JP2017114564A - Buffer for transport container and cask - Google Patents

Buffer for transport container and cask Download PDF

Info

Publication number
JP2017114564A
JP2017114564A JP2015255426A JP2015255426A JP2017114564A JP 2017114564 A JP2017114564 A JP 2017114564A JP 2015255426 A JP2015255426 A JP 2015255426A JP 2015255426 A JP2015255426 A JP 2015255426A JP 2017114564 A JP2017114564 A JP 2017114564A
Authority
JP
Japan
Prior art keywords
transport container
hollow cylindrical
cylindrical body
buffer
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015255426A
Other languages
Japanese (ja)
Other versions
JP6546849B2 (en
Inventor
健 市橋
Takeshi Ichihashi
健 市橋
秀晃 三井
Hideaki Mitsui
秀晃 三井
雄一 齋藤
Yuichi Saito
雄一 齋藤
明夫 北田
Akio Kitada
明夫 北田
宣也 林
Noriya Hayashi
宣也 林
健一郎 阿部
Kenichiro Abe
健一郎 阿部
将征 金升
Masayuki Kanemasu
将征 金升
勇治 丸山
Yuji Maruyama
勇治 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015255426A priority Critical patent/JP6546849B2/en
Publication of JP2017114564A publication Critical patent/JP2017114564A/en
Application granted granted Critical
Publication of JP6546849B2 publication Critical patent/JP6546849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide buffer for a transport container which has high cushioning performance at a low cost, and a cask.SOLUTION: A buffer 10 for a transport container, which is mounted on a transport container 12 which can accommodate an object to be transported, comprises a casing 16 having an internal space, and an impact absorption member 20 which is charged in the internal space. The impact absorption member 20 is formed in such a manner that plural hollow cylindrical bodies 22, which are configured from a wall body in which plural fiber-reinforced plastic sheets are laminated, are arranged in parallel via a flexure allowable space.SELECTED DRAWING: Figure 2

Description

本開示は、輸送容器用緩衝体及び該輸送容器用緩衝体を備えたキャスクに関する。   The present disclosure relates to a transport container buffer and a cask including the transport container buffer.

核燃料サイクルの終期にあって燃焼を終え使用できなくなった核燃料集合体、即ち、使用済み核燃料は高放射性物質を含むので、原子力発電所の冷却水ピットで所定期間冷却された後、キャスクに収納され、トラック又は船舶等で再処理施設又は使用済燃料貯蔵施設等に搬送され、貯蔵される。
使用済み核燃料集合体をキャスクに収容する際、バスケットと呼ばれる格子状の構造物に収納される。即ち、バスケットに形成された複数の収納空間に挿入され、輸送中の振動などに対する適切な保持力を発揮できる。
At the end of the nuclear fuel cycle, the nuclear fuel assembly that has been burned and can no longer be used, i.e., spent nuclear fuel contains highly radioactive material, so it is cooled for a specified period in the cooling pit of a nuclear power plant and then stored in a cask. , Transported to a reprocessing facility or spent fuel storage facility, etc. by truck or ship and stored.
When the spent nuclear fuel assemblies are accommodated in the cask, they are accommodated in a lattice-like structure called a basket. That is, it can be inserted into a plurality of storage spaces formed in the basket and can exhibit an appropriate holding force against vibration during transportation.

キャスクは円筒形状を有し、落下時などの衝撃を緩和するため、上部及び下部に緩衝体を備える。従来、緩衝体は鋼製ケーシングの内部に衝撃吸収部材として木材を充填したものが用いられている(例えば、特許文献1参照)。
特許文献2には、鋼製ケーシングの内部に金属製又は合成樹脂製の中空球体を充填する緩衝体の構成が開示されている。
The cask has a cylindrical shape, and is provided with cushioning bodies at the upper part and the lower part in order to mitigate impacts such as when dropped. Conventionally, the buffer body used is a steel casing filled with wood as an impact absorbing member (see, for example, Patent Document 1).
Patent Document 2 discloses a configuration of a buffer body in which a hollow sphere made of metal or synthetic resin is filled inside a steel casing.

特開2006−090753号公報JP 2006090753 A 特開2000−168839号公報JP 2000-168839 A

キャスク及びその緩衝体は、使用済み核燃料の収納時に使用済み核燃料の崩壊熱により高温状態となる。
キャスク用緩衝体には、高温環境に耐え、かついかなる落下姿勢に対しても安定した緩衝性能を発揮することが求められている。キャスクには放射性物質を収納するための開閉蓋があり、この開閉蓋からの放射性物質の漏れを防止するために、落下時などにキャスクに加わる衝撃を抑える必要がある。
木材を充填した緩衝体では、木材の強度に温度依存性(高温時の強度低下)があるため、緩衝体の複雑化及び大型化を招き重量増加につながるという問題がある。また、木材種によって強度が一義的に決定されるため、設計の自由度がなく、かつ品質を人為的に制御できないため、品質のバラツキを考慮した裕度設計とならざるを得ず、この点でも大型化及び重量増加が避けられない。
特許文献2に開示された緩衝体は、緩衝性能が高い中空球体の製造が容易ではなく高コストになるという問題がある。
The cask and its buffer body are in a high temperature state due to the decay heat of the spent nuclear fuel when the spent nuclear fuel is stored.
The cask buffer body is required to withstand a high temperature environment and to exhibit a stable buffer performance in any dropping posture. The cask has an open / close lid for storing radioactive material. In order to prevent leakage of the radioactive material from the open / close lid, it is necessary to suppress the impact applied to the cask when it is dropped.
In the shock absorber filled with wood, there is a problem that the strength of the wood is dependent on temperature (strength reduction at high temperature), which leads to complication and enlargement of the shock absorber, leading to an increase in weight. In addition, since the strength is uniquely determined by the type of wood, there is no degree of design freedom and quality cannot be controlled artificially, so it must be a marginal design that takes into account variations in quality. However, an increase in size and weight is inevitable.
The buffer disclosed in Patent Document 2 has a problem that it is not easy to manufacture a hollow sphere having a high buffer performance and the cost is high.

上記課題に鑑み、本発明の少なくとも一実施形態は、低コストで緩衝性能が高い輸送容器用緩衝体を実現することを目的とする。   In view of the above problems, at least one embodiment of the present invention aims to realize a shock absorber for a transport container that has low cost and high buffer performance.

(1)本発明の少なくとも一実施形態に係る輸送容器用緩衝体は、
被輸送物を収容可能な輸送容器に装着される輸送容器用緩衝体であって、
内部空間を有するケーシングと、
前記内部空間に充填される衝撃吸収部材と、
を備え、
前記衝撃吸収部材は、複数の繊維強化プラスチック製シートが積層されてなる壁体から構成される複数の中空筒状体が、撓み許容空間を介して並列配置されて形成される。
(1) A shock absorber for a transport container according to at least one embodiment of the present invention comprises:
A transport container buffer mounted on a transport container capable of accommodating a transported object,
A casing having an internal space;
An impact absorbing member filled in the internal space;
With
The impact absorbing member is formed by arranging a plurality of hollow cylindrical bodies composed of a wall body formed by laminating a plurality of fiber-reinforced plastic sheets in parallel with each other through a bending allowable space.

ここで、上記中空筒状体とは、内部空間をもつ筒形状の構造物をすべて含み、特に壁体の一部にスリット、孔等が形成されているものも含むものとする。
上記構成(1)によれば、並列に配置された上記中空筒状体に衝撃(荷重)が加わると、中空筒状体の撓みにより中空筒状体の壁体を構成する複数の繊維強化プラスチック製シート(以下「FRPシート」とも言う。)のシート間で剥離破壊が起る。この剥離破壊の過程で衝撃を吸収するため、輸送容器への衝撃を緩和できる。
また、木材を用いないため、木材の課題である高温時の緩衝性能低下を解消でき、かつFRPシートは工業製品であり、品質のバラツキを制御することができるため、裕度設計を最小限に抑えることができ、これによって、緩衝体を小型化かつ低コスト化できる。
また、FRPシートの積層数及び中空筒状体の外径を変えることで、中空筒状体の圧縮強度を制御できる。例えば、積層数を多くすれば高強度となり、外径を大きくすれば低強度となる。これによって、輸送容器の仕様及び付加荷重に応じた緩衝体の最適配置が木材と比べ容易になる。
Here, the hollow cylindrical body includes all cylindrical structures having an internal space, and particularly includes a structure in which a slit, a hole, or the like is formed in a part of the wall.
According to the configuration (1), when an impact (load) is applied to the hollow cylindrical bodies arranged in parallel, the plurality of fiber reinforced plastics that constitute the wall body of the hollow cylindrical body by the bending of the hollow cylindrical body. Peeling breakage occurs between sheets of a manufactured sheet (hereinafter also referred to as “FRP sheet”). Since the impact is absorbed in the process of peeling and breaking, the impact on the transport container can be reduced.
Also, since wood is not used, the buffer performance degradation at high temperatures, which is a problem with wood, can be resolved, and FRP sheets are industrial products, and variation in quality can be controlled, minimizing tolerance design. As a result, the buffer can be reduced in size and cost.
Further, the compressive strength of the hollow cylindrical body can be controlled by changing the number of FRP sheets stacked and the outer diameter of the hollow cylindrical body. For example, if the number of layers is increased, the strength is increased, and if the outer diameter is increased, the strength is decreased. This makes it easier to optimally arrange the shock absorbers according to the specifications of the transport container and the additional load compared to wood.

(2)幾つかの実施形態では、前記構成(1)において、
前記複数の中空筒状体は、前記ケーシングの外面のうち前記輸送容器に対向しない面の少なくとも1つに対して軸方向が略垂直になるように配置されている。
撓み許容空間を介して並列に配置された中空筒状体に対して軸方向から荷重が加わると、中空筒状体は軸方向の縮みで荷重を吸収しつつ、軸方向と交差する方向に撓む。この撓みにより、FRPシート間の剥離破壊が起り、この剥離破壊の過程で荷重を吸収する。
上記構成(2)によれば、輸送容器の落下時などに輸送容器に加わる複数方向の荷重の少なくとも1つは中空筒状体に対して軸方向から加わるので、中空筒状体の衝撃吸収効果を最大限に発揮させることができる。
(2) In some embodiments, in the configuration (1),
The plurality of hollow cylindrical bodies are arranged such that the axial direction is substantially perpendicular to at least one of the outer surfaces of the casing that do not face the transport container.
When a load is applied from the axial direction to the hollow cylindrical bodies arranged in parallel via the allowable bending space, the hollow cylindrical body absorbs the load due to the axial contraction and bends in the direction intersecting the axial direction. Mu This bending causes peeling failure between the FRP sheets, and absorbs the load in the process of peeling failure.
According to the configuration (2), since at least one of the loads in a plurality of directions applied to the transport container when the transport container is dropped is applied to the hollow cylindrical body from the axial direction, the impact absorbing effect of the hollow cylindrical body is achieved. Can be maximized.

(3)幾つかの実施形態では、前記構成(1)又は(2)において、
前記複数の中空筒状体は、
第1の方向に沿って配列される第1のグループと、
前記第1の方向に交差する第2の方向に沿って配列される第2のグループと、
を含む。
輸送容器の転倒時や落下時等には、落下姿勢などによって緩衝体には必ずしも一方向の荷重ではなく複数方向の荷重が付加される。また、緩衝体の部位によって加わる荷重の方向及び大きさが異なる。
上記構成(3)によれば、上記第1のグループと上記第2のグループとで、中空筒状体の軸方向を異なる方向に配置することで、輸送容器に加わる荷重を中空筒状体の軸方向へ付加させる確率を高め、これによって、中空筒状体の衝撃吸収性能を確実に発揮させることができる。
上記構成(3)では、第1のグループ及び第2のグループの中空筒状体と軸方向を異にする第3のグループを設けることを排除しない。
(3) In some embodiments, in the configuration (1) or (2),
The plurality of hollow cylindrical bodies are:
A first group arranged along a first direction;
A second group arranged along a second direction intersecting the first direction;
including.
When the transport container is overturned or dropped, a load in a plurality of directions, not necessarily a one-way load, is applied to the shock absorber due to a drop posture or the like. Moreover, the direction and magnitude | size of the load added depend on the site | part of a buffer body.
According to the said structure (3), the load added to a transport container is arrange | positioned of a hollow cylindrical body by arrange | positioning the axial direction of a hollow cylindrical body in a different direction by the said 1st group and the said 2nd group. The probability of adding in the axial direction is increased, and thereby, the impact absorbing performance of the hollow cylindrical body can be surely exhibited.
In the configuration (3), it is not excluded to provide a third group having an axial direction different from that of the hollow cylindrical bodies of the first group and the second group.

(4)幾つかの実施形態では、前記構成(3)において、
前記輸送容器は略円柱形状を有し、
前記ケーシングは前記輸送容器の端部に嵌入可能な凹部を有し、
前記第1のグループは軸方向端面が前記略円柱形状の端面に対向するように配列された前記中空筒状体であり、
前記第2のグループは軸方向端面が前記略円柱形状の周面に対向するように配置された
前記中空筒状体である。
輸送容器の軸方向端面に対向する緩衝体の部位では、落下時などに輸送容器の軸方向の衝撃が加わる確率が高く、輸送容器の周方向に対向する緩衝体の部位では、落下時などに輸送容器の半径方向の衝撃(荷重)が加わる確率が高い。
上記構成(4)によれば、中空筒状体の軸方向を付加される確率が高い衝撃の方向に合わせて配置することで、衝撃吸収性能を確実に発揮できる。
(4) In some embodiments, in the configuration (3),
The transport container has a substantially cylindrical shape,
The casing has a recess that can be fitted into an end of the transport container,
The first group is the hollow cylindrical body arranged so that an axial end face thereof faces the substantially cylindrical end face,
The second group is the hollow cylindrical body arranged such that an axial end surface faces the substantially cylindrical peripheral surface.
There is a high probability that the impact of the transport container in the axial direction will be applied when it falls, etc. at the part of the shock absorber that faces the axial end surface of the transport container. There is a high probability that a radial impact (load) of the transport container is applied.
According to the configuration (4), the shock absorbing performance can be reliably exhibited by arranging the hollow cylindrical body in accordance with the direction of the impact having a high probability of being added.

(5)幾つかの実施形態では、前記方法(1)〜(4)の何れかにおいて、
前記中空筒状体は、前記壁体が周方向全周に亘って形成されたパイプ形状を有する。
ここで、「壁体が周方向全周に亘って形成されたパイプ形状」とは壁体(隔壁)にスリットや孔等を有さない筒状の構造物を言う。
上記構成(5)によれば、中空筒状体を上記構成とすることで、中空筒状体の全周に亘りFRPシート間で剥離破壊が起るため、衝撃吸収効果をさらに高めることができる。
(5) In some embodiments, in any of the methods (1) to (4),
The hollow cylindrical body has a pipe shape in which the wall body is formed over the entire circumference.
Here, the “pipe shape in which the wall body is formed over the entire circumference in the circumferential direction” refers to a cylindrical structure having no slits or holes in the wall body (partition wall).
According to the above configuration (5), since the hollow cylindrical body has the above configuration, peeling failure occurs between the FRP sheets over the entire circumference of the hollow cylindrical body, so that the impact absorption effect can be further enhanced. .

(6)幾つかの実施形態では、前記方法(1)〜(5)の何れかにおいて、
前記中空筒状体は、前記壁体が互いに交差する方向に配置された複数の板状部材が組み合わされて構成される。
例えば、矩形の板状部材の両縁に一定間隔をもって切込部を設けると共に、前記切込部同士を互いに差し込むように前記板状部材を直交して交互に積み重ねて構成される。
上記構成(6)によれば、中空筒状体を低コストで製造できる。
(6) In some embodiments, in any of the methods (1) to (5),
The hollow cylindrical body is configured by combining a plurality of plate-like members arranged in a direction in which the wall bodies intersect each other.
For example, the rectangular plate-like member is formed by providing cut portions with a constant interval on both edges, and alternately stacking the plate-like members so as to insert the cut portions into each other.
According to the said structure (6), a hollow cylindrical body can be manufactured at low cost.

(7)幾つかの実施形態では、前記構成(1)〜(6)の何れかにおいて、
前記中空筒状体の内部又は前記撓み許容空間の少なくとも一方に充填される木材又は発泡材で構成された充填物をさらに備える。
上記構成(7)によれば、中空筒状体の内部又は撓み許容空間に木材又は発泡材で構成された充填物を充填することで、中空筒状体の剛性や撓み度の調整が可能になり、緩衝体の剛性及び衝撃吸収性能をキャスクの用途に合った最適な条件に調整できる。
また、木材又は発泡材で構成された充填物を撓み許容空間に充填することで、中空筒状体の位置固定を容易に行うことができる。
(7) In some embodiments, in any one of the configurations (1) to (6),
It further includes a filler made of wood or foam filled in the hollow cylindrical body or at least one of the deflection-permitting spaces.
According to the said structure (7), adjustment of the rigidity of a hollow cylindrical body and the bending degree is attained by filling the inside of a hollow cylindrical body, or the filling allowance comprised by the wood or the foaming material. Thus, the rigidity and shock absorbing performance of the shock absorber can be adjusted to optimum conditions suitable for the use of the cask.
Moreover, the position of the hollow cylindrical body can be easily fixed by filling the bendable space with a filler made of wood or foam.

(8)幾つかの実施形態では、前記構成(4)において、
前記ケーシングの凹部の内側面に前記輸送容器の周方向に間隔をおいて設けられた複数の補強リブをさらに備え、
前記複数の補強リブの間に前記中空筒状体が配置される。
上記構成(8)によれば、上記補強リブを設けることで、荷重負荷時の緩衝材の位置ずれ及びすべり等を防止でき、緩衝材の衝撃吸収性能を十分に発揮することができる。
(8) In some embodiments, in the configuration (4),
A plurality of reinforcing ribs provided at intervals in the circumferential direction of the transport container on the inner surface of the recess of the casing;
The hollow cylindrical body is disposed between the plurality of reinforcing ribs.
According to the configuration (8), by providing the reinforcing rib, it is possible to prevent the buffer material from being displaced and slipped when a load is applied, and to sufficiently exhibit the shock absorbing performance of the buffer material.

(9)幾つかの実施形態では、前記構成(1)〜(8)の何れかにおいて、
前記ケーシングが繊維強化プラスチック材で構成される。
上記構成(9)によれば、緩衝体をさらに軽量化及び高強度化できる。
(9) In some embodiments, in any one of the configurations (1) to (8),
The casing is made of a fiber reinforced plastic material.
According to the configuration (9), the buffer body can be further reduced in weight and strength.

(10)本発明の幾つかの実施形態に係るキャスクは、
内部に放射性物質を収容する筒状の輸送容器と、
上記構成(1)〜(9)の何れかの緩衝体と、
を備える。
上記構成(10)によれば、上記構成(1)〜(9)の緩衝体を備えることで、木材の課題である高温時の緩衝性能低下を解消でき、かつ品質のバラツキを制御することができるため、裕度設計を最小限に抑えることができ、これによって、緩衝体を小型化かつ低コスト化できる。
また、中空筒状体の撓み及びFRPシートのシート間に起こる剥離破壊によって衝撃吸収性能を高めることができる。
また、FRPシートの積層数及び中空筒状体の外径を変えることで、中空筒状体の圧縮強度を制御でき、これによって、付加荷重に応じた緩衝体の最適配置が木材と比べ容易になる。
(10) A cask according to some embodiments of the present invention includes:
A cylindrical transport container that contains radioactive material inside;
Any one of the above-described configurations (1) to (9);
Is provided.
According to the said structure (10), by providing the buffer body of said structure (1)-(9), the buffer performance fall at the time of the high temperature which is a subject of wood can be eliminated, and the variation in quality can be controlled. Therefore, it is possible to minimize the tolerance design, and thereby the buffer body can be reduced in size and cost.
Further, the impact absorbing performance can be enhanced by the bending of the hollow cylindrical body and the peeling failure occurring between the sheets of the FRP sheet.
In addition, by changing the number of FRP sheets stacked and the outer diameter of the hollow cylindrical body, it is possible to control the compressive strength of the hollow cylindrical body, which makes it easier to optimally place the shock absorber according to the applied load than wood. Become.

本発明の少なくとも一実施形態によれば、輸送容器、特に放射性物質を収容するキャスク用緩衝体において、小型化及び低コスト化が可能で、かつ落下時などにおける衝撃吸収性能を向上できる。   According to at least one embodiment of the present invention, in a transport container, in particular, a cask buffer that contains a radioactive substance, it is possible to reduce the size and cost, and to improve the shock absorption performance when dropped.

一実施形態に係る輸送容器用緩衝体を装着した輸送容器の正面図である。It is a front view of a transportation container equipped with a shock absorber for transportation container according to an embodiment. 一実施形態に係る輸送容器用緩衝体の正面視断面図である。It is front view sectional drawing of the shock absorber for transport containers which concerns on one Embodiment. 図2中のA―A線に沿う断面図である。It is sectional drawing which follows the AA line in FIG. 一実施形態に係る輸送容器用緩衝体の正面視断面図である。It is front view sectional drawing of the shock absorber for transport containers which concerns on one Embodiment. 一実施形態に係る輸送容器用緩衝体の側面図である。It is a side view of the shock absorber for transportation containers concerning one embodiment. 一実施形態に係る中空筒状体の斜視図である。It is a perspective view of the hollow cylindrical body concerning one embodiment. 一実施形態に係る中空筒状体の斜視図である。It is a perspective view of the hollow cylindrical body concerning one embodiment. 一実施形態に係る中空筒状体の圧縮強度を示す線図である。It is a diagram which shows the compressive strength of the hollow cylindrical body which concerns on one Embodiment. 一実施形態に係る中空筒状体の圧縮強度を示す線図である。It is a diagram which shows the compressive strength of the hollow cylindrical body which concerns on one Embodiment. 一実施形態に係る中空筒状体の圧縮強度を示す線図である。It is a diagram which shows the compressive strength of the hollow cylindrical body which concerns on one Embodiment. 一実施形態に係る中空筒状体の斜視図である。It is a perspective view of the hollow cylindrical body concerning one embodiment. 一実施形態に係る衝撃吸収部材の断面側面図である。It is a section side view of the impact-absorbing member concerning one embodiment. 一実施形態に係る衝撃吸収部材の断面側面図である。It is a section side view of the impact-absorbing member concerning one embodiment. 一実施形態に係る輸送容器用緩衝体の別な用途を示す説明図である。It is explanatory drawing which shows another use of the shock absorber for transport containers which concerns on one Embodiment. 一実施形態に係る輸送容器用緩衝体の他の用途を示す説明図である。It is explanatory drawing which shows the other use of the shock absorber for transport containers which concerns on one Embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.

本発明の幾つかの実施形態に係る輸送容器用緩衝体10は、図1に示すように、輸送容器12を収容可能な輸送容器12に装着される緩衝体である。
例示的な実施形態では、輸送容器12は、有底筒状の輸送容器本体14と、被輸送物15を出し入れするための開閉蓋18とで構成される。
例示的な実施形態では、輸送容器12は、内部に被輸送物15として使用済み核燃料などの放射性物質を収容する筒状の外形を有するキャスクである。
図示した実施形態では、輸送容器12は円筒形の形状をしたキャスクである。
図1中、矢印a方向は輸送容器12の軸方向を示し、矢印b方向は輸送容器12の半径方向を示す。
As shown in FIG. 1, the transport container cushion 10 according to some embodiments of the present invention is a buffer mounted on the transport container 12 that can accommodate the transport container 12.
In the exemplary embodiment, the transport container 12 includes a bottomed cylindrical transport container body 14 and an opening / closing lid 18 for taking in / out the transported object 15.
In the exemplary embodiment, the transport container 12 is a cask having a cylindrical outer shape that contains a radioactive material such as spent nuclear fuel as a transported object 15 therein.
In the illustrated embodiment, the transport container 12 is a cask having a cylindrical shape.
In FIG. 1, the arrow a direction indicates the axial direction of the transport container 12, and the arrow b direction indicates the radial direction of the transport container 12.

緩衝体10は外郭を形成するケーシング16を備え、ケーシング16は輸送容器12の端部が嵌入される凹部16aを有している。また、ケーシング16は衝撃吸収部材20が充填される内部空間sを有する。
衝撃吸収部材20は、図2〜図4に示すように、並列に配置された多数の中空筒状体22で構成される。
中空筒状体22(22A、22B、22C)は、図6及び図7に示すように、複数のFRPシート24が積層されて構成された壁体を有し、図3に示すように、各中空筒状体間に撓み許容空間Scが形成されると共に、内部空間Siをもつ中空筒形の構造体である。
なお、中空筒状体22は、内部空間Siをもつ筒形状の構造体をすべて含み、特に、壁体の一部にスリット、孔等が形成されているものも含むものとする。
The shock absorber 10 includes a casing 16 that forms an outer shell, and the casing 16 has a recess 16 a into which an end of the transport container 12 is inserted. The casing 16 has an internal space s filled with the shock absorbing member 20.
As shown in FIGS. 2 to 4, the shock absorbing member 20 includes a large number of hollow cylindrical bodies 22 arranged in parallel.
The hollow cylindrical body 22 (22A, 22B, 22C) has a wall body formed by laminating a plurality of FRP sheets 24, as shown in FIGS. This is a hollow cylindrical structure having an internal space Si while being formed with an allowable bending space Sc between the hollow cylindrical bodies.
The hollow cylindrical body 22 includes all cylindrical structures having an internal space Si, and particularly includes a structure in which a slit, a hole, or the like is formed in a part of the wall body.

図示した実施形態では、図5に示すように、緩衝体10は外形が円形であり、ケーシング16に取付け用のボルト穴30が形成されている。
例示的な実施形態では、図6に示すように、中空筒状体22(22A)は壁面が円形であり、図7に示す中空筒状体22(22B)は壁面が矩形である。
FRPシート24は、例えば、CFRP、GFRP等で構成される。また、FRPシート24は、例えば、繊維が2方向に交差するように配置され織布を形成する。
In the illustrated embodiment, as shown in FIG. 5, the shock absorber 10 has a circular outer shape, and a bolt hole 30 for attachment is formed in the casing 16.
In the exemplary embodiment, as shown in FIG. 6, the hollow cylindrical body 22 (22A) has a circular wall surface, and the hollow cylindrical body 22 (22B) shown in FIG. 7 has a rectangular wall surface.
The FRP sheet 24 is made of, for example, CFRP, GFRP, or the like. In addition, the FRP sheet 24 is, for example, arranged so that the fibers intersect in two directions to form a woven fabric.

輸送容器12の転倒時や落下時等に、緩衝体10に衝撃又は荷重が加わると、中空筒状体22の撓みにより、FRPシート24の各シート間で剥離破壊が起り、この剥離破壊の過程で衝撃を吸収するため、輸送容器12への衝撃を緩和できる。   When an impact or a load is applied to the shock absorber 10 when the transport container 12 is overturned or dropped, the hollow cylindrical body 22 bends and causes a separation failure between the sheets of the FRP sheet 24. The impact on the transport container 12 can be mitigated by absorbing the impact.

緩衝体10(10A、10B)には、落下時の姿勢によって複数の異なる方向の荷重が加わる。また、緩衝体10の部位によって加わる荷重の方向及び大きさが異なる。
例えば、図2及び図4に示すように、輸送容器12の軸方向端面に対向する端面部位Paでは輸送容器12の軸方向に沿う荷重Faが加わり、輸送容器12の周面に対向する周面部位Prには輸送容器12の半径方向に沿う荷重Frが加わる。また、角部Ptには輸送容器12の軸方向に対して斜め方向の荷重Ftが加わる。
The shock absorber 10 (10A, 10B) is applied with loads in a plurality of different directions depending on the posture at the time of dropping. Moreover, the direction and magnitude | size of the load added by the site | part of the buffer body 10 differ.
For example, as shown in FIGS. 2 and 4, a load Fa along the axial direction of the transport container 12 is applied to the end surface portion Pa facing the axial end surface of the transport container 12, and the peripheral surface facing the peripheral surface of the transport container 12. A load Fr along the radial direction of the transport container 12 is applied to the part Pr. Further, a load Ft oblique to the axial direction of the transport container 12 is applied to the corner portion Pt.

例示的な実施形態では、複数の中空筒状体22は、ケーシング16の外面のうち輸送容器12に対向しない面の少なくとも1つに対して軸方向が略垂直になるように配置されている。このように中空筒状体22を配置すると、撓み許容空間Scを介して並列に配置された複数の中空筒状体22に対して軸方向から荷重が加わり、中空筒状体22は軸方向の縮みで荷重を吸収しつつ、軸方向と交差する方向に撓む。この撓みにより、FRPシート24間の剥離破壊が起り、この剥離破壊の過程で荷重を吸収する。
中空筒状体22を上記のように配置することで、輸送容器12の落下時などに、輸送容器12に加わる複数方向の荷重の少なくとも1つは中空筒状体22に対して軸方向から加わる。これによって、中空筒状体22の衝撃吸収効果を最大限に発揮できる。
In the exemplary embodiment, the plurality of hollow cylindrical bodies 22 are arranged such that the axial direction is substantially perpendicular to at least one of the outer surfaces of the casing 16 that do not face the transport container 12. When the hollow cylindrical body 22 is arranged in this way, a load is applied from the axial direction to the plurality of hollow cylindrical bodies 22 arranged in parallel via the bending allowance space Sc, and the hollow cylindrical body 22 is in the axial direction. While absorbing the load by shrinkage, it bends in a direction crossing the axial direction. This bending causes peeling failure between the FRP sheets 24, and absorbs the load in the process of peeling failure.
By arranging the hollow cylindrical body 22 as described above, at least one of loads in a plurality of directions applied to the transport container 12 when the transport container 12 is dropped is applied to the hollow cylindrical body 22 from the axial direction. . Thereby, the impact absorbing effect of the hollow cylindrical body 22 can be maximized.

例示的な実施形態では、複数の中空筒状体22は、図2及び図4に示すように、第1の方向に沿って配列される第1のグループPaと、第1の方向に交差する第2の方向に沿って配列される第2のグループPrとを含む。
このように、第1のグループPaと第2のグループPrとで、中空筒状体22の軸方向の配置を異ならせることで、中空筒状体22の軸方向を輸送容器12に加わる荷重に沿わせる確率を高め、これによって、中空筒状体22の衝撃吸収性能を確実に発揮できる。
In the exemplary embodiment, the plurality of hollow cylindrical bodies 22 intersects the first group Pa arranged in the first direction and the first direction, as shown in FIGS. 2 and 4. And a second group Pr arranged along the second direction.
Thus, the axial direction of the hollow cylindrical body 22 is changed to the load applied to the transport container 12 by differently arranging the axial direction of the hollow cylindrical body 22 between the first group Pa and the second group Pr. The probability of being along is increased, and thereby, the impact absorbing performance of the hollow cylindrical body 22 can be reliably exhibited.

例示的な実施形態では、図1に示すように、輸送容器12は略円柱形状を有し、ケーシング16は輸送容器12の軸方向端部に輸送容器12を嵌入可能な凹部16aを有する。
そして、第1のグループPaは、軸方向端面が輸送容器12の軸方向端面に対向するように配列された中空筒状体で構成され、第2のグループPrは軸方向端面が輸送容器12の周面に対向するように配置された中空筒状体で構成される。
図2及び図4に示すように、輸送容器12の軸方向端面には、落下時などに輸送容器12の軸方向の荷重Faが加わる確率が高く、輸送容器12の周面には輸送容器12の半径方向の荷重Frが加わる確率が高い。
従って、第1のグループPa及び第2のグループPrのように中空筒状体22を配置することで、第1のグループPa及び第2のグループPrの中空筒状体22の軸方向を付加される荷重Fa及びFrに沿わせることができ、これによって、良好な衝撃吸収性能を確実に発揮できる。
In the exemplary embodiment, as shown in FIG. 1, the transport container 12 has a substantially cylindrical shape, and the casing 16 has a recess 16 a into which the transport container 12 can be fitted at the axial end of the transport container 12.
The first group Pa is configured by a hollow cylindrical body arranged so that the axial end face thereof faces the axial end face of the transport container 12, and the second group Pr has an axial end face of the transport container 12. It is comprised with the hollow cylindrical body arrange | positioned so that a surrounding surface may be opposed.
As shown in FIGS. 2 and 4, there is a high probability that an axial load Fa of the transport container 12 is applied to the axial end surface of the transport container 12 when dropped, and the transport container 12 is disposed on the peripheral surface of the transport container 12. There is a high probability that a radial load Fr is applied.
Therefore, the axial direction of the hollow cylindrical bodies 22 of the first group Pa and the second group Pr is added by arranging the hollow cylindrical bodies 22 like the first group Pa and the second group Pr. The load Fa and Fr can be adjusted to ensure good shock absorption performance.

なお、緩衝体10(10A、10B)の角部Ptに設けられる中空筒状体22は、状況に応じて適宜方向に配置される。
図示した実施形態では、図2に示す緩衝体10(10A)の角部Ptでは、中空筒状体22の軸方向は輸送容器12の軸方向に沿うように配置され、図4に示す緩衝体10(10B)の角部Ptでは、中空筒状体22の軸方向は輸送容器12の半径方向に沿うように配置される。また、角部Ptに設けられる中空筒状体の配置方向は、図2に示す方向と図4に示す方向を組み合わせてもよい。
In addition, the hollow cylindrical body 22 provided in the corner | angular part Pt of the buffer body 10 (10A, 10B) is arrange | positioned suitably according to a condition.
In the illustrated embodiment, at the corner portion Pt of the shock absorber 10 (10A) shown in FIG. 2, the axial direction of the hollow cylindrical body 22 is arranged along the axial direction of the transport container 12, and the shock absorber shown in FIG. In the corner portion Pt of 10 (10B), the axial direction of the hollow cylindrical body 22 is arranged along the radial direction of the transport container 12. Moreover, the direction shown in FIG. 2 and the direction shown in FIG. 4 may be combined as the arrangement direction of the hollow cylindrical body provided in the corner portion Pt.

図8〜図10は中空筒状体22に加わる圧縮荷重Fと中空筒状体22の軸方向の剥離破壊量δとの関係を示す。
図8において、FRPシート24の積層数を増加させると、図中の破線で示すように、中空筒状体22の圧縮強度を高めることができる。一方、中空筒状体22の外径を大きくすると、圧縮強度は低下する。
このように、FRPシート24の積層数又は中空筒状体22の外径を変えることで、中空筒状体22の圧縮強度を制御できる。なお、中空筒状体22の軸方向長さは圧縮強度と無関係である。
また、図8に示すように、例えば、中空筒状体22が圧縮荷重Fを受け、軸方向全長が全体の70〜80%だけ剥離破壊が進んだときを臨界点Cとし、この時の圧縮荷重FをFoとする。縦軸は中空筒状体22に加わる圧縮荷重Fを示すが、この圧縮荷重Fは中空筒状体22の圧縮強度と等価である。中空筒状体22は臨界点Cを過ぎると圧縮強度は急激に増加し、これ以上軸方向に縮まない性質を有する。図8中、斜線領域Eは中空筒状体22の剥離破壊によって吸収可能な衝撃エネルギ量を示す。
8 to 10 show the relationship between the compressive load F applied to the hollow cylindrical body 22 and the amount of peeling fracture δ in the axial direction of the hollow cylindrical body 22.
In FIG. 8, when the number of FRP sheets 24 stacked is increased, the compressive strength of the hollow cylindrical body 22 can be increased as shown by the broken line in the figure. On the other hand, when the outer diameter of the hollow cylindrical body 22 is increased, the compressive strength decreases.
Thus, the compressive strength of the hollow cylindrical body 22 can be controlled by changing the number of FRP sheets 24 stacked or the outer diameter of the hollow cylindrical body 22. The axial length of the hollow cylindrical body 22 is independent of the compressive strength.
Further, as shown in FIG. 8, for example, when the hollow cylindrical body 22 receives a compressive load F and the axial total length is 70 to 80% of the entire peel failure, the critical point C is set. Let the load F be Fo. The vertical axis indicates the compressive load F applied to the hollow cylindrical body 22, and this compressive load F is equivalent to the compressive strength of the hollow cylindrical body 22. The hollow cylindrical body 22 has a property that when the critical point C is passed, the compressive strength increases rapidly and does not shrink further in the axial direction. In FIG. 8, the hatched area E indicates the amount of impact energy that can be absorbed by the peeling fracture of the hollow cylindrical body 22.

図9に示すように、圧縮荷重Fに対して中空筒状体22の剥離破壊量δが小さい場合、即ち、中空筒状体22の圧縮強度が大きい場合、吸収可能な衝撃エネルギ量Eは大きいが、その分輸送容器12に大きな荷重が付加される。従って、輸送容器12は高い耐久性が要求される。
一方、図10に示すように、圧縮荷重Fに対して中空筒状体22の剥離破壊量δが大きい場合、即ち、中空筒状体22の圧縮強度が小さい場合、輸送容器12に付加される荷重は低減するが、中空筒状体22が吸収可能な衝撃エネルギ量Eは低減する。従って、衝撃エネルギ量Eと同等の衝撃エネルギ量を吸収するためには、中空筒状体22の剥離破壊量δを大きく取る必要がある。
As shown in FIG. 9, when the peel fracture amount δ of the hollow cylindrical body 22 is small with respect to the compression load F, that is, when the compressive strength of the hollow cylindrical body 22 is large, the amount of impact energy E 1 that can be absorbed is Although it is large, a large load is applied to the transport container 12 accordingly. Therefore, the transport container 12 is required to have high durability.
On the other hand, as shown in FIG. 10, when the peel fracture amount δ of the hollow cylindrical body 22 is large with respect to the compressive load F, that is, when the compressive strength of the hollow cylindrical body 22 is small, it is added to the transport container 12. load is reduced, but the hollow cylindrical body 22 can absorb impact energy amount E 2 is reduced. Therefore, in order to absorb the impact energy amount E 1 equivalent impact energy amounts, it is necessary to increase the peeling fracture of the hollow cylindrical body 22 [delta].

このように、緩衝体10の潰れ代、緩衝体10の受荷重面積、輸送容器12の重量、輸送容器12の落下高さ、輸送容器12の落下姿勢等の設計条件に応じて、中空筒状体22の圧縮強度を設定し、緩衝体10に配置することで、輸送容器12に加わる衝撃又は荷重を効率的に緩和できる。
例えば、トラック又は船舶等の輸送中スペースが大きい場合、輸送容器12の軸方向では、第1のグループPaに圧縮強度が小さい中空筒状体22を設け、中空筒状体22の軸方向の剥離破壊量を多くすることで輸送容器12に加わる荷重を小さくできる。一方、トラック又は船舶等の輸送中スペースが小さい場合、輸送容器12の半径方向では、第2のグループPrに圧縮強度が大きい中空筒状体22を設け、中空筒状体22の軸方向の剥離破壊量を抑えるようにする。
Thus, depending on the design conditions such as the crushing allowance of the shock absorber 10, the load receiving area of the shock absorber 10, the weight of the transport container 12, the drop height of the transport container 12, the drop posture of the transport container 12, etc. By setting the compressive strength of the body 22 and disposing it on the shock absorber 10, the impact or load applied to the transport container 12 can be efficiently reduced.
For example, when a space during transportation such as a truck or a ship is large, in the axial direction of the transport container 12, a hollow cylindrical body 22 having a low compressive strength is provided in the first group Pa, and the hollow cylindrical body 22 is peeled off in the axial direction. By increasing the amount of destruction, the load applied to the transport container 12 can be reduced. On the other hand, when the space during transportation such as a truck or a ship is small, in the radial direction of the transport container 12, a hollow cylindrical body 22 having a high compressive strength is provided in the second group Pr, and the hollow cylindrical body 22 is peeled in the axial direction. Try to reduce the amount of destruction.

例示的な実施形態では、図3に示すように、中空筒状体22は壁体(隔壁)が周方向全周に亘って形成されたパイプ形状を有する。
本実施形態では、中空筒状体22は壁体(隔壁)22aにスリットや孔等を有さない中空の筒状構造物であって、壁体22aは全周で内部空間Siを囲む連続した面を有する。
これによって、中空筒状体22の全周でFRPシート間の剥離破壊を起すことができ、衝撃吸収効果をさらに高めることができる。
In the exemplary embodiment, as shown in FIG. 3, the hollow cylindrical body 22 has a pipe shape in which wall bodies (partition walls) are formed over the entire circumference.
In the present embodiment, the hollow cylindrical body 22 is a hollow cylindrical structure having no slits or holes in the wall body (partition wall) 22a, and the wall body 22a is continuous around the inner space Si. Has a surface.
Thereby, peeling failure between the FRP sheets can be caused on the entire circumference of the hollow cylindrical body 22, and the impact absorption effect can be further enhanced.

例示的な実施形態では、図11に示すように、中空筒状体22(22C)は、壁体が互いに交差する方向に配置された複数の板状部材26及び28で構成される。板状部材26及び28は複数のFRPシート24が積層されて構成される。
図示した実施形態では、2個の矩形の平坦な板状部材26及び28の両縁に一定間隔をもって切込部26a及び28aを設ける。そして、切込部26a及び28a同士を互いに差し込むようにし、板状部材26及び28を互いに直交して交互に積み重ねることで、中空筒状体22を構成する。
これによって、中空筒状体を低コストで製造できる。
In the exemplary embodiment, as shown in FIG. 11, the hollow cylindrical body 22 (22C) is composed of a plurality of plate-like members 26 and 28 arranged in a direction in which the wall bodies intersect each other. The plate-like members 26 and 28 are configured by laminating a plurality of FRP sheets 24.
In the illustrated embodiment, notches 26 a and 28 a are provided at regular intervals on both edges of two rectangular flat plate members 26 and 28. And the hollow cylindrical body 22 is comprised by inserting the notch parts 26a and 28a mutually and laminating | stacking the plate-shaped members 26 and 28 alternately orthogonally.
Thereby, a hollow cylindrical body can be manufactured at low cost.

例示的な実施形態では、図12に示す緩衝体10(10C)において、中空筒状体22の内部空間Si又は撓み許容空間Scの少なくとも一方に木材又は発泡材で構成された充填物32を充填する。
例示的な実施形態では、図13に示す緩衝体10(10D)において、撓み許容空間Scに発泡材などの充填物32を充填する。
このように、充填物32を充填することで、中空筒状体22の剛性や撓み度の調整が可能になり、緩衝体10の剛性及び衝撃吸収性能を輸送容器12の用途に合った最適な条件に調整できる。
図示した実施形態では、充填物32は中空筒状体22の内部空間Si又は撓み許容空間Scで中空筒状体22の軸方向全長に亘り配置される。中空筒状体22の内部空間Si又は撓み許容空間Scで充填物32の軸方向の充填率を変えることで、緩衝体10の剛性及び衝撃吸収性能を調整できる。
In the exemplary embodiment, in the cushioning body 10 (10C) shown in FIG. 12, at least one of the internal space Si and the bending-acceptable space Sc of the hollow cylindrical body 22 is filled with a filling 32 made of wood or foam material. To do.
In the exemplary embodiment, in the shock absorber 10 (10D) illustrated in FIG. 13, the bendable space Sc is filled with a filler 32 such as a foam material.
Thus, by filling the filler 32, the rigidity and the degree of deflection of the hollow cylindrical body 22 can be adjusted, and the rigidity and shock absorption performance of the shock absorber 10 are optimal for the use of the transport container 12. Can be adjusted to the conditions.
In the illustrated embodiment, the filler 32 is disposed over the entire axial length of the hollow cylindrical body 22 in the internal space Si or the deflection allowable space Sc of the hollow cylindrical body 22. By changing the filling rate in the axial direction of the filler 32 in the internal space Si of the hollow cylindrical body 22 or the bending allowable space Sc, the rigidity and shock absorbing performance of the buffer body 10 can be adjusted.

例示的な実施形態では、図3に示すように、ケーシング16の凹部16aの内側面に輸送容器12の周方向に間隔をおいて複数の補強リブ34を設け、補強リブ34の間に中空筒状体22を配置する。こうして、凹部16aの内側面に周方向に交互に中空筒状体22と補強リブ34とを配置する。
補強リブ34を設けることで、荷重負荷時の衝撃吸収材22の位置ずれ及びすべり等を防止でき、衝撃吸収材22の衝撃吸収性能を十分に発揮することができる。
In the exemplary embodiment, as shown in FIG. 3, a plurality of reinforcing ribs 34 are provided on the inner surface of the recess 16 a of the casing 16 at intervals in the circumferential direction of the transport container 12. A shaped body 22 is arranged. Thus, the hollow cylindrical bodies 22 and the reinforcing ribs 34 are alternately arranged in the circumferential direction on the inner surface of the recess 16a.
By providing the reinforcing ribs 34, it is possible to prevent displacement and slipping of the shock absorber 22 when a load is applied, and the shock absorbing performance of the shock absorber 22 can be sufficiently exhibited.

例示的な実施形態では、ケーシング16を繊維強化プラスチック材で構成する。これによって、緩衝体10をさらに軽量化及び高強度化できる。   In the exemplary embodiment, casing 16 is comprised of a fiber reinforced plastic material. Thereby, the buffer body 10 can be further reduced in weight and strength.

幾つかの実施形態によれば、輸送容器12の転倒時や落下時等に、緩衝体10に衝撃(荷重)が加わると、中空筒状体22の撓みにより、FRPシート24のシート間で剥離破壊が起り、この剥離破壊の過程で衝撃を吸収するため、輸送容器12に対する衝撃を緩和できる。
また、木材を用いないため、木材の課題である高温時の緩衝性能低下を解消でき、かつ品質のバラツキを制御することができるため、裕度設計を最小限に抑えることができ、これによって、緩衝体を小型化かつ低コスト化できる。
また、FRPシート24の積層数及び中空筒状体の外径を変えることで、中空筒状体22の圧縮強度を制御でき、これによって、輸送容器12の仕様及び付加荷重に応じた緩衝体10の最適配置が木材と比べ容易になる。
According to some embodiments, when an impact (load) is applied to the shock absorber 10 when the transport container 12 is overturned or dropped, the FRP sheet 24 is peeled between the sheets due to the bending of the hollow cylindrical body 22. Since the breakage occurs and the shock is absorbed in the process of the peeling breakage, the shock to the transport container 12 can be reduced.
In addition, because wood is not used, the buffer performance degradation at high temperatures, which is a problem with wood, can be resolved, and variation in quality can be controlled, so that tolerance design can be minimized, The buffer body can be reduced in size and cost.
Further, the compression strength of the hollow cylindrical body 22 can be controlled by changing the number of the FRP sheets 24 stacked and the outer diameter of the hollow cylindrical body, whereby the buffer body 10 according to the specifications of the transport container 12 and the additional load. This makes it easier to place the unit than wood.

例示的な実施形態によれば、図2及び図4に示すように、中空筒状体22の軸方向の向きが異なる第1のグループPa及び第2のグループPrの2つのグループに分け、中空筒状体22の軸方向が中空筒状体22に加わる荷重の方向に沿うように配置されるので、荷重が中空筒状体22の軸方向に加わると、中空筒状体22は軸方向に縮むと共に、軸方向と交差する方向に撓む。この撓みにより、FRPシート24間の剥離破壊が起り、この剥離破壊が起る過程で衝撃を吸収するので、衝撃吸収性能を向上できる。   According to the exemplary embodiment, as shown in FIGS. 2 and 4, the hollow cylindrical body 22 is divided into two groups, ie, a first group Pa and a second group Pr, which are different in the axial direction. Since the axial direction of the cylindrical body 22 is arranged along the direction of the load applied to the hollow cylindrical body 22, when the load is applied in the axial direction of the hollow cylindrical body 22, the hollow cylindrical body 22 is moved in the axial direction. It shrinks and bends in a direction that intersects the axial direction. Due to this bending, delamination breakage between the FRP sheets 24 occurs, and the impact is absorbed in the process of delamination breakage, so that the shock absorbing performance can be improved.

例示的な実施形態によれば、図2及び図4に示すように、中空筒状体22に加わると想定される異なる方向の2以上の荷重Fa、Fr及びFtの方向に応じて、中空筒状体22の軸方向が異なる2以上の部位Pa、Pr及びPtが設けられるので、各部位で常に中空筒状体22の軸方向を荷重の方向に合わせることができる。
例示的な実施形態によれば、図2及び図4に示すように、中空筒状体22に加わると想定される異なる方向の2以上の荷重Fa、Fr及びFtの方向に応じて、中空筒状体22の軸方向が異なる2以上のグループPa、Pr及びPtが設けられるので、緩衝体10の各部位で中空筒状体22の軸方向を荷重の方向に合わせることができる。
従って、輸送容器12の多様な倒れや落下の姿勢等に対応して、FRPシート24の剥離破壊による衝撃吸収効果を確実に発揮できる。
According to an exemplary embodiment, as shown in FIGS. 2 and 4, depending on the direction of two or more loads Fa, Fr and Ft in different directions assumed to be applied to the hollow cylindrical body 22, the hollow cylinder Since two or more parts Pa, Pr, and Pt having different axial directions of the cylindrical body 22 are provided, the axial direction of the hollow cylindrical body 22 can always be matched to the load direction at each part.
According to an exemplary embodiment, as shown in FIGS. 2 and 4, depending on the direction of two or more loads Fa, Fr and Ft in different directions assumed to be applied to the hollow cylindrical body 22, the hollow cylinder Since two or more groups Pa, Pr, and Pt having different axial directions of the cylindrical body 22 are provided, the axial direction of the hollow cylindrical body 22 can be matched to the load direction at each part of the buffer body 10.
Therefore, it is possible to reliably exhibit the impact absorption effect due to the peeling failure of the FRP sheet 24 in response to various falling and falling postures of the transport container 12.

例示的な実施形態によれば、中空筒状体22は壁体22aが周方向全周に亘って形成されたパイプ形状を有するため、中空筒状体22の全周でFRPシート間の剥離破壊を起すことができ、衝撃吸収効果をさらに高めることができる。
例示的な実施形態によれば、図11に示すように、中空筒状体22(22C)は、互いに交差するように配置された2個の矩形の板状部材26及び28を用いて製造されるので、低コストで製造できる。
According to the exemplary embodiment, the hollow cylindrical body 22 has a pipe shape in which the wall body 22a is formed over the entire circumference in the circumferential direction. And the impact absorbing effect can be further enhanced.
According to an exemplary embodiment, as shown in FIG. 11, the hollow cylindrical body 22 (22C) is manufactured using two rectangular plate-like members 26 and 28 arranged so as to cross each other. Therefore, it can be manufactured at a low cost.

例示的な実施形態によれば、図12及び図13に示すように、中空筒状体22の内部空間Si又は撓み許容空間Scの少なくとも一方に木材又は発泡材で構成された充填物32を充填することで、中空筒状体22の剛性や撓み度の調整が可能になり、緩衝体10の剛性及び衝撃吸収性能を輸送容器12の用途に合った最適な条件に調整できる。   According to the exemplary embodiment, as shown in FIGS. 12 and 13, at least one of the internal space Si and the bending-allowable space Sc of the hollow cylindrical body 22 is filled with a filler 32 made of wood or foam material. By doing so, it becomes possible to adjust the rigidity and the degree of flexure of the hollow cylindrical body 22, and the rigidity and shock absorbing performance of the buffer body 10 can be adjusted to optimum conditions suitable for the use of the transport container 12.

例示的な実施形態によれば、図3に示すように、ケーシング16の凹部16aの内側面に周方向に交互に中空筒状体22と補強リブ34とを配置することで、荷重負荷時の衝撃吸収材22の位置ずれ及びすべり等を防止でき、衝撃吸収材22の衝撃吸収性能を十分に発揮することができる。
例示的な実施形態によれば、ケーシング16を繊維強化プラスチック材で構成することで、緩衝体10をさらに軽量化及び高強度化できる。
例示的な実施形態によれば、緩衝体10を被輸送物15として放射性物質を収納したキャスクに適用することで、キャスクに加わる衝撃又は荷重を確実に緩和して放射性物質の漏洩を防止できると共に、緩衝体の小型化及び低コスト化を達成できる。
According to the exemplary embodiment, as shown in FIG. 3, the hollow cylindrical body 22 and the reinforcing ribs 34 are alternately arranged in the circumferential direction on the inner surface of the recess 16 a of the casing 16, so that a load can be applied. Positional displacement and slipping of the shock absorber 22 can be prevented, and the shock absorbing performance of the shock absorber 22 can be fully exhibited.
According to the exemplary embodiment, the shock absorber 10 can be further reduced in weight and strength by configuring the casing 16 with a fiber reinforced plastic material.
According to the exemplary embodiment, the shock absorber 10 is applied to the cask containing the radioactive material as the transported object 15, so that the impact or load applied to the cask can be surely mitigated and the leakage of the radioactive material can be prevented. Therefore, it is possible to reduce the size and cost of the buffer.

図14は緩衝体10の他の用途を示す。図14において、冷却水wが貯留された使用済燃料プール40に設けられたキャスクピット42において、キャスク44がクレーン46で吊り上げられ、又は吊り下ろされる状態がある。
キャスク44の下方の床面40aに緩衝体10が設けられている。緩衝体10はキャスク44が落下すると想定される位置に配置されている。緩衝体10に図示された矢印は、緩衝体10に設けられた中空筒状体22の軸方向を示している。
こうして、キャスク44の落下位置に緩衝体10を配置することで、落下時の衝撃を効率的に緩和でき、キャスク44及びキャスクピット床面の破損を抑制できる。
FIG. 14 shows another application of the shock absorber 10. In FIG. 14, in the cask pit 42 provided in the spent fuel pool 40 in which the cooling water w is stored, there is a state in which the cask 44 is lifted or hung by the crane 46.
The buffer body 10 is provided on the floor surface 40 a below the cask 44. The buffer body 10 is disposed at a position where the cask 44 is assumed to fall. The arrows illustrated in the buffer body 10 indicate the axial direction of the hollow cylindrical body 22 provided in the buffer body 10.
Thus, by disposing the shock absorber 10 at the position where the cask 44 is dropped, the impact at the time of dropping can be efficiently reduced, and damage to the cask 44 and the cask pit floor can be suppressed.

図15は緩衝体10のさらに他の用途を示す。図15において、キャスク44は貯蔵用又はキャスク44に何らかの処理を行う建屋48にクレーン46に吊下されている。
クレーン46に吊下されたキャスク44の移動経路の下方位置の床面48aに緩衝体10が配置されている。また、クレーン46で移動中のキャスク44がぶつかるおそれのある内側壁48bにも緩衝体10が設けられている。
上記位置に緩衝体10を配置することで、万一キャスク44が落下し床面48a又は内側壁48bにぶつかっても、キャスク44及び床面48a及び内側壁48bに対する衝撃を緩和でき、キャスク44及び床面48a及び内側壁48bの破損を抑制できる。
FIG. 15 shows still another application of the shock absorber 10. In FIG. 15, the cask 44 is suspended by a crane 46 on a building 48 for storage or performing some processing on the cask 44.
The shock absorber 10 is disposed on the floor surface 48 a below the moving path of the cask 44 suspended from the crane 46. The shock absorber 10 is also provided on the inner wall 48b where the cask 44 moving with the crane 46 may collide.
By disposing the shock absorber 10 in the above position, even if the cask 44 falls and hits the floor surface 48a or the inner wall 48b, the impact on the cask 44, the floor surface 48a and the inner wall 48b can be reduced. Breakage of the floor surface 48a and the inner side wall 48b can be suppressed.

本発明の少なくとも一実施形態によれば、低コストで緩衝性能が高い輸送容器用緩衝体を実現でき、特に、放射性物質を収納したキャスクに好適である。   According to at least one embodiment of the present invention, a shock absorber for a transport container having a low cost and high buffer performance can be realized, and is particularly suitable for a cask containing a radioactive substance.

10(10A、10B、10C、10D) 緩衝体
12 輸送容器
14 輸送容器本体
15 被輸送物
16 ケーシング
16a 凹部
18 開閉蓋
20 衝撃吸収部材
22(22A、22B、22C) 中空筒状体
22a 壁体
24 FRPシート
26,28 板状部材
26a、28a 切込部
30 ボルト穴
32 充填物
34 補強リブ
40 使用済燃料プール
40a 床面
42 キャスクピット
44 キャスク
46 クレーン
48 建屋
48a 床面
48b 内側壁
C 臨界点
E,E,E 衝撃エネルギ量
F、Fo 圧縮荷重
Fa、Fr、Ft 荷重
Pa 端面部位
Pr 周面部位
Pt 角部
Sc 撓み許容空間
Si,s 内部空間
δ 変形量
10 (10A, 10B, 10C, 10D) Buffer 12 Transport container 14 Transport container body 15 Transported object 16 Casing 16a Recess 18 Opening / closing lid 20 Shock absorbing member 22 (22A, 22B, 22C) Hollow cylindrical body 22a Wall body 24 FRP sheet 26, 28 Plate-like members 26a, 28a Notch 30 Bolt hole 32 Filling 34 Reinforcement rib 40 Spent fuel pool 40a Floor surface 42 Cask pit 44 Cask 46 Crane 48 Building 48a Floor surface 48b Inner side wall C Critical point E , E 1 , E 2 Impact energy amount F, Fo Compressive load Fa, Fr, Ft load Pa End surface region Pr Peripheral surface region Pt Corner portion Sc Deflection allowable space Si, s Internal space δ Deformation amount

Claims (10)

被輸送物を収容可能な輸送容器に装着される輸送容器用緩衝体であって、
内部空間を有するケーシングと、
前記内部空間に充填される衝撃吸収部材と、
を備え、
前記衝撃吸収部材は、複数の繊維強化プラスチック製シートが積層されてなる壁体から構成される複数の中空筒状体が、撓み許容空間を介して並列配置されて形成されることを特徴とする輸送容器用緩衝体。
A transport container buffer mounted on a transport container capable of accommodating a transported object,
A casing having an internal space;
An impact absorbing member filled in the internal space;
With
The impact absorbing member is formed by arranging a plurality of hollow cylindrical bodies composed of a wall body formed by laminating a plurality of fiber reinforced plastic sheets in parallel with each other through a bending allowable space. Transport container buffer.
前記複数の中空筒状体は、前記ケーシングの外面のうち前記輸送容器に対向しない面の少なくとも1つに対して軸方向が略垂直になるように配置されていることを特徴とする請求項1に記載の輸送容器用緩衝体。   The plurality of hollow cylindrical bodies are arranged such that an axial direction thereof is substantially perpendicular to at least one of the outer surfaces of the casing that do not face the transport container. The shock absorber for a transport container according to 1. 前記複数の中空筒状体は、
第1の方向に沿って配列される第1のグループと、
前記第1の方向に交差する第2の方向に沿って配列される第2のグループと、
を含むことを特徴とする請求項1又は2に記載の輸送容器用緩衝体。
The plurality of hollow cylindrical bodies are:
A first group arranged along a first direction;
A second group arranged along a second direction intersecting the first direction;
The shock absorber for a transport container according to claim 1 or 2, characterized by comprising:
前記輸送容器は略円柱形状を有し、
前記ケーシングは前記輸送容器の端部に嵌入可能な凹部を有し、
前記第1のグループは軸方向端面が前記略円柱形状の端面に対向するように配列された前記中空筒状体であり、
前記第2のグループは軸方向端面が前記略円柱形状の周面に対向するように配置された
前記中空筒状体であることを特徴とする請求項3に記載の輸送容器用緩衝体。
The transport container has a substantially cylindrical shape,
The casing has a recess that can be fitted into an end of the transport container,
The first group is the hollow cylindrical body arranged so that an axial end face thereof faces the substantially cylindrical end face,
The said 2nd group is the said hollow cylindrical body arrange | positioned so that an axial end surface may oppose the said substantially cylindrical surrounding surface, The buffer for transport containers of Claim 3 characterized by the above-mentioned.
前記中空筒状体は、前記壁体が周方向全周に亘って形成されたパイプ形状を有することを特徴とする請求項1乃至4の何れか1項に記載の輸送容器用緩衝体。   5. The transport container buffer according to claim 1, wherein the hollow cylindrical body has a pipe shape in which the wall body is formed over the entire circumference in the circumferential direction. 前記中空筒状体は、前記壁体が互いに交差する方向に配置された複数の板状部材が組み合わされて構成されることを特徴とする請求項1乃至5の何れか1項に記載の輸送容器用緩衝体。   The transport according to any one of claims 1 to 5, wherein the hollow cylindrical body is configured by combining a plurality of plate-like members arranged in a direction in which the wall bodies intersect each other. Buffer for containers. 前記中空筒状体の内部又は前記撓み許容空間の少なくとも一方に充填される木材又は発泡材で構成された充填物をさらに備えることを特徴とする請求項1乃至6の何れか1項に記載の輸送容器用緩衝体。   The filler according to any one of claims 1 to 6, further comprising a filler made of wood or foam filled in at least one of the inside of the hollow cylindrical body or the bending allowable space. Transport container buffer. 前記ケーシングの凹部の内側面に前記輸送容器の周方向に間隔をおいて設けられた複数の補強リブをさらに備え、
前記複数の補強リブの間に前記中空筒状体が配置されることを特徴とする請求項4に記載の輸送容器用緩衝体。
A plurality of reinforcing ribs provided at intervals in the circumferential direction of the transport container on the inner surface of the recess of the casing;
The shock absorber for a transport container according to claim 4, wherein the hollow cylindrical body is disposed between the plurality of reinforcing ribs.
前記ケーシングが繊維強化プラスチック材で構成されることを特徴とする請求項1乃至8の何れか1項に記載の輸送容器用緩衝体。   The shock absorber for a transport container according to any one of claims 1 to 8, wherein the casing is made of a fiber reinforced plastic material. 内部に放射性物質を収容する筒状の輸送容器と、
請求項1乃至9の何れか1項に記載の緩衝体と、
を備えることを特徴とするキャスク。
A cylindrical transport container that contains radioactive material inside;
The buffer according to any one of claims 1 to 9,
A cask characterized by comprising:
JP2015255426A 2015-12-25 2015-12-25 Buffer for transport container and cask Active JP6546849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255426A JP6546849B2 (en) 2015-12-25 2015-12-25 Buffer for transport container and cask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255426A JP6546849B2 (en) 2015-12-25 2015-12-25 Buffer for transport container and cask

Publications (2)

Publication Number Publication Date
JP2017114564A true JP2017114564A (en) 2017-06-29
JP6546849B2 JP6546849B2 (en) 2019-07-17

Family

ID=59233525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255426A Active JP6546849B2 (en) 2015-12-25 2015-12-25 Buffer for transport container and cask

Country Status (1)

Country Link
JP (1) JP6546849B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039468A (en) * 2017-08-23 2019-03-14 三菱重工業株式会社 Shock absorption member, buffer, process of manufacture cask and buffer
JP2019077128A (en) * 2017-10-26 2019-05-23 三菱重工業株式会社 Impact absorption member, buffer, cask and manufacturing method of buffer
JP2019105351A (en) * 2017-12-14 2019-06-27 三菱重工業株式会社 Shock absorption component, and cask
JP2019203572A (en) * 2018-05-24 2019-11-28 三菱重工業株式会社 Shock absorption member and cushioning body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000845A1 (en) * 1991-07-01 1993-01-21 Raven Marketing, Inc. Cushioning structure
JP2005321348A (en) * 2004-05-11 2005-11-17 Hitachi Ltd Shock absorber for fuel transportation storage cask and its manufacturing method
JP2006194300A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Energy absorbent
JP2008233098A (en) * 2004-08-10 2008-10-02 Mitsubishi Heavy Ind Ltd Buffer for cask
JP2012126431A (en) * 2010-12-16 2012-07-05 Kawakami Sangyo Co Ltd Corner angle member
CN204740873U (en) * 2015-05-25 2015-11-04 中国核电工程有限公司 Spherical nucleus fuel element transports storage container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000845A1 (en) * 1991-07-01 1993-01-21 Raven Marketing, Inc. Cushioning structure
JP2005321348A (en) * 2004-05-11 2005-11-17 Hitachi Ltd Shock absorber for fuel transportation storage cask and its manufacturing method
JP2008233098A (en) * 2004-08-10 2008-10-02 Mitsubishi Heavy Ind Ltd Buffer for cask
JP2006194300A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Energy absorbent
JP2012126431A (en) * 2010-12-16 2012-07-05 Kawakami Sangyo Co Ltd Corner angle member
CN204740873U (en) * 2015-05-25 2015-11-04 中国核电工程有限公司 Spherical nucleus fuel element transports storage container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039468A (en) * 2017-08-23 2019-03-14 三菱重工業株式会社 Shock absorption member, buffer, process of manufacture cask and buffer
JP2019077128A (en) * 2017-10-26 2019-05-23 三菱重工業株式会社 Impact absorption member, buffer, cask and manufacturing method of buffer
JP7032909B2 (en) 2017-10-26 2022-03-09 三菱重工業株式会社 Manufacturing method of shock absorbing member, shock absorber, cask and shock absorber
JP2019105351A (en) * 2017-12-14 2019-06-27 三菱重工業株式会社 Shock absorption component, and cask
JP7032919B2 (en) 2017-12-14 2022-03-09 三菱重工業株式会社 Impact absorbing member and cask
JP2019203572A (en) * 2018-05-24 2019-11-28 三菱重工業株式会社 Shock absorption member and cushioning body
JP7065689B2 (en) 2018-05-24 2022-05-12 三菱重工業株式会社 Impact absorbing member and shock absorber

Also Published As

Publication number Publication date
JP6546849B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP2017114564A (en) Buffer for transport container and cask
US10584508B2 (en) Composite sleeve rod axial dampener for buildings and structures
ES2401747T3 (en) Packaging sets and internal support structure for the transport and storage of radioactive materials
JP2010127866A (en) Shock absorbing device of fuel assembly, and fuel assembly storage container
JP2013174603A (en) Storage device and container for storing and/or transporting nuclear fuel assembly
JP4111037B2 (en) Cask cushion
JP2019158398A (en) Spent fuel storage container
JP5709400B2 (en) Nuclear fuel storage rack and nuclear fuel storage rack group
JP6867842B2 (en) Manufacturing method of buffer, cask and buffer
JP5959843B2 (en) Rack support structure
JP2014145788A (en) Nuclear fuel storage rack and nuclear fuel storage rack group
JP2019077128A (en) Impact absorption member, buffer, cask and manufacturing method of buffer
JP5627538B2 (en) Nuclear fuel pellet transport container
JP7194646B2 (en) buffer for cask
JP6960379B2 (en) Storage container and storage method for radioactive materials or containers containing radioactive materials
JP2008281437A (en) Fuel storage structure of spent fuel cask
JP6868470B2 (en) Buffer structure
JP7195969B2 (en) NUCLEAR FUEL STORAGE RACK, METHOD FOR INSTALLING NUCLEAR FUEL STORAGE RACK, AND METHOD FOR MANUFACTURING NUCLEAR FUEL STORAGE RACK
JP4940253B2 (en) Cask cushion
JP6919023B2 (en) Buffer structure
JP7032919B2 (en) Impact absorbing member and cask
JP7195214B2 (en) Spent fuel container
JP2010217024A (en) Basket and cask
JP2023053495A (en) Buffer for radioactive material storage container
JP6722553B2 (en) Buffer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6546849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150