JP2019104051A - Pre-prediction method of crack occurrence existence when molding press-molding body - Google Patents

Pre-prediction method of crack occurrence existence when molding press-molding body Download PDF

Info

Publication number
JP2019104051A
JP2019104051A JP2017240078A JP2017240078A JP2019104051A JP 2019104051 A JP2019104051 A JP 2019104051A JP 2017240078 A JP2017240078 A JP 2017240078A JP 2017240078 A JP2017240078 A JP 2017240078A JP 2019104051 A JP2019104051 A JP 2019104051A
Authority
JP
Japan
Prior art keywords
press
forming
limit line
principal strain
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240078A
Other languages
Japanese (ja)
Other versions
JP7015524B2 (en
Inventor
孝行 上原
Takayuki Uehara
孝行 上原
将志 尾関
Masashi Ozeki
将志 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keylex Corp
Original Assignee
Keylex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keylex Corp filed Critical Keylex Corp
Priority to JP2017240078A priority Critical patent/JP7015524B2/en
Publication of JP2019104051A publication Critical patent/JP2019104051A/en
Application granted granted Critical
Publication of JP7015524B2 publication Critical patent/JP7015524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

To largely contribute to lead-time shortening of development, by predicting the occurrence of a crack by taking into consideration the winding direction of a coil of a pressed plate.SOLUTION: When defining a molding limit line as y=f(x)(y:a maximum main strain, x:a minimum main strain) when a plate thickness of a pressed plate 2 is (t), in a simple flexure test of a testing plate provided by rolling out of a coil of rolling a steel strip of the plate thickness (t), when a difference of a limit strain when flexurally molding so that a flexure ridge line runs along the winding direction of the coil when flexurally molded so that the flexure ridge line crosses with the winding direction of the coil, is α×t (α:a prescribed factor), a computer calculates a correction molding limit line y=f(x)-α×t, and determines whether or not respective finite elements are positioned on the upper side than the correction molding limit line, and predicts that a crack is caused in a position of a press molding body corresponding to the respective finite elements positioned on the upper side than the correction molding limit line.SELECTED DRAWING: Figure 4

Description

本発明は、被プレス板をプレス成形してプレス成形体を得る前段階において、プレス成形シミュレーションによってプレス成形体に割れが発生するか否かを事前に予測する方法に関する。   The present invention relates to a method of predicting in advance whether or not a crack is generated in a press-formed product by press-forming simulation in a stage prior to press-forming a plate to be pressed to obtain a press-formed product.

従来より、自動車や家電製品等に用いるプレス成形体を設計する際において、当該プレス成形体を成形するプレス金型の設計及び製作時における手戻りを出来るだけ少なくするために、コンピュータを用いたプレス成形シミュレーションによってプレス成形体の成形時において割れが発生するか否かを事前に予測する作業が行われる。   2. Description of the Related Art Conventionally, when designing a press-formed body used for automobiles, home electric appliances and the like, a press using a computer in order to minimize rework during design and manufacture of a press die for forming the press-formed body. An operation of predicting in advance whether or not a crack occurs during molding of a press-formed product is performed by molding simulation.

例えば、特許文献1では、被プレス板をモデル化した複数の有限要素からなるモデルデータを作成するとともに、当該モデルデータを用いてプレス成形シミュレーションによる数値解析をコンピュータ上にて行った後、各有限要素の最大主ひずみ及び最小主ひずみが成形限界線図における成形限界線より上側に位置するか否かをコンピュータが判定し、成形限界線より上側に位置する各有限要素に対応するプレス成形体の位置に割れが発生すると事前予測するようになっている。   For example, in patent document 1, while creating model data which consists of a plurality of finite elements which modeled a plate to be pressed, and performing numerical analysis by press forming simulation on a computer using the model data concerned, each finite The computer determines whether the maximum principal strain and the minimum principal strain of the element are located above the forming limit line in the forming limit diagram, and the press-formed body corresponding to each finite element located above the forming limit line It is predicted in advance that a crack will occur in the position.

特開2006−167766号公報JP, 2006-167766, A

ところで、プレス成形体に成形される前の被プレス板は、鋼帯を巻き取ってなるコイルを巻き出すとともに巻出方向に所定の長さで切断したものが一般的に用いられ、プレス金型に対する被プレス板のプレス前のセット状態(コイルの巻取方向)は、材料歩留まりの向上を目的とした材料取りによって自ずと決められる。そして、プレス成形体において、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部を曲げてプレス成形体を成形するよりも、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部を曲げてプレス成形体を成形する方がプレス成形時に割れが発生し易いということが一般的に知られている。   By the way, as a plate to be pressed before being formed into a press-formed body, a plate obtained by winding a coil formed by winding a steel strip and cutting it at a predetermined length in the unwinding direction is generally used, and a press die The set state (winding direction of the coil) of the plate to be pressed before pressing is naturally determined by material removal for the purpose of improving the material yield. Then, in the press-formed body, the bending-shaped portion is formed along the winding direction of the coil rather than forming the press-formed body by bending the bending-formed portion so that the bending ridge intersects the winding direction of the coil. It is generally known that cracking is more likely to occur at the time of press-forming if the press-formed body is formed by bending.

しかし、特許文献1の如き従来のプレス成形シミュレーションによる事前評価では、プレス金型に対する被プレス板のプレス前のセット状態(コイルの巻取方向)を考慮したものにはなっておらず、被プレス板のプレス前の姿勢(コイルの巻取方向)の違いにより割れ発生の評価にばらつきが発生して本来行う必要の無かった設計変更をしなければならなくなるといった開発の手戻りが発生するおそれがあった。したがって、事前予測を行う際に、プレス金型に対する被プレス板のプレス前のセット状態(コイルの巻取方向)の違いをも反映させて開発のリードタイム短縮に大きく貢献させたいという要望があった。   However, in the prior evaluation based on the conventional press forming simulation as in Patent Document 1, the set state (winding direction of the coil) of the plate to be pressed with respect to the press die is not taken into consideration. Due to differences in the attitude of the plate before pressing (coil winding direction), there may be variations in evaluation of crack occurrence, which may lead to development repercussions such as having to make design changes that were not originally necessary. there were. Therefore, there is a demand for making a significant contribution to shortening the lead time of development by reflecting the difference in the set state (winding direction of the coil) of the plate to be pressed with respect to the press die before performing prediction in advance. The

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、被プレス板のコイルの巻取方向を考慮した割れ発生の予測を行うことによって、開発のリードタイム短縮に大きく貢献することにある。   The present invention has been made in view of such a point, and an object of the present invention is to shorten the lead time of development by predicting the occurrence of cracking taking into consideration the winding direction of the coil of the plate to be pressed. It is to contribute greatly.

上記の目的を達成するために、本発明は、成形が難しいとされているプレス金型に対する被プレス板のプレス前のセット状態を考慮して事前評価が行えるよう工夫を凝らしたことを特徴とする。   In order to achieve the above object, the present invention is characterized in that it is devised to be able to perform preliminary evaluation in consideration of the set state of the plate to be pressed with respect to the press die considered to be difficult to press. Do.

具体的には、被プレス板をプレス成形してプレス成形体を得る前段階において、上記被プレス板をモデル化した多数の有限要素からなるモデルデータを作成するとともに当該モデルデータを用いたプレス成形シミュレーションによる数値解析をコンピュータ上にて行って上記モデルデータにおける各有限要素の最大主ひずみε及び最小主ひずみεをそれぞれ導き出し、その後、上記各有限要素の最大主ひずみε及び最小主ひずみεが成形限界線より上側に位置するか否かを上記コンピュータが判定し、上記成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測するプレス成形体の成形時における割れ発生有無の事前予測方法を対象とし、次のような解決手段を講じた。 Specifically, in the pre-stage of obtaining a press-formed body by press-molding a plate to be pressed, model data consisting of a large number of finite elements obtained by modeling the plate to be pressed is created and press-formed using the model data A numerical analysis by simulation is performed on a computer to derive the maximum principal strain ε 1 and the minimum principal strain ε 2 of each finite element in the model data, and then the maximum principal strain ε 1 and the minimum principal strain of each finite element The computer determines whether or not ε 2 is located above the forming limit line, and predicts that a crack will occur at the position of the press-formed body corresponding to each finite element located above the forming limit line The following solutions were taken for the method of predicting the occurrence of cracking during molding of a molded body.

すなわち、本発明では、上記被プレス板の板厚がtのときに、実験によって、或いは、理論的に導き出された成形限界線をy=f(x)(y:最大主ひずみ、x:最小主ひずみ)と定義すると、板厚tの鋼帯を巻き取ってなるコイルから巻き出して得た試験板の単純曲げ試験において、曲げ稜線がコイルの巻取方向と交差するように曲げて成形した場合に対して曲げ稜線がコイルの巻取方向に沿うように曲げて成形した場合の限界ひずみの差がα×t(α:所定の係数)のとき、上記コンピュータが上記成形限界線から修正成形限界線y=f(x)−α×tを算出するとともに上記各有限要素の最大主ひずみε及び最小主ひずみεが上記修正成形限界線より上側に位置するか否かを判定し、上記修正成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測することを特徴とする。 That is, in the present invention, when the thickness of the plate to be pressed is t, the forming limit line experimentally or theoretically derived is y = f (x) (y: maximum principal strain, x: minimum In the simple bending test of a test plate obtained by unrolling a coil of a steel strip having a thickness t and defining it as the main strain), the bending ridge was bent and formed so as to intersect the winding direction of the coil In the case where the difference in critical strain is α × t (α: predetermined coefficient) when the bending ridge line is bent and formed along the winding direction of the coil, the computer corrects and forms from the forming limit line. The limit line y = f (x) −α × t is calculated, and it is determined whether or not the maximum principal strain ε 1 and the minimum principal strain ε 2 of each of the finite elements are located above the modified forming limit line, Each finite element located above the above correction forming limit line It is predicted that a crack will occur at the position of the above-mentioned press-formed product corresponding to.

本発明では、曲げ稜線がコイルの巻取方向に沿うように各曲げ成形部を曲げてプレス成形体を得るといった最も成形の難しい場合を予め想定した成形限界線の下限値をコンピュータが算出してプレス成形体に割れが発生するか否かの事前予測を行うので、もし仮に、割れが発生すると予測された場合には、金型等の設計変更が必ず必要であることが分かる一方、割れが発生しないと予測された場合には、歩留まりの向上等を目的としてコイルの巻取方向に関係なく自由に材料取りの検討を行うことができるようになる。したがって、金型の設計変更や材料取りの検討などに費やす時間が少なくなって手戻りの回数が少なくなるので、開発のリードタイム短縮に大きく貢献することができる。   In the present invention, the computer calculates the lower limit value of the forming limit line which is previously assumed to be the case where forming is most difficult, such as bending each bending forming portion to obtain a press forming body so that the bending ridge line follows the winding direction of the coil. Since it is predicted in advance whether or not a crack will occur in the press-formed product, if it is predicted that a crack will occur, it is understood that a design change such as a mold is always necessary, while the crack is In the case where it is predicted not to occur, the material removal can be freely examined regardless of the winding direction of the coil for the purpose of improving the yield and the like. Therefore, the time spent on the design change of the mold, the examination of material removal, etc. is reduced, and the number of rework is reduced, which can greatly contribute to the shortening of the development lead time.

本発明の実施形態に係る予測方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the prediction method which concerns on embodiment of this invention. 本発明の予測方法を用いて成形時に割れが発生するか否かの事前予測を行うプレス成形体と該プレス成形体に成形する前の被プレス板とをそれぞれ示す概略斜視図である。It is a schematic perspective view which shows the press-formed body which performs prior prediction of whether a crack generate | occur | produces at the time of shaping | molding using the prediction method of this invention, and the to-be-pressed board before shaping | molding to this press-formed body. コンピュータに表示された状態を示す図2における被プレス板のモデルデータとプレス成形シミュレーションによる変形後のモデルデータとをそれぞれ示す概略斜視図である。It is a schematic perspective view which each shows the model data of the to-be-pressed board in FIG. 2 which shows the state displayed on the computer, and the model data after the deformation | transformation by press molding simulation. 図2のプレス成形体の成形時における割れ発生の有無を事前予測する時に使用する成形限界線図であり、図3のプレス成形シミュレーションによる変形後のモデルデータにおける各有限要素の最大主ひずみ及び最小主ひずみをそれぞれプロットした図である。FIG. 3 is a forming limit diagram used to predict in advance whether or not a crack will occur during forming of the press-formed body of FIG. 2, and a maximum principal strain and a minimum of each finite element in model data after deformation by the press-forming simulation of FIG. 3 It is the figure which plotted the principal distortion, respectively. 図4のE2部に位置する点群に対応する各有限要素の位置を示したプレス成形シミュレーションによる変形後のモデルデータの斜視図である。It is a perspective view of the model data after the deformation | transformation by the press molding simulation which showed the position of each finite element corresponding to the point group located in E2 part of FIG. 単純曲げ変形時における限界表面ひずみの一般的なデータである。It is general data of limit surface strain at the time of simple bending deformation.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。   Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The following description of the preferred embodiments is merely exemplary in nature.

図1は、本発明の実施形態に係る予測方法の作業手順を示すフローチャート1である。本発明の予測方法は、図2及び図3に示すように、被プレス板2をプレス成形して目標形状である断面ハット形状のプレス成形体3にする前段階において、上記被プレス板2をモデル化した多数の有限要素A(nは自然数)からなるモデルデータD1を作成するとともに当該モデルデータD1を用いたプレス成形シミュレーションによる数値解析をコンピュータ上にて行うことによって成形時に上記プレス成形体3に割れが発生するか否かを事前に予測するものであり、6つのステップS1〜S6(図1参照)を順に経ることによってプレス成形体3の成形時において割れが発生するか否かが事前に分かるようになっている。 FIG. 1 is a flowchart 1 showing the operation procedure of the prediction method according to the embodiment of the present invention. According to the prediction method of the present invention, as shown in FIG. 2 and FIG. 3, the plate to be pressed 2 is pressed prior to forming the press-formed body 3 having a hat shape in cross section as a target shape. The above press-formed body at the time of forming by creating model data D1 consisting of a large number of modeled finite elements An (n is a natural number) and performing numerical analysis by press forming simulation using the model data D1 on a computer It is predicted in advance whether or not a crack will occur in 3 and whether or not a crack will occur in forming the press-formed body 3 by sequentially passing through six steps S1 to S6 (see FIG. 1) It comes to understand in advance.

プレス成形体3は、図2に示すように、その長手方向に沿って延び、且つ、断面が約90°に折れ曲がった形状をなす曲げ成形部3aを4つ有している。   As shown in FIG. 2, the press-formed body 3 has four bending portions 3 a which extend along the longitudinal direction and have a cross-sectional shape that is bent at about 90 °.

被プレス板2は、板厚tの鋼帯を巻き取ってなるコイルから巻き出して所定の間隔に切り取ることで得られたものである。プレス成形体3の如き各曲げ成形部3aが同方向に延びる断面ハット形状の部品は、各曲げ成形部3aを曲げ稜線がコイルの巻取方向と交差するように折り曲げてプレス成形体3を得るか(コイルの巻取方向が図2のX1方向となるように被プレス板2を金型にセットした状態で成形する)、或いは、各曲げ成形部3aを曲げ稜線がコイルの巻取方向に沿うように折り曲げてプレス成形体3を得る(コイルの巻取方向が図2のX2方向となるように被プレス板2を金型にセットした状態で成形する)のが一般的である。   The plate 2 to be pressed is obtained by unwinding from a coil formed by winding a steel strip having a thickness t and cutting it out at a predetermined interval. Parts having a hat-shaped cross section in which the respective bending portions 3a extend in the same direction, such as the pressing body 3, bend the bending portions 3a so that the ridges intersect the winding direction of the coil to obtain the pressing body 3 (Mold with the plate 2 set in the mold so that the winding direction of the coil is the X1 direction in FIG. 2), or bend the bending section 3a in the winding direction of the coil It is common to obtain a press-formed product 3 by bending along the length (forming in a state where the plate 2 to be pressed is set in a mold so that the winding direction of the coil is the X2 direction in FIG. 2).

すなわち、図2の如きプレス成形体3の場合、当該プレス成形体3の長手方向に対してコイルの巻取方向が交差するように(X1方向となるように)被プレス板2を金型にセットした状態で成形するか、或いは、プレス成形体3の長手方向に対してコイルの巻取方向が沿うように(X2方向となるように)被プレス板2を金型にセットした状態で成形するようになっている。   That is, in the case of the press-formed body 3 as shown in FIG. 2, the plate to be pressed 2 is used as a mold so that the winding direction of the coil intersects with the longitudinal direction of the press-formed body 3 (X1 direction). Either molding is performed in the set state, or molding is performed in a state in which the plate to be pressed 2 is set in a mold so that the coil winding direction is parallel to the longitudinal direction of the press molded body 3 (X2 direction). It is supposed to

プレス成形体3の成形時に割れが発生するか否かの事前予測には、図4に示すような成形限界線図Gを用いる。この成形限界線図Gには、略V形状をなす成形限界線L1と、該成形限界線L1の下側に位置し、且つ、当該成形限界線L1と同形状の修正成形限界線L2とがそれぞれ表示されている。   A forming limit diagram G as shown in FIG. 4 is used in advance to predict whether or not a crack will occur when forming the press-formed product 3. In this forming limit diagram G, there are a forming limit line L1 having a substantially V shape, and a modified forming limit line L2 located below the forming limit line L1 and having the same shape as the forming limit line L1. Each is displayed.

成形限界線L1は、例えば、被プレス板2の板厚がtのときに、実験によって、或いは、理論的に導き出されたものであり、プレス成形時に割れが発生するか否かをコンピュータ上にて予測するときの一般的な閾値として用いられるものである。   The forming limit line L1 is, for example, experimentally or theoretically derived when the thickness of the plate 2 to be pressed is t, and whether or not a crack occurs during press forming is determined on the computer It is used as a general threshold when predicting.

例えば、プレス成形体3を得る場合において、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεをコンピュータ上にてそれぞれ導き出した後、各有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線L1より上側に位置するか否かをコンピュータが判定し、成形限界線L1より上側に位置する各有限要素Aに対応するプレス成形体3の位置に割れが発生すると予測する。 For example, in the case of obtaining the pressed bodies 3, after deriving respectively the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element A n in the model data D1 of FIG. 3 in the computer, each finite element A n press molding the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of whether positioned above the forming limit line L1 is determined computer, corresponding to the finite element a n positioned above the forming limit line L1 It is predicted that a crack will occur at the position of the body 3.

また、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線L1とを比較し、全ての有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線L1より下側に位置する場合、プレス成形体3に割れが発生しないと予測する。 Furthermore, by comparing the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element A n in the model data D1 in FIG. 3 and forming limit line L1, the maximum principal strain epsilon 1 and the minimum of all the finite elements A n If principal strain epsilon 2 is positioned below the forming limit line L1, it predicts that cracking pressed bodies 3 is not generated.

一方、修正成形限界線L2は、本発明の予測方法では、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を得る場合を想定して成形時に割れが発生するか否かを予測するときの閾値として用いられ、成形限界線L1をy=f(x)(y:最大主ひずみ、x:最小主ひずみ)と定義すると、コンピュータによってy=f(x)−α×t(α:所定の係数)と算出されたものである。   On the other hand, in the correction forming limit line L2, according to the prediction method of the present invention, cracks are formed at the time of forming on the assumption that the press forming body 3 is obtained by bending the bending forming portion 3a so that the bending ridge line follows the winding direction of the coil. If it is used as a threshold when predicting whether it will occur or not and the forming limit line L1 is defined as y = f (x) (y: maximum principal strain, x: minimum principal strain), y = f (x ) -Α × t (α: predetermined coefficient).

修正成形限界線L2におけるα×tは、板厚tの鋼帯を巻き取ってなるコイルから巻き出して得た試験板の単純曲げ試験において、曲げ稜線がコイルの巻取方向と交差するように曲げて成形した場合に対して曲げ稜線がコイルの巻取方向に沿うように曲げて成形した場合の限界ひずみの差である。   In the simple bending test of a test plate obtained by unrolling a steel strip having a thickness t by taking out α x t at the modified forming limit line L 2, the bending ridge line intersects the winding direction of the coil This is the difference in critical strain when the bending ridge is bent and formed along the winding direction of the coil as compared to the case of bending and forming.

例えば、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を得る場合において、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεをコンピュータがそれぞれ導き出した後、各有限要素Aの最大主ひずみε及び最小主ひずみεが修正成形限界線L2より上側に位置するか否かを判定し、修正成形限界線L2より上側に位置する各有限要素Aに対応するプレス成形体3の位置に割れが発生すると予測する。 For example, in the case of obtaining the pressed bodies 3 by bending the molding portion 3a bent to the bending ridge line extends along the winding direction of the coil, the maximum principal strain epsilon 1 and a minimum of the finite element A n in the model data D1 of FIG. 3 after the principal strain epsilon 2 computer derived respectively, determines whether the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element a n is positioned above the modified forming limit line L2, corrected forming limit cracking the position of the pressed bodies 3 is predicted to occur for each finite element a n on the upper side than the line L2.

また、図3のモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεと修正成形限界線L2とを比較し、全ての有限要素Aの最大主ひずみε及び最小主ひずみεが修正成形限界線L2より下側に位置する場合、プレス成形体3に割れが発生しないと予測する。 Furthermore, by comparing the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element A n in the model data D1 in FIG. 3 and fixes the forming limit line L2, the maximum principal strain epsilon 1 and all of the finite element A n If the minimum principal strain epsilon 2 is positioned below the modified forming limit line L2, it predicts that cracking pressed bodies 3 is not generated.

このように、本発明の予測方法では、想定される成形限界線の下限値をコンピュータ上にて算出することによって、プレス成形体3を成形する際、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部3aを曲げてプレス成形体3を成形する場合だけでなく、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を得る場合をも考慮した評価が行えるようになっている。   As described above, in the prediction method of the present invention, the bending ridge line intersects the winding direction of the coil when the press-formed body 3 is formed by calculating the lower limit value of the assumed forming limit line on the computer. Thus, not only in the case where the press-formed body 3 is formed by bending the bend-formed portion 3a, but also in the case where the press-formed body 3 is obtained by bending the bend-formed portion 3a so that the bending ridge line follows the winding direction of the coil. Can be evaluated.

尚、修正成形限界線L2は、以下のように導き出した。   The corrected forming limit line L2 was derived as follows.

単純曲げ試験において、所定の試験板(980MPa級)を単純曲げした際の曲げ半径をR、板厚をtとすると、R/tと外側表面のひずみ量との関係が図6の曲線C1のようになることが一般的に知られている。そして、単純曲げ試験の際、曲げ稜線がコイルの巻取方向と交差するように曲げる場合に対し、曲げ稜線がコイルの巻取方向に沿うように曲げる場合には、曲線C1がR/tの軸方向に約−1だけずれて曲線C2の値になることも知られている。   In a simple bending test, assuming that a bending radius when a predetermined test plate (980 MPa class) is simple bent is R and a plate thickness is t, the relationship between R / t and the amount of strain of the outer surface is curve C1 of FIG. It is generally known to be. Then, in the simple bending test, the curve C1 is R / t when the bending ridge line is bent along the winding direction of the coil while the bending ridge line is bent so as to cross the coil winding direction. It is also known that the value of the curve C2 deviates by about -1 in the axial direction.

板厚が1mmの試験板を用いた単純曲げ試験を行った際、曲げ半径R=3のときのひずみ量と曲げ半径R=4のときのひずみ量との差が0.011であった。つまり、曲げ半径Rの差が1の時、ひずみ量の差が0.011になることが分かった。したがって、成形限界線図Gで見たときに、最小主ひずみεが0のときの限界ひずみの値が−0.011×tだけ下方になるように成形限界線L1の位置をシフトさせて下限値にすれば最も厳しい割れ発生の有無の評価が可能になると考え、プレス成形体3の割れ発生有無の評価に成形限界線L1:y=f(x)を用いる場合、まず初めに、修正成形限界線L2:y=f(x)−0.011×tを用いて割れ発生の有無の評価を行うことにした。尚、ひずみ量0.011は、被プレス板2の材質によって変化する値である。 When the simple bending test using a test plate with a plate thickness of 1 mm was performed, the difference between the strain amount when the bending radius R = 3 and the strain amount when the bending radius R = 4 was 0.011. That is, it was found that when the difference in bending radius R is 1, the difference in strain amount is 0.011. Accordingly, when viewed in forming limit diagram G, it shifts the position of the shaping limit line L1 so that the minimum principal strain epsilon 2 is a limit strain value at 0 becomes downward by -0.011 × t It is considered that if the lower limit value is used, it is possible to evaluate the presence or absence of the most severe occurrence of cracking, and when using the forming limit line L1: y = f (x) for the assessment of the presence or absence of cracking of the press-formed product 3, the correction is made first of all Using the forming limit line L2: y = f (x)-0.011 x t, it was decided to evaluate the presence or absence of the occurrence of cracking. The strain amount 0.011 is a value that changes depending on the material of the plate 2 to be pressed.

次に、本発明の方法を用いて割れ発生の有無を評価した結果について詳述する。   Next, the result of having evaluated the presence or absence of the crack generation using the method of this invention is explained in full detail.

まず、図2及び図3に示すように、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部3aを曲げてプレス成形体3を得る際には割れが発生しないが、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げて成形する際には割れが発生するプレス成形体3のモデルデータD1を用意した。尚、図2のE1部が割れ発生部位である。   First, as shown in FIG. 2 and FIG. 3, when obtaining the press-formed product 3 by bending the bending portion 3a so that the bending ridge intersects the winding direction of the coil, no bending occurs. The model data D1 of the press-formed product 3 in which a crack is generated when bending and forming the bend-formed portion 3a along the winding direction of the coil is prepared. In addition, E1 part of FIG. 2 is a crack generation site.

次に、モデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεをコンピュータ上にてプレス成形シミュレーションによる数値解析によって求め、成形限界線図Gにそれぞれプロットした。すると、図4に示すように、成形限界線L1より上側にはプロットが無かったが、成形限界線L1と修正成形限界線L2との間の領域E2には、多数のプロットが抽出された。 Next, determined by numerical analysis by press-forming simulation of maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element A n in the model data D1 in a computer, were plotted respectively forming limit diagram G. Then, as shown in FIG. 4, although there was no plot above the forming limit line L1, a large number of plots were extracted in the region E2 between the forming limit line L1 and the corrected forming limit line L2.

領域E2に位置する多数のプロットに対応する各有限要素Aを成形後のモデルデータD1に表示すると(E3部)、図5に示すように、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げてプレス成形体3を実際に得た際の割れの発生部位(E1部)と一致していた。 When displaying each finite element A n corresponding to the number of plots located in the region E2 in the model data D1 after molding (E3 parts), as shown in FIG. 5, as the bending ridge line extends along the winding direction of the coil It corresponded with the generation | occurrence | production site | part (E1 part) of the crack at the time of bending the bending shaping | molding part 3a and obtaining the press-forming body 3 actually.

つまり、図4及び図5に示すように、プレス成形体3の成形時において、曲げ稜線がコイルの巻取方向に沿うように曲げ成形部3aを曲げる場合、割れが発生すると予測される限界ひずみは、成形限界線図Gにおいて、成形限界線L1と修正成形限界線L2との間の領域に集中していることが分かった。   That is, as shown in FIG. 4 and FIG. 5, when forming the press-formed body 3, when the bending forming portion 3a is bent so that the bending ridge line follows the winding direction of the coil, the limit strain which is predicted to be cracked In the forming limit diagram G, it was found that the region is concentrated in the region between the forming limit line L1 and the corrected forming limit line L2.

次に、本発明の予測方法を用いたプレス成形体3の成形時における割れ発生有無の事前予測の手順について詳述する。   Next, the procedure of the prior prediction of the occurrence of cracking at the time of molding of the press-formed product 3 using the prediction method of the present invention will be described in detail.

まず、図1に示すように、ステップS1において、コンピュータ上にて被プレス板2をモデル化した複数の有限要素AからなるモデルデータD1を作成する。 First, as shown in FIG. 1, in step S1, to create a model data D1 composed of a plurality of finite elements A n a modeled object pressing plate 2 in a computer.

次に、ステップS2において、被プレス板2の板厚がtのときにおける成形限界線図Gを得る(図4参照)。   Next, in step S2, a forming limit diagram G is obtained when the thickness of the plate 2 to be pressed is t (see FIG. 4).

次いで、ステップS3において、モデルデータD1を用いてプレス成形シミュレーションをコンピュータ上にて実施する。そして、プレス成形シミュレーションによる数値解析によって目標形状になったモデルデータD1における各有限要素Aの最大主ひずみε及び最小主ひずみεを得る。 Next, in step S3, press forming simulation is performed on a computer using the model data D1. Then, obtain the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element A n in the model data D1 reaches the target shape by numerical analysis by press-forming simulation.

しかる後、ステップS4において、各有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線図Gの修正成形限界線L2より上側に位置するか否かをコンピュータが判定する。 Thereafter, in step S4, whether or not the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element A n is positioned above the modified forming limit line L2 of the forming limit diagram G computer determines.

このステップS4の判定がYESのとき、すなわち、修正成形限界線L2の上側に位置する有限要素Aがある場合には、ステップS5に進み、各有限要素Aの最大主ひずみε及び最小主ひずみεが成形限界線図Gの成形限界線L1より上側に位置するか否かを判定する。 When the judgment at step S4 is YES, the words, if there is a finite element A n on the upper side of the modified molding limit line L2, the process proceeds to step S5, the maximum principal strain epsilon 1 and a minimum of the finite elements A n principal strain epsilon 2 determines whether positioned above the forming limit line L1 of forming limit diagram G.

一方、ステップS4の判定がNOのとき、すなわち、修正成形限界線L2の上側に位置する有限要素Aがない場合には、コイルの巻取方向に関係なく成形時に割れが発生しないと判断して、プレス成形体3の成形時における割れ発生有無の事前予測を終了する。 On the other hand, when the determination in step S4 is NO, i.e., when there is no finite element A n on the upper side of the modified molding limit line L2, it is judged that the crack at the time of molding regardless winding direction of the coil does not occur Thus, the pre-prediction of the occurrence of cracking at the time of molding of the press-formed body 3 is ended.

そして、ステップS5の判定がYESのとき、すなわち、成形限界線L1の上側に位置する有限要素Aがある場合には、ステップS6に進んでプレス成形体3及び金型の形状を再検討する。 Then, when the determination in step S5 is YES, i.e., if there is a finite element A n on the upper side of the forming limit line L1, to review the shape of the press-molded body 3 and the mold proceeds to step S6 .

一方、ステップS5の判定がNOのとき、すなわち、成形限界線L1の上側に位置する有限要素Aがない場合には、曲げ稜線がコイルの巻取方向と交差するように曲げ成形部3aを曲げてプレス成形体3を得るようにすれば成形時に割れが発生しないと判断して、プレス成形体3の成形時における割れ発生有無の事前予測を終了する。 On the other hand, when the determination in step S5 is NO, i.e., when there is no finite element A n on the upper side of the forming limit line L1, the bend forming portion 3a as the bending ridge line intersects the winding direction of the coil If the press-formed body 3 is obtained by bending, it is determined that no cracking occurs at the time of forming, and the prior prediction of the occurrence of the occurrence of the crack at the time of forming the press-formed body 3 is ended.

以上より、本発明の実施形態によると、曲げ稜線がコイルの巻取方向に沿うように各曲げ成形部3aを曲げてプレス成形体3を得るといった最も成形の難しい場合を予め想定した成形限界線の下限値である修正成形限界線L2をコンピュータが算出してプレス成形体3に割れが発生するか否かの事前予測を行うので、もし仮に、割れが発生すると予測された場合には、金型等の設計変更が必ず必要であることが分かる一方、割れが発生しないと予測された場合には、歩留まりの向上等を目的としてコイルの巻取方向に関係なく自由に材料取りの検討を行うことができるようになる。したがって、金型の設計変更や材料取りの検討などに費やす時間が少なくなって手戻りの回数が少なくなるので、開発のリードタイム短縮に大きく貢献することができる。   From the above, according to the embodiment of the present invention, a forming limit line is assumed in advance where it is difficult to form the press-formed product 3 by bending each bend-formed portion 3a so that the bending ridge line follows the winding direction of the coil. Since the computer calculates the corrected forming limit line L2 which is the lower limit value of and makes a preliminary prediction as to whether or not a crack occurs in the press-formed product 3, if it is predicted that a crack will occur, gold is It turns out that design changes such as molds are always necessary, but when it is predicted that cracking will not occur, material removal is freely examined regardless of the winding direction of the coil for the purpose of improving the yield etc. Will be able to Therefore, the time spent on the design change of the mold, the examination of material removal, etc. is reduced, and the number of rework is reduced, which can greatly contribute to the shortening of the development lead time.

尚、本発明の実施形態では、まず、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの修正成形限界線L2とを比較し、その後、修正成形限界線L2より上側に有限要素Aが位置する場合に各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの成形限界線L1とを比較するようにしているが、これに限らず、例えば、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの成形限界線L1とを比較した後、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの修正成形限界線L2とを比較してもよいし、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの修正成形限界線L2とを比較した後、各有限要素Aの最大主ひずみε及び最小主ひずみεと成形限界線図Gの成形限界線L1とを比較せずに割れ発生有無の事前予測を終了してもよい。 In the embodiment of the present invention, first, by comparing the corrected forming limit line L2 of the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 and forming limit diagrams G of each finite element A n, then corrected Forming Limit and so as to compare the forming limit line L1 of the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 and forming limit diagrams G of each finite element a n when located finite element a n above the line L2 maximum but not limited to, for example, by comparing the forming limit line L1 of the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 and forming limit diagrams G of each finite element a n, for each finite element a n it may be compared with the corrected forming limit line L2 of the principal strain epsilon 1 and the minimum principal strain epsilon 2 and forming limit diagrams G, forming a maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of each finite element a n after comparing the corrected forming limit line L2 limit diagram G, of each finite element a n Maximum may end the principal strain epsilon 1 and the minimum principal strain epsilon 2 and advance prediction of occurrence or non-occurrence cracks without comparing the shaping limit line L1 of the forming limit diagram G.

また、本発明の実施形態では、本発明の事前予測の方法を用いて断面ハット形状のプレス成形体3における割れ発生の有無を予測しているが、その他の形状のプレス成形体における割れ発生の有無も予測可能である。例えば、本発明の実施形態では、プレス成形体3の各曲げ成形部3aの曲げ稜線が全て同方向に延びているが、各曲げ成形部3aの曲げ稜線が全て同方向に延びる形状のプレス成形体でなくても予測可能である。   Further, in the embodiment of the present invention, the presence or absence of the occurrence of a crack in the press-formed product 3 having a hat-shaped cross section is predicted using the method of the prior prediction of the present invention. The presence or absence is also predictable. For example, in the embodiment of the present invention, all the bending ridges of each of the bent portions 3a of the press-formed body 3 extend in the same direction, but all the bending ridges of each of the bent portions 3a extend in the same direction. It is predictable even if it is not a body.

本発明は、被プレス板をプレス成形してプレス成形体を得る前段階において、プレス成形シミュレーションによってプレス成形体に割れが発生するか否かを事前に予測する方法に適している。   The present invention is suitable for a method of predicting in advance whether or not a crack will occur in a press-formed product by press-forming simulation at a stage prior to press-forming a plate to be pressed to obtain a press-formed product.

1 フローチャート
2 被プレス板
3 プレス成形体
G 成形限界線図
L1 成形限界線
L2 修正成形限界線
1 flow chart 2 pressed plate 3 press formed body G forming limit line L1 forming limit line L2 correction forming limit line

Claims (1)

被プレス板をプレス成形してプレス成形体を得る前段階において、上記被プレス板をモデル化した多数の有限要素からなるモデルデータを作成するとともに当該モデルデータを用いたプレス成形シミュレーションによる数値解析をコンピュータ上にて行って上記モデルデータにおける各有限要素の最大主ひずみε及び最小主ひずみεをそれぞれ導き出し、その後、上記各有限要素の最大主ひずみε及び最小主ひずみεが成形限界線より上側に位置するか否かを上記コンピュータが判定し、上記成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測するプレス成形体の成形時における割れ発生有無の事前予測方法であって、
上記被プレス板の板厚がtのときに、実験によって、或いは、理論的に導き出された成形限界線をy=f(x)(y:最大主ひずみ、x:最小主ひずみ)と定義すると、板厚tの鋼帯を巻き取ってなるコイルから巻き出して得た試験板の単純曲げ試験において、曲げ稜線がコイルの巻取方向と交差するように曲げて成形した場合に対して曲げ稜線がコイルの巻取方向に沿うように曲げて成形した場合の限界ひずみの差がα×t(α:所定の係数)のとき、上記コンピュータが上記成形限界線から修正成形限界線y=f(x)−α×tを算出するとともに上記各有限要素の最大主ひずみε及び最小主ひずみεが上記修正成形限界線より上側に位置するか否かを判定し、上記修正成形限界線より上側に位置する各有限要素に対応する上記プレス成形体の位置に割れが発生すると予測することを特徴とするプレス成形体の成形時における割れ発生有無の事前予測方法。
In the pre-stage of press-molding a plate to be pressed to obtain a press-formed body, model data consisting of a large number of finite elements obtained by modeling the plate to be pressed is created and numerical analysis by press-forming simulation using the model data is performed. performed by the computer derives each finite elements of the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 and in the model data, then the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 is forming limit of the above finite element At the time of molding of a press-formed product which the above-mentioned computer judges whether or not it is located above the line, and predicts that a crack will occur at the position of the above-mentioned press-formed product corresponding to each finite element located above the above-mentioned forming limit line. Advance prediction method for the occurrence of cracking in
When the thickness of the above-mentioned pressed plate is t, if the forming limit line experimentally or theoretically derived is defined as y = f (x) (y: maximum principal strain, x: minimum principal strain) In a simple bending test of a test plate obtained by unrolling a coil of steel strip having a thickness of t, the bending ridge line is formed as opposed to the bending ridge line so as to cross the coil winding direction. When the difference in critical strain is α × t (α: predetermined coefficient) when bending and forming along the winding direction of the coil, the computer generates a correction forming limit line y = f (from the forming limit line). x)-α x t is calculated, and it is determined whether or not the maximum principal strain ε 1 and the minimum principal strain ε 2 of each of the finite elements are positioned above the corrected forming limit line, according to the corrected forming limit line The above press corresponding to each finite element located on the upper side It predicts that a crack will occur in the position of a form, The prior prediction method of the crack occurrence existence at the time of shaping | molding of the press-formed body characterized by the above-mentioned.
JP2017240078A 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body Active JP7015524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240078A JP7015524B2 (en) 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240078A JP7015524B2 (en) 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body

Publications (2)

Publication Number Publication Date
JP2019104051A true JP2019104051A (en) 2019-06-27
JP7015524B2 JP7015524B2 (en) 2022-02-03

Family

ID=67061651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240078A Active JP7015524B2 (en) 2017-12-14 2017-12-14 Preliminary prediction method for the presence or absence of cracks during molding of a press-molded body

Country Status (1)

Country Link
JP (1) JP7015524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062822A1 (en) * 2022-09-22 2024-03-28 Jfeスチール株式会社 Press forming fracture determination method, device and program, and method for manufacturing press formed part
JP7464176B1 (en) 2022-09-22 2024-04-09 Jfeスチール株式会社 Method, device and program for determining press-molded cracks, and method for manufacturing press-molded products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141237A (en) * 2010-01-08 2011-07-21 Nippon Steel Corp Method and for system predicting breakage, program and recording medium
US20130231770A1 (en) * 2012-03-01 2013-09-05 Trevor M. Cole System and method for determining press parameter inputs in a draw die process
JP2014026490A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Method for obtaining optimal component from anisotropic metal plate
JP2015205309A (en) * 2014-04-21 2015-11-19 新日鐵住金株式会社 Evaluation method, device and program of press forming characteristic, and computer-readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141237A (en) * 2010-01-08 2011-07-21 Nippon Steel Corp Method and for system predicting breakage, program and recording medium
US20130231770A1 (en) * 2012-03-01 2013-09-05 Trevor M. Cole System and method for determining press parameter inputs in a draw die process
JP2014026490A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Method for obtaining optimal component from anisotropic metal plate
JP2015205309A (en) * 2014-04-21 2015-11-19 新日鐵住金株式会社 Evaluation method, device and program of press forming characteristic, and computer-readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062822A1 (en) * 2022-09-22 2024-03-28 Jfeスチール株式会社 Press forming fracture determination method, device and program, and method for manufacturing press formed part
JP7464176B1 (en) 2022-09-22 2024-04-09 Jfeスチール株式会社 Method, device and program for determining press-molded cracks, and method for manufacturing press-molded products

Also Published As

Publication number Publication date
JP7015524B2 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
KR101893312B1 (en) Model configuration method, forming simulation method, manufacturing method for forming tool, program, computer readable recording medium with program stored therein, and finite element model
JP6558515B2 (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting cracks, and method for designing press dies
JP5630311B2 (en) Method for predicting cracks in press molding and method for manufacturing pressed parts
EP2839896B1 (en) Method for preparing forming limit diagram in press forming, method for predicting crack and method of producing press parts
JP4935713B2 (en) Method for determining whether molding is possible at the shear edge of a pressed product
JP6547920B2 (en) Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
CN102737147B (en) Optimized design method for determining geometric parameters of intermediate construction for forming panel veneer in multiple steps
JP2019104051A (en) Pre-prediction method of crack occurrence existence when molding press-molding body
JP6149843B2 (en) Method and apparatus for analyzing shape correction of press-formed product, and method for correcting shape of press-formed product
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP2019038005A (en) Method for previously estimating occurrence of crack when forming press-formed body
JP2011183417A (en) Method of evaluating stability of spring back
JP5381606B2 (en) Flange crack analysis method
JP4932693B2 (en) How to create a mold model
JP6919690B2 (en) Manufacturing method of pressed parts and design method of lower die
JP7496664B2 (en) Method for determining material dimensions for UO bending
EP3747566A1 (en) Press molding method, rigidity-improved-position specifying method, press-molding system, and press-molded product
JP4524573B2 (en) Press molded product shape prediction method, prediction program, recording medium recording the program, and press molding method
JP2020069534A (en) Manufacturing method of press part, and design method of lower mold
JP2012011458A (en) Crack determination method in press forming simulation, and method of manufacturing press formed component using the same
WO2023068268A1 (en) Method for measuring deformation amount of deformation part of additively fabricated test object and method for determining proper conditions for additive fabrication
JP6187249B2 (en) Steel sheet pile rolling operation design method
CN111344078B (en) Method for press forming sheet material
JP4855279B2 (en) Numerical analysis of pipe making process
JP2022030639A (en) Blank dimension determination method for uo bending molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117