点位置Dにある対象物は鮮明に見えるが、例えば位置CやEのように、焦点位置Dから少しずれた位置にある対象物は、急激にぼやけて見えなくなる。すなわち、レンズ15の被写界深度は浅い。
Next, the effect of depth of field extension will be described.
As shown in FIG. 3A, in a normal lens 15 (comparative example) in which the power in the lens plane is constant, only the light rays emitted from the focal position D gather at the imaging position P behind the lens. Therefore, although the object located at the focal position D looks sharp, the object located at a position slightly deviated from the focal position D, such as the positions C and E, disappears sharply and disappears. That is, the depth of field of the lens 15 is shallow.

一方、図3(b)で示すレンズ1では、Ar3で表される被写界深度延長成分によりレンズの径方向に度数が変化しているため、元の焦点位置Dを含むある程度の範囲からの光線が結像位置Pに集まる。したがって、焦点位置Dでも若干のボケは残るが、例えば位置C、Bのように焦点位置Dから少しずれた位置においても、焦点位置Dと同程度の鮮明さで対象物の識別が可能となるため、事実上ピントが合っている範囲(同図において破線で囲まれた範囲)が拡大する、すなわちレンズ1の被写界深度は深い。
なお、被写界深度延長成分の定数Aを正の値とした場合、被写界深度は、元の焦点位置Dよりも遠方側(同図におけるCやBの位置の側)に延長される。
On the other hand, in the lens 1 shown in FIG. 3B, since the dioptric power changes in the radial direction of the lens due to the depth of field extension component represented by Ar 3 , a certain range including the original focal position D is Rays of light gather at the imaging position P. Therefore, although a slight blur remains even at the focal position D, for example, even at a position slightly deviated from the focal position D, such as positions C and B, the object can be identified with the same degree of sharpness as the focal position D Because of this, the range in focus (the range enclosed by the broken line in the same figure) is expanded, that is, the depth of field of the lens 1 is deep.
Note that when the constant A of the depth of field extension component is a positive value, the depth of field is extended to the side farther than the original focal position D (side of the position of C or B in the figure) .

被写界深度延長の効果は、特に夜間など照度が低い暗所で大きい。以下、図4を用いて説明する。図4では、虹彩21を含む眼球20を示している。   The effect of depth of field extension is large especially in dark places with low illumination, such as at night. Hereinafter, description will be made with reference to FIG. In FIG. 4, the eye 20 including the iris 21 is shown.

図4(a)は、昼間など照度が高い明所での状態を示したものであり、虹彩21が閉じて、光線束22が細くなるため、光が集中する範囲が長くなり、事実上ピントが合っている範囲、即ち被写界深度が深く(長く)なる。したがって、比較的遠くまで見ることができる。   FIG. 4A shows a state in a bright place where the illuminance is high, such as daytime, and since the iris 21 is closed and the light flux 22 becomes thin, the range in which the light is concentrated becomes long, and in fact In other words, the depth of field becomes deep (long). Therefore, it can be seen relatively far.

図4(b)は、暗所での状態を示したものである。虹彩21が開いて、光線束22が太くなるため、光が集中する範囲が短くなり、被写界深度が浅く(短く)なる。したがって、光が集中する焦点位置から少しずれた位置にある対象物は、すぐに見え難くなってしまう。   FIG. 4 (b) shows the state in the dark. Since the iris 21 opens and the ray bundle 22 becomes thick, the range in which light is concentrated becomes short and the depth of field becomes shallow (short). Therefore, an object at a position slightly deviated from the focal position where the light is concentrated becomes difficult to see immediately.

図4(c)は、暗所でレンズ1を用いた状態を示したものであり、虹彩21が開いて、光線束22が太くなるが、レンズ1は、被写界深度延長効果を有し、比較的長い距離で焦点が合う。したがって、レンズ1によれば、特に暗所での対象物の識別が容易となる。   FIG. 4C shows a state in which the lens 1 is used in a dark place, and the iris 21 is opened and the ray bundle 22 is thickened, but the lens 1 has a depth-of-field extension effect. , Focus on a relatively long distance. Thus, the lens 1 facilitates identification of objects, especially in dark places.

このような被写界深度延長の効果は、レンズ面内における度数の変化量によって変動する。本実施形態のレンズ1では、図5に示すように光学中心からレンズ周縁に向けて、度数を略直線状に変化させることで、レンズの中央に近い領域を通じて対象物に視線を合わせる場合に視野の中に入るレンズ領域における度数の変化量aと、これよりも外側の領域を通じて対象物に視線を合わせる場合に視野の中に入るレンズ領域における度数の変化量bと、を略同じとし、レンズ1の中央部およびこれよりも外側の領域で、同等の被写界深度延長効果を得ることができる。   The effect of such an increase in the depth of field varies with the amount of change in power in the lens surface. In the lens 1 of the present embodiment, as shown in FIG. 5, the visual field is changed when the line of sight is aligned with the object through a region near the center of the lens by changing the power in a substantially linear manner from the optical center toward the lens peripheral edge. The power change amount a in the lens region entering the lens and the power change amount b in the lens region entering the field of view when the line of sight is aligned with the object through the region outside this is substantially the same. An equivalent depth-of-field extension effect can be obtained in the central part of 1 and the area outside this.

ただし、レンズの光学中心からレンズ周縁に向けての度数変化が大きい程、被写界深度延長効果自体は大きくなるが、レンズの中央部と周縁部とで大きな度数差が生じてしまう。レンズ1では、それらのバランスを考慮して、眼球の回旋角が0度〜20度の範囲のレンズ中央側の第1領域、および、眼球の回旋角が20度〜40度の範囲の第2領域での度数変化量を、ともに0.14〜0.46ディオプタの範囲内とした。   However, the greater the change in power from the optical center of the lens to the lens peripheral edge, the greater the depth of field extension effect itself, but a greater power difference occurs between the central portion and the peripheral portion of the lens. In the lens 1, in consideration of their balance, the first region on the lens center side where the rotational angle of the eye is in the range of 0 to 20 degrees, and the second region of the rotational angle of the eye in the range of 20 to 40 The frequency change amount in the region was set in the range of 0.14 to 0.46 diopters.

次に、レンズ1の設計方法について説明する。
まず、処方度数に基づいてレンズ1の前面3の屈折面および後面2の屈折面を決定する。この決定方法については、周知であるため、ここでは詳述しない。次に、処方度数に基づいて決定されたレンズの後面2の屈折面(元の球面S)に非球面成分を付加する。具体的には、平均度数の変動を抑制する平均度数安定化成分δ1を付加する第1の非球面成分付加工程と、被写界深度を延長させる被写界深度延長成分δ2を付加する第2の非球面成分付加工程と、によって後面2の屈折面に非球面成分を付加する。
Next, a method of designing the lens 1 will be described.
First, the refractive surface of the front surface 3 and the refractive surface of the rear surface 2 of the lens 1 are determined based on the prescribed power. The determination method is well known and will not be described in detail here. Next, an aspheric component is added to the refracting surface (original spherical surface S) of the back surface 2 of the lens determined based on the prescribed power. Specifically, adding a first aspheric component adding step of adding the suppressing mean power stabilizing component [delta] 1 a variation of the mean power, the depth of field to extend the depth of field extension component [delta] 2 An aspheric surface component is added to the refracting surface of the rear surface 2 by the second aspheric surface component adding process.

第1の非球面成分付加工程では、Br4+Cr6+Dr8+Er10(但し、rはz軸からの距離、B,C,D,Eは定数)で表される平均度数安定化成分δ1を求めて、後面2の屈折面に付加する。 In the first aspheric component addition step, an average power stabilization component δ 1 represented by Br 4 + Cr 6 + Dr 8 + Er 10 (where r is a distance from the z axis and B, C, D and E are constants) Is added to the refracting surface of the rear surface 2.

平均度数安定化成分δ1は、下記非球面の式(iii)を用いて表される後面2の屈折面形状について、光線追跡によるシミュレーションを行い、度数(詳しくはメリジオナル方向の屈折力とサジタル方向の屈折力との平均である平均度数)の変化を抑制するのに最適な非球面係数B,C,D,Eを求め、これら非球面係数の値から平均度数安定化成分δ1を得ることができる。
z=r2/(R1+(R1 2−Kr21/2)+Br4+Cr6+Dr8+Er10 …式(iii)
ここで、zは後面2におけるサグ値、rはz軸からの距離、R1は頂点曲率半径、B,C,D,Eは定数(非球面係数)である。
The mean power stabilization component δ 1 is simulated by ray tracing on the refractive surface shape of the rear surface 2 expressed using the following aspheric surface formula (iii), and the power (specifically, the refractive power in the meridional direction and the sagittal direction To determine the aspheric coefficients B, C, D, and E that are optimal for suppressing changes in the average dioptric power, which is the average of the refractive power of the lens, and to obtain the average dioptric power stabilization component δ 1 from the values of these aspheric spherical coefficients Can.
z = r 2 / (R 1 + (R 1 2 -Kr 2 ) 1/2 ) + Br 4 + Cr 6 + Dr 8 + Er 10 Formula (iii)
Here, z is a sag value on the rear surface 2, r is a distance from the z axis, R 1 is a vertex curvature radius, and B, C, D, and E are constants (aspheric coefficients).

次に第2の非球面成分付加工程では、Ar3(但し、rはz軸からの距離、Aは定数)で表される被写界深度延長成分δ2を求めて、後面2の屈折面に付加する。 Next, in the second aspheric surface component addition step, the depth of field extension component δ 2 represented by Ar 3 (where r is the distance from the z axis and A is a constant) is determined, and the refracting surface of the rear surface 2 Add to

被写界深度延長成分における定数Aは、6.40×10-7〜2.40×10-5の範囲内から選択される。通常のサイズの眼鏡レンズ(直径50〜80mm)において定数Aがこの範囲であれば、被写界深度延長効果が適度に得られ、かつ、レンズの中央部と周縁部との間で生じる度数差を抑制することができるからである。 The constant A in the depth of field extension component is selected from the range of 6.40 × 10 −7 to 2.40 × 10 −5 . If the constant A is in this range in a normal size spectacle lens (diameter 50 to 80 mm), the depth of field extension effect can be obtained moderately and the power difference between the central portion and the peripheral portion of the lens It is because it can control.

このようにすることで、上記式(i)で定義されたレンズ1の後面2の屈折面形状が決定される。   By doing this, the refractive surface shape of the rear surface 2 of the lens 1 defined by the above equation (i) is determined.

[実施例1]
下記レンズデータにもとづいて、前面の曲率半径R2が150mm以下(詳しくは125.62mm)で、S度数が−3.00Dの単焦点レンズ30,30a,30bを作製し、これらレンズの平均度数の変化を測定した。
共通するレンズデータは以下の通りである。
S度数 −3.00D
屈折率n 1.608
前面カーブK 4.84カーブ(4.84D)
前面曲率半径R2 125.62mm
外径 Φ50mm
中心厚CT 1.10mm
なお、前面の曲率半径R2は(n−1)/K×1000により求めることができる。
Example 1
Based on the following lens data, the following radius of curvature R 2 of the front 150 mm (details 125.62mm), S counts are to prepare a single-focus lens 30, 30a, 30b of -3.00D, the mean power of the lens Change was measured.
Common lens data are as follows.
S frequency-3.00D
Refractive index n 1.608
Front curve K 4.84 curve (4.84D)
Front curvature radius R 2 125.62 mm
Outer diameter 50 50 mm
Center thickness CT 1.10 mm
Furthermore, the curvature radius R 2 of the front can be obtained by (n-1) / K × 1000.

レンズ30a(比較例)は、処方度数に基づいて決定された屈折面S(図1(b)参照)をレンズ後面の形状としたもので、前面および後面がともに球面形状である。   The lens 30a (comparative example) has a refractive surface S (see FIG. 1 (b)) determined based on the prescribed power in the shape of the lens rear surface, and both the front surface and the rear surface have spherical shapes.

このレンズ30aの平均度数分布を図6に示す。平均度数分布は、眼球に対し所定距離離間した位置(ここではレンズ後面の屈折面から眼球の回旋中心まで距離が25mmの位置)で、レンズの光軸が眼球の正面視の視線と一致するように配置した右レンズについて測定した。図6ではこのようにして得られた平均度数分布をレンズの後面側から示している。図6において図中点線で示されているのは5mmピッチの格子である。なお、以降に詳述するレンズ30b,30における平均度数分布図も同様である。   The average power distribution of this lens 30a is shown in FIG. The average power distribution is such that the optical axis of the lens coincides with the line of sight of the eyeball at a position separated from the eyeball by a predetermined distance (here, a distance of 25 mm from the refractive surface of the lens rear surface to the rotation center of the eyeball) It measured about the right lens arranged at. FIG. 6 shows the average power distribution obtained in this manner from the rear surface side of the lens. In FIG. 6, what is indicated by dotted lines in the drawing is a 5 mm pitch grid. The same is true for the average power distribution of the lenses 30b and 30 described in detail below.

この図6に示すように、レンズの前面が4.84カーブ(曲率半径125.62mm)で形成されたレンズ30aでは、レンズの中央部の平均度数が−3.12D以下であるのに対し、周縁部の度数が−2.96D以上で、周縁部において中央部よりもプラス側に度数が変化していることが分かる。   As shown in FIG. 6, in the lens 30a in which the front surface of the lens is formed with 4.84 curves (curvature radius 125.62 mm), the average power of the central portion of the lens is −3.12 D or less. It can be seen that when the frequency of the peripheral portion is −2.96 D or more, the frequency changes to the positive side of the central portion in the peripheral portion.

一方、レンズ30b(比較例)は、上記レンズ30aのレンズ後面に、Ar3で表される被写界深度延長成分δ2を付加したものである。なお定数Aは7.68×10-6である。 On the other hand, the lens 30 b (comparative example) is obtained by adding a depth of field extension component δ 2 represented by Ar 3 to the lens rear surface of the lens 30 a. The constant A is 7.68 × 10 −6 .

図7(a)はこのレンズ30bの平均度数分布を、図7(b)はレンズ30bのy軸方向(上下方向)に沿った断面での平均度数の変化を、示した図である。レンズ後面に被写界深度延長成分δ2からなる非球面成分を追加したレンズ30bでは、レンズ周縁部において度数がプラス側に変化しており、図7(b)における眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量aが、0.21ディオプタであるのに対し、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量bが、0.13ディオプタと小さいため、このレンズ30bにあっては、レンズ周縁に近い領域を通じて対象物を視認する際、十分な被写界深度延長効果を得ることができない。 FIG. 7 (a) shows the average power distribution of the lens 30b, and FIG. 7 (b) shows the change of the average power in the cross section along the y-axis direction (vertical direction) of the lens 30b. In the lens 30b on the lens rear surface by adding a non-spherical component consisting of depth of field extension component [delta] 2, power in the lens peripheral portion is changed to the positive side, the rotation angle of the eyeball in FIG. 7 (b) 0 ° While the power change amount a in the first region in the range of -20 degrees is 0.21 diopter, the power change amount b in the second region in the range of 20 degrees to 40 degrees of the eyeball is 0 Since the lens is as small as 13 diopters, the lens 30b can not obtain a sufficient depth-of-field extension effect when the object is viewed through a region near the lens peripheral edge.

次に、レンズ30(実施例)は、本実施形態の設計方法に基づいて、処方度数より決定されたレンズ後面の屈折面に、Br4+Cr6+Dr8+Er10で表される平均度数安定化成分δ1と、Ar3で表される被写界深度延長成分δ2と、を付加した例である。なお、平均度数安定化成分δ1の各定数は、Bが−9.58×10-8、Cが1.02×10-10、Dが3.03×10-14、Eが−2.80×10-17である。また、被写界深度延長成分の定数Aは、上記レンズ30bの場合と同様に7.68×10-6である。 Next, the lens 30 (example) is the average power stabilization represented by Br 4 + Cr 6 + Dr 8 + Er 10 on the refractive surface of the lens rear surface determined from the prescribed power based on the design method of the present embodiment. and component [delta] 1, an example of adding the depth of field extension component [delta] 2, the represented by Ar 3. In addition, as for each constant of average frequency stabilization component (delta) 1 , B is -9.58 * 10 < -8 >, C is 1.02 * 10 < -10 >, D is 3.03 * 10 < -14 >, E is -2. It is 80 × 10 -17 . The constant A of the depth of field extension component is 7.68 × 10 -6 as in the case of the lens 30b.

図8(a)はこのレンズ30の平均度数分布を、図8(b)はレンズ30のy軸方向に沿った断面での平均度数の変化を、示した図である。レンズの後面に平均度数安定化成分δ1と被写界深度延長成分δ2とからなる非球面成分を追加したレンズ30では、上記レンズ30bに比べ、レンズ周縁に近い領域における度数のプラス側への変化が抑制されて、その結果、レンズ周縁に近い領域での度数変化量が高められ、すなわち被写界深度延長効果が高められている。図8(b)に示すように、このレンズ30では眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量aが0.18ディオプタ、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量bが0.16ディオプタで、いずれの度数変化量も0.14〜0.46ディオプタの範囲内にある。図8(b)は、レンズ30のy軸方向に沿った断面での平均度数の変化を示した図であるが、レンズ30では光軸周りに回転対称の非球面成分が付加されており、y軸方向以外の断面においても同様の度数変化量が得られている。このようなレンズ30にあっては、レンズの中央部と周縁部との間の度数差を抑えつつ、レンズ周縁に近い領域において従来以上の被写界深度延長効果を得ることができる。 8 (a) shows the average power distribution of the lens 30, and FIG. 8 (b) shows the change of the average power in the cross section along the y-axis direction of the lens 30. As shown in FIG. In the lens 30 has been added a non-spherical component on the surface consisting of the mean power stabilizing component [delta] 1 and the depth of field extension component [delta] 2 Metropolitan of the lens, compared with the lens 30b, the power in the region close to the lens periphery to the positive side As a result, the power change amount in the region near the lens peripheral edge is increased, that is, the depth-of-field extension effect is enhanced. As shown in FIG. 8 (b), with this lens 30, the power change amount a is 0.18 diopter and the rotation angle of the eye is 20 degrees to 40 in the first region where the rotation angle of the eye is in the range of 0 degrees to 20 degrees. The power change amount b in the second region of the power range is 0.16 diopter, and any power change amount is in the range of 0.14 to 0.46 diopter. FIG. 8B is a diagram showing the change of the average dioptric power in the cross section along the y-axis direction of the lens 30, but in the lens 30, a rotationally symmetric aspheric component is added around the optical axis, Similar frequency variations are obtained in cross sections other than the y-axis direction. With such a lens 30, it is possible to obtain a greater depth-of-field extension effect than in the prior art in a region close to the lens peripheral edge while suppressing the power difference between the central portion and the peripheral edge portion of the lens.

なお、図9は、上記単焦点レンズ30a(比較例)と30(実施例)をそれぞれ用いて、撮影した風景の写真である。図9の(a)が単焦点レンズ30aを用いて撮影された写真で、(b)が単焦点レンズ30を用いて撮影された写真である。撮影に用いたカメラは、NIKON D5500で、F値16.0、シャッタースピード1/25の条件で、上記レンズ30aまたは30を装着して手前の電柱にピントを合わせた状態で撮影した。図9の(a)と(b)の画像を比較すると、(b)の画像のほうが、遠方に位置する看板等が鮮明であり、単焦点レンズ30にて一定の被写界深度延長効果が得られていることが分かる。   FIG. 9 is a photograph of a landscape photographed using the single focus lenses 30a (comparative example) and 30 (example). FIG. 9A is a photograph taken using the single focus lens 30 a, and FIG. 9B is a photograph taken using the single focus lens 30. The camera used for shooting was a NIKON D5500 with the lens 30a or 30 mounted under the conditions of F number 16.0 and shutter speed 1/25, and the camera was shot in a state where the power pole on the near side was in focus. When the images in (a) and (b) in FIG. 9 are compared, in the image in (b), the signboard etc. located in the distance is clearer, and the single focus lens 30 has a constant depth of field extension effect. It is understood that it is obtained.

次に、本発明の他の実施形態について説明する。
例えば、上記実施例1で示したレンズ30を、そり角を有する眼鏡用フレームに装着した場合、装用者の正面視の視線の方向とレンズの光軸方向との間にそり角に相当する傾きが生じ、その結果、装用者からみた平均度数が変化し、所定の被写界深度延長効果も得られなくなってしまう。
これに対し、以下で詳述する本実施形態の設計方法によれば、所定のそり角を有する眼鏡用フレームに装着されるレンズに対し、好適な被写界深度延長効果を付与することができる。ここで、そり角とは、図10に示すように、レンズを保持するリム部37を装用者の顔面に沿うように傾けた眼鏡用フレーム35における、装用者の正面視の視線に直交する線分36に対する、リム部37の傾きαである。
Next, another embodiment of the present invention will be described.
For example, when the lens 30 described in the first embodiment is attached to a frame for glasses having a warpage angle, an inclination corresponding to the warpage angle between the direction of the line of sight of the wearer's front view and the optical axis direction of the lens As a result, the average power seen from the wearer changes, and a predetermined depth-of-field extension effect can not be obtained.
On the other hand, according to the design method of the present embodiment described in detail below, it is possible to impart a suitable depth-of-field extension effect to the lens mounted on the eyeglass frame having a predetermined deflection angle. . Here, as shown in FIG. 10, the warpage angle is a line perpendicular to the line of sight of the wearer in the eyeglass frame 35 in which the rim portion 37 holding the lens is inclined along the face of the wearer. The inclination α of the rim portion 37 with respect to the minute 36.

本例の設計方法では、上記第1実施形態の設計方法と同様の、第1の非球面成分付加工程および第2の非球面成分付加工程に続いて、所定のそり角でレンズを傾けた際に生じる平均度数の変化を打ち消すように働くそり角補正成分δ3を、レンズの後面2に付加する第3の非球面成分付加工程を経て、後面2の面形状を決定する。すなわち、この設計方法では、図11に示すように、処方度数に基づいて決定されるレンズの後面2の屈折面Sに平均度数安定化成分δ1と、被写界深度延長成分δ2と、そり角補正成分δ3と、を付加する。 In the design method of this example, when the lens is inclined at a predetermined deflection angle following the first aspheric component addition step and the second aspheric component addition step similar to the design method of the first embodiment. The surface shape of the rear surface 2 is determined through a third aspheric surface component addition step of adding the warp angle correction component δ 3 acting to cancel the change of the average dioptric power occurring to the rear surface 2 of the lens. That is, according to this design method, as shown in FIG. 11, on the refractive surface S of the rear surface 2 of the lens determined based on the prescribed diopter, an average diopter stabilization component δ 1 and a depth of field extension component δ 2 a bend angle correction component [delta] 3, adds.

以下では、上記第1実施形態の設計方法によって得られたレンズ1と略同等の被写界深度延長効果を有するレンズ40を設計する場合を例に、第3の非球面成分付加工程を説明する。   In the following, the third aspheric component addition step will be described by taking, as an example, the case of designing a lens 40 having a depth of field extension effect substantially equivalent to that of the lens 1 obtained by the design method of the first embodiment. .

第3の非球面成分付加工程では、まず、レンズ40の光学中心Oから放射状に延びる分割線mを等間隔に複数設定する。レンズの周方向に設定される分割線mの数は、12〜360の範囲で、且つ、レンズ40を周方向360°に亘って等間隔で区画できる数とする。   In the third aspheric surface component addition step, first, a plurality of dividing lines m extending radially from the optical center O of the lens 40 are set at equal intervals. The number of parting lines m set in the circumferential direction of the lens is within the range of 12 to 360 and can be a number that can divide the lens 40 at equal intervals along the circumferential direction 360 °.

図12では、分割線mを12本設定した場合を示している。この場合、各分割線mは30°の等間隔で周方向に設定される。同図に示すように分割線mは、x軸上に基準となる分割線m1が配置され、以降30°の間隔でm2〜m12の分割線が周方向の異なる位置に設定される。なお同図においてp1〜p12は、各分割線mの間に位置する領域である。 FIG. 12 shows the case where twelve dividing lines m are set. In this case, the dividing lines m are set in the circumferential direction at equal intervals of 30 °. Dividing line m, as shown in the figure, dividing lines m 1 as a reference on the x-axis are arranged, are set in different positions dividing line m 2 ~m 12 is the circumferential direction at intervals of subsequent 30 ° . In the figure, p 1 to p 12 are regions located between the dividing lines m.

次に各分割線m上の目標度数を、図13で示すような光学モデルより求める。同図において、20は眼球で、f0は眼球20の正面方向の視線、25は眼球の回旋中心である。
眼球20に対し所定距離離間した位置(ここではレンズ後面の屈折面から眼球の回旋中心まで距離が25mmの位置)で、レンズの光軸が眼球20の視線f0と一致するように2点鎖線で示す基準となるレンズ1を配置し、次にこのレンズ1に対しそり角α分だけ傾けた状態でレンズ40を配置する。
このような光学モデルにおいて、レンズ40の分割線mと交差して延びる任意の視線f1を描き、同一線上にある基準レンズ1の部位41′の度数(平均度数)を、レンズ40の分割線m上に位置する部位41での目標度数とする。このようにして各分割線m上の目標度数を設定する。
Next, the target power on each dividing line m is obtained from an optical model as shown in FIG. In the figure, 20 is an eye, f 0 is a line of sight in the front direction of the eye 20, and 25 is a center of rotation of the eye.
A two-dot chain line so that the optical axis of the lens coincides with the line of sight f 0 of the eye 20 at a position separated from the eye 20 by a predetermined distance (here, a distance of 25 mm from the refractive surface of the lens rear surface to the center of rotation of the eye) A lens 1 serving as a reference shown in FIG. 1 is disposed, and then a lens 40 is disposed in a state of being inclined with respect to the lens 1 by a deflection angle α.
In such an optical model, draw any sight f 1 extending to intersect the dividing line m of the lens 40, the frequency of site 41 of the reference lens 1 on the same line '(average power), lens 40 dividing line Let it be the target frequency at the part 41 located on m. Thus, the target frequency on each dividing line m is set.

次に、各分割線m上のそり角補正成分δ3を求める。そり角補正成分δ3は、F(θ)r4+G(θ)r6+H(θ)r8+I(θ)r10(但し、rはz軸からの距離、F(θ),G(θ),H(θ),I(θ)は定数(非球面係数)、θはx軸からの角度(図12参照))で表される。
そして下記非球面の式(iv)を用いて表される後面2の屈折面形状について、光線追跡によるシミュレーションを行い、分割線m上の度数が上記目標度数と一致または近似するように最適な非球面係数F(θ),G(θ),H(θ),I(θ)を求め、これら非球面係数の値から分割線m上のそり角補正成分δ3を得ることができる。
z=r2/(R1+(R1 2−Kr21/2)+δ1+δ2+F(θ)r4+G(θ)r6+H(θ)r8+I(θ)r10 …式(iv)
Next, determine the bend angle correction component [delta] 3 on the dividing line m. Bend angle correction component [delta] 3 is, F (θ) r 4 + G (θ) r 6 + H (θ) r 8 + I (θ) r 10 ( where, r is the distance from the z-axis, F (θ), G ( θ), H (θ), I (θ) are constants (aspheric coefficients), and θ is an angle from the x axis (see FIG. 12)).
Then, simulation is performed by ray tracing for the refracting surface shape of the back surface 2 expressed using the following aspheric surface expression (iv), and the optimum non-uniformness is obtained such that the power on the dividing line m matches or approximates the target power. surface coefficients F (θ), G (θ ), H (θ), obtaining the I (theta), can be the values of these aspherical coefficients obtain the bend angle correction component [delta] 3 of the dividing line m.
z = r 2 / (R 1 + (R 1 2- Kr 2 ) 1/2 ) + δ 1 + δ 2 + F (θ) r 4 + G (θ) r 6 + H (θ) r 8 + I (θ) r 10 ... Formula (iv)

次に、各分割線mの間に位置する各領域p1〜p12(図12参照)についてのそり角補正成分δ3を求める。例えば、領域p1では、分割線m1との境界において分割線m1と同じそり角補正成分量となるよう、また分割線m2との境界において分割線m2と同じそり角補正成分量となるよう、分割線m1との境界から分割線m2との境界までを周方向(図12の曲線w1参照)に沿ってコサインカーブ(半波長分)にて滑らかに接続し、領域p1についてのそり角補正成分を導出する。残りの領域p2〜p12についても同様の方法でそり角補正成分を導出する。このようにすることで、第3の非球面成分付加工程では、各分割線m1〜m12上、分割線m間の領域p1〜p12、それぞれについてそり角補正成分に相当する非球面付加量が決定される。 Next, determine the bend angle correction component [delta] 3 for each region p 1 ~p 12 (see FIG. 12) located between the parting line m. For example, in the region p 1, dividing line at the boundary between m 1 be the same bend angle correction component amount and dividing lines m 1, also the same bend angle correction component amount and dividing line m 2 at the boundary between the dividing line m 2 To connect the boundary with dividing line m 1 to the boundary with dividing line m 2 smoothly with a cosine curve (half wavelength) along the circumferential direction (see curve w 1 in FIG. 12). Derivate the warp angle correction component for p 1 Deriving a bend angle correction component in a similar manner for the remaining region p 2 ~p 12. In this way, in the third non-spherical component addition step, the division line m 1 ~m 12 over a region p 1 ~p 12 between dividing lines m, aspheric corresponding to the bend angle correction component for each The amount of addition is determined.

そして、処方度数に基づいて決定されたレンズの後面2の屈折面に、平均度数の変動を抑制する平均度数安定化成分δ1、被写界深度を延長させる被写界深度延長成分δ2、に加えて、更にそり角補正成分δ3を付加することでレンズ40の後面2の屈折面形状が決定される。このときレンズ後面の各分割線m上のz座標値には、上記第1,第2,第3の非球面成分付加工程で求めた各非球面成分を組合せて成るJ(θ)r3+K(θ)r4+L(θ)r6+M(θ)r8+N(θ)r10(但し、J(θ),K(θ),L(θ),M(θ) ,N(θ)は定数)で表され、光軸周りに回転非対称の非球面成分が付加されることとなる。ここで、それぞれの定数(非球面係数)は、J(θ)がAの値、K(θ)がB+F(θ)の値、L(θ)がC+G(θ)の値、M(θ)がD+H(θ)の値、N(θ)がE+I(θ)の値、となる。
このような設計方法によれば、そり角に応じてレンズを傾斜させた場合でも、そり角がゼロの場合と同等もしくはこれに近似した度数変化となり、そり角がゼロの場合と同等もしくはこれに近似した被写界深度延長効果を得ることができる。
Then, on the refractive surface of the rear surface 2 of the lens determined based on the prescribed power, an average power stabilization component δ 1 for suppressing the fluctuation of the average power, a depth of field extension component δ 2 for extending the depth of field, in addition, the refractive surface shape of the surface 2 of the lens 40 is determined by further adding bend angle correction component [delta] 3. At this time, J (θ) r 3 + K formed by combining each aspheric surface component obtained in the first, second and third aspheric surface component addition steps with the z-coordinate value on each dividing line m of the lens rear surface (θ) r 4 + L (θ) r 6 + M (θ) r 8 + N (θ) r 10 (where J (θ), K (θ), L (θ), M (θ), N (θ) Is a constant, and a rotationally asymmetric aspheric component is added around the optical axis. Here, for each constant (aspheric coefficient), J (θ) is the value of A, K (θ) is the value of B + F (θ), L (θ) is the value of C + G (θ), M (θ) Is the value of D + H (θ), and N (θ) is the value of E + I (θ).
According to such a design method, even when the lens is inclined according to the warpage angle, the power change is equivalent to or close to that of the case where the warpage angle is zero, and equal to or similar to the case where the warpage angle is zero. An approximate depth of field extension effect can be obtained.

[実施例2]
レンズ前面が曲率半径150mm以下(詳しくは125.62mm)、S度数が−3.00Dで且つそり角αが10度の眼鏡用フレームに装着される単焦点レンズ50を作製し、レンズの平均度数分布を測定した。なおそり角以外のレンズデータは、上記実施例1の場合と同じである。
S度数 −3.00D
屈折率n 1.608
前面カーブK 4.84カーブ(4.84D)
前面曲率半径R2 125.62mm
外径 Φ50mm
中心厚CT 1.10mm
Example 2
A single-focus lens 50 mounted on an eyeglass frame with a lens front surface having a curvature radius of 150 mm or less (specifically, 125.62 mm), an S power of −3.00 D and a warp angle α of 10 degrees is manufactured. The distribution was measured. The lens data other than the deflection angle is the same as that of the first embodiment.
S frequency-3.00D
Refractive index n 1.608
Front curve K 4.84 curve (4.84D)
Front curvature radius R 2 125.62 mm
Outer diameter 50 50 mm
Center thickness CT 1.10 mm

レンズ50は、処方度数より決定されたレンズ後面の屈折面に、Br4+Cr6+Dr8+Er10で表される平均度数安定化成分δ1と、Ar3で表される被写界深度延長成分δ2と、そり角補正成分δ3とが付加されている。なお、平均度数安定化成分δ1の各定数は、Bが−9.58×10-8、Cが1.02×10-10、Dが3.03×10-14、Eが−2.80×10-17である。また、被写界深度延長成分の定数Aは、7.68×10-6である。
また、各分割線m上におけるそり角補正成分δ3を特定する定数は、下記表1に示す通りである。なお、表1において、E及びEの右側の数字は、10を基数としEの右側の数字を指数とする累乗を表している。
The lens 50 has an average power stabilizing component δ 1 represented by Br 4 + Cr 6 + Dr 8 + Er 10 and a depth of field extending component represented by Ar 3 on the refracting surface of the lens rear surface determined from the prescribed power. δ 2 and deflection angle correction component δ 3 are added. In addition, as for each constant of average frequency stabilization component (delta) 1 , B is -9.58 * 10 < -8 >, C is 1.02 * 10 < -10 >, D is 3.03 * 10 < -14 >, E is -2. It is 80 × 10 -17 . The constant A of the depth of field extension component is 7.68 × 10 −6 .
Also, constant specifying the bend angle correction component [delta] 3 on the dividing line m are as shown in Table 1 below. In Table 1, the numbers on the right of E and E represent a power of 10 as a radix and the number on the right of E as an index.

図14(a)は、このレンズ50を眼球に対しそり角分(10度)傾けた状態で測定した平均度数分布を示している。同図は右側のレンズを後面側から示した図であり、図中左側が鼻側で、右側が耳側となる。
また図14(b)は、レンズ50のy軸方向に沿った断面での平均度数の変化を示した図である。
FIG. 14 (a) shows the average power distribution measured with this lens 50 tilted with respect to the eyeball by an angle (10 degrees). The figure is a view showing the lens on the right side from the rear side. In the figure, the left side is the nose side, and the right side is the ear side.
FIG. 14B is a view showing the change of the average dioptric power in the cross section of the lens 50 along the y-axis direction.

このレンズ50では、図14(b)に示すように、眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量aが0.16ディオプタ、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量bが0.15ディオプタで、いずれの度数変化量も0.14〜0.46ディオプタの範囲内にある。
一方、図14(a)で示すx1方向の度数変化については、回旋角が0度〜20度の範囲の第1領域における度数変化量aが0.22ディオプタ、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量bが0.21ディオプタであり、またx2方向の度数変化については、第1領域における度数変化量aが0.16ディオプタ、第2領域における度数変化量bが0.14ディオプタであり、x軸方向に沿った断面においても、第1領域における度数変化量aと、第2領域における度数変化量bと、がともに0.14〜0.46ディオプタの範囲内にある。
このレンズ50にあっても、レンズの中央部と周縁部との間の度数差を抑えつつ、レンズ周縁に近い領域において従来以上の被写界深度延長効果を得ることができる。
In this lens 50, as shown in FIG. 14 (b), the power change amount a is 0.16 diopter and the rotational angle of the eye is 20 degrees to 20 in the first region where the rotational angle of the eye is in the range of 0 degrees to 20 degrees. The power change amount b in the second region in the range of 40 degrees is 0.15 diopter, and any power change amount is in the range of 0.14 to 0.46 diopter.
On the other hand, the x 1 direction of the frequency change shown in FIG. 14 (a), the power change amount a of 0.22 diopters in the first region of the range rotation angle is 0 ° to 20 °, rotation angle of the eyeball 20 degrees power change amount b in the second region in the range of 40 degrees is 0.21 diopters and for the power change in the x 2 direction, power change amount a in the first region is 0.16 diopters, in the second region Even when the frequency change amount b is 0.14 diopter and the cross section along the x-axis direction, the frequency change amount a in the first region and the frequency change amount b in the second region are both 0.14 to 0. Within the range of 46 diopters.
Even with this lens 50, it is possible to obtain an effect of extending the depth of field greater than that in the prior art in a region close to the lens peripheral edge while suppressing the power difference between the central portion and the peripheral edge portion of the lens.

なお、図15は、装用者の正面視の視線とレンズの光軸とを一致された状態で測定したレンズ50の平均度数分布を示している。同図は右側のレンズを後面側から示した図であり、図中左側が鼻側で、右側が耳側となる。
同図において、平均度数はレンズの光学中心Oからレンズ周縁に向けてマイナス側に変化しており、上下方向上側(y軸に沿ったy1方向)への度数変化については、回旋角が0度〜20度の範囲の第1領域における度数変化量aが0.237ディオプタ、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量bが0.644ディオプタであり、上下方向下側(y軸に沿ったy2方向)への度数変化については、度数変化量aが0.23ディオプタ、度数変化量bが0.631ディオプタであった。
また、左右方向鼻側(x軸に沿ったx1方向)への度数変化については、回旋角が0度〜20度の範囲の第1領域における度数変化量aが0.196ディオプタ、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量bが0.53ディオプタであり、左右方向耳側(x軸に沿ったx2方向)の度数変化については、度数変化量aが0.29ディオプタ、度数変化量bが0.586ディオプタであった。
FIG. 15 shows the average power distribution of the lens 50 measured in a state in which the line of sight of the wearer in a front view and the optical axis of the lens are matched. The figure is a view showing the lens on the right side from the rear side. In the figure, the left side is the nose side, and the right side is the ear side.
In the figure, mean power is changed to the negative side toward the lens periphery from the optical center O of the lens, the power change in the vertical direction upper side (y-axis y 1 direction along the) is rotation angle 0 The power change amount a in the first region in the range of 20 degrees to 20 degrees is 0.237 diopters, and the power change amount b in the second region in the range of 20 degrees to 40 degrees of the rotational angle of the eye is 0.644 diopters, Regarding the frequency change in the vertical direction and the lower side (y 2 direction along the y-axis), the frequency change amount a was 0.23 diopter and the frequency change amount b was 0.631 diopter.
As for the power change in the lateral direction the nose side (x 1 along the x-axis), power change amount a in the first region of the range rotation angle is 0 degrees to 20 degrees 0.196 diopters, ocular power change amount b rotation angle in the second region in the range of 20 to 40 degrees is 0.53 diopters, for power change in the horizontal direction ear side (x 2 along the x-axis), power change amount The a was 0.29 diopter, and the frequency change amount b was 0.586 diopter.

すなわち、装用者の正面視の視線とレンズの光軸とを一致された状態で測定された平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の上下方向(y1およびy2方向)での回旋角0度〜20度の範囲の度数変化量aを0.20〜0.25ディオプタ、回旋角20度〜40度の範囲の度数変化量bを0.60〜0.70ディオプタ、
眼球の左右方向耳側(x2方向)への度数変化量aを0.20〜0.30ディオプタ、度数変化量bを0.50〜0.60ディオプタ、
眼球の左右方向鼻側(x1方向)への度数変化量aを0.15〜0.25ディオプタ、度数変化量bを0.50〜0.60ディオプタ、とすれば、10度のそり角を有する眼鏡用フレームに装着された場合に、図14で示すような度数分布が得られ、レンズの中央部と周縁部との間の度数差を抑えつつ、レンズ中央側の回旋角0度〜20度の範囲の第1領域、および、第1領域より外側の回旋角20度〜40度の範囲の第2領域で一定以上の被写界深度延長効果を得ることができる。
That is, the average dioptric power measured in a state where the line of sight of the wearer in a front view and the optical axis of the lens coincide with each other changes from the optical center of the lens toward the lens peripheral edge to the minus side.
Frequency change a in the range of 0 degree to 20 degrees of rotational angle in the vertical direction (y 1 and y 2 directions) of the eyeball 0.20 to 0.25 diopter, frequency change in the range of 20 degrees to 40 degree of rotational angle Amount b between 0.60 and 0.70 diopters,
0.20 to 0.30 diopters of the power change amount a to the left and right direction ear side (x 2 direction) of the eyeball, 0.50 to 0.60 diopters of the power change amount b,
Assuming that the power change amount a to the left and right direction nose side (x 1 direction) of the eyeball is 0.15 to 0.25 diopter, and the power change amount b is 0.50 to 0.60 diopter, the warpage angle of 10 degrees When mounted on a frame for spectacles having a lens, a power distribution as shown in FIG. 14 is obtained, and while the power difference between the central portion and the peripheral portion of the lens is suppressed, the rotational angle of 0.degree. A certain or more depth of field extending effect can be obtained in the first area in the range of 20 degrees and in the second area in the range of 20 degrees to 40 degrees of the turning angle outside the first area.

以上本発明の実施形態を詳述したがこれはあくまでも一例示である。
被写界深度延長効果を好適に発揮させるための平均度数安定化成分δ1および被写界深度延長成分δ2は、後面2の全面に付加する場合のほか、後面2の一部の領域に選択的に付加することも可能である。
Although the embodiment of the present invention has been described in detail, this is merely an example.
The average frequency stabilization component δ 1 and the depth of field extension component δ 2 for suitably exerting the depth of field extension effect are added to the entire surface of the back surface 2 and in a partial region of the back surface 2. It is also possible to add selectively.

たとえば、図16(a)に示すように、レンズ60を周方向に、被写界深度延長効果を発揮させる被写界深度延長領域62と、それ以外の非被写界深度延長領域64とに区画して、被写界深度延長領域62にのみ平均度数安定化成分δ1および被写界深度延長成分δ2を付加することも可能である。なお、平均度数安定化成分δ1については被写界深度延長領域62のほか非被写界深度延長領域64に付加されてもよい。 For example, as shown in FIG. 16A, in the lens 60 in the circumferential direction, the depth of field extension area 62 for exerting the depth of field extension effect and the other non-field depth extension area 64. is partitioned, it is also possible to add the mean power stabilizing component [delta] 1 and the depth of field extension component [delta] 2 only the depth of field extension region 62. The average power stabilization component δ 1 may be added to the non-field depth extension area 64 in addition to the field depth extension area 62.

図16(a)の場合のように、被写界深度延長領域62をレンズ60の耳側の領域に設定した場合、正面視においては、主に非被写界深度延長領域64を通じて対象物を鮮明に視認することができる一方、被写界深度延長領域62を通じて後方の風景等を見たとき、被写界深度延長効果により広い範囲でボケの少ない像を得ることが可能となる。このようなレンズは、例えばスポーツ自転車運転時といった用途に適している。   When the depth of field extension area 62 is set to the area on the ear side of the lens 60 as in the case of FIG. 16A, in front view, the object is mainly made through the non depth of field extension area 64. While it is possible to visually recognize clearly, when the scenery behind the subject is viewed through the depth of field extension area 62, it is possible to obtain an image with less blur in a wide range by the depth of field extension effect. Such lenses are suitable, for example, for applications such as sports bicycle driving.

また図16(b)に示すように、被写界深度延長効果を発揮させる被写界深度延長領域62をレンズ60の周方向異なる位置に複数(ここでは3つ)設定し、それぞれの領域に異なる被写界深度延長成分δ2を付加することも可能である。具体的には、レンズ設計時(第2の非球面成分付加工程において)、領域別に異なる定数Aの値を設定する。このようにすれば、各領域に好みの被写界深度延長効果を付与することができる。 Further, as shown in FIG. 16B, a plurality of (here, three) depth-of-field extension areas 62 for exerting the depth-of-field extension effect are set at different positions in the circumferential direction of the lens 60, and it is also possible to add a different depth of field extension component [delta] 2. Specifically, at the time of lens design (in the second aspheric surface component addition step), different values of constant A are set for each region. In this way, it is possible to give each region a desired depth-of-field extension effect.

また、上記実施形態ではS度数に基づいて決定されるレンズの後面の屈折面に対して各非球面成分を付加しているが、処方度数に基づいて決定されるレンズの後面の屈折面は、S度数のほかC度数、乱視軸AX等に基づいて決定することができる。
また、そり角による視線のずれを抑制するため、そり角・処方度数ごとに補正プリズム成分をさらに付加することも可能であるし、またレンズの前傾斜を考慮した非球面成分をさらに付加することも可能である。
また、眼鏡用レンズの光学中心は、円形レンズの幾何学中心から偏心させた位置に設けることも可能である等、本発明は、その趣旨を逸脱しない範囲において様々変更を加えた形態で実施可能である。
In the above embodiment, each aspheric component is added to the refractive surface of the rear surface of the lens determined based on the S power, but the refractive surface of the rear surface of the lens determined based on the prescription power is It can be determined based on the C degree, the astigmatic axis AX, etc. in addition to the S degree.
In addition, it is possible to further add a correction prism component for each deflection angle and prescribed power in order to suppress the deviation of the line of sight due to the deflection angle, and further to add an aspheric component taking into consideration the front tilt of the lens. Is also possible.
In addition, the optical center of the lens for spectacles may be provided at a position decentered from the geometric center of the circular lens, and the present invention can be implemented in various modified modes without departing from the scope of the invention. It is.

1,30,40,50,60 レンズ
2 後面
3 前面
S 屈折面
1, 30, 40, 50, 60 Lens 2 Rear surface 3 Front S refractive surface

Claims (7)

レンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズの設計方法であって、
レンズの光学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定されるレンズの後面のz座標値に、Br4+Cr6+Dr8+Er10(但し、rはz軸からの距離、B,C,D,Eは定数)で表され、レンズ面内の平均度数の変動を抑制する平均度数安定化成分を付加する第1の非球面成分付加工程と、
前記レンズの後面のz座標値に、Ar3(但し、Aは定数)で表され、被写界深度を延長させる被写界深度延長成分を付加する第2の非球面成分付加工程と、を備えていることを特徴とする眼鏡用レンズの設計方法。
A method of designing a lens for spectacles, wherein the front surface of the lens is set to have a radius of curvature of 150 mm or less,
Assuming that the longitudinal axis passing through the optical center of the lens is the z axis and the direction toward the rear of the lens is the positive direction of the z axis, the z coordinate value of the rear surface of the lens determined based on the prescribed power is Br 4 + Cr 6 + Dr 8 + Er 10 (where r is the distance from the z axis, B, C, D and E are constants), and an average power stabilization component is added to suppress fluctuations in the average power in the lens surface. 1 aspheric component addition step,
A second aspheric component addition step of adding a depth-of-field extension component represented by Ar 3 (where A is a constant) and extending the depth of field to the z-coordinate value of the rear surface of the lens; The design method of the lens for spectacles characterized by having.
レンズの光学中心から放射状に延びるように設定された複数の分割線上において、F(θ)r4+G(θ)r6+H(θ)r8+I(θ)r10(但し、F(θ),G(θ),H(θ),I(θ)は定数、θは前記z軸と直交するx軸からの角度)で表され、装用者の正面視の視線に対し、レンズの光軸を所定のそり角で傾けた際に生じる平均度数の変化を打ち消すように働くそり角補正成分を、前記レンズの後面のz座標値に付加する第3の非球面成分付加工程を、更に備え、
これら第1,第2,第3の非球面成分付加工程で求めた各非球面成分を組合せて成るJ(θ)r3+K(θ)r4+L(θ)r6+M(θ)r8+N(θ)r10(但し、J(θ),K(θ),L(θ),M(θ) ,N(θ)は定数)で表される回転非対称の非球面成分を、前記レンズの後面の各分割線上のz座標値に付加することを特徴とする請求項1に記載の眼鏡用レンズの設計方法。
On a plurality of dividing lines set so as to extend radially from the optical center of the lens, F (θ) r 4 + G (θ) r 6 + H (θ) r 8 + I (θ) r 10 (where F (θ)) , G (.theta.), H (.theta.), I (.theta.) Are constants and .theta. Is the angle from the x-axis orthogonal to the z-axis), and the optical axis of the lens with respect to the line of sight of the wearer Further comprising a third aspheric component addition step of adding to the z-coordinate value of the rear surface of the lens a deflection angle correction component that acts to cancel out the change of the average dioptric power generated when tilting L at a predetermined deflection angle;
The first, second, third combining aspherical each aspheric surface components obtained in component addition step comprising J (θ) r 3 + K (θ) r 4 + L (θ) r 6 + M (θ) r 8 The lens is a rotationally asymmetric aspheric component represented by + N (θ) r 10 (where J (θ), K (θ), L (θ), M (θ), N (θ) are constants), and the lens The method for designing a lens for spectacles according to claim 1, characterized in that it is added to the z-coordinate value on each division line of the rear surface of the lens.
前記レンズの後面を、被写界深度延長効果を発揮させる被写界深度延長領域と、それ以外の非被写界深度延長領域とに区画して、前記被写界深度延長領域に対して前記平均度数安定化成分および被写界深度延長成分を選択的に付加することを特徴とする請求項1,2の何れかに記載の眼鏡用レンズの設計方法。   The rear surface of the lens is divided into a depth-of-field extension region that exerts the depth-of-field extension effect and other non-depth-of-field extension regions, and the rear surface of the lens is divided relative to the depth-of-field extension region. The method for designing a spectacle lens according to any one of claims 1 and 2, characterized in that an average power stabilization component and a depth of field extension component are selectively added. 被写界深度延長効果を発揮させる被写界深度延長領域を前記レンズの後面の周方向異なる位置に複数設定し、前記第2の非球面成分付加工程において、それぞれの被写界深度延長領域に異なる定数Aの値を設定することを特徴とする請求項1,2の何れかに記載の眼鏡用レンズの設計方法。   A plurality of depth-of-field extension regions for exerting the depth-of-field extension effect are set at different positions in the circumferential direction of the rear surface of the lens, and in the second aspheric surface component addition step The method for designing a spectacle lens according to any one of claims 1 and 2, wherein values of different constants A are set. レンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズであって、
前記レンズの全面もしくは一部に設定された被写界深度延長領域にて、
装用者の正面視の視線とレンズの光軸とを一致された状態で測定される平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量と、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量とが、ともに0.14〜0.46ディオプタの範囲内であることを特徴とする眼鏡用レンズ。
An eyeglass lens in which the front surface of the lens is set to have a curvature radius of 150 mm or less,
In the depth of field extension region set on the entire surface or a part of the lens,
The average dioptric power measured with the line of sight of the wearer in a front view and the optical axis of the lens being aligned changes from the optical center of the lens toward the lens peripheral edge to the negative side,
The power change in the first region where the rotational angle of the eye is in the range of 0 degrees to 20 degrees and the power change in the second region where the rotational angle of the eye is in the range of 20 degrees to 40 degrees are both 0.14 to An eyeglass lens having a range of 0.46 diopters.
レンズの前面が曲率半径150mm以下で設定されている眼鏡用レンズであって、
前記レンズの全面もしくは一部に設定された被写界深度延長領域にて、
装用者の正面視の視線に対しレンズの光軸を所定のそり角で傾けた状態で測定される平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の回旋角が0度〜20度の範囲の第1領域における度数変化量と、眼球の回旋角が20度〜40度の範囲の第2領域における度数変化量とが、ともに0.14〜0.46ディオプタの範囲内であることを特徴とする眼鏡用レンズ。
An eyeglass lens in which the front surface of the lens is set to have a curvature radius of 150 mm or less,
In the depth of field extension region set on the entire surface or a part of the lens,
The average dioptric power measured when the optical axis of the lens is inclined at a predetermined deflection angle with respect to the line of sight of the wearer changes from the optical center of the lens to the lens peripheral edge toward the minus side,
The power change in the first region where the rotational angle of the eye is in the range of 0 degrees to 20 degrees and the power change in the second region where the rotational angle of the eye is in the range of 20 degrees to 40 degrees are both 0.14 to An eyeglass lens having a range of 0.46 diopters.
屈折率が1.608、レンズの前面が4.0〜4.9カーブで設定され、装用者の正面視の視線に対しレンズの光軸を10度のそり角で傾けた状態で用いられる眼鏡用レンズであって、
装用者の正面視の視線とレンズの光軸とを一致された状態で測定される平均度数が、レンズの光学中心からレンズ周縁に向けてマイナス側に変化するとともに、
眼球の上下方向且つ回旋角0度〜20度の範囲の度数変化量が0.20〜0.25ディオプタ、
眼球の上下方向且つ回旋角20度〜40度の範囲の度数変化量が0.60〜0.70ディオプタ、
眼球の左右方向耳側且つ回旋角0度〜20度の範囲の度数変化量が0.20〜0.30ディオプタ、
眼球の左右方向耳側且つ回旋角20度〜40度の範囲の度数変化量が0.50〜0.60ディオプタ、
眼球の左右方向鼻側且つ回旋角0度〜20度の範囲の度数変化量が0.15〜0.25ディオプタ、
眼球の左右方向鼻側且つ回旋角20度〜40度の範囲の度数変化量が0.50〜0.60ディオプタ、であることを特徴とする眼鏡用レンズ。
Glasses used with refractive index of 1.608, lens front surface set with 4.0 to 4.9 curve, and the optical axis of the lens is inclined at a 10 degree warp angle with respect to the line of sight of the wearer in front view A lens for
The average dioptric power measured with the line of sight of the wearer in a front view and the optical axis of the lens being aligned changes from the optical center of the lens toward the lens peripheral edge to the negative side,
0.20 to 0.25 diopters in the vertical direction of the eyeball and in the range of 0 ° to 20 ° of the rotation angle;
0.60 to 0.70 diopters of frequency change in the vertical direction of the eyeball and in the range of 20 to 40 degrees of rotational angle
0.20 to 0.30 diopters of frequency change in the lateral ear side of the eye and in the range of 0 ° to 20 ° of the rotation angle;
0.50 to 0.60 diopters of frequency change in the lateral ear side of the eye and in the range of 20 to 40 degrees of rotational angle,
0.15 to 0.25 diopters of frequency change of the right and left direction nasal side of the eyeball and the rotation angle in the range of 0 to 20 degrees,
What is claimed is: 1. A lens for eyeglasses, characterized in that the degree of frequency change in the right and left direction nasal side of the eyeball and in the range of 20 degrees to 40 degrees of rotational angle is 0.50 to 0.60 diopter.
JP2018148917A 2017-12-08 2018-08-07 How to design eyeglass lenses Active JP6803615B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017236448 2017-12-08
JP2017236448 2017-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020188046A Division JP7142956B2 (en) 2017-12-08 2020-11-11 spectacle lenses

Publications (2)

Publication Number Publication Date
JP2019105823A true JP2019105823A (en) 2019-06-27
JP6803615B2 JP6803615B2 (en) 2020-12-23

Family

ID=67061359

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018148917A Active JP6803615B2 (en) 2017-12-08 2018-08-07 How to design eyeglass lenses
JP2020188046A Active JP7142956B2 (en) 2017-12-08 2020-11-11 spectacle lenses

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020188046A Active JP7142956B2 (en) 2017-12-08 2020-11-11 spectacle lenses

Country Status (1)

Country Link
JP (2) JP6803615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405371B2 (en) 2020-08-24 2023-12-26 伊藤光学工業株式会社 How to design gaming lenses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019071A1 (en) * 2022-07-19 2024-01-25 ホヤ レンズ タイランド リミテッド Method for designing spectacle lens, method for manufacturing spectacle lens, spectacle lens, and spectacles
WO2024019070A1 (en) * 2022-07-19 2024-01-25 ホヤ レンズ タイランド リミテッド Design method for eyeglass lens, production method for eyeglass lens, eyeglass lens, and eyeglasses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824112A (en) * 1981-07-08 1983-02-14 オプテイツシエ・ウエルケ・ゲ−・ロ−デンストツク Glasses lens with large positive refraction value
JP2005284059A (en) * 2004-03-30 2005-10-13 Seiko Epson Corp Spectacle lens
JP2009244600A (en) * 2008-03-31 2009-10-22 Tokai Kogaku Kk Progressive refractive power lens and method of manufacturing the same
JP2016206338A (en) * 2015-04-20 2016-12-08 伊藤光学工業株式会社 Vision correction lens designing method and vision correction lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537134B2 (en) * 2004-07-12 2010-09-01 セイコーオプティカルプロダクツ株式会社 Aspheric eyeglass lens design method
JP4758143B2 (en) * 2005-05-31 2011-08-24 セイコーオプティカルプロダクツ株式会社 Eyeglass lenses and eyeglasses
US10747023B2 (en) * 2011-06-15 2020-08-18 Visioneering Technologies, Inc. Method of treating myopia progressions
JP6400552B2 (en) * 2015-09-18 2018-10-03 伊藤光学工業株式会社 Design method for eyeglass lenses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824112A (en) * 1981-07-08 1983-02-14 オプテイツシエ・ウエルケ・ゲ−・ロ−デンストツク Glasses lens with large positive refraction value
JP2005284059A (en) * 2004-03-30 2005-10-13 Seiko Epson Corp Spectacle lens
JP2009244600A (en) * 2008-03-31 2009-10-22 Tokai Kogaku Kk Progressive refractive power lens and method of manufacturing the same
JP2016206338A (en) * 2015-04-20 2016-12-08 伊藤光学工業株式会社 Vision correction lens designing method and vision correction lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405371B2 (en) 2020-08-24 2023-12-26 伊藤光学工業株式会社 How to design gaming lenses

Also Published As

Publication number Publication date
JP6803615B2 (en) 2020-12-23
JP7142956B2 (en) 2022-09-28
JP2021015308A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP3852116B2 (en) Progressive multifocal lens and spectacle lens
JP5389155B2 (en) Eyeglass lens shape data creation method, eyeglass lens shape data creation device, and eyeglass lens
JP7142956B2 (en) spectacle lenses
EP1582909A1 (en) Spectacle lens
KR102042554B1 (en) A method for determining an ophthalmic lens
JP4164550B2 (en) Progressive power spectacle lens
CN101114061A (en) Design method for spectacle lens, spectacle lens, and spectacles
KR20140057196A (en) A method for determining a progressive ophthalmic lens
JP7055318B2 (en) Progressive power lens design method and progressive power lens
JP6374345B2 (en) Vision correction lens design method and vision correction lens
JP6226873B2 (en) Method for determining a set of ophthalmic progressive lens and semi-finished lens blank
WO2018071835A1 (en) Reduced distortion spectacle lens
US8757799B2 (en) Progressive multifocal ophthalmic lens
WO2021123308A1 (en) Method for determining an optical lens
KR102588915B1 (en) Method for providing a selection chart of non-prescription ophthalmic lenses
JP2004264626A (en) Aspheric spectacle lens
WO2022190610A1 (en) Spectacle lens and method for designing same
JP2006267163A (en) Spectacle lens
JP2006023584A (en) Method for designing spectacle lens used for frame having bending angle, and spectacle lens used for frame having the bending angle
JP2021156978A (en) glasses
KR20210039330A (en) Method for determining eye lens
JP2018112633A (en) Progressive refractive power lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6803615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250