JP2019102298A - Superconductive conductor - Google Patents

Superconductive conductor Download PDF

Info

Publication number
JP2019102298A
JP2019102298A JP2017232731A JP2017232731A JP2019102298A JP 2019102298 A JP2019102298 A JP 2019102298A JP 2017232731 A JP2017232731 A JP 2017232731A JP 2017232731 A JP2017232731 A JP 2017232731A JP 2019102298 A JP2019102298 A JP 2019102298A
Authority
JP
Japan
Prior art keywords
superconducting
tape wire
superconducting tape
conductor
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232731A
Other languages
Japanese (ja)
Other versions
JP6749541B2 (en
Inventor
宮澤 順一
Junichi Miyazawa
順一 宮澤
義朗 寺▲崎▼
Yoshiro Terasaki
義朗 寺▲崎▼
長門 柳
Nagato Yanagi
長門 柳
田村 仁
Hitoshi Tamura
仁 田村
後藤 拓也
Takuya Goto
拓也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Natural Sciences
Original Assignee
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Natural Sciences filed Critical National Institute of Natural Sciences
Priority to JP2017232731A priority Critical patent/JP6749541B2/en
Publication of JP2019102298A publication Critical patent/JP2019102298A/en
Application granted granted Critical
Publication of JP6749541B2 publication Critical patent/JP6749541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide a technology capable of achieving formation with a three-dimensional curvature using a superconductive tape wire.SOLUTION: In a superconductive conductor 30A, a plurality of superconductive tape wire 31 are laminated, and inserted to flexible tubes 32. Outside thereof is covered by an insulation tape 33 such as polyimide. Thereby insulation property between flexible tubes 32 can be secured. The flexible tubes 32 having inner diameter of 5.2 mm and sheet pressure of 0.4 mm is used. However, size can be selected optionally. Thereby, although flexure of each superconductive tape wire itself in an edge direction is limited, twist is generated freely in each superconductive tape wire depending on a direction of the flexure by shifting the superconductive cable wires each other in an edge direction, and as a result, flexibility in the edge direction can be secured in pseudo manner when viewed as a whole laminate superconductive conductor.SELECTED DRAWING: Figure 2

Description

本発明は、超伝導テープ線材を用いた超伝導導体に関する。   The present invention relates to a superconducting conductor using a superconducting tape wire.

一般に77ケルビンという液体窒素温度を超える温度で超伝導性を示す物質を高温超伝導体という。高温超伝導体は、厚さ百マイクロメートル程度の金属製のテープ上に、高温超伝導体からなる層を形成した超伝導テープ線材として供給されるのが通常である。超伝導コイルは、かかる超伝導テープ線材を何重にも巻回するなどして形成される。
超伝導テープ線材に関連する従来技術として、例えば、特許文献1は、超伝導テープ線材を同心円状に巻回した超伝導コイルを開示し、かかる超伝導コイルにおいて、磁場による位置ずれが生じないように超伝導テープ線材を固定する技術を開示している。
特許文献2は、帯状の金属基板上に,超伝導層を形成した後、長手方向に切断することにより超伝導テープ線材の製造方法について開示する。
特許文献3は、超伝導テープ線材が、その面の法線方向に曲がりながら沿うための曲面と、面の幅方向(以下、本明細書において「エッジ方向」ということもある)に部分的に曲げながら沿う捻れ枠部を設けることにより3次元的に湾曲した曲面のコイルを実現する技術を開示している。
A substance that exhibits superconductivity at temperatures above the liquid nitrogen temperature of 77 Kelvin is generally referred to as a high temperature superconductor. The high temperature superconductor is generally supplied as a superconducting tape wire in which a layer made of high temperature superconductor is formed on a metal tape having a thickness of about 100 micrometers. The superconducting coil is formed by winding such a superconducting tape wire in multiple layers, for example.
As a prior art related to a superconducting tape wire, for example, Patent Document 1 discloses a superconducting coil in which a superconducting tape wire is wound concentrically, and in such a superconducting coil, displacement due to a magnetic field does not occur. Discloses a technique for fixing a superconducting tape wire.
Patent Document 2 discloses a method of manufacturing a superconducting tape wire by forming a superconducting layer on a strip-like metal substrate and then cutting it in the longitudinal direction.
In Patent Document 3, a superconducting tape wire is partially curved in a direction normal to the surface and curved in the width direction of the surface (hereinafter sometimes referred to as "edge direction" in the present specification). A technique is disclosed for realizing a three-dimensionally curved curved surface coil by providing a twisting frame along the bending.

特開2017−91679号公報JP, 2017-91679, A 特開2017−10958号公報JP 2017-10958 A 特開2017−98504号公報JP, 2017-98504, A

超伝導テープ線材は、複数を積層して使用することが通常である。しかし、超伝導テープ線材の基板は金属製であるため、面の法線方向(以下、「フラット方向」ということもある)には曲げやすいものの、エッジ方向には非常に曲げ難いという課題があった。特許文献1のように、同心円状に巻回して超伝導コイルを形成する場合には、この課題は問題とはならないが、エッジ方向の曲げも含む3次元的な形状の超伝導コイル等を形成することは非常に困難であった。特許文献3は、捻れ枠部という特別な支持部材を用意することにより、若干の3次元的な湾曲を実現してはいるものの、その柔軟性は十分とは言えず、やはり形成可能な形状には限界があった。超伝導テープ線材は、特許文献3のような枠を用いてエッジ方向に曲げ歪みが生じると、臨界電流が顕著に低下し、クエンチに至る可能性があるという課題もあった。また、捻れ枠部という特別な支持部材を用いる分、構造が複雑になるという問題もあった。
かかる課題は、超伝導テープ線材を利用する限り、高温超伝導以外にも共通の課題であった。本発明は、かかる課題に鑑み、超伝導テープ線材を用いて、3次元的な湾曲を伴う形成を実現可能とする技術を提供することを目的とする。
It is normal to use a plurality of superconducting tape wires in layers. However, since the substrate of the superconducting tape wire is made of metal, it is easy to bend in the direction normal to the surface (hereinafter sometimes referred to as “flat direction”), but has the problem of being extremely difficult to bend in the edge direction. The In the case of forming a superconducting coil by concentrically winding as in Patent Document 1, this problem does not pose a problem, but a three-dimensional superconducting coil or the like including bending in the edge direction is formed. It was very difficult to do. Although patent document 3 has realized some three-dimensional curvature by preparing a special support member called a twist frame, its flexibility is not sufficient, and it can also be formed into a shape that can be formed. There was a limit. In the superconducting tape wire, when bending distortion occurs in the edge direction using a frame as in Patent Document 3, there is also a problem that the critical current is significantly reduced and it may lead to quenching. In addition, there is a problem that the structure becomes complicated by using a special support member called a twist frame.
Such a subject was a common subject besides high temperature superconductivity, as long as a superconducting tape wire was used. An object of the present invention is to provide a technique which can realize formation accompanied with three-dimensional curvature using a superconducting tape wire material in view of such a subject.

本発明は、
超伝導導体であって、
相互に接着することなく積層された複数の超伝導テープ線材と、
テープ幅方向に前記超伝導テープ線材が相互にずれることを許容して、前記超伝導テープ線材を結束する結束部材とを有する超伝導導体として構成することができる。
The present invention
A superconducting conductor,
A plurality of superconducting tape wires stacked without adhering to each other;
It can be configured as a superconducting conductor having a binding member for binding the superconducting tape wire material while allowing the superconducting tape wire materials to shift mutually in the tape width direction.

本発明では、超伝導テープ線材は相互にテープ幅方向、即ちエッジ方向にずれることが可能な状態で結束されている。従って、一本一本の超伝導テープ線材自体はエッジ方向の曲げに限界があるとしても、超伝導テープ線材同士がエッジ方向にずれることによって、曲げの方向に応じて一本一本の超伝導テープ線材に、自在に捻れが生じることができ、この結果、積層した超伝導導体全体としてみたときは、疑似的にエッジ方向の柔軟性を確保することができる。
結束部材としては、種々の部材を適用可能であり、例えば、ワイヤ、ラバーバンド、チューブ、スプリングなどとすることができる。チューブのように連続体を結束部材として使用する場合には、結束部材自体の柔軟性が確保されていることが好ましい。結束部材の材質は、例えば、樹脂、金属などとすることができる。
超伝導テープ線材の積層数は、任意に設定可能である。積層数が多ければ、大電流値を達成することも可能となる。また、積層数が多ければ、エッジ方向の疑似的な柔軟性をより確保しやすくなる利点がある。
In the present invention, the superconducting tape wires are bound to each other in such a manner that they can be mutually offset in the tape width direction, that is, in the edge direction. Therefore, even if there is a limit in bending in the edge direction, even if each superconducting tape wire itself has a limit in bending in the edge direction, when the superconducting tape wires are shifted in the edge direction, one superconducting wire is selected according to the direction of bending. Twisting can occur freely in the tape wire, and as a result, when viewed as a whole of the laminated superconducting conductor, flexibility in the edge direction can be secured in a pseudo manner.
Various members can be applied as the binding member, and for example, a wire, a rubber band, a tube, a spring, etc. can be used. When using a continuous body as a binding member like a tube, it is preferable that the flexibility of the binding member itself is ensured. The material of the binding member can be, for example, resin, metal or the like.
The number of layers of the superconducting tape wire can be set arbitrarily. If the number of stacked layers is large, it is also possible to achieve a large current value. In addition, if the number of layers is large, there is an advantage that it is easier to secure pseudo flexibility in the edge direction.

本発明の超伝導導体において、
前記結束部材は、曲げを柔軟に行うことができるフレキシブルチューブであり、
前記複数の超伝導テープ線材は、積層された状態で、前記フレキシブルチューブ内に挿入されることにより前記結束が行われているものとしてもよい。
フレキシブルチューブとは、管の軸方向の伸縮、横方向の変位、曲げ変位などに適応してたわみが可能な管を言う。樹脂製、金属製などがある。
このようなフレキシブルチューブを利用すれば、柔軟性を確保しながら、超伝導テープ線材を挿入するのみで容易に結束することができる利点がある。
In the superconducting conductor of the present invention,
The binding member is a flexible tube that can perform bending flexibly.
The plurality of superconducting tape wires may be bonded by being inserted into the flexible tube in a stacked state.
A flexible tube is a tube that can be flexed by adapting to axial expansion and contraction, lateral displacement, bending displacement, etc. of the tube. There are resin and metal.
If such a flexible tube is used, it has an advantage which can be easily bound only by inserting a superconducting tape wire material, ensuring flexibility.

このようにフレキシブルチューブを用いる場合、
前記フレキシブルチューブは、金属製であり、
さらに、前記フレキシブルチューブの外部を覆う絶縁性のテープを有するものとしてもよい。
超伝導導体には、磁力など様々な力が作用するが、金属製のフレキシブルチューブを利用することにより、これらの荷重に耐えられる強度を備えることができる。また、絶縁性のテープで外部を覆うことにより、超伝導導体同士の絶縁も確保することができる。
When using a flexible tube like this
The flexible tube is made of metal,
Furthermore, it is good also as what has the insulating tape which covers the exterior of the said flexible tube.
Although various forces such as magnetic force act on the superconducting conductor, it is possible to provide the strength capable of withstanding these loads by using a metal flexible tube. In addition, by covering the outside with an insulating tape, insulation between the superconducting conductors can be secured.

フレキシブルチューブを用いるか否かに関わらず、
本発明においては、
前記超伝導テープ線材の幅方向への曲げも含む最終的な形状に成形された前記超伝導テープ線材および結束部材を、該形状に保持するよう、前記超伝導テープ線材をモールドするモールド部材を備えるものとしてもよい。
上記態様は、超伝導導体の柔軟性を活かして巻回した後、全体をモールドすることにより、形状を保持するものである。超伝導導体を巻回したコイル等を磁場中で使用すると、超伝導テープ線材に電磁力など様々な荷重が作用し、超伝導テープ線材の変形を招くおそれがあるが、上記態様によれば、モールド部材によってモールドすることにより、こうした弊害を緩和することができる。
With or without flexible tubes,
In the present invention,
The superconducting tape wire and the binding member molded into the final shape including the bending in the width direction of the superconducting tape wire are provided with a mold member for molding the superconducting tape wire so as to hold the shape. It is good also as things.
In the above aspect, the shape is maintained by molding the whole after winding using the flexibility of the superconducting conductor. If a coil or the like wound with a superconducting conductor is used in a magnetic field, various loads such as electromagnetic force may act on the superconducting tape wire, which may lead to deformation of the superconducting tape wire. Such adverse effects can be alleviated by molding with a mold member.

このようにモールドする場合、モールド部材の材質は、樹脂を利用するものとしてもよいが、
前記モールド部材は、金属製であるものとしてもよい。
金属を用いることにより、強固なモールドを実現することができる。かかる場合の金属は、超伝導層の損傷を抑制するため、200℃または150℃以下の融点を有する低融点金属とすることが好ましい。例えば、融点約80℃のUアロイ78や、ハンダなどを用いることができる。金属でモールドする場合、超伝導テープ線材同士の空隙を金属で埋めることになる。このため、超伝導テープ線材の冷却効率を向上させることができる利点もある。超伝導テープ線材が、荷重や熱などによって局所的に超伝導性を失う状態をクエンチと呼ぶが、クエンチが生じると、超伝導テープ線材の温度上昇が進み、超伝導性が広い範囲で失われるおそれがある。本態様のように、超伝導テープ線材の隙間も金属でモールドしておけば、仮にクエンチが生じたとしても、モールドによって熱伝導を高めることができ、冷却効率を向上させることができるため、クエンチの広がりを抑制することが可能となる。
さらに、モールドする金属を、超伝導テープ線材の基板と同等の熱膨張係数の素材としてもよい。こうすることにより、超伝導テープ線材に熱膨張等の変形が生じたとき、モールド部材も同程度の変形を生じることになり、超伝導テープ線材とモールド部材間の剪断応力の発生を抑制することができる。この結果、超伝導テープ線材の表面の超伝導層が剪断応力によって剥離することを抑制することが可能となる。
When molding in this manner, the material of the mold member may be resin, but
The mold member may be made of metal.
By using metal, a strong mold can be realized. In this case, the metal is preferably a low melting point metal having a melting point of 200 ° C. or 150 ° C. or less in order to suppress damage to the superconducting layer. For example, U alloy 78 having a melting point of about 80 ° C., solder or the like can be used. When molding with metal, the space between the superconducting tape wires is filled with the metal. Therefore, there is also an advantage that the cooling efficiency of the superconducting tape wire can be improved. The state where superconducting tape wire loses superconductivity locally due to load or heat is called quenching, but if quenching occurs, the temperature rise of the superconducting tape will progress and the superconductivity will be lost in a wide range There is a fear. As in this embodiment, if the gaps between the superconducting tape wires are also molded with metal, even if quenching occurs, the heat conduction can be enhanced by the mold, and the cooling efficiency can be improved. It is possible to suppress the spread of
Furthermore, the metal to be molded may be a material having a thermal expansion coefficient equivalent to that of the substrate of the superconducting tape wire. By doing this, when deformation such as thermal expansion occurs in the superconducting tape wire, the mold member also undergoes the same degree of deformation, thereby suppressing the generation of shear stress between the superconducting tape wire and the mold member. Can. As a result, it is possible to suppress peeling of the superconducting layer on the surface of the superconducting tape wire due to shear stress.

以上で説明した種々の特徴は、必ずしも全てを備えている必要はなく、本発明は、適宜、その一部を省略したり組み合わせたりして構成することもできる。また、本発明は、超伝導導体としての構成の他、超伝導導体の成形方法として構成することもできる。
例えば、
超伝導導体の成形方法であって、
(a) 複数の超伝導テープ線材を相互に接着することなく積層する工程と、
(b) テープ幅方向に前記超伝導テープ線材が相互にずれることを許容して、前記超伝導テープ線材を結束部材により結束する工程と、
を有する超伝導導体の成形方法なる構成である。
The various features described above do not necessarily have to be all included, and the present invention can be configured by omitting or combining some of them as appropriate. In addition to the configuration as a superconducting conductor, the present invention can also be configured as a method of forming a superconducting conductor.
For example,
A method of forming a superconducting conductor,
(A) laminating the plurality of superconducting tape wires without adhering them to one another;
(B) allowing the superconducting tape wires to shift relative to each other in the tape width direction, and bonding the superconducting tape wires with a binding member;
And a method of forming a superconducting conductor.

上述の成形方法においては、
さらに、
(c) 前記超伝導テープ線材および結束部材を巻回して、前記超伝導テープ線材の幅方向への曲げも含む最終的な形状を成形する工程と、
(d) 前記成形された形状を保持するよう、前記超伝導テープ線材をモールド部材によりモールドする工程とを有するものとしてもよい。
In the above-mentioned molding method,
further,
(C) winding the superconducting tape wire and the binding member to form a final shape including bending in the width direction of the superconducting tape wire;
(D) The superconducting tape wire may be molded with a mold member so as to maintain the molded shape.

成形方法においても、先に超伝導導体で説明した種々の特徴を適用することは可能である。   Also in the forming method, it is possible to apply the various features described above for the superconducting conductor.

実施例としての超伝導導体の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the superconducting conductor as an Example. 超伝導導体の柔軟性を示す説明図である。It is explanatory drawing which shows the softness | flexibility of a superconducting conductor. 超伝導導体のヘリカルコイルへの適用例を示す説明図である。It is explanatory drawing which shows the application example to the helical coil of a superconducting conductor. 高温超伝導導体の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a high temperature superconducting conductor.

以下、本発明の実施例として、高温超伝導テープ線材を利用した場合の超伝導導体について説明する。もっとも本発明は、必ずしも高温超伝導に限らず、利用可能である。   Hereinafter, as an embodiment of the present invention, a superconducting conductor in the case of using a high temperature superconducting tape wire will be described. However, the present invention is not necessarily limited to high temperature superconductivity, and can be used.

図1は、実施例としての超伝導導体の全体構成を示す説明図である。
図1(a)の超伝導導体10は、複数の超伝導テープ線材11を積層し、金属製のワイヤ12で結束して構成されている。超伝導テープ線材11は、種々のサイズを利用可能であるが、本実施例では、幅4mm、厚さ0.2mmのテープ線材を用いた。
本実施例では、ワイヤ12は螺旋状に巻き付けてあるが、リング状の複数のワイヤ12を用いて結束してもよい。ワイヤ12の間隔Wは、任意に決めることができる。間隔Wを広くとれば、積層した超伝導テープ線材11の変形の自由度が増し、超伝導導体10全体の柔軟性を高めることができる。一方、間隔Wが広い場合には、超伝導テープ線材11がばらばらに近い状態となるため、巻回の作業性が低下するおそれもある。間隔Wは、これらの要素を考慮して、定めればよい。
積層数も任意に決定可能である。積層数が増せば、大電流値が達成可能となる。本実施例では、16枚積層するものとした。
FIG. 1 is an explanatory view showing the entire configuration of a superconducting conductor as an embodiment.
The superconducting conductor 10 of FIG. 1A is configured by laminating a plurality of superconducting tape wires 11 and bundling them with a metal wire 12. Although various sizes can be used for the superconducting tape wire 11, in the present embodiment, a tape wire having a width of 4 mm and a thickness of 0.2 mm was used.
In the present embodiment, the wire 12 is helically wound, but may be bound using a plurality of ring-shaped wires 12. The distance W of the wires 12 can be arbitrarily determined. If the distance W is increased, the degree of freedom of deformation of the laminated superconducting tape wire 11 is increased, and the flexibility of the entire superconducting conductor 10 can be enhanced. On the other hand, in the case where the distance W is wide, the superconducting tape wire 11 is in a nearly disuniform state, and there is also a possibility that the workability of winding may be reduced. The interval W may be determined in consideration of these factors.
The number of stacks can also be determined arbitrarily. As the number of stacked layers increases, large current values can be achieved. In the present embodiment, 16 sheets are stacked.

図1(b)の超伝導導体20は、複数の超伝導テープ線材21を積層し、金属製のスプリング22に挿入して構成されている。超伝導テープ線材21は、図1(a)の超伝導テープ線材11と同じものである。積層数も16枚とした。
スプリング22の寸法は任意に選択可能である。内径がさらに大きいものを利用すれば、超伝導テープ線材21の捻れ等の自由度が高まり、超伝導導体20の柔軟性が向上する。一方、内径が大きくなれば、超伝導テープ線材21の結束が弱くなるため、巻回の作業性が悪くなる。スプリング22のサイズは、これらの要素を考慮して定めればよい。
上述の実施例では、結束部材として、金属製のワイヤ12、スプリング22を用いているが、それぞれ樹脂製を用いても良い。
The superconducting conductor 20 shown in FIG. 1B is configured by laminating a plurality of superconducting tape wires 21 and inserting the same into a metal spring 22. The superconducting tape wire 21 is the same as the superconducting tape wire 11 of FIG. 1 (a). The number of stacks was also 16 sheets.
The dimensions of the spring 22 can be arbitrarily selected. If one having a larger inner diameter is used, the degree of freedom in twisting and the like of the superconducting tape wire 21 is enhanced, and the flexibility of the superconducting conductor 20 is improved. On the other hand, if the inner diameter is increased, the bonding of the superconducting tape wire 21 becomes weak, and the workability of winding becomes worse. The size of the spring 22 may be determined in consideration of these factors.
In the above-mentioned embodiment, although the metal wire 12 and the spring 22 are used as the binding member, they may be made of resin.

図2は、超伝導導体の柔軟性を示す説明図である。先に図1(b)で説明したのと同様、超伝導導体30Aは、複数の超伝導テープ線材31を積層し、フレキシブルチューブ32に挿入してある。そして、その外側を、ポリイミド等の絶縁テープ33で覆ってある。こうすることにより、フレキシブルチューブ32間の絶縁性を確保することができる。フレキシブルチューブ32は、内径5.2mm、板圧0.4mmのものを用いた。もっとも、サイズは任意に選択可能である。
図2(b)には、この超伝導導体30Aを曲げた状態を例示した。図示する通り、超伝導導体30Aは、非常に柔軟に屈曲することができる。図の例では、超伝導テープ線材31のフラット方向に曲げるとともにエッジ方向にも若干、曲げた状態を示しているが、エッジ方向にさらに大きく曲げることも可能である。
FIG. 2 is an explanatory view showing the flexibility of the superconducting conductor. As described above with reference to FIG. 1 (b), the superconducting conductor 30 </ b> A has a plurality of superconducting tape wires 31 stacked and inserted into the flexible tube 32. The outside is covered with an insulating tape 33 such as polyimide. By this, the insulation between the flexible tubes 32 can be secured. The flexible tube 32 had an inner diameter of 5.2 mm and a plate pressure of 0.4 mm. However, the size can be arbitrarily selected.
FIG. 2 (b) exemplifies a state in which the superconducting conductor 30A is bent. As shown, the superconducting conductor 30A can be bent very flexibly. In the illustrated example, the superconducting tape wire 31 is bent in the flat direction and slightly bent in the edge direction, but it is also possible to further bend in the edge direction.

図3は、超伝導導体のヘリカルコイルへの適用例を示す説明図である。
図3(a)は、小型のヘリカルコイルの構造体を示している。この構造体には、表面に超伝導導体を二重の螺旋に巻回するための溝40、41が形成されている。この溝に沿って巻回させるためには、超伝導導体をフラット方向のみならずエッジ方向にも曲げる必要が生じるが、本実施例の超伝導導体によれば、こうした3次元的な巻回も実現することが可能となる。
図3(b)は、より大型のヘリカルコイルの構造を示した。大型のヘリカルコイルでは、超伝導導体30Aを複数本用意し、これらをコイル挿入孔50に配列して挿入することにより、ヘリカルコイルを形成する。形成されるヘリカルコイルも、全体としては図3(a)のような形状となるが、サイズが大きいため、複数の超伝導導体30Aを長手方向にも接続することになる。かかる接続は、接合する2本の超伝導導体30Aをそれぞれ構成する超伝導テープ線材の表面の超伝導層同士が接触するように接続し、両者をインジウムやハンダで貼り合わせればよい。
ヘリカルコイルは、本実施例の超伝導導体30Aを適用する一例に過ぎず、本実施例の超伝導導体30Aは、さらに種々の用途に利用可能である。また、必ずしもエッジ方向の曲げを伴う巻回に限られるものではなく、フラット方向の曲げのみで巻回する用途に利用しても差し支えない。
FIG. 3 is an explanatory view showing an application example of a superconducting conductor to a helical coil.
FIG. 3A shows the structure of a small helical coil. In this structure, grooves 40, 41 are formed on the surface for winding the superconducting conductor into a double spiral. In order to wind along the groove, it is necessary to bend the superconducting conductor not only in the flat direction but also in the edge direction. According to the superconducting conductor of the present embodiment, such three-dimensional winding is also possible. It becomes possible to realize.
FIG. 3 (b) shows the structure of a larger helical coil. In the case of a large helical coil, a plurality of superconducting conductors 30A are prepared, and these are arranged and inserted in the coil insertion hole 50 to form a helical coil. The helical coil to be formed also has a shape as shown in FIG. 3A as a whole, but since the size is large, the plurality of superconducting conductors 30A are also connected in the longitudinal direction. Such connection may be made such that the superconducting layers on the surface of the superconducting tape wire material respectively constituting the two superconducting conductors 30A to be joined are brought into contact with each other, and both may be bonded with indium or solder.
The helical coil is merely an example to which the superconducting conductor 30A of this embodiment is applied, and the superconducting conductor 30A of this embodiment can be used for various applications. Further, the winding is not necessarily limited to winding with bending in the edge direction, and may be used in applications in which winding is performed only by bending in the flat direction.

図4は、高温超伝導導体の製造工程を示すフローチャートである。
この工程では、まず高温超伝導導体テープ線材を積層する(ステップS10)。そして、この積層体を、フレキシブルチューブに挿入する(ステップS11)。その後、フレキシブルチューブの外側にポリイミドテープを巻く(ステップS12)。これらの工程により、図2(a)に示した状態の超伝導導体20Aを形成することができる。
FIG. 4 is a flowchart showing the manufacturing process of the high temperature superconducting conductor.
In this step, first, a high temperature superconducting conductor tape wire is laminated (step S10). And this laminated body is inserted in a flexible tube (step S11). Thereafter, a polyimide tape is wound on the outside of the flexible tube (step S12). By these steps, the superconducting conductor 20A in the state shown in FIG. 2A can be formed.

次に、この超伝導導体30Aでコイルを巻線する(ステップS13)。この工程では、超伝導導体30Aをフラット方向だけでなくエッジ方向にも曲げて巻回することが可能である。   Next, a coil is wound by the superconducting conductor 30A (step S13). In this step, the superconducting conductor 30A can be bent and wound not only in the flat direction but also in the edge direction.

巻回が完了すると、巻線部分を密閉して、低融点金属で真空含浸を行う(ステップS14)。低融点金属としては、融点が150℃程度のハンダまたは融点が80℃程度のUアロイ78などを用いることができる。低融点金属は、ステップS14の工程を行う際には溶融しているが、77ケルビン程度の温度で超伝導コイルとして使用する際には、凝固し、超伝導テープ線材を強固に金属体で強固にモールドすることになる。   When the winding is completed, the winding portion is sealed and vacuum impregnation is performed with a low melting point metal (step S14). As the low melting point metal, a solder having a melting point of about 150 ° C. or a U-alloy 78 having a melting point of about 80 ° C. can be used. The low melting point metal is melted when performing the process of step S14, but when it is used as a superconducting coil at a temperature of about 77 Kelvin, it solidifies and the superconducting tape wire is firmly made of metal and solid. Will be molded to

このように金属でモールドする利点は次の通りである。
超伝導コイルを強磁場の中で利用すると、超伝導導体には電磁力が作用する。金属でモールドしていない場合には、それぞれの超伝導テープ線材が電磁力の作用によって移動または変形することになり、その状態によっては、局所的に臨界電流が顕著に低下するクエンチが生じるおそれもある。上述の実施例のように、金属でモールドすれば、こうした減少を回避でき、超伝導コイルを安定して動作させることが可能となる。
また、金属でモールドすることにより、機械的な強度を実現することもできる。
さらに金属でモールドすることにより、冷却効率を向上させることができる利点もある。金属でモールドすれば、超伝導テープ線材の空隙を金属で埋めることができるため、空隙をそのまま残しておく場合に比較して、超伝導導体の熱伝導率を高めることが可能となるのである。この結果、超伝導テープ線材に局所的なクエンチが発生した場合であっても、速やかに冷却することが可能となり、クエンチの拡散を抑制することができる。
さらに、金属でモールドした場合、例えば、クエンチが発生し多量の熱が発生したとしても、その熱は、金属の溶融に利用されることになり、クエンチの拡散を抑制することができる利点がある。
冷却効率を向上させるため、超伝導導体の巻き線の際に、冷却用の配管を沿わせるようにしてもよい。このような構造とすれば、冷却効率がより向上するだけでなく、冷却用の配管が、超伝導導体を支持する効果を奏し、全体の強度を向上させることも可能となる。
The advantages of molding with metal in this way are as follows.
When a superconducting coil is used in a strong magnetic field, an electromagnetic force acts on the superconducting conductor. When not molded with metal, each superconducting tape wire will move or deform due to the action of electromagnetic force, and depending on the state, there is also a possibility that a quench may occur in which the critical current is significantly reduced locally. is there. By molding with metal as in the above-described embodiment, such reduction can be avoided, and the superconducting coil can be operated stably.
Moreover, mechanical strength can also be realized by molding with metal.
Furthermore, there is an advantage that the cooling efficiency can be improved by molding with metal. By molding with metal, since the voids of the superconducting tape wire can be filled with the metal, it is possible to increase the thermal conductivity of the superconducting conductor as compared with the case where the voids are left as it is. As a result, even if local quenching occurs in the superconducting tape wire, it is possible to rapidly cool, and the diffusion of the quench can be suppressed.
Furthermore, in the case of molding with metal, for example, even if a quench occurs and a large amount of heat is generated, the heat is used to melt the metal, which is advantageous in that the diffusion of the quench can be suppressed. .
In order to improve the cooling efficiency, cooling pipes may be provided along the winding of the superconducting conductor. With such a structure, not only the cooling efficiency is further improved, but also the cooling pipe has an effect of supporting the superconducting conductor, and it is possible to improve the overall strength.

巻き線した後のモールドは、金属に代えて樹脂を用いるようにしてもよい。樹脂でモールドする際にも、熱伝導率を高めるため、樹脂内に金属粉を混ぜるようにしてもよい。   The mold after winding may be made of resin instead of metal. Also when molding with a resin, metal powder may be mixed in the resin in order to increase the thermal conductivity.

本発明は、超伝導テープ線材を用いて、3次元的な湾曲を伴う形成を実現可能とする超伝導導体を実現するために利用することができる。   The present invention can be used to realize a superconducting conductor that can realize formation with three-dimensional bending using a superconducting tape wire.

10 :超伝導導体
11 :超伝導テープ線材
12 :ワイヤ
20 :超伝導導体
20A :超伝導導体
21 :超伝導テープ線材
22 :スプリング
30A :超伝導導体
31 :超伝導テープ線材
32 :フレキシブルチューブ
33 :絶縁テープ
40 :溝
41 :溝
50 :コイル挿入孔

10: Superconducting conductor 11: Superconducting tape wire 12: Wire 20: Superconducting conductor 20A: Superconducting conductor 21: Superconducting tape wire 22: Spring 30A: Superconducting conductor 31: Superconducting tape wire 32: Flexible tube 33: Insulation tape 40: Groove 41: Groove 50: Coil insertion hole

Claims (7)

超伝導導体であって、
相互に接着することなく積層された複数の超伝導テープ線材と、
テープ幅方向に前記超伝導テープ線材が相互にずれることを許容して、前記超伝導テープ線材を結束する結束部材とを有する超伝導導体。
A superconducting conductor,
A plurality of superconducting tape wires stacked without adhering to each other;
And a bundling member for bundling the superconducting tape wires while allowing the superconducting tape wires to shift relative to each other in the tape width direction.
請求項1記載の超伝導導体であって、
前記結束部材は、曲げを柔軟に行うことができるフレキシブルチューブであり、
前記複数の超伝導テープ線材は、積層された状態で、前記フレキシブルチューブ内に挿入されることにより前記結束が行われている超伝導導体。
The superconducting conductor according to claim 1, wherein
The binding member is a flexible tube that can perform bending flexibly.
The superconducting conductor in which the binding is performed by inserting the plurality of superconducting tape wires in the flexible tube in a stacked state.
請求項2記載の超伝導導体であって、
前記フレキシブルチューブは、金属製であり、
さらに、前記フレキシブルチューブの外部を覆う絶縁性のテープを有する超伝導導体。
The superconducting conductor according to claim 2, wherein
The flexible tube is made of metal,
Furthermore, a superconducting conductor having an insulating tape covering the outside of the flexible tube.
請求項1〜3いずれか記載の超伝導導体であって、
前記超伝導テープ線材の幅方向への曲げも含む最終的な形状に成形された前記超伝導テープ線材および結束部材を、該形状に保持するよう、前記超伝導テープ線材をモールドするモールド部材を備える超伝導導体。
The superconducting conductor according to any one of claims 1 to 3,
The superconducting tape wire and the binding member molded into the final shape including the bending in the width direction of the superconducting tape wire are provided with a mold member for molding the superconducting tape wire so as to hold the shape. Superconducting conductor.
請求項4記載の超伝導導体であって、
前記モールド部材は、金属製である超伝導導体。
The superconducting conductor according to claim 4, wherein
The mold member is a superconducting conductor made of metal.
超伝導導体の成形方法であって、
(a) 複数の超伝導テープ線材を相互に接着することなく積層する工程と、
(b) テープ幅方向に前記超伝導テープ線材が相互にずれることを許容して、前記超伝導テープ線材を結束部材により結束する工程と、
を有する超伝導導体の成形方法。
A method of forming a superconducting conductor,
(A) laminating the plurality of superconducting tape wires without adhering them to one another;
(B) allowing the superconducting tape wires to shift relative to each other in the tape width direction, and bonding the superconducting tape wires with a binding member;
A method of forming a superconducting conductor comprising:
請求項6記載の成形方法であって、
さらに、
(c) 前記超伝導テープ線材および結束部材を巻回して、前記超伝導テープ線材の幅方向への曲げも含む最終的な形状を成形する工程と、
(d) 前記成形された形状を保持するよう、前記超伝導テープ線材をモールド部材によりモールドする工程とを有する超伝導導体の成形方法。
7. The molding method according to claim 6, wherein
further,
(C) winding the superconducting tape wire and the binding member to form a final shape including bending in the width direction of the superconducting tape wire;
And (d) molding the superconducting tape wire with a mold member so as to maintain the molded shape.
JP2017232731A 2017-12-04 2017-12-04 Superconducting conductor Active JP6749541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232731A JP6749541B2 (en) 2017-12-04 2017-12-04 Superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232731A JP6749541B2 (en) 2017-12-04 2017-12-04 Superconducting conductor

Publications (2)

Publication Number Publication Date
JP2019102298A true JP2019102298A (en) 2019-06-24
JP6749541B2 JP6749541B2 (en) 2020-09-02

Family

ID=66974169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232731A Active JP6749541B2 (en) 2017-12-04 2017-12-04 Superconducting conductor

Country Status (1)

Country Link
JP (1) JP6749541B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019989A3 (en) * 2020-06-26 2022-02-24 Massachusetts Institute Of Technology Magnet structures comprising a high temperature superconductor (hts) cable in groove
US20220084725A1 (en) * 2018-09-07 2022-03-17 Tokamak Energy Ltd Flexible hts current leads
US11810712B2 (en) 2018-12-27 2023-11-07 Massachusetts Institute Of Technology Grooved, stacked-plate superconducting magnets and electrically conductive terminal blocks and related construction techniques
US11948704B2 (en) 2019-11-12 2024-04-02 Massachusetts Institute Of Technology Processes, systems and devices for metal filling of high temperature superconductor cables

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220084725A1 (en) * 2018-09-07 2022-03-17 Tokamak Energy Ltd Flexible hts current leads
US11810712B2 (en) 2018-12-27 2023-11-07 Massachusetts Institute Of Technology Grooved, stacked-plate superconducting magnets and electrically conductive terminal blocks and related construction techniques
US11948704B2 (en) 2019-11-12 2024-04-02 Massachusetts Institute Of Technology Processes, systems and devices for metal filling of high temperature superconductor cables
WO2022019989A3 (en) * 2020-06-26 2022-02-24 Massachusetts Institute Of Technology Magnet structures comprising a high temperature superconductor (hts) cable in groove

Also Published As

Publication number Publication date
JP6749541B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6749541B2 (en) Superconducting conductor
JP5738440B2 (en) Superconducting cable and manufacturing method thereof
JP5823116B2 (en) Superconducting coil
JP5259487B2 (en) Superconducting coil
JP5269694B2 (en) Superconducting coil device
JP5512175B2 (en) Reinforced high-temperature superconducting wire and high-temperature superconducting coil wound around it
CN104854664B (en) Superconducting coil device with coil windings and contact
WO2017154228A1 (en) Superconducting wire and method for manufacturing same
JP6505565B2 (en) Connection structure of high temperature superconducting conductor, high temperature superconducting coil and high temperature superconducting coil
JP6778766B2 (en) How to set up a transmission link for electrical energy
US7102083B2 (en) Jointing structure and jointing method for superconducting cable
JP2008244249A (en) High-temperature superconducting coil
JP6040515B2 (en) Superconducting coil manufacturing method
JP5274983B2 (en) Superconducting coil device
JP4380916B2 (en) Superconducting tape
GB2498961A (en) Methods of joining superconducting wires
JP2012038812A (en) Superconducting coil device
JP5426231B2 (en) High temperature superconducting wire and superconducting coil with release material
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
JP2018011078A (en) High temperature superconducting coil and method of manufacturing high temperature superconducting coil
JP2019016685A (en) Connection structure of superconducting tape and electrode, and superconducting coil
JP6355914B2 (en) Superconducting coil and method of manufacturing the superconducting coil
JP2011222346A (en) High-temperature superconductor and high-temperature superconducting coil using the same
JP7438830B2 (en) Bundle-wound high-temperature superconducting coil device
JP2013178960A (en) Connection member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200312

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200415

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6749541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250