JP2019105351A - Shock absorption component, and cask - Google Patents

Shock absorption component, and cask Download PDF

Info

Publication number
JP2019105351A
JP2019105351A JP2017239876A JP2017239876A JP2019105351A JP 2019105351 A JP2019105351 A JP 2019105351A JP 2017239876 A JP2017239876 A JP 2017239876A JP 2017239876 A JP2017239876 A JP 2017239876A JP 2019105351 A JP2019105351 A JP 2019105351A
Authority
JP
Japan
Prior art keywords
absorbing member
tubular
outer peripheral
axial direction
tubular bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017239876A
Other languages
Japanese (ja)
Other versions
JP7032919B2 (en
Inventor
健一郎 阿部
Kenichiro Abe
健一郎 阿部
宣也 林
Noriya Hayashi
宣也 林
愉考 寺田
Yutaka Terada
愉考 寺田
一希 野間
Kazuki Noma
一希 野間
勇治 丸山
Yuji Maruyama
勇治 丸山
貴治 前口
Takaharu Maeguchi
貴治 前口
明夫 北田
Akio Kitada
明夫 北田
秀晃 三井
Hideaki Mitsui
秀晃 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017239876A priority Critical patent/JP7032919B2/en
Publication of JP2019105351A publication Critical patent/JP2019105351A/en
Application granted granted Critical
Publication of JP7032919B2 publication Critical patent/JP7032919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Buffer Packaging (AREA)
  • Vibration Dampers (AREA)

Abstract

To provide a shock absorption component capable of preventing a hollow cylindrical body from falling or breaking by improving the strength to the oblique direction load, and a cask.SOLUTION: A circumferential direction shock absorption component 40B comprises: a hollow cylindrical body 41 having a cylindrical shape extending along tube axial O2 direction; and an outer peripheral cylindrical component 42 disposed on the radially outside of the hollow cylindrical body 41 and having a cylindrical shape extending along tube axial O2 direction. The outer peripheral cylindrical component 42 includes a plurality of tubular bodies 43 in the tube axial O2 direction, the tubular body having a pipe shape extending along the tube axial O2 direction. In at least a pair of tubular bodies 43 adjacent to each other in the tube axial O2 direction, at least a part in the direction of the tube axis O2 of one tubular body 43 of the pair of tubular bodies 43 is fitted along an inner circumferential surface 43g of the other tubular body 43.SELECTED DRAWING: Figure 3

Description

本発明は、衝撃吸収部材、及びキャスクに関する。   The present invention relates to a shock absorbing member and a cask.

放射性物質を含む使用済み核燃料を搬送したり貯蔵したりする際に、キャスクが用いられている。キャスクは、内部に使用済み燃料を収容する輸送容器と、輸送容器に装着される緩衝体と、を備える。   Casks are used to transport and store spent nuclear fuel containing radioactive material. The cask comprises a transport container for containing spent fuel therein, and a buffer mounted on the transport container.

例えば、特許文献1には、輸送容器に装着される緩衝体として、繊維強化プラスチック(FRP)製のシートから形成された複数の中空筒状体を備える構成が開示されている。この構成において、複数の中空筒状体は、輸送容器の径方向外側に放射状に配置されている。各中空筒状体は、軸方向端面が、略円柱形状の輸送容器の周面に対向するように設けられている。
このような構成では、輸送容器の転倒時や落下時等に、緩衝体に衝撃が作用し、中空筒状体の軸方向に荷重が作用すると、中空筒状体において軸方向に剥離破壊が生じることで、輸送容器に対する衝撃を緩和する。
For example, Patent Document 1 discloses a configuration including a plurality of hollow cylindrical bodies formed of sheets made of fiber reinforced plastic (FRP) as a buffer mounted on a transport container. In this configuration, the plurality of hollow cylindrical bodies are radially disposed outward in the radial direction of the transport container. Each hollow cylindrical body is provided such that an axial end surface faces the circumferential surface of the substantially cylindrical transport container.
In such a configuration, an impact acts on the buffer body when the transport container falls or falls, and when a load acts in the axial direction of the hollow cylindrical body, peeling fracture occurs in the axial direction in the hollow cylindrical body. Reduce the impact on the shipping container.

特開2017−114564号公報Unexamined-Japanese-Patent No. 2017-114564

ところで、緩衝体に備えられた中空筒状体は、軸方向の荷重に対しては十分な強度を有している。しかし、軸方向に交差する方向の荷重に対する強度は軸方向の荷重に対する強度よりも強度が小さいため、中空筒状体に対し、中空筒状体の軸線に交差する斜め方向の荷重が作用した場合には、荷重の方向や大きさに応じて緩衝体に設けた中空筒状体が倒れたり、折れたりしまうことがある。   By the way, the hollow cylindrical body provided in the buffer has sufficient strength against the load in the axial direction. However, since the strength for the load in the direction intersecting the axial direction is smaller than the strength for the load in the axial direction, when a load in the oblique direction intersecting the axis of the hollow cylindrical body acts on the hollow cylindrical body. In some cases, the hollow cylindrical body provided in the buffer may fall or break depending on the direction and magnitude of the load.

本発明は、斜め方向の荷重に対する強度を高め、中空筒状体が倒れたり折れたりすることを抑制できる衝撃吸収部材、及びキャスクを提供することを目的とする。   An object of the present invention is to provide a shock absorbing member and a cask capable of enhancing the strength against a load in an oblique direction and suppressing the falling and breaking of the hollow cylindrical body.

第1の態様の衝撃吸収部材は、軸方向に沿って延びる筒形状を有する主吸収部材と、前記主吸収部材の径方向外側に配置され、前記軸方向に沿って延びる筒形状を有する外周筒状部材と、を備え、前記外周筒状部材は、前記軸方向に沿って延びる管形状を有する管状体を前記軸方向に複数備え、前記軸方向で互いに隣り合う少なくとも一対の前記管状体は、一対の前記管状体のうちの一方の前記管状体の前記軸方向の少なくとも一部が、他方の前記管状体の内周面に沿うように嵌められている。   The shock absorbing member of the first aspect is a main absorbing member having a cylindrical shape extending along the axial direction, and an outer peripheral cylinder having a cylindrical shape extending radially along the radial direction of the main absorbing member. A plurality of tubular members having a tubular shape having a tubular shape extending along the axial direction, and at least a pair of the tubular bodies adjacent to each other in the axial direction At least a portion of the axial direction of the tubular body of one of the pair of tubular bodies is fitted along the inner circumferential surface of the other tubular body.

本態様の衝撃吸収部材は、主吸収部材の径方向外側に外周筒状部材を備える。軸方向の荷重が衝撃吸収部材に作用した場合、その荷重は、主に主吸収部材が担い、軸方向の荷重に応じて軸方向に主吸収部材の剥離破壊が生じることで、衝撃を吸収する。外周筒状部材は、軸方向に過大な荷重が作用した場合には、一方の管状体が他方の管状体の内側に入り込み、外周筒状部材が軸方向に縮まる。一方、衝撃吸収部材の軸方向に交差する方向の荷重が作用した場合、主吸収部材の径方向外側に外周筒状部材が設けられることで、荷重を、主吸収部材と外周筒状部材とで負担することができる。これにより、主吸収部材で負担する荷重が減り、筒形状を有する主吸収部材が倒れたり折れたりするのを抑制することができる。   The impact absorbing member of this aspect is provided with an outer peripheral cylindrical member on the radial outside of the main absorbing member. When the load in the axial direction acts on the impact absorbing member, the load is mainly carried by the main absorbing member, and the peeling of the main absorbing member occurs in the axial direction according to the load in the axial direction, thereby absorbing the impact. . In the outer peripheral tubular member, when an excessive load acts in the axial direction, one tubular body gets into the inside of the other tubular body, and the outer peripheral tubular member contracts in the axial direction. On the other hand, when a load in a direction intersecting the axial direction of the impact absorbing member acts, an outer peripheral tubular member is provided radially outward of the main absorbing member, whereby the load can be reduced by the main absorbing member and the outer peripheral tubular member. It can bear the burden. Thereby, the load which bears by the main absorption member decreases, and it can control that the main absorption member which has cylinder shape falls or breaks.

また、第2の態様の衝撃吸収部材は、前記軸方向で互いに隣り合う少なくとも一対の前記管状体は、予め定めた以上の前記軸方向の荷重が作用した場合に、一方の前記管状体が他方の前記管状体の内側に押し込まれる第1の態様の衝撃吸収部材である。   Further, in the impact absorbing member of the second aspect, at least a pair of the tubular bodies adjacent to each other in the axial direction have one or more of the tubular bodies being the other when a predetermined load in the axial direction or more is applied. The shock absorbing member according to the first aspect of the present invention is pushed into the inside of the tubular body.

また、第3の態様の衝撃吸収部材は、一方の前記管状体の外周面と他方の前記管状体の内周面とは、前記軸方向周りの全周にわたって摺接している第1または第2の態様の衝撃吸収部材である。   In the shock absorbing member of the third aspect, the outer peripheral surface of one of the tubular bodies and the inner peripheral surface of the other of the tubular bodies are in sliding contact over the entire circumference around the axial direction. The shock absorbing member according to the aspect of

また、第4の態様の衝撃吸収部材は、前記主吸収部材は、繊維強化樹脂材料からなり、前記管状体は、繊維強化材料、金属材料、及び樹脂材料の一種からなる第1〜第3のいずれかの態様の衝撃吸収部材である。   In the shock absorbing member of the fourth aspect, the main absorbing member is made of a fiber reinforced resin material, and the tubular body is made of one of a fiber reinforcing material, a metal material, and a resin material. It is an impact-absorbing member of any aspect.

また、第5の態様の衝撃吸収部材は、前記軸方向で互いに隣り合う一対の前記管状体は、外径寸法が互いに異なる第1〜第4のいずれかの態様の衝撃吸収部材である。   Further, in the shock absorbing member of the fifth aspect, the pair of tubular bodies adjacent to each other in the axial direction is the shock absorbing member of any one of the first to fourth aspects having different outer diameter dimensions.

また、第6の態様の衝撃吸収部材は、前記軸方向に並ぶ複数の前記管状体は、前記軸方向の第一側から前記軸方向の第二側に向かって、外径寸法が順次縮小または拡大する第5の態様の衝撃吸収部材である。   Further, in the impact absorbing member of the sixth aspect, the plurality of tubular bodies arranged in the axial direction have their outer diameter dimensions reduced sequentially from the first side in the axial direction toward the second side in the axial direction or It is an impact-absorbing member of the 5th aspect expanded.

また、第7の態様の衝撃吸収部材は、前記外周筒状部材は、外径寸法が小さい側の端部を、衝撃吸収対象物側に向けて配置される第6の態様の衝撃吸収部材である。   The impact absorbing member of the seventh aspect is the impact absorbing member of the sixth aspect, wherein the outer peripheral cylindrical member is disposed with the end on the side of the smaller outer diameter toward the impact absorbing object side. is there.

また、第8の態様の衝撃吸収部材は、前記主吸収部材は、前記外周筒状部材において最も内径が細い前記管状体の内側に嵌め込まれている第1〜第7のいずれかの態様の衝撃吸収部材である。   Further, in the shock absorbing member of the eighth aspect, the main absorbing member is any one of the shocks according to any one of the first to seventh aspects, which is fitted inside the tubular body having the narrowest inner diameter in the outer peripheral cylindrical member. It is an absorption member.

また、第9の態様の衝撃吸収部材は、前記主吸収部材の内側に、前記主吸収部材の強度を高める補強部材が設けられている第1〜第8のいずれかの態様の衝撃吸収部材である。   The shock absorbing member according to the ninth aspect is the shock absorbing member according to any one of the first to eighth aspects, wherein a reinforcing member for enhancing the strength of the main absorbing member is provided inside the main absorbing member. is there.

また、第10の態様のキャスクは、中心軸線に沿って延びる筒形状を有し、内部に放射性物質を収容する輸送容器と、前記輸送容器の径方向外側に設けられる外周ケース部を少なくとも有するケーシングと、前記外周ケース部と前記輸送容器の外周面との間に複数が設けられる、第1〜第9のいずれかの態様の衝撃吸収部材と、を備えるキャスクである。   The cask according to the tenth aspect has a cylindrical shape extending along the central axis, and a casing having at least a transport container for containing a radioactive substance therein, and an outer peripheral case portion provided radially outward of the transport container. And a shock absorbing member according to any one of the first to ninth aspects, wherein a plurality of shock absorbing members are provided between the outer peripheral case portion and the outer peripheral surface of the transport container.

本発明の一態様によれば、斜め方向の荷重に対する強度を高め、中空筒状体が倒れたり折れたりすることを抑制できる衝撃吸収部材、及びキャスクが提供される。   According to one aspect of the present invention, an impact absorbing member and a cask are provided that can increase strength against a load in an oblique direction and can prevent the hollow cylindrical body from falling or breaking.

第一実施形態に係るキャスクの側面図である。It is a side view of the cask which concerns on 1st embodiment. 第一実施形態に係る衝撃吸収部材を、中心軸線方向から見た図である。It is the figure which looked at the impact-absorbing member which concerns on 1st embodiment from the central axis direction. 第一実施形態に係る衝撃吸収部材の断面図である。It is a sectional view of an impact absorption member concerning a first embodiment. 第一実施形態に係る衝撃吸収部材が管軸方向につぶれた状態を示す断面図である。It is a sectional view showing the state where the shock absorption member concerning a first embodiment was crushed in the direction of a pipe axis. 第一実施形態に係る衝撃吸収部材に斜め方向の荷重が作用した状態を示す断面図である。It is sectional drawing which shows the state which the load of the diagonal direction acted on the impact-absorbing member which concerns on 1st embodiment. 第二実施形態に係る衝撃吸収部材の構成を示す斜視図である。It is a perspective view which shows the structure of the impact-absorbing member which concerns on 2nd embodiment. 第三実施形態に係る衝撃吸収部材の構成を示す断面図である。It is sectional drawing which shows the structure of the impact-absorbing member which concerns on 3rd embodiment.

以下、本発明に係る各種実施形態について、図面を用いて説明する。   Hereinafter, various embodiments according to the present invention will be described using the drawings.

<第一実施形態>
以下、本発明の第一実施形態に係る衝撃吸収部材を備えたキャスクについて図1〜図5を参照して説明する。
図1に示されるように、キャスク100は、輸送容器(衝撃吸収対象物)10及び一対の緩衝体20によって構成されている。
First Embodiment
Hereinafter, a cask provided with an impact absorbing member according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the cask 100 is constituted by a transport container (shock absorbing object) 10 and a pair of buffer bodies 20.

輸送容器10は、円筒形状を有する容器本体10aを有している。容器本体10aは中心軸線O1に沿って延びる筒形状を有しており、中心軸線O1方向の両端が閉塞されている。容器本体10aの中心軸線O1方向の一端は、開閉可能とされている。容器本体10aの内部には、放射性物質を含む使用済み核燃料11が収容される。使用済み核燃料11は、容器本体10aの一端を開状態とすることで収容され、輸送時には当該一端が閉塞される。これにより輸送時は容器本体10aの内部は密封状態とされる。   The transport container 10 has a container body 10a having a cylindrical shape. The container body 10a has a cylindrical shape extending along the central axis O1, and both ends in the direction of the central axis O1 are closed. One end of the container body 10a in the direction of the central axis O1 can be opened and closed. The spent nuclear fuel 11 containing radioactive material is accommodated in the container body 10a. The spent nuclear fuel 11 is accommodated by opening one end of the container body 10a, and at the time of transportation, the one end is closed. Thus, the inside of the container body 10a is sealed at the time of transportation.

緩衝体20は、ケーシング30及び衝撃吸収手段40を備えている。
ケーシング30は、中心軸線O1を中心とした円盤形状を有する部材であって、内部が中空状に形成されている。ケーシング30は輸送容器10の中心軸線O1の両端部に一対が設けられている。各ケーシング30は、中心軸線O1に直交する円板形状を有する端板部30aと、端板部30aの外周部から中心軸線O1方向に沿って輸送容器10側に延びる円筒形状を有する筒状部30bと、を一体に有する。ケーシング30における輸送容器10側を向く面には、筒状部30bの内側に、輸送容器10の端部が嵌め込まれる凹部31が形成されている。ケーシング30の凹部31に輸送容器10の端部が嵌め込まれることで、輸送容器10の両端部が中心軸線O1方向及び中心軸線O1の径方向からの荷重に対して保護される。
The shock absorber 20 comprises a casing 30 and shock absorbing means 40.
The casing 30 is a member having a disk shape centered on the central axis O1, and the inside is hollow. A pair of casings 30 is provided at both ends of the central axis O1 of the transport container 10. Each casing 30 has an end plate portion 30a having a disc shape orthogonal to the central axis O1, and a cylindrical portion having a cylindrical shape extending from the outer peripheral portion of the end plate portion 30a toward the transport container 10 along the central axis O1 direction. And 30b integrally. On the surface of the casing 30 facing the transport container 10, a recess 31 into which the end of the transport container 10 is fitted is formed inside the cylindrical portion 30b. By fitting the end of the transport container 10 into the recess 31 of the casing 30, both ends of the transport container 10 are protected against the load from the central axis O1 direction and the radial direction of the central axis O1.

ケーシング30の内部には、環状空間32と、円盤状空間33とが形成されている。環状空間32は、中心軸線O1方向で凹部31が形成されている範囲の径方向外側で、中心軸線O1周りの周方向に連続して環形状を有する部分である。円盤状空間33は、中心軸線O1方向で凹部31よりも外方(輸送容器10側と反対側)に位置する。円盤状空間33は、中心軸線O1方向に一定長の厚さを有した円盤形状を有する領域に形成されている。   An annular space 32 and a disc-like space 33 are formed inside the casing 30. The annular space 32 is a portion having an annular shape continuously in the circumferential direction around the central axis O1 outside the range in which the recess 31 is formed in the direction of the central axis O1. The disk-like space 33 is located outward of the recess 31 in the direction of the central axis O1 (opposite to the transport container 10 side). The disk-like space 33 is formed in a region having a disk shape having a constant length in the direction of the central axis O1.

衝撃吸収手段40は、軸方向衝撃吸収部材40Aと、周方向衝撃吸収部材(衝撃吸収部材)40Bと、を備える。
軸方向衝撃吸収部材40Aは、ケーシング30内における円盤状空間33内に充填されている。軸方向衝撃吸収部材40Aとしては任意の構成を採用することができる。軸方向衝撃吸収部材40Aは、凹部31に嵌め込まれた輸送容器10の端部に対し、中心軸線O1方向の外側から突き当たる。軸方向衝撃吸収部材40Aは、輸送容器10に中心軸線O1方向の衝撃が入力されたときに、その衝撃力を吸収する。
The impact absorbing means 40 includes an axial impact absorbing member 40A and a circumferential impact absorbing member (impact absorbing member) 40B.
The axial impact absorbing member 40 </ b> A is filled in the disc-like space 33 in the casing 30. An arbitrary configuration can be adopted as the axial impact absorbing member 40A. The axial impact absorbing member 40A abuts the end of the transport container 10 fitted in the recess 31 from the outside in the direction of the central axis O1. When an impact in the direction of the central axis O1 is input to the transport container 10, the axial impact absorbing member 40A absorbs the impact.

以下、周方向衝撃吸収部材40Bについて、図2〜図5を参照して説明する。
図2に示されるように、周方向衝撃吸収部材40Bは、ケーシング30内における環状空間32に収容されている。すなわち、周方向衝撃吸収部材40Bは、凹部31に嵌め込まれた輸送容器10の径方向外側に配置されている。周方向衝撃吸収部材40Bは、周方向に間隔をあけて配置された複数本が放射状に配置されている。
Hereinafter, the circumferential direction impact absorbing member 40B will be described with reference to FIGS.
As shown in FIG. 2, the circumferential impact absorbing member 40 </ b> B is accommodated in an annular space 32 in the casing 30. That is, the circumferential impact absorbing member 40B is disposed radially outside the transport container 10 fitted in the recess 31. A plurality of circumferential impact absorbing members 40 </ b> B are radially disposed at intervals in the circumferential direction.

図3に示されるように、各周方向衝撃吸収部材40Bは、中空筒状体(主吸収部材)41と、外周筒状部材42と、を備える。中空筒状体41は、管軸O2方向に沿って一定の径で延び、中空部41hを有する中空管状の部材である。本実施形態において中空筒状体41は、管軸O2方向と垂直な断面において円形を有する。中空筒状体41は、連続した炭素繊維やガラス繊維をプラスチック樹脂で含浸したCFRP、GFRPシートによって形成されている。   As shown in FIG. 3, each circumferential impact absorbing member 40 </ b> B includes a hollow cylindrical body (main absorbing member) 41 and an outer peripheral cylindrical member 42. The hollow cylindrical body 41 is a hollow tubular member that extends with a constant diameter along the direction of the tube axis O2 and has a hollow portion 41 h. In the present embodiment, the hollow cylindrical body 41 has a circular shape in a cross section perpendicular to the direction of the tube axis O2. The hollow cylindrical body 41 is formed of CFRP and GFRP sheets in which continuous carbon fibers and glass fibers are impregnated with a plastic resin.

外周筒状部材42は、中空筒状体41の径方向外側に配置されている。外周筒状部材42は、管軸O2方向に沿って延びる筒形状を有する。外周筒状部材42は、管軸O2方向に沿って延びる管形状の管状体43を管軸O2方向に複数備えている。本実施形態において、外周筒状部材42は、計6個の管状体43を備えている。
各管状体43は、CFRP、GFRP等の繊維強化材料、金属材料、及び樹脂材料の一種からなる。
The outer circumferential tubular member 42 is disposed radially outside the hollow tubular body 41. The outer circumferential tubular member 42 has a tubular shape extending along the direction of the tube axis O2. The outer circumferential tubular member 42 includes a plurality of tubular tubes 43 extending in the direction of the tube axis O2 in the direction of the tube axis O2. In the present embodiment, the outer circumferential tubular member 42 includes a total of six tubular bodies 43.
Each tubular body 43 is made of one of a fiber reinforced material such as CFRP and GFRP, a metal material, and a resin material.

管軸O2方向に並ぶ複数の管状体43は、外周筒状部材42において管軸O2方向の第一側の端部42aから管軸O2方向の第二側の端部42bに向かって、外径寸法が順次縮小している。これにより、管軸O2方向で互いに隣り合う一対の管状体43は、外径寸法が互いに異なっている。管軸O2方向で互いに隣り合う一対の管状体43は、一対の管状体43のうちの一方の管状体43の管軸O2方向の少なくとも一部が、他方の管状体43の内周面43gに沿うように嵌められている。
また、中空筒状体41は、外周筒状部材42の端部42b側の端部41aが、外周筒状部材42において最も内径が細い管状体43Aの内側に嵌め込まれている。
The plurality of tubular bodies 43 aligned in the direction of the tube axis O2 have an outer diameter from the end 42a on the first side in the direction of the tube axis 02 to the end 42b on the second side in the direction of the tube axis O2. The dimensions are shrinking sequentially. Thus, the pair of tubular bodies 43 adjacent to each other in the direction of the tube axis O2 have different outer diameter dimensions. In the pair of tubular bodies 43 adjacent to each other in the direction of the tube axis O2, at least a portion in the direction of the tube axis O2 of one tubular body 43 of the pair of tubular bodies 43 is on the inner circumferential surface 43g of the other tubular body 43 It is fitted along.
The hollow cylindrical body 41 has the end 41a on the end 42b side of the outer peripheral cylindrical member 42 fitted inside the tubular body 43A having the narrowest inner diameter in the outer peripheral cylindrical member 42.

一方の管状体43の外周面43fと他方の管状体43の内周面43gとは、管軸O2方向周りの全周にわたって摺接している。これにより、一方の管状体43の外周面43fと他方の管状体43の内周面43gとの間に生じる摩擦力によって、一方の管状体43が他方の管状体43に対して管軸O2方向に突出した状態で、互いの位置関係が維持されている。管軸O2方向で互いに隣り合う少なくとも一対の管状体43は、予め定めた以上の管軸O2方向の荷重が作用した場合に、一方の管状体43が他方の管状体43の内側に押し込まれる。これにより、周方向衝撃吸収部材40Bは、予め定めた以上の管軸O2方向の荷重が作用した場合に、管軸O2方向の長さが縮まる。   The outer peripheral surface 43f of one tubular body 43 and the inner peripheral surface 43g of the other tubular body 43 are in sliding contact over the entire circumference around the direction of the pipe axis O2. Thus, the friction force generated between the outer peripheral surface 43 f of one tubular body 43 and the inner peripheral surface 43 g of the other tubular body 43 causes the one tubular body 43 to move relative to the other tubular body 43 in the direction of the tube axis O2. In the protruding state, the positional relationship between each other is maintained. At least one pair of tubular bodies 43 adjacent to each other in the direction of the tubular axis O2 is pushed into the inside of the other tubular body 43 when a load in the direction of the prescribed tubular axis O2 acts. Thereby, the circumferential direction impact-absorbing member 40B is reduced in length in the direction of the tube axis O2 when a load in the direction of the tube axis O2 more than a predetermined value acts.

本実施形態では、外周筒状部材42は、外径寸法が小さい側の端部42bを、衝撃吸収対象物である輸送容器10側に向け、外径寸法が大きい側の端部42aを、ケーシング30の筒状部30b側に向けて配置される。   In the present embodiment, the outer peripheral cylindrical member 42 has the end 42b on the side with the smaller outer diameter dimension directed toward the transport container 10 that is the shock absorbing object, and the end 42a on the side with the larger outer diameter is It arrange | positions toward the 30 cylindrical part 30b side.

周方向衝撃吸収部材40Bに管軸O2方向の荷重Pが作用したときには、主に、軸方向に中空筒状体41の剥離破壊が生じることで、管軸O2方向の荷重Pによる衝撃を吸収する。中空筒状体41が管軸O2方向に潰れるほどの大きな荷重Pが作用した場合、図4に示されるように、外周筒状部材42は、管軸O2方向において互いに隣り合う一方の管状体43が他方の管状体43の内側に押し込まれることで、その全長が縮まる。
このように、外周筒状部材42は、管軸O2方向に対しては低強度、低剛性である。
When the load P in the direction of the tube axis O2 acts on the circumferential impact absorbing member 40B, mainly due to the peeling failure of the hollow cylindrical body 41 in the axial direction, the impact due to the load P in the direction of the tube axis O2 is absorbed . When a large load P that causes the hollow cylindrical body 41 to collapse in the direction of the tube axis O2 acts, as shown in FIG. 4, the outer peripheral cylindrical members 42 are one tubular body 43 adjacent to each other in the direction of the tube axis O2. Is pushed into the inside of the other tubular body 43, the overall length thereof is reduced.
Thus, the outer peripheral tubular member 42 has low strength and low rigidity in the direction of the pipe axis O2.

また、図5に示されるように、周方向衝撃吸収部材40Bは、中空筒状体41の径方向外側に外周筒状部材42が設けられて、いわば内外二重構造となっている。管軸O2方向に対して交差する方向の荷重Pが作用した場合は、荷重Pは、中空筒状体41と周方向衝撃吸収部材40Bとで分担して負担する。これにより、中空筒状体41おいて、管軸O2方向に交差する方向の荷重Pの負担を低減する。   Further, as shown in FIG. 5, the circumferential impact absorbing member 40B is provided with an outer peripheral cylindrical member 42 at the radial outer side of the hollow cylindrical body 41, and has a so-called double internal / external double structure. When the load P in the direction intersecting with the direction of the tube axis O2 acts, the load P is shared and carried by the hollow cylindrical body 41 and the circumferential impact absorbing member 40B. Thereby, in the hollow cylindrical body 41, the load of the load P in the direction intersecting with the direction of the tube axis O2 is reduced.

次に、上記構成の周方向衝撃吸収部材40B、キャスク100の作用効果について説明する。
本実施形態では、周方向衝撃吸収部材40Bは、中空筒状体41と、外周筒状部材42と、を備える。また、外周筒状部材42は、管状体43を管軸O2方向に複数備える。さらに、管軸O2方向で互いに隣り合う管状体43は、一方の管状体43の管軸O2方向の少なくとも一部が、他方の管状体43の内周面43gに沿うように嵌められている。
本実施形態の周方向衝撃吸収部材40Bは、中空筒状体41の径方向外側に外周筒状部材42が設けられることで、管軸O2方向に交差する方向の荷重を、中空筒状体41と外周筒状部材42とで負担する。これにより、筒形状を有する中空筒状体41における負担が減る。したがって、管軸O2方向に交差する斜め方向の荷重に対する強度を高め、中空筒状体41が倒れたり折れたりすることを抑制できる周方向衝撃吸収部材40B、及びキャスク100が提供される。
Next, the operation and effects of the circumferential impact absorbing member 40B and the cask 100 having the above-described configuration will be described.
In the present embodiment, the circumferential impact absorbing member 40B includes the hollow cylindrical body 41 and the outer peripheral cylindrical member 42. Further, the outer peripheral tubular member 42 includes a plurality of tubular bodies 43 in the direction of the tube axis O2. Furthermore, at least a part of the tubular body 43 in the direction of the tube axis O2 of the tubular bodies 43 adjacent to each other in the direction of the tube axis O2 is fitted along the inner circumferential surface 43g of the other tubular body 43.
In the circumferential impact absorbing member 40B of the present embodiment, the outer cylindrical member 42 is provided on the radially outer side of the hollow cylindrical body 41 so that the load in the direction intersecting the direction of the pipe axis O2 can be reduced. And the outer cylindrical member 42. This reduces the load on the hollow cylindrical body 41 having a cylindrical shape. Therefore, there is provided the circumferential impact absorbing member 40B and the cask 100 capable of enhancing the strength against the load in the oblique direction intersecting the tube axis O2 direction and suppressing the hollow cylindrical body 41 from falling or breaking.

また、周方向衝撃吸収部材40Bは、管軸O2方向で互いに隣り合う管状体43は、予め定めた以上の管軸O2方向の荷重が作用した場合に、一方の管状体43が他方の管状体43の内側に押し込まれる。このような構成によれば、予め定めた以上の過大な荷重が作用しない限り、複数の管状体43からなる外周筒状部材42は、管軸O2方向の長さを維持し、中空筒状体41で負担する管軸O2方向の荷重の一部を負担することができる。予め定めた以上の過大な荷重が管軸O2方向に作用した場合は、一方の管状体43が他方の管状体43の内側に入り込み、外周筒状部材42が管軸O2方向に縮まる。   In addition, in the circumferential impact absorbing member 40B, the tubular bodies 43 adjacent to each other in the direction of the tube axis O 2 have one tubular body 43 acting as the other tubular body when a load in the direction of the predetermined tube axis O 2 acts. It is pushed inside of 43. According to such a configuration, the outer peripheral tubular member 42 formed of the plurality of tubular bodies 43 maintains the length in the direction of the tube axis O2 unless a predetermined excess load or more acts on the hollow tubular body 41 can bear a part of the load in the direction of the pipe axis O2. When an excessive load more than a predetermined amount acts in the direction of the tube axis O2, one tubular body 43 enters the inside of the other tubular body 43, and the outer circumferential tubular member 42 contracts in the direction of the tube axis O2.

また、一方の管状体43の外周面43fと他方の管状体43の内周面43gとは、管軸O2方向周りの全周にわたって摺接している。
このような構成によれば、一方の管状体43の外周面43fと他方の管状体43の内周面43gとの間に生じる摩擦力によって、複数の管状体43からなる外周筒状部材42は、管軸O2方向の長さを維持し、中空筒状体41で負担する管軸O2方向の荷重の一部を負担することができる。一方の管状体43の外周面43fと他方の管状体43の内周面43gとの間に生じる摩擦力を調整することで、外周筒状部材42で負担できる管軸O2方向の荷重の大きさを調整することができる。
Further, the outer peripheral surface 43f of one tubular body 43 and the inner peripheral surface 43g of the other tubular body 43 are in sliding contact over the entire circumference around the direction of the pipe axis O2.
According to such a configuration, the outer circumferential cylindrical member 42 formed of the plurality of tubular bodies 43 is made by the frictional force generated between the outer circumferential surface 43 f of the one tubular body 43 and the inner circumferential surface 43 g of the other tubular body 43. The length in the direction of the tube axis O2 can be maintained, and part of the load in the direction of the tube axis O2 to be borne by the hollow cylindrical body 41 can be borne. By adjusting the frictional force generated between the outer peripheral surface 43f of one tubular body 43 and the inner peripheral surface 43g of the other tubular body 43, the size of the load in the direction of the tube axis O2 that can be borne by the outer peripheral tubular member 42 Can be adjusted.

また中空筒状体41は、繊維強化樹脂材料からなり、外周筒状部材42は、繊維強化材料、金属材料、及び樹脂材料の一種からなる。これにより、中空筒状体41、外周筒状部材42のそれぞれにおいて、繊維方向や厚みを適宜調整することによって、管軸O2方向及び管軸O2方向に交差する方向の荷重に対する強度を調整することができる。   The hollow cylindrical body 41 is made of a fiber reinforced resin material, and the outer peripheral cylindrical member 42 is made of one of a fiber reinforced material, a metal material and a resin material. Thereby, in each of the hollow cylindrical body 41 and the outer peripheral cylindrical member 42, by adjusting the fiber direction and thickness appropriately, the strength against the load in the direction crossing the tube axis O2 direction and the tube axis O2 direction is adjusted. Can.

また、周方向衝撃吸収部材40Bにおいて、管軸O2方向で互いに隣り合う一対の管状体43は、外径寸法が互いに異なる。これにより、管軸O2方向に過大な力が作用した場合には、管軸O2方向で互いに隣り合う管状体43において、一方の管状体43が他方の管状体43の内側に入り込み、外周筒状部材42が管軸O2方向に縮まる。   Further, in the circumferential impact absorbing member 40B, the pair of tubular bodies 43 adjacent to each other in the direction of the tube axis O2 have different outer diameter dimensions. Thereby, when an excessive force acts in the direction of the tube axis O2, one tubular body 43 enters the inside of the other tubular body 43 in the tubular bodies 43 adjacent to each other in the direction of the tube axis O2, and the outer peripheral tubular The member 42 contracts in the direction of the tube axis O2.

また、管軸O2方向に並ぶ複数の管状体43は、管軸O2方向の第一側から管軸O2方向の第二側に向かって、外径寸法が順次縮小する。これにより、第一側の端部42a側の管状体43の内側に、他の全ての管状体43が入り込む。これにより、外周筒状部材42を管軸O2方向において最大限に縮めることが可能となる。   Moreover, the outer diameter size of the plurality of tubular bodies 43 aligned in the direction of the tube axis O2 sequentially decreases from the first side in the direction of the tube axis 02 toward the second side in the direction of the tube axis O2. Thereby, all the other tubular bodies 43 enter inside the tubular body 43 on the first end 42 a side. As a result, the outer circumferential tubular member 42 can be maximally contracted in the direction of the tube axis O2.

また、外周筒状部材42は、外径寸法が小さい側の端部42bを、衝撃吸収対象物である輸送容器10側に向けて配置される。このような構成によれば、外周筒状部材42は、衝撃吸収対象物とは反対側の端部42aで外径寸法が大きくなっている。周方向衝撃吸収部材40B側から管軸O2方向に交差する方向の荷重が、外周筒状部材42の外径寸法が小さい側の端部42bに作用した場合、反対側の端部42aには、荷重によるモーメントが作用する。モーメントが作用する側の端部42aは、外周筒状部材42の外径寸法が大きいので、モーメントに対して十分な強度を発揮することができる。   In addition, the outer peripheral tubular member 42 is disposed with the end 42 b on the side with the smaller outer diameter dimension directed toward the transport container 10 that is the shock absorbing object. According to such a configuration, the outer peripheral cylindrical member 42 has an outer diameter larger at the end 42 a opposite to the shock absorbing object. When a load in the direction intersecting the direction of the tube axis O2 from the circumferential impact absorbing member 40B acts on the end 42b on the side where the outer diameter dimension of the outer peripheral tubular member 42 is smaller, the end 42a on the opposite side is A moment by load acts. The end portion 42a on the side on which the moment acts has a large outer diameter size of the outer peripheral cylindrical member 42, and therefore can exhibit sufficient strength against the moment.

また中空筒状体41は、外周筒状部材42において最も内径が細い管状体43Aの内側に嵌め込まれている。このような構成によれば、中空筒状体41と外周筒状部材42と一体化することができる。   The hollow cylindrical body 41 is fitted to the inside of the tubular body 43A having the narrowest inner diameter in the outer peripheral cylindrical member 42. According to such a configuration, the hollow cylindrical body 41 and the outer peripheral cylindrical member 42 can be integrated.

なお、上記実施形態において、外周筒状部材42は、外径寸法が小さい側の端部42bを、衝撃吸収対象物である輸送容器10側に向けて配置したが、これに限らない。すなわち、外周筒状部材42は、外径寸法が大きい側の端部42aを、衝撃吸収対象物である輸送容器10側に向けて配置してもよい。
また、上記実施形態において、ケーシング30は、円盤形状を有する部材であるが、変形例として、ケーシング30は、多角形盤形状であってもよい。この場合、円盤状空間33は、多角形盤状空間となる。
In the above embodiment, the outer cylindrical member 42 is disposed so that the end 42b having the smaller outer diameter is directed to the side of the transport container 10, which is a shock absorbing object, but the present invention is not limited thereto. That is, the outer peripheral cylindrical member 42 may be disposed so that the end 42 a having the larger outer diameter dimension is directed to the side of the transport container 10 which is the shock absorbing object.
Moreover, in the said embodiment, although the casing 30 is a member which has disk shape, as a modification, the casing 30 may be polygonal-disk shape. In this case, the disc-like space 33 is a polygonal disc-like space.

<第二実施形態>
次に本発明の第二実施形態について図6を参照して説明する。第二実施形態において、第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
第二実施形態の衝撃吸収部材では、上記第一実施形態の衝撃吸収部材に備えて、中空筒状体41の内側に補強部材45を設けている。
図6に示すように、本実施形態のキャスク100に設けられた周方向衝撃吸収部材(衝撃吸収部材)40Cは、中空筒状体41と、外周筒状部材42と、補強部材45と、を備える。
補強部材45は、管軸O2方向に延び、筒形状を有する中空筒状体41の内側に設けられている。補強部材45は、管軸O2方向における中空筒状体41の強度を高める。本実施形態において、補強部材45は、管軸O2方向に直交する断面形状が十字形状とされている。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
In the impact absorbing member of the second embodiment, the reinforcing member 45 is provided inside the hollow cylindrical body 41 in preparation for the impact absorbing member of the first embodiment.
As shown in FIG. 6, the circumferential direction impact absorbing member (impact absorbing member) 40C provided in the cask 100 of the present embodiment includes the hollow cylindrical body 41, the outer peripheral cylindrical member 42, and the reinforcing member 45. Prepare.
The reinforcing member 45 extends in the direction of the pipe axis O2, and is provided inside the hollow cylindrical body 41 having a cylindrical shape. The reinforcing member 45 enhances the strength of the hollow cylindrical body 41 in the direction of the pipe axis O2. In the present embodiment, the reinforcing member 45 has a cross-sectional shape orthogonal to the direction of the tube axis O2 as a cross shape.

このような第二実施形態の周方向衝撃吸収部材40C、キャスク100は、第一実施形態同様、中空筒状体41の径方向外側に外周筒状部材42を備える。第二実施形態の周方向衝撃吸収部材40C、キャスク100は、さらに径方向内側には補強部材45を備える。この周方向衝撃吸収部材40Cは、管軸O2方向に交差する方向の荷重が作用した場合、中空筒状体41と、外周筒状部材42と、補強部材45とで、荷重を分担して受けることができる。したがって、管軸O2方向に交差する斜め方向の荷重に対する強度を高め、中空筒状体41が倒れたり折れたりすることを抑制できる周方向衝撃吸収部材40C、及びキャスク100が提供される。   The circumferential impact absorbing member 40C and the cask 100 of the second embodiment include the outer circumferential cylindrical member 42 on the radially outer side of the hollow cylindrical body 41 as in the first embodiment. The circumferential impact absorbing member 40C and the cask 100 of the second embodiment further include a reinforcing member 45 on the radially inner side. The circumferential impact absorbing member 40C receives the load by the hollow cylindrical body 41, the outer cylindrical member 42, and the reinforcing member 45 when a load in a direction intersecting the tube axis O2 acts. be able to. Therefore, the circumferential direction shock absorbing member 40C and the cask 100 are provided which can enhance the strength against the load in the oblique direction intersecting the direction of the tube axis O2 and suppress the hollow cylindrical body 41 from falling or breaking.

<第三実施形態>
次に本発明の第三実施形態について図7を参照して説明する。第三実施形態において、第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
第三実施形態の周方向衝撃吸収部材(衝撃吸収部材)40Dは、管軸O2方向に複数段に積み重ねて設けられている。
Third Embodiment
Next, a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
The circumferential direction impact absorbing member (impact absorbing member) 40D of the third embodiment is provided by being stacked in multiple stages in the direction of the tube axis O2.

図7に示すように、輸送容器10の外周面と、ケーシング30の筒状部30bとの間には、径方向に間隔をあけて1以上、例えば2枚の壁部60A、60Bが設けられている。この壁部60A、60Bは、中心軸線O1周りの周方向に連続して形成されている。   As shown in FIG. 7, between the outer peripheral surface of the transport container 10 and the cylindrical portion 30b of the casing 30, one or more, for example, two wall portions 60A and 60B are provided at intervals in the radial direction. ing. The wall portions 60A and 60B are continuously formed in the circumferential direction around the central axis O1.

周方向衝撃吸収部材40Dは、上記第一実施形態で示した周方向衝撃吸収部材40B、または第二実施形態で示した周方向衝撃吸収部材40Cのいずれかと同様の構成を備えることができる。
周方向衝撃吸収部材40Dは、輸送容器10の外周面とケーシング30の筒状部30bとの間で、管軸O2方向に複数段、例えば3段に積み重ねて設けられている。具体的には、周方向衝撃吸収部材40Dは、輸送容器10の外周面と壁部60Aとの間、壁部60Aと壁部60Bとの間、壁部60Bとケーシング30の筒状部30bとの間にそれぞれ設けられる。
The circumferential impact absorbing member 40D can have the same configuration as that of the circumferential impact absorbing member 40B shown in the first embodiment or the circumferential impact absorbing member 40C shown in the second embodiment.
The circumferential impact absorbing member 40D is provided between the outer peripheral surface of the transport container 10 and the cylindrical portion 30b of the casing 30 so as to be stacked in a plurality of stages, for example, three stages in the direction of the pipe axis O2. Specifically, the circumferential impact absorbing member 40D is provided between the outer peripheral surface of the transport container 10 and the wall 60A, between the wall 60A and the wall 60B, and the wall 60B and the cylindrical portion 30b of the casing 30. Are provided respectively.

このような第三実施形態の周方向衝撃吸収部材40D、キャスク100では、周方向衝撃吸収部材40Dの管軸O2方向の長さを小さくすることができ、中空筒状体41の管軸O2方向における座屈を抑えることができる。
また、上記第一実施形態と同様、外周筒状部材42を備えることで、筒形状を有する中空筒状体41が倒れたり折れたりするのを抑制することができる。したがって、管軸O2方向に交差する斜め方向の荷重に対する強度を高め、中空筒状体41が倒れたり折れたりすることを抑制できる周方向衝撃吸収部材40D、及びキャスク100が提供される。
In the circumferential impact absorbing member 40D and the cask 100 of the third embodiment, the length of the circumferential impact absorbing member 40D in the direction of the tube axis O2 can be reduced, and the direction of the tube axis O2 of the hollow cylindrical body 41 can be reduced. Can reduce buckling in
Further, as in the first embodiment, by providing the outer circumferential cylindrical member 42, it is possible to suppress that the hollow cylindrical body 41 having a cylindrical shape falls or breaks. Therefore, the circumferential direction shock absorbing member 40D and the cask 100 are provided which can increase the strength against the load in the oblique direction intersecting the direction of the tube axis O2 and suppress the hollow cylindrical body 41 from falling or breaking.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。   While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

10 輸送容器(衝撃吸収対象物)
10a 容器本体
11 核燃料
20 緩衝体
30 ケーシング
30a 端板部
30b 筒状部(外周ケース部)
31 凹部
32 環状空間
33 円盤状空間
40 衝撃吸収手段
40A 軸方向衝撃吸収部材
40B 周方向衝撃吸収部材(衝撃吸収部材)
40C 周方向衝撃吸収部材(衝撃吸収部材)
40D 周方向衝撃吸収部材(衝撃吸収部材)
41 中空筒状体(主吸収部材)
41a 端部
41h 中空部
42 外周筒状部材
42a 端部
42b 端部
43 管状体
43A 管状体
43f 外周面
43g 内周面
45 補強部材
60A 壁部
60B 壁部
100 キャスク
O1 中心軸線
O2 管軸
10 Transport container (shock absorbing object)
DESCRIPTION OF SYMBOLS 10a Container main body 11 Nuclear fuel 20 Buffering body 30 Casing 30a End plate part 30b Tubular part (outer peripheral case part)
31 Recess 32 Annular space 33 Disc-like space 40 Impact absorbing means 40A Axial impact absorbing member 40B Circumferential impact absorbing member (impact absorbing member)
40C circumferential shock absorber (shock absorber)
40D circumferential shock absorber (shock absorber)
41 Hollow cylindrical body (main absorption member)
41a end 41h hollow portion 42 outer peripheral cylindrical member 42a end 42b end 43 tubular body 43A tubular body 43f outer peripheral surface 43g inner peripheral surface 45 reinforcing member 60A wall portion 60B wall portion 100 cask O1 central axis O2 tube axis

Claims (10)

軸方向に沿って延びる筒形状を有する主吸収部材と、
前記主吸収部材の径方向外側に配置され、前記軸方向に沿って延びる筒形状を有する外周筒状部材と、を備え、
前記外周筒状部材は、前記軸方向に沿って延びる管形状を有する管状体を前記軸方向に複数備え、
前記軸方向で互いに隣り合う少なくとも一対の前記管状体は、一対の前記管状体のうちの一方の前記管状体の前記軸方向の少なくとも一部の外周面が、他方の前記管状体の内周面に沿うように嵌められている
衝撃吸収部材。
A main absorbent member having a cylindrical shape extending along an axial direction;
An outer peripheral cylindrical member disposed outside the main absorbent member in the radial direction and having a cylindrical shape extending along the axial direction;
The outer circumferential tubular member includes a plurality of tubular bodies having a tubular shape extending along the axial direction, in the axial direction;
In the at least one pair of the tubular bodies axially adjacent to each other, the outer circumferential surface of at least a part of the axial body of one of the tubular bodies of the pair of tubular bodies is the inner circumferential surface of the other tubular body Shock-absorbing member fitted along.
前記軸方向で互いに隣り合う少なくとも一対の前記管状体は、予め定めた以上の前記軸方向の荷重が作用した場合に、一方の前記管状体が他方の前記管状体の内側に押し込まれる
請求項1に記載の衝撃吸収部材。
The at least one pair of the tubular bodies axially adjacent to each other is pushed into the inside of the other tubular body in the case where a predetermined load or more in the axial direction acts on the tubular bodies. The shock absorbing member as described in.
一方の前記管状体の外周面と他方の前記管状体の内周面とは、前記軸方向周りの全周にわたって摺接している
請求項1または請求項2に記載の衝撃吸収部材。
The shock absorbing member according to claim 1 or 2, wherein the outer peripheral surface of one of the tubular bodies and the inner peripheral surface of the other tubular body are in sliding contact over the entire circumference around the axial direction.
前記主吸収部材は、繊維強化樹脂材料からなり、
前記管状体は、繊維強化材料、金属材料、及び樹脂材料の一種からなる
請求項1〜請求項3のいずれか一項に記載の衝撃吸収部材。
The main absorbent member is made of a fiber reinforced resin material,
The shock absorbing member according to any one of claims 1 to 3, wherein the tubular body is made of one of a fiber reinforcing material, a metal material, and a resin material.
前記軸方向で互いに隣り合う一対の前記管状体は、外径寸法が互いに異なる
請求項1〜請求項4のいずれか一項に記載の衝撃吸収部材。
The impact-absorbing member according to any one of claims 1 to 4, wherein the pair of the tubular bodies adjacent to each other in the axial direction have different outer diameter dimensions.
前記軸方向に並ぶ複数の前記管状体は、前記軸方向の第一側から前記軸方向の第二側に向かって、外径寸法が順次縮小または拡大する
請求項5に記載の衝撃吸収部材。
The shock absorbing member according to claim 5, wherein the plurality of tubular bodies arranged in the axial direction sequentially decrease or expand in an outer diameter dimension from a first side in the axial direction toward a second side in the axial direction.
前記外周筒状部材は、外径寸法が小さい側の端部を、衝撃吸収対象物側に向けて配置される
請求項6に記載の衝撃吸収部材。
The shock absorbing member according to claim 6, wherein the outer peripheral cylindrical member is disposed with an end on the side of a smaller outer diameter dimension facing the shock absorbing object.
前記主吸収部材は、前記外周筒状部材において最も内径が細い前記管状体の内側に嵌め込まれている
請求項1〜請求項7のいずれか一項に記載の衝撃吸収部材。
The impact-absorbing member according to any one of claims 1 to 7, wherein the main absorbing member is fitted inside the tubular body having the narrowest inner diameter in the outer peripheral cylindrical member.
前記主吸収部材の内側に、前記主吸収部材の強度を高める補強部材が設けられている
請求項1〜請求項8のいずれか一項に記載の衝撃吸収部材。
The impact-absorbing member according to any one of claims 1 to 8, wherein a reinforcing member that enhances the strength of the main absorbing member is provided inside the main absorbing member.
中心軸線に沿って延びる筒形状を有し、内部に放射性物質を収容する輸送容器と、
前記輸送容器の径方向外側に設けられる外周ケース部を少なくとも有するケーシングと、
前記外周ケース部と前記輸送容器の外周面との間に複数が設けられる、請求項1〜請求項9のいずれか一項に記載の衝撃吸収部材と、
を備えるキャスク。
A transport container having a cylindrical shape extending along the central axis and containing radioactive material therein;
A casing having at least an outer peripheral case portion provided radially outward of the transport container;
The shock absorbing member according to any one of claims 1 to 9, wherein a plurality is provided between the outer peripheral case portion and the outer peripheral surface of the transport container.
Cask equipped with.
JP2017239876A 2017-12-14 2017-12-14 Impact absorbing member and cask Active JP7032919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017239876A JP7032919B2 (en) 2017-12-14 2017-12-14 Impact absorbing member and cask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017239876A JP7032919B2 (en) 2017-12-14 2017-12-14 Impact absorbing member and cask

Publications (2)

Publication Number Publication Date
JP2019105351A true JP2019105351A (en) 2019-06-27
JP7032919B2 JP7032919B2 (en) 2022-03-09

Family

ID=67061849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017239876A Active JP7032919B2 (en) 2017-12-14 2017-12-14 Impact absorbing member and cask

Country Status (1)

Country Link
JP (1) JP7032919B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169203A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Shock absorbing structure
JP2015055257A (en) * 2013-09-10 2015-03-23 富士重工業株式会社 Impact absorber
JP2017106611A (en) * 2015-11-30 2017-06-15 東レ株式会社 Shock energy absorption structure for vehicle
JP2017114564A (en) * 2015-12-25 2017-06-29 三菱重工業株式会社 Buffer for transport container and cask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169203A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Shock absorbing structure
JP2015055257A (en) * 2013-09-10 2015-03-23 富士重工業株式会社 Impact absorber
JP2017106611A (en) * 2015-11-30 2017-06-15 東レ株式会社 Shock energy absorption structure for vehicle
JP2017114564A (en) * 2015-12-25 2017-06-29 三菱重工業株式会社 Buffer for transport container and cask

Also Published As

Publication number Publication date
JP7032919B2 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US10584508B2 (en) Composite sleeve rod axial dampener for buildings and structures
US9889506B2 (en) Vibration-proof structure of rotating body
US4423802A (en) Shock absorbers
JP6546849B2 (en) Buffer for transport container and cask
JP6180123B2 (en) Casks and shock absorbers for cask
JP7032919B2 (en) Impact absorbing member and cask
JP4111037B2 (en) Cask cushion
JP7032909B2 (en) Manufacturing method of shock absorbing member, shock absorber, cask and shock absorber
JP6902141B2 (en) How to make a cask
BR112013002028B1 (en) device for dampening vibrations in a powertrain
JP6867842B2 (en) Manufacturing method of buffer, cask and buffer
US9617730B1 (en) Adaptive bearing energy absorber
CN107763172A (en) A kind of double bond groove damper gear
JP2013181798A (en) Cask
JP6979303B2 (en) Manufacturing method of shock absorbing member, shock absorber, cask and shock absorber
JP7223662B2 (en) cask
JP2019060615A (en) Buffer for cask and cask using the same
JP7194646B2 (en) buffer for cask
JP7065689B2 (en) Impact absorbing member and shock absorber
JP2018040667A (en) Cask
JP2016017742A (en) Cask buffer
JP6868470B2 (en) Buffer structure
JP4940253B2 (en) Cask cushion
JP2006505780A (en) Containers for storage / transport of unirradiated radioactive material such as nuclear fuel assemblies
JP7348107B2 (en) Cask buffer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220120

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220225

R150 Certificate of patent or registration of utility model

Ref document number: 7032919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150