JP2019104803A - Fiber-reinforced plastic, fiber-reinforced plastic structure and method for producing fiber-reinforced plastic - Google Patents

Fiber-reinforced plastic, fiber-reinforced plastic structure and method for producing fiber-reinforced plastic Download PDF

Info

Publication number
JP2019104803A
JP2019104803A JP2017237346A JP2017237346A JP2019104803A JP 2019104803 A JP2019104803 A JP 2019104803A JP 2017237346 A JP2017237346 A JP 2017237346A JP 2017237346 A JP2017237346 A JP 2017237346A JP 2019104803 A JP2019104803 A JP 2019104803A
Authority
JP
Japan
Prior art keywords
reinforced plastic
fiber
fiber reinforced
strain
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017237346A
Other languages
Japanese (ja)
Other versions
JP7049104B2 (en
Inventor
紘介 田山
Kosuke Tayama
紘介 田山
成樹 荻野
Shigeki Ogino
成樹 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUPER RESIN KOGYO KK
Original Assignee
SUPER RESIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUPER RESIN KOGYO KK filed Critical SUPER RESIN KOGYO KK
Priority to JP2017237346A priority Critical patent/JP7049104B2/en
Publication of JP2019104803A publication Critical patent/JP2019104803A/en
Application granted granted Critical
Publication of JP7049104B2 publication Critical patent/JP7049104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a fiber-reinforced plastic which has a sufficiently high elastic modulus and a sufficiently large strain amount of an elastic deformation region.SOLUTION: Provided are: a fiber-reinforced plastic having a fiber orientation angle of 25-65° and an elastic deformation region where an elastic modulus is 2 GPa or more and a strain amount is 3% or more, preferably, 4% or more; the fiber-reinforced plastic having a laminated structure in which a plurality of fiber-reinforced plastic sheets are laminated, and the plurality of fiber-reinforced plastic sheets have the same orientation angle; and the fiber-reinforced plastic using an epoxy resin which has, by itself, a strain at break of 4% or more and an elastic modulus of 2 GPa or more.SELECTED DRAWING: None

Description

本発明は、繊維強化プラスチック、繊維強化プラスチック構造体及び繊維強化プラスチックの製造方法に関する。   The present invention relates to a fiber reinforced plastic, a fiber reinforced plastic structure, and a method of manufacturing a fiber reinforced plastic.

近年、例えば燃料電池の筐体等のように、強度が必要でなおかつ熱膨縮などを伴うものには、可能な限り硬くて強く、延性のある材料を用いるのが好ましい。   In recent years, it is preferable to use a material that is as hard, strong, and ductile as possible for materials that require strength, such as the casing of a fuel cell, and are accompanied by thermal expansion and contraction and the like.

特開2008−305709号公報JP, 2008-305709, A

ところで、従来より用いられている鉄、アルミニウム、ニッケルなどの金属材料は、弾性率が高いが、弾性変形領域の歪み量は小さい。一方、PP、PE、PETなどの樹脂材料は、金属材料に比べて弾性変形領域の歪み量は10%以上と大きいが、弾性率が100MPa以下と大幅に低下する。さらに、近年、同様の用途の材料として繊維強化プラスチックが用いられているが、一般的に長繊維を用いた炭素繊維強化プラスチックやガラス繊維強化プラスチックは、純粋は樹脂材料に比べて弾性率が高くなるが、破断歪みが2%程度と小さい。また、短繊維を用いたガラス繊維強化プラスチックもあるが、これも破断歪みが2〜3%程度と小さい。このように、繊維強化プラスチックであっても弾性率が十分に高く弾性変形領域の歪み量も十分に大きい適切な材料がなかった。   By the way, although metal materials, such as iron, aluminum, nickel, etc. conventionally used have a high elastic modulus, the distortion amount of an elastic deformation area | region is small. On the other hand, in resin materials such as PP, PE, and PET, the strain amount in the elastic deformation region is as large as 10% or more as compared with the metal material, but the elastic modulus is significantly reduced as 100 MPa or less. Furthermore, in recent years, fiber reinforced plastics have been used as materials for similar applications, but carbon fiber reinforced plastics and glass fiber reinforced plastics using long fibers are generally higher in elastic modulus than pure resin materials. However, the strain at break is as small as 2%. In addition, there is also a glass fiber reinforced plastic using short fibers, but this also has a small breaking strain of about 2 to 3%. As described above, even a fiber reinforced plastic has not been made of a suitable material having a sufficiently high elastic modulus and a sufficiently large strain amount in the elastic deformation region.

本出願はかかる点に鑑みてなされたものであり、弾性率が十分に高く、弾性変形領域の歪み量も十分に大きい繊維強化プラスチック、繊維強化プラスチック構造体及び繊維強化プラスチックの製造方法を提供することをその目的とする。   The present application has been made in view of the foregoing, and provides a fiber-reinforced plastic, a fiber-reinforced plastic structure, and a method for producing a fiber-reinforced plastic having a sufficiently high elastic modulus and a sufficiently large strain amount in an elastic deformation region. To that purpose.

本発明の一態様に係る繊維強化プラスチックは、25deg以上65deg以下の繊維配向角を有し、弾性率が2GPa以上で歪み量が3%以上の弾性変形領域を有する。   The fiber-reinforced plastic according to one aspect of the present invention has a fiber orientation angle of 25 deg or more and 65 deg or less, and has an elastic deformation region with a modulus of 2 GPa or more and a strain amount of 3% or more.

本発明によれば、弾性率が十分に高く、弾性変形領域の歪み量も十分に大きい繊維強化プラスチックを実現できる。   According to the present invention, it is possible to realize a fiber reinforced plastic having a sufficiently high elastic modulus and a sufficiently large strain amount in the elastic deformation region.

繊維強化プラスチックは、複数の繊維強化プラスチックシートを積層した積層構造を有し、前記複数の繊維強化プラスチックシートが同じ繊維配向角を有するものであってもよい。   The fiber reinforced plastic may have a laminated structure in which a plurality of fiber reinforced plastic sheets are laminated, and the plurality of fiber reinforced plastic sheets may have the same fiber orientation angle.

繊維強化プラスチックは、樹脂単体で破断歪みが4%以上で、弾性率が2GPa以上となるエポキシ樹脂を用いたものであってもよい。   The fiber reinforced plastic may be an epoxy resin which has a modulus of at least 2 GPa and a strain at break of 4% or more with a single resin.

別の観点による本発明は、繊維強化プラスチックを用いた繊維強化プラスチック構造体である。   The present invention according to another aspect is a fiber reinforced plastic structure using a fiber reinforced plastic.

別の観点による本発明は、25deg以上65deg以下の繊維配向角を有し、弾性率が2GPa以上で歪み量が3%以上の弾性変形領域を有する繊維強化プラスチックを製造する、繊維強化プラスチックの製造方法である。   The present invention according to another aspect manufactures a fiber-reinforced plastic having a fiber orientation angle of 25 deg or more and 65 deg or less, an elastic deformation area of 2 GPa or more and a strain amount of 3% or more. It is a method.

繊維強化プラスチックの構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of fiber reinforced plastic. 繊維強化プラスチックの積層構造を示す模式図である。It is a schematic diagram which shows the laminated structure of fiber reinforced plastic. 繊維強化プラスチック構造体の例を示す説明図である。It is an explanatory view showing an example of a fiber reinforced plastic structure. 本発明の弾性率と歪み量を示すグラフである。It is a graph which shows the elasticity modulus and distortion amount of this invention. 実施例の試験片の寸法を示す説明図である。It is explanatory drawing which shows the dimension of the test piece of an Example. 実施例の引張試験の結果を示す表である。It is a table | surface which shows the result of the tension test of an Example. 実施例の繰り返し引張試験の結果を示す表である。It is a table | surface which shows the result of the repeating tension test of an Example. 樹脂1を用いた場合の引張試験の破断歪み−応力曲線を示すグラフである。It is a graph which shows the breaking strain-stress curve of the tension test at the time of using resin 1. FIG. 樹脂2を用いた場合の引張試験の破断歪み−応力曲線を示すグラフである。It is a graph which shows the breaking strain-stress curve of the tension test at the time of using resin 2. FIG. 樹脂を変えた場合の引張試験の結果を示す表である。It is a table | surface which shows the result of the tension test at the time of changing resin.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は、図示の比率に限定されるものではない。また、以下の実施の形態は、本発明を説明するための例示であり、本発明はこの実施の形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. Further, the positional relationship such as upper, lower, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the illustrated ratios. Also, the following embodiments are exemplifications for explaining the present invention, and the present invention is not limited to the embodiments.

繊維強化プラスチック1は、例えば方形状を有し、25deg以上65deg以下(45deg±20deg)の繊維配向角αを有している。繊維配向角αは、好ましくは30deg以上60deg以下、さらに好ましくは35deg以上55deg以下である。繊維配向角αは、さらに好ましくは、35deg以上40deg以下である。繊維配向角αとは、繊維強化プラスチックのプリプレグの長手方向(織り目方向)と繊維強化プラスチック1の一辺とがなす角である。なお、繊維配向角αは、プリプレグの織り目が時計回り側に傾いた場合のみならず、反時計回り側に傾いた場合も含まれる。   The fiber reinforced plastic 1 has, for example, a square shape, and has a fiber orientation angle α of 25 deg or more and 65 deg or less (45 deg ± 20 deg). The fiber orientation angle α is preferably 30 deg or more and 60 deg or less, more preferably 35 deg or more and 55 deg or less. The fiber orientation angle α is more preferably 35 deg or more and 40 deg or less. The fiber orientation angle α is an angle formed by the longitudinal direction (texture direction) of the fiber reinforced plastic prepreg and one side of the fiber reinforced plastic 1. The fiber orientation angle α includes not only when the weave of the prepreg is inclined clockwise but also when it is inclined counterclockwise.

繊維強化プラスチック1は、繊維として例えば長繊維のガラス繊維を使用している。樹脂として、例えば高靭性エポキシ樹脂を使用している。エポキシ樹脂は、樹脂単体において破断歪みが4%以上であり、かつ弾性率が2GPa以上の特性を有するものを使用する。   The fiber reinforced plastic 1 uses, for example, long glass fiber as a fiber. As the resin, for example, a high toughness epoxy resin is used. As the epoxy resin, a resin having a characteristic that the strain at break is 4% or more and the elastic modulus is 2 GPa or more is used.

繊維強化プラスチック1は、図2に示すように複数枚の繊維強化プラスチックシート10を積層した積層構造を有している。複数枚の繊維強化プラスチックシート10は、25deg以上65deg以下の範囲で例えば同じ繊維配向角αを有している。   The fiber reinforced plastic 1 has a laminated structure in which a plurality of fiber reinforced plastic sheets 10 are laminated as shown in FIG. The plurality of fiber reinforced plastic sheets 10 have, for example, the same fiber orientation angle α in the range of 25 deg or more and 65 deg or less.

繊維強化プラスチック1は、弾性率が2GPa以上で歪み量が3%以上の弾性変形領域を有している。   The fiber reinforced plastic 1 has an elastic deformation region in which the amount of strain is 3% or more and the elastic modulus is 2 GPa or more.

なお、繊維は、ガラス繊維に限られず、炭素繊維、有機繊維、無機繊維であってもよい。また、樹脂は、エポキシ樹脂に限られず、他の熱硬化性樹脂、熱可塑性樹脂であってもよい。   The fibers are not limited to glass fibers, and may be carbon fibers, organic fibers, or inorganic fibers. Further, the resin is not limited to the epoxy resin, and may be another thermosetting resin or a thermoplastic resin.

図3には、繊維強化プラスチック1を使用した繊維強化プラスチック構造体20の一例を示す。繊維強化プラスチック構造体20は、例えば繊維強化プラスチック10を環状にし、その環状の繊維強化プラスチック10を内側から外側に向けて積層したフープ形状を有している。繊維強化プラスチック構造体20は、例えば直方体状の型の側面の周囲に複数の繊維強化プラスチック10を巻きつけることにより成形される。繊維強化プラスチック構造体20は、例えば燃料電池の周囲の側壁に用いられる。   FIG. 3 shows an example of a fiber reinforced plastic structure 20 using the fiber reinforced plastic 1. The fiber reinforced plastic structure 20 has, for example, a hoop shape in which the fiber reinforced plastic 10 is formed into an annular shape, and the annular fiber reinforced plastic 10 is laminated from the inside to the outside. The fiber reinforced plastic structure 20 is formed, for example, by winding a plurality of fiber reinforced plastics 10 around the sides of a rectangular die. The fiber reinforced plastic structure 20 is used, for example, on the side wall around the fuel cell.

繊維強化プラスチック1の製造プロセスについて説明する。まず、織り機により、帯状の長いガラス繊維のガラスクロスが製造される。ガラスクロスは、縦繊維と横繊維が互いに90°に織りこまれたものである。次にガラスクロスにエポキシ樹脂が含浸されてプリプレグが製造される。次に、プリプレグから繊維強化プラスチックシート10が切り出される。このとき、繊維強化プラスチックシート10は、25deg以上65deg以下の繊維配向角αを有する。次に、同形状で同じ繊維配向角αの複数枚の繊維強化プラスチックシート10が積層される。次に繊維強化プラスチックシート10の積層体が、加熱、加圧され、樹脂が硬化される。このとき、積層体がプレス成型またはオートクレープ成型される。こうして、図4に示すような弾性率が2GPa以上で、3%以上の歪み量を有する本発明の繊維強化プラスチック1ができあがる。   The manufacturing process of the fiber reinforced plastic 1 will be described. First, a long, glass fiberglass cloth is produced by a weaving machine. Glass cloth is one in which longitudinal fibers and transverse fibers are woven at 90 ° to each other. Next, a glass cloth is impregnated with an epoxy resin to produce a prepreg. Next, the fiber reinforced plastic sheet 10 is cut out of the prepreg. At this time, the fiber reinforced plastic sheet 10 has a fiber orientation angle α of 25 deg or more and 65 deg or less. Next, a plurality of fiber reinforced plastic sheets 10 having the same shape and the same fiber orientation angle α are laminated. Next, the laminate of the fiber reinforced plastic sheet 10 is heated and pressed to cure the resin. At this time, the laminate is pressed or autoclaved. Thus, the fiber-reinforced plastic 1 of the present invention having a modulus of elasticity of 2 GPa or more and a strain amount of 3% or more as shown in FIG. 4 is completed.

本実施の形態によれば、弾性率が十分に高く、弾性変形領域の歪み量も十分に大きい繊維強化プラスチック1を実現できる。   According to the present embodiment, it is possible to realize the fiber reinforced plastic 1 having a sufficiently high elastic modulus and a sufficiently large strain amount in the elastic deformation region.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that those skilled in the art can conceive of various modifications or alterations within the scope of the idea described in the claims, and they are naturally within the technical scope of the present invention. It is understood that.

例えば以上の実施の形態において、複数枚の繊維強化プラスチックシート10の繊維配向角αがすべて同じであったが、繊維配向角を25deg以上65deg以下の範囲で互いに異なるものであってもよい。この際、繊維配向角がすべて異なっていてもよいし、一部のみが異なっていてもよい。繊維強化プラスチック1の形状も他の形状であってもよい。   For example, in the above embodiment, the fiber orientation angles α of the plurality of fiber reinforced plastic sheets 10 are all the same, but the fiber orientation angles may be different from each other within the range of 25 deg or more and 65 deg or less. At this time, all the fiber orientation angles may be different, or only some of them may be different. The shape of the fiber reinforced plastic 1 may also be another shape.

引張試験
繊維配向角を変えた繊維強化プラスチックを用いて引張試験を実施し、弾性率と歪み量を算出した。引張試験は、次の条件で行った。繊維強化プラスチックの板状の試験片については図5に示す。引張試験の結果は、図6に示す。
Tensile test A tensile test was performed using fiber reinforced plastic with different fiber orientation angles to calculate the modulus of elasticity and the amount of strain. The tensile test was performed under the following conditions. A plate-shaped test piece of fiber reinforced plastic is shown in FIG. The results of the tensile test are shown in FIG.

<試験条件>
クロスヘッドスピード:1〜3mm/min
ひずみ測定方法:クロスヘッド移動量より算出
強化繊維:ガラス繊維
母材樹脂:高靭性エポキシ樹脂
試験片サイズ:
長さL:200mm
幅W:25mm
厚さT:1mm
標点間距離L1:100mm
繊維配向角:
A:α=45°
B:α=40(50)°
C:α=37.5(52.5)°
D:α=35(55)°
E:α=30(60)°
F:α=25(65)(25°
G:α=20(70)°
H:α=0(90)°
<Test conditions>
Crosshead speed: 1 to 3 mm / min
Strain measurement method: Calculated from cross head movement Reinforcement fiber: Glass fiber matrix resin: high toughness epoxy resin Specimen size:
Length L: 200 mm
Width W: 25 mm
Thickness T: 1 mm
Standard distance L1: 100 mm
Fiber orientation angle:
A: α = 45 °
B: α = 40 (50) °
C: α = 37.5 (52.5) °
D: α = 35 (55) °
E: α = 30 (60) °
F: α = 25 (65) (25 °
G: α = 20 (70) °
H: α = 0 (90) °

繰り返し試験
樹脂強化プラスチックに繰り返し引っ張る繰り返し試験を行った。試験条件は次のとおりであり、試験結果を図7に示す。
Repeated Test Repeatedly pulled test was carried out repeatedly on resin reinforced plastic. The test conditions are as follows, and the test results are shown in FIG.

<試験条件>
クロスヘッドスピード:3mm/min
ひずみ測定方法:クロスヘッド移動量より算出
試験片サイズ:
長さL:250mm
幅W:25mm
厚さT:1mm
標点間距離L1:150mm
強化繊維:ガラス繊維
母材樹脂:高靭性樹脂
成形条件:
硬化温度:150℃ 180min
硬化圧力:3kgf/cm2
オートクレーブ成型
<Test conditions>
Crosshead speed: 3 mm / min
Strain measurement method: Calculated from crosshead travel distance Specimen size:
Length L: 250 mm
Width W: 25 mm
Thickness T: 1 mm
Standard distance L1: 150 mm
Reinforcing fiber: Glass fiber matrix resin: high toughness resin Molding conditions:
Curing temperature: 150 ° C 180 min
Curing pressure: 3 kgf / cm 2
Autoclave molding

次に、母材樹脂を変えて繊維強化プラスチックの引張試験を行った。樹脂1として、樹脂単体で破断歪みが4%以上で弾性率が2GPa以上となるエポキシ樹脂を用い、樹脂2として、樹脂単体で破断歪みが4%未満で弾性率が2GPa以上となるエポキシ樹脂を用いた。繊維配向角は、45°とした。他の条件は、上述の引張試験の条件と同じとした。図8には樹脂1を用いた場合の引張試験の破断歪み−応力曲線を示し、図9には樹脂2を用いた場合の引張試験の破断歪み−応力曲線を示す、図10には樹脂1、2の樹脂単体における引っ張り弾性率および破断歪みの結果を示す。なお、「歪み量」とは弾性変形領域における歪みの量であり、これに対し「破断歪み」は弾性変形領域を超え、塑性変形領域も含めた歪みの量である。   Next, the base resin was changed to conduct a tensile test of fiber reinforced plastic. An epoxy resin having a strain of 4% or more and an elastic modulus of 2 GPa or more as the resin 1 is used as the resin 1, and an epoxy resin having an elastic modulus of 2 GPa or more as the resin 2 is a fracture strain of less than 4%. Using. The fiber orientation angle was 45 °. Other conditions were the same as the conditions of the above-mentioned tensile test. FIG. 8 shows a breaking strain-stress curve in the tensile test in the case of using the resin 1, and FIG. 9 shows a breaking strain-stress curve in the tensile test in the case of using the resin 2. FIG. 4 shows the results of tensile modulus and breaking strain in the single resin of 2. The "strain amount" is the amount of strain in the elastic deformation region, while the "breaking strain" is the amount of strain exceeding the elastic deformation region and including the plastic deformation region.

本発明は、弾性率が十分に高く、弾性変形領域の歪み量も十分に大きい繊維強化プラスチックを提供する際に有用である。   The present invention is useful in providing a fiber-reinforced plastic having a sufficiently high elastic modulus and a sufficiently large strain amount in the elastic deformation region.

1 繊維強化プラスチック
10 繊維強化プラスチックシート
20 繊維強化プラスチック構造体
1 fiber reinforced plastic 10 fiber reinforced plastic sheet 20 fiber reinforced plastic structure

Claims (5)

25deg以上65deg以下の繊維配向角を有し、弾性率が2GPa以上で歪み量が3%以上の弾性変形領域を有する繊維強化プラスチック。   A fiber-reinforced plastic having a fiber orientation angle of 25 deg or more and 65 deg or less, and an elastic deformation region having an elastic modulus of 2 GPa or more and a strain amount of 3% or more. 複数の繊維強化プラスチックシートを積層した積層構造を有し、
前記複数の繊維強化プラスチックシートが同じ繊維配向角を有する、請求項1に記載の繊維強化プラスチック。
Has a laminated structure in which a plurality of fiber reinforced plastic sheets are laminated,
The fiber reinforced plastic according to claim 1, wherein the plurality of fiber reinforced plastic sheets have the same fiber orientation angle.
樹脂単体で破断歪みが4%以上で、弾性率が2GPa以上となるエポキシ樹脂を用いた、請求項1又は2に記載の繊維強化プラスチック。   The fiber reinforced plastic according to claim 1 or 2, wherein an epoxy resin having a strain at break of 4% or more and an elastic modulus of 2 GPa or more is used by a single resin. 請求項1〜3のいずれかに記載の繊維強化プラスチックを用いた繊維強化プラスチック構造体。   A fiber reinforced plastic structure using the fiber reinforced plastic according to any one of claims 1 to 3. 25deg以上65deg以下の繊維配向角を有し、弾性率が2GPa以上で歪み量が3%以上の弾性変形領域を有する繊維強化プラスチックを製造する、繊維強化プラスチックの製造方法。   A method for producing a fiber reinforced plastic, comprising producing a fiber reinforced plastic having a fiber orientation angle of 25 deg or more and 65 deg or less, an elastic deformation area having an elastic modulus of 2 GPa and a strain amount of 3% or more.
JP2017237346A 2017-12-12 2017-12-12 Manufacturing method of fiber reinforced plastic, fiber reinforced plastic structure and fiber reinforced plastic Active JP7049104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017237346A JP7049104B2 (en) 2017-12-12 2017-12-12 Manufacturing method of fiber reinforced plastic, fiber reinforced plastic structure and fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017237346A JP7049104B2 (en) 2017-12-12 2017-12-12 Manufacturing method of fiber reinforced plastic, fiber reinforced plastic structure and fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2019104803A true JP2019104803A (en) 2019-06-27
JP7049104B2 JP7049104B2 (en) 2022-04-06

Family

ID=67061783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237346A Active JP7049104B2 (en) 2017-12-12 2017-12-12 Manufacturing method of fiber reinforced plastic, fiber reinforced plastic structure and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP7049104B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204968A (en) * 1983-05-09 1984-11-20 三菱レイヨン株式会社 Production of reinforcing material for fiber reinforced resin
JPH09235397A (en) * 1996-03-01 1997-09-09 Toray Ind Inc Prepreg and fiber-reinforced plastic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204968A (en) * 1983-05-09 1984-11-20 三菱レイヨン株式会社 Production of reinforcing material for fiber reinforced resin
JPH09235397A (en) * 1996-03-01 1997-09-09 Toray Ind Inc Prepreg and fiber-reinforced plastic

Also Published As

Publication number Publication date
JP7049104B2 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
Ary Subagia et al. A study on flexural properties of carbon-basalt/epoxy hybrid composites
US9028635B2 (en) Fiber reinforced plastic bolt and method for producing the same
EP1685947B1 (en) Method for the manufacture of FRP composites
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
EP1731282A4 (en) Preform, frp, and processes for producing these
JP2011110796A (en) Carbon fiber-reinforced plastic molded body and method of producing the same
JP2007076202A (en) Molding method of frp-made square pipe
JP5336225B2 (en) Multi-axis stitch base material and preform using it
KR101689569B1 (en) Method of forming fiber reinforced plastic composite for forming preform
JP2007203468A (en) Molding method of square pipe made of frp
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
TW201919839A (en) Fiber reinforced plastic and fiber reinforced plastic manufacturing method
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
JP2006103305A (en) Substrate for preform
JP2019104803A (en) Fiber-reinforced plastic, fiber-reinforced plastic structure and method for producing fiber-reinforced plastic
JP2014162858A (en) Prepreg and production method of the same, and fiber reinforced composite material
JPH04339635A (en) Fiber-reinforced synthetic resin complex and its molding method
US20200384724A1 (en) Carbon Fiber Reinforced Plastic Plate and Method for Producing Carbon Fiber Reinforced Plastic Plate
JP2015098173A (en) Method for producing fiber-reinforced resin plate material
Schuster et al. Manufacturing and Testing of Curved Fibrecomposites Using Vacuum Assisted Resin Transfer Moulding (VARTM)
JP2006218782A (en) Molding method of molded product made of frp having foam core
WO2021192464A1 (en) Preform and method for producing same
KR20200064759A (en) Method for preparing fiber reinforced plastic composite material and fiber reinforced plastic composite material using the same
KR102401275B1 (en) Fiber reinforced composite material having a hollow section and methode for manufacturing the same
CN113547801B (en) Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

R150 Certificate of patent or registration of utility model

Ref document number: 7049104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150