JP2019102282A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2019102282A
JP2019102282A JP2017232409A JP2017232409A JP2019102282A JP 2019102282 A JP2019102282 A JP 2019102282A JP 2017232409 A JP2017232409 A JP 2017232409A JP 2017232409 A JP2017232409 A JP 2017232409A JP 2019102282 A JP2019102282 A JP 2019102282A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
separator
lead
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232409A
Other languages
Japanese (ja)
Other versions
JP7152831B2 (en
Inventor
素子 原田
Motoko Harada
素子 原田
康平 島田
Kohei Shimada
康平 島田
隆之 木村
Takayuki Kimura
隆之 木村
博史 春名
Hiroshi Haruna
博史 春名
岩崎 富生
Tomio Iwasaki
富生 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017232409A priority Critical patent/JP7152831B2/en
Publication of JP2019102282A publication Critical patent/JP2019102282A/en
Application granted granted Critical
Publication of JP7152831B2 publication Critical patent/JP7152831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a lead storage battery capable of properly suppressing a penetration short circuit.SOLUTION: A lead storage battery includes: a positive electrode plate 10; a negative electrode plate 9; a separator 11 disposed between the positive electrode plate 10 and the negative electrode plate 9; and a film body 18 disposed between the positive electrode 10 or the negative electrode 9, and the separator 11. The film body 18 includes fibers of a polymer that includes acrylonitrile as a monomer unit.SELECTED DRAWING: Figure 3

Description

本発明は、鉛蓄電池に関する。   The present invention relates to a lead storage battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年の自動車では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するアイドリングストップアンドスタートシステム(以下、「ISS」と称する。)が採用されるようになっている。   Lead-acid batteries are widely used in industrial applications, for example, as batteries for automobiles, backup power supplies, and main power supplies for electric vehicles. In recent automobiles, an idling stop and start system (hereinafter referred to as "ISS") is adopted to stop the engine at the time of power generation control, waiting for a signal, etc. for the purpose of carbon dioxide emission control measures, fuel economy etc. It has become so.

アイドリングストップ中はオルタネータによる発電が行われないため、電動装備への電力は全て鉛蓄電池から供給され、鉛蓄電池では従来よりも深い放電が行われる。また、走行中もオルタネータの発電が制御されるため、充電不足の状態となる。   During idling stop, power generation by the alternator is not performed, so all power to the electric equipment is supplied from the lead storage battery, and in the lead storage battery, discharge deeper than before is performed. In addition, since the power generation of the alternator is controlled even during traveling, the state of charge is insufficient.

鉛蓄電池において深い放電と充電不足とが繰り返されると、徐々に過放電状態となり、硫酸イオン(SO 2−)が大幅に消費されることで電解液の比重が低下する。電解液の比重が低下すると負極板に生成された硫酸鉛(PbSO)の溶解度が大きくなり、セパレータ内の細孔に鉛イオン(Pb2+)が浸透しやすくなる。過放電状態から充電するとセパレータの細孔内でPb2+が析出し、負極板と正極板の間で導電箇所が生じてしまう(この現象を浸透短絡と呼ぶ)ことがある。浸透短絡が発生すると、鉛蓄電池が突然故障するおそれがあるため、鉛蓄電池の信頼性を高めるためには、浸透短絡の抑制が求められる。過放電状態になりやすいISS車においては、浸透短絡を抑制する技術が特に重要となる。 When the deep discharge and the insufficient charge are repeated in the lead storage battery, the battery is gradually overdischarged, and the specific gravity of the electrolytic solution is lowered by the significant consumption of the sulfate ion (SO 4 2− ). When the specific gravity of the electrolyte solution decreases, the solubility of lead sulfate (PbSO 4 ) generated in the negative electrode plate increases, and lead ions (Pb 2+ ) easily permeate into the pores in the separator. When charged from the overdischarged state, Pb 2+ may be precipitated in the pores of the separator, and a conductive part may be generated between the negative electrode plate and the positive electrode plate (this phenomenon is called a penetration short circuit). If an osmotic short circuit occurs, there is a risk that the lead storage battery may suddenly break. Therefore, in order to improve the reliability of the lead storage battery, it is required to suppress the osmotic short circuit. In an ISS vehicle that is likely to be in an overdischarged state, a technique to suppress the osmotic short circuit is particularly important.

このような浸透短絡を抑制する技術として、例えば特許文献1では、第一繊維質層、第二繊維質層、及び2つの繊維質層間に挟まれている微細孔ポリマー層を有し、微細孔ポリマー層の平均孔径が1μm未満であり、第一繊維質層の厚さが少なくとも0.6mmであることを特徴とするセパレータが開示されている。   As a technique for suppressing such an osmotic short circuit, for example, Patent Document 1 has a first fibrous layer, a second fibrous layer, and a microporous polymer layer sandwiched between two fibrous layers, and is microporous A separator is disclosed characterized in that the average pore size of the polymer layer is less than 1 μm and the thickness of the first fibrous layer is at least 0.6 mm.

特表2005−503649号公報Japanese Patent Application Publication No. 2005-503649

しかし、特許文献1に記載されたようなセパレータを用いた鉛蓄電池では、浸透短絡が充分に抑制されているとは必ずしもいえない。そこで、本発明は、浸透短絡を好適に抑制できる鉛蓄電池を提供することを目的とする。   However, in the lead storage battery using the separator as described in Patent Document 1, it can not be said that the permeation short circuit is sufficiently suppressed. Then, an object of this invention is to provide the lead storage battery which can suppress an osmotic short circuit suitably.

本発明者らは、アクリルニトリル系ポリマの繊維を含む膜体を正極又は負極近傍に配置することで、浸透短絡を好適に抑制できることを見出した。本発明者らは、アクリロニトリル系ポリマが、過放電時にセパレータへのPb2+の浸透を低減することにより、浸透短絡の抑制が可能になったと推察している。 The inventors of the present invention have found that penetrative short circuit can be suitably suppressed by arranging a film body containing a fiber of an acrylonitrile-based polymer in the vicinity of a positive electrode or a negative electrode. The present inventors speculate that the acrylonitrile-based polymer can suppress the permeation short circuit by reducing the permeation of Pb 2+ into the separator during the overdischarge.

すなわち、本発明は、一態様において、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、正極板又は負極板とセパレータとの間に配置された膜体と、を備え、膜体は、アクリロニトリルをモノマ単位として有するポリマの繊維を含む、鉛蓄電池である。   That is, in one aspect, the present invention provides a positive electrode plate, a negative electrode plate, a separator disposed between the positive electrode plate and the negative electrode plate, and a membrane disposed between the positive electrode plate or the negative electrode plate and the separator. The membrane body is a lead acid battery including a fiber of a polymer having acrylonitrile as a monomer unit.

一態様において、上記のポリマはコポリマである。   In one aspect, the above-described polymer is a copolymer.

一態様において、膜体は、平均細孔径が20μm以下の細孔を有する。   In one aspect, the membrane has pores with an average pore size of 20 μm or less.

一態様において、繊維に占める繊維径が、5μm未満の繊維の割合が60%以上である。一態様において、繊維に占める繊維径が5μm以上10μm以下の繊維の割合が、10%以上である。   In one aspect, the ratio of fibers having a fiber diameter of less than 5 μm to fibers is 60% or more. In one aspect, the ratio of fibers having a fiber diameter of 5 μm to 10 μm in the fibers is 10% or more.

一態様において、セパレータは袋状のセパレータであり、正極板又は負極板と膜体とがセパレータ内に収容されている。   In one aspect, the separator is a bag-like separator, and the positive electrode plate or the negative electrode plate and the membrane are accommodated in the separator.

一態様において、膜体の厚さは、0.3mm以下である。   In one aspect, the thickness of the membrane is 0.3 mm or less.

本発明によれば、浸透短絡を好適に抑制することができる。   According to the present invention, osmotic short circuit can be suitably suppressed.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the whole structure and internal structure of the lead acid battery which concern on one Embodiment. 一実施形態に係る鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead acid battery which concerns on one Embodiment. 図2におけるIII−III線に沿った矢視断面を示す模式断面図である。It is a schematic cross section which shows the arrow cross section along the III-III line in FIG.

以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。図1に示した鉛蓄電池1は液式鉛蓄電池であるが、鉛蓄電池は、制御弁式鉛蓄電池であってもよい。   FIG. 1 is a perspective view showing an entire configuration and an internal structure of a lead-acid battery according to an embodiment. As shown in FIG. 1, the lead storage battery 1 according to this embodiment includes a battery case 2 whose upper surface is open, and a lid 3 for closing the battery case 2. The battery case 2 and the lid 3 are made of, for example, polypropylene. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid plug 6 for closing a liquid injection port provided in the lid 3. Although the lead storage battery 1 shown in FIG. 1 is a liquid lead storage battery, the lead storage battery may be a control valve type lead storage battery.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。   Inside the battery case 2, an electrode group 7, a negative electrode post 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, diluted sulfuric acid And the electrolyte solution of

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、板状の負極板9と、板状の正極板10と、負極板9と正極板10との間に配置されたセパレータ11とを備えている。電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。   FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a plate-shaped negative electrode plate 9, a plate-shaped positive electrode plate 10, and a separator 11 disposed between the negative electrode plate 9 and the positive electrode plate 10. The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and a positive electrode plate 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via the separators 11. That is, negative electrode plate 9 and positive electrode plate 10 are arranged such that their main surfaces extend in the direction perpendicular to the opening surface of battery case 2.

負極板9は、負極集電体12と、負極集電体12に保持され、金属鉛(Pb)を活物質として含む負極材13とを有している。正極板10は、正極集電体14と、正極集電体14上に保持され、二酸化鉛(PbO)を活物質として含む正極材15とを有している。複数の負極板9における負極集電体12の耳部12a同士は、負極側ストラップ16で集合溶接されている。同様に、複数の正極板10における正極集電体14の耳部14a同士は、正極側ストラップ17で集合溶接されている。そして、負極側ストラップ16及び正極側ストラップ17が、それぞれ負極柱8及び正極柱を介して負極端子4及び正極端子5に接続されている。 The negative electrode plate 9 has a negative electrode current collector 12 and a negative electrode material 13 held by the negative electrode current collector 12 and containing metallic lead (Pb) as an active material. The positive electrode plate 10 has a positive electrode current collector 14 and a positive electrode material 15 held on the positive electrode current collector 14 and containing lead dioxide (PbO 2 ) as an active material. The ear portions 12 a of the negative electrode current collectors 12 in the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 16. Similarly, the ear portions 14 a of the positive electrode current collectors 14 in the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 17. The negative electrode side strap 16 and the positive electrode side strap 17 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.

図3は、図2におけるIII−III線に沿った矢視断面を示す模式断面図である。図3に示すように、一実施形態において、負極板9とセパレータ11との間には、膜体18が設けられている。   FIG. 3 is a schematic cross-sectional view showing a cross section taken along line III-III in FIG. As shown in FIG. 3, in one embodiment, a film body 18 is provided between the negative electrode plate 9 and the separator 11.

セパレータ11は、例えば袋状に形成されており、一実施形態において、負極板9及び膜体18は、セパレータ11内に収容されている。セパレータ11を形成する材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。 The separator 11 is formed, for example, in a bag shape, and in one embodiment, the negative electrode plate 9 and the membrane 18 are accommodated in the separator 11. Examples of the material forming the separator 11 include polyethylene (PE), polypropylene (PP) and the like. The separator 11 may be obtained by adhering inorganic particles such as SiO 2 and Al 2 O 3 to a woven fabric, a non-woven fabric, a porous film or the like formed of these materials.

セパレータ11の厚さは、好ましくは0.1mm以上0.5mm以下、より好ましくは0.2mm以上0.3mm以下である。セパレータ11の厚さが0.1mm以上であると、セパレータの強度を確保できる。セパレータ11の厚さが0.5mm以下であると、電池の内部抵抗の上昇を抑制できる。   The thickness of the separator 11 is preferably 0.1 mm or more and 0.5 mm or less, more preferably 0.2 mm or more and 0.3 mm or less. When the thickness of the separator 11 is 0.1 mm or more, the strength of the separator can be secured. When the thickness of the separator 11 is 0.5 mm or less, an increase in internal resistance of the battery can be suppressed.

セパレータ11の平均孔径は、好ましくは10nm以上500nm以下、より好ましくは30nm以上200nm以下である。セパレータ11の平均孔径が10nm以上であると、硫酸イオンを好適に通過させ、硫酸イオンの拡散速度を確保できる。セパレータ11の平均孔径が500nm以下であると、鉛のデンドライトの成長が抑制され、短絡が生じにくくなる。   The average pore diameter of the separator 11 is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 200 nm or less. When the average pore diameter of the separator 11 is 10 nm or more, the sulfate ion can be suitably passed, and the diffusion speed of the sulfate ion can be secured. If the average pore diameter of the separator 11 is 500 nm or less, the growth of lead dendrite is suppressed, and a short circuit hardly occurs.

膜体18は、一実施形態において、負極板9の表面を覆うように負極板9に密着した状態で設けられている。膜体18は、例えばシート状又は袋状であってよい。膜体18がシート状である場合、膜体18は、負極板9に巻きつけられるようにして負極板9の表面を覆っている。膜体18が袋状である場合、負極板9は、膜体18内に収容されている。   In one embodiment, the film body 18 is provided in close contact with the negative electrode plate 9 so as to cover the surface of the negative electrode plate 9. The membrane 18 may be, for example, a sheet or a bag. When the film body 18 is in the form of a sheet, the film body 18 covers the surface of the negative electrode plate 9 so as to be wound around the negative electrode plate 9. When the membrane 18 is in the form of a bag, the negative electrode plate 9 is accommodated in the membrane 18.

膜体18は、アクリロニトリルをモノマ単位として有するポリマ(以下「アクリロニトリル系ポリマ」ともいう)の繊維を含んでいる。アクリロニトリル系ポリマは、モノマ単位としてアクリロニトリルのみを有するホモポリマであってよく、モノマ単位として、アクリロニトリルと、アクリロニトリルと共重合可能なその他のモノマとを有するコポリマであってもよい。   The membrane 18 contains fibers of a polymer having acrylonitrile as a monomer unit (hereinafter also referred to as "acrylonitrile-based polymer"). The acrylonitrile-based polymer may be a homopolymer having only acrylonitrile as a monomer unit, and may be a copolymer having acrylonitrile and other monomers copolymerizable with acrylonitrile as the monomer unit.

その他のモノマとしては、エチレン、プロピレン等のオレフィンモノマ、ブタジエン等のジエンモノマ、スチレンモノマ、アミドモノマ、エステルモノマなどであってよい。その他のモノマは、その一部がハロゲンで置換されたハロゲン化モノマであってもよい。ハロゲン化モノマとしては、塩化ビニル、フッ化ビニル、塩化ビニリデン等が挙げられる。   Other monomers may be olefin monomers such as ethylene and propylene, diene monomers such as butadiene, styrene monomers, amide monomers, ester monomers and the like. Other monomers may be halogenated monomers partially substituted with halogen. Examples of halogenated monomers include vinyl chloride, vinyl fluoride, vinylidene chloride and the like.

アクリロニトリル系ポリマは、好ましくは、モノマ単位として、アクリロニトリルと、アクリロニトリルと共重合可能なその他のモノマとを有するコポリマであり、より好ましくは、モノマとして、アクリロニトリルとハロゲン化モノマとを有するコポリマである。   The acrylonitrile-based polymer is preferably a copolymer having acrylonitrile and another monomer copolymerizable with acrylonitrile as a monomer unit, and more preferably a copolymer having acrylonitrile and a halogenated monomer as a monomer.

アクリロニトリル系ポリマがコポリマである場合、アクリロニトリル系ポリマにおけるアクリロニトリル単位の含有量は、アクリロニトリル系ポリマを構成するモノマ単位の全量を基準として、35質量%以上、50質量%以上、又は70質量%以上であってよく、また、85質量%以下であってよい。   When the acrylonitrile-based polymer is a copolymer, the content of acrylonitrile units in the acrylonitrile-based polymer is 35% by mass or more, 50% by mass or more, or 70% by mass or more based on the total amount of monomer units constituting the acrylonitrile-based polymer It may be 85% by mass or less.

膜体18は、例えば、上述した繊維を含む不織布を備えている。不織布は、アクリロニトリル系ポリマの繊維に加えて、その他の有機繊維、無機繊維等を含んでいてもよい。その他の有機繊維としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、アラミド等の合成繊維が挙げられる。無機繊維としては、SiOの繊維(ガラス繊維)等が挙げられる。不織布は、SiO等で形成された無機粉体を更に含んでいてもよい。 The membrane 18 is provided with, for example, a non-woven fabric containing the above-described fibers. The non-woven fabric may contain other organic fibers, inorganic fibers and the like in addition to the acrylonitrile polymer fiber. Other organic fibers include synthetic fibers such as polyethylene, polypropylene, polyester, nylon and aramid. Examples of inorganic fibers include fibers of SiO 2 (glass fibers) and the like. The non-woven fabric may further contain an inorganic powder formed of SiO 2 or the like.

膜体18には、乾式又は湿式の親水化処理によって、水酸基、カルボキシル基、スルホ基等の親水性官能基を付与することが好ましい。親水性官能基を膜体18(特にその表面)に付与することで、Pb2+の吸着サイトを確保でき、浸透短絡の抑制効果がより一層向上する。 The membrane 18 is preferably provided with a hydrophilic functional group such as a hydroxyl group, a carboxyl group or a sulfo group by a dry or wet hydrophilization treatment. By imparting a hydrophilic functional group to the film body 18 (particularly the surface thereof), it is possible to secure Pb 2+ adsorption sites, and the effect of suppressing osmotic short circuit is further improved.

膜体18は、繊維径が異なる複数種類の繊維を含んでいてもよい。繊維径が5μm未満(特に1μm以上2μm以下程度)の細い繊維は、膜体18の比表面積を増加させることにより、硫酸の沈降を抑制する効果を奏すると考えられる。繊維径が5μm以上(特に5μm以上10μm以下程度)の太い繊維は、膜体18の強度を確保すると共に、膜体18の空間を増加させることにより、硫酸の拡散係数を大きくする効果を奏すると考えられる。太い繊維の繊維径は、好ましくは、細い繊維の繊維径の2.5倍以上である。   The membrane 18 may include a plurality of types of fibers having different fiber diameters. It is considered that a thin fiber having a fiber diameter of less than 5 μm (particularly, about 1 μm to about 2 μm) exerts an effect of suppressing the precipitation of sulfuric acid by increasing the specific surface area of the membrane 18. A thick fiber with a fiber diameter of 5 μm or more (especially 5 μm or more and about 10 μm or less) has the effect of increasing the diffusion coefficient of sulfuric acid by securing the strength of the membrane 18 and increasing the space of the membrane 18. Conceivable. The fiber diameter of the thick fiber is preferably at least 2.5 times the fiber diameter of the thin fiber.

膜体18に含まれる全繊維中、繊維径が5μm以上の繊維が占める割合は、硫酸の拡散係数を大きくする観点から、好ましくは5%以上、より好ましくは7%以上、更に好ましくは9%以上、特に好ましくは10%以上であり、また、硫酸の沈降を抑制する観点から、好ましくは90%以下、より好ましくは85%以下、更に好ましくは80%以下、特に好ましくは75%以下である。繊維径が5μm以上10μm以下の繊維が占める割合が、上記の範囲であることが好ましい。   The proportion of fibers having a fiber diameter of 5 μm or more in all the fibers contained in the membrane 18 is preferably 5% or more, more preferably 7% or more, still more preferably 9% from the viewpoint of increasing the diffusion coefficient of sulfuric acid Or more, particularly preferably 10% or more, and from the viewpoint of suppressing the precipitation of sulfuric acid, preferably 90% or less, more preferably 85% or less, still more preferably 80% or less, particularly preferably 75% or less . It is preferable that the ratio for which the fiber diameter is 5 μm to 10 μm is in the above range.

膜体18に含まれる全繊維中、繊維径が5μm未満の繊維が占める割合は、硫酸の沈降を更に抑制する観点から、好ましくは60%以上、より好ましくは65%以上、更に好ましくは70%以上、特に好ましくは75%以上であり、また、硫酸の拡散係数を更に大きくする観点から、好ましくは95%以下、より好ましくは90%以下、更に好ましくは85%以下、特に好ましくは80%以下である。繊維径が1μm以上2μm以下の繊維が占める割合が、上記の範囲であることが好ましい。   The proportion of fibers having a fiber diameter of less than 5 μm in the total fibers contained in the membrane 18 is preferably 60% or more, more preferably 65% or more, still more preferably 70%, from the viewpoint of further suppressing sedimentation of sulfuric acid. Or more, particularly preferably 75% or more, and from the viewpoint of further increasing the diffusion coefficient of sulfuric acid, preferably 95% or less, more preferably 90% or less, still more preferably 85% or less, particularly preferably 80% or less It is. It is preferable that the ratio for which the fiber diameter is 1 μm to 2 μm is in the above range.

膜体に含まれる繊維に占める所定の繊維径の繊維の割合は、走査電子顕微鏡(例えば株式会社日立ハイテクノロジーズ製)で得られるSEM像に基づいて測定される。具体的には、SEM像における繊維100本についてその径(SEM像における繊維の短手方向の長さ(最短距離))を測定し、繊維径の分布を求める。次いで、測定した全繊維の本数に占める所定の繊維径の繊維の本数の割合を算出する。   The ratio of fibers having a predetermined fiber diameter to fibers contained in the membrane is measured based on an SEM image obtained by a scanning electron microscope (for example, manufactured by Hitachi High-Technologies Corporation). Specifically, the diameter (the length in the short direction of the fiber in the SEM image (shortest distance)) of 100 fibers in the SEM image is measured, and the distribution of the fiber diameter is determined. Next, the ratio of the number of fibers having a predetermined fiber diameter to the total number of fibers measured is calculated.

膜体18は、細孔を有している。膜体18の平均細孔径は、電解液の成層化を抑制する観点から、好ましくは、20μm以下、19μm以下、18μm以下、17μm以下、16μm以下、15μm以下、14μm以下、13μm以下、12μm以下、11μm以下又は10μm以下である。膜体18の平均細孔径は、電池の出力を向上させる観点から、好ましくは、1μm以上、2μm以上又は3μm以上である。   The membrane 18 has pores. The average pore diameter of the membrane 18 is preferably 20 μm or less, 19 μm or less, 18 μm or less, 17 μm or less, 16 μm or less, 15 μm or less, 14 μm or less, 13 μm or less, 12 μm or less, from the viewpoint of suppressing stratification of the electrolyte. It is 11 μm or less or 10 μm or less. The average pore diameter of the membrane 18 is preferably 1 μm or more, 2 μm or more, or 3 μm or more from the viewpoint of improving the output of the battery.

膜体の平均細孔径は、水銀圧入法により測定される積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出される。膜体の平均細孔径は、例えば、株式会社島津製作所製、オートポアIV 9500で測定できる。   The average pore size of the membrane body corresponds to an intermediate value between the minimum value and the maximum value in the Y axis (pore volume or pore specific surface area) of the distribution curve in the integrated pore size distribution measured by mercury porosimetry. It is calculated as the median diameter which is the value of the axis (pore diameter). The average pore diameter of the membrane can be measured, for example, by Autopore IV 9500 manufactured by Shimadzu Corporation.

膜体18の空孔率は、硫酸イオンの拡散性を更に確保しやすくすると共に、硫酸イオンを保持する空間を更に大きくする観点から、好ましくは60%以上、より好ましくは65%以上、更に好ましくは70%以上、特に好ましくは75%以上、きわめて好ましくは80%以上である。膜体の空孔率は、膜体から適当な大きさの直方体状に切り取った試料について、下記式(1)〜(3)に従い実際の体積と見かけの体積とから算出される。
空孔率(%)={1−(実際の体積/見かけの体積)}×100 …(1)
実際の体積(cm)=重量の実測値(g)/密度(g/cm) …(2)
見かけの体積(cm)=縦(cm)×横(cm)×厚さ(cm) …(3)
なお、見かけの体積を算出する際の試料の縦、横及び厚さはいずれも実測値を用いる。
The porosity of the membrane 18 is preferably 60% or more, more preferably 65% or more, and still more preferably, from the viewpoint of further facilitating securing of the diffusibility of sulfate ions and further increasing the space for retaining sulfate ions. Is 70% or more, particularly preferably 75% or more, and most preferably 80% or more. The porosity of the membrane is calculated from the actual volume and the apparent volume in accordance with the following formulas (1) to (3) for a sample cut out of the membrane in a rectangular shape having a suitable size.
Porosity (%) = {1− (actual volume / apparent volume)} × 100 (1)
Actual volume (cm 3 ) = measured value of weight (g) / density (g / cm 3 ) (2)
Apparent volume (cm 3 ) = longitudinal (cm) × horizontal (cm) × thickness (cm) (3)
In addition, as for the length, width, and thickness of the sample at the time of calculating an apparent volume, all use measured values.

膜体18の厚さは、内部抵抗の上昇を抑制する観点から、好ましくは0.3mm以下、より好ましくは0.25mm以下、更に好ましくは0.2mm以下、特に好ましくは0.15mm以下である。膜体18の厚さは、硫酸の沈降の防止能力、電池反応への影響、強度等の観点から、例えば0.03mm以上である。膜体18が不織布を備える場合には、不織布を構成する繊維の太さ等に応じて膜体18の厚さが決定される。   The thickness of the film body 18 is preferably 0.3 mm or less, more preferably 0.25 mm or less, still more preferably 0.2 mm or less, particularly preferably 0.15 mm or less, from the viewpoint of suppressing an increase in internal resistance. . The thickness of the film body 18 is, for example, 0.03 mm or more from the viewpoint of the ability to prevent sedimentation of sulfuric acid, the influence on the cell reaction, the strength and the like. When the membrane 18 includes a non-woven fabric, the thickness of the membrane 18 is determined according to the thickness of the fibers constituting the non-woven fabric.

上記実施形態では、膜体18は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆い、それらの表面に接触するように(密着した状態で)設けられていたが、他の実施形態では、膜体は、負極板9から離間するように、負極板9とセパレータ11との間に設けられていてもよい。この場合、膜体18は、例えばセパレータ11の負極側の面上に設けられていてよい。浸透短絡をより抑制する観点からは、膜体18は、負極板9の表面に接触するように(密着した状態で)設けられていることが好ましい。   In the above embodiment, the film body 18 covers all of the main surface (the surface facing the separator 11), the side surface and the bottom surface of the negative electrode plate 9 and is provided in contact (in close contact) with those surfaces. However, in another embodiment, the film body may be provided between the negative electrode plate 9 and the separator 11 so as to be separated from the negative electrode plate 9. In this case, the film body 18 may be provided, for example, on the surface of the separator 11 on the negative electrode side. From the viewpoint of further suppressing the permeation short circuit, the film body 18 is preferably provided in contact with (in close contact with) the surface of the negative electrode plate 9.

上記実施形態では、膜体18は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆っていたが、他の実施形態では、膜体は、負極板9の主面(セパレータ11に対向する面)のみを覆うように設けられていてもよい。   In the above embodiment, the film body 18 covers all of the main surface (surface facing the separator 11), the side surface and the bottom surface of the negative electrode plate 9, but in the other embodiments, the film body is the main component of the negative electrode plate 9. It may be provided to cover only the surface (surface facing the separator 11).

上記実施形態では、膜体18は、負極板9とセパレータ11との間に設けられていたが、他の実施形態では、膜体は、正極板10とセパレータ11との間に設けられていてよい。すなわち、上述した膜体に関する説明において、「負極板」を「正極板」と読み替えてよい。   Although the film body 18 is provided between the negative electrode plate 9 and the separator 11 in the above embodiment, the film body is provided between the positive electrode plate 10 and the separator 11 in another embodiment. Good. That is, in the description related to the above-mentioned film body, the “negative electrode plate” may be read as the “positive electrode plate”.

<実施例1>
一酸化鉛を主成分とする鉛粉を希硫酸で練って調製したペーストを鉛合金格子に充填したペースト式極板を用いた。その後、熟成と乾燥工程とを経て未化成極板が得られた。なお、未化成の正極板及び負極板は、いずれも2価の鉛化合物である一酸化鉛(PbO)、三塩基性希硫酸鉛(3PbO・PbSO・HO)等の混合物で構成されている。化成により、正極板の未化成物質は二酸化鉛(PbO)に酸化され、負極板の未化成物質は海綿状鉛(Pb)に還元され、既化極板(正極板、負極板)が得られた。
Example 1
A paste-type electrode plate was used in which a paste prepared by kneading lead powder containing lead monoxide as a main component with dilute sulfuric acid was filled in a lead alloy grid. Thereafter, the unformed electrode plate was obtained through the aging and drying steps. Incidentally, the positive electrode plate and the negative electrode plate which was not chemically converted is composed both divalent lead monoxide is lead compound (PbO), a mixture of such tribasic dilute lead sulfate (3PbO · PbSO 4 · H 2 O) ing. By conversion, the unformed material of the positive electrode plate is oxidized to lead dioxide (PbO 2 ), and the unformed material of the negative electrode plate is reduced to cancellous lead (Pb) to obtain a preformed electrode plate (positive electrode plate, negative electrode plate) It was done.

膜体として、アクリロニトリルと塩化ビニルとのコポリマ(アクリロニトリル:塩化ビニル=85:15(質量比))の繊維を含む不織布(平均細孔径:15μm、厚さ:0.2mm)を用い、負極板近傍に配置した。当該不織布を構成する繊維は、繊維径が1〜2μmの繊維65%と、繊維径5〜10μmの繊維35%との2種類を含んでいる。セパレータとしては、厚さが0.25mm、平均孔径が30nm〜200nmである袋状のポリエチレン製セパレータを用い、負極板及び膜体をセパレータ内に収容した。電解液としては希硫酸を用いて、Dサイズ(JIS D5301。幅:173mm、箱高さ:204mm。負極板の幅:145mm、負極板の高さ(上枠部込み):113mm。)の定格容量35Ahの鉛蓄電池を作製した。   As a film body, a non-woven fabric (average pore diameter: 15 μm, thickness: 0.2 mm) containing a fiber of a copolymer of acrylonitrile and vinyl chloride (acrylonitrile: vinyl chloride = 85: 15 (mass ratio)) is used. Placed in The fibers constituting the non-woven fabric include two types of fibers: fiber 65% with a diameter of 1 to 2 μm and fiber 35% with a diameter of 5 to 10 μm. As the separator, a bag-like polyethylene separator having a thickness of 0.25 mm and an average pore diameter of 30 nm to 200 nm was used, and the negative electrode plate and the membrane were housed in the separator. Rating of D size (JIS D 5301. Width: 173 mm, box height: 204 mm, width of negative electrode plate: 145 mm, height of negative electrode plate (including upper frame part): 113 mm) using dilute sulfuric acid as electrolyte solution A lead-acid battery with a capacity of 35 Ah was produced.

(平均細孔径の算出)
膜体の平均細孔径は、株式会社島津製作所製、オートポアIV 9500で測定した。膜体の平均細孔径は、水銀圧入法により測定された積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出した。
(Calculation of average pore size)
The average pore diameter of the membrane was measured by Autopore IV 9500 manufactured by Shimadzu Corporation. The average pore size of the membrane body corresponds to an intermediate value between the minimum value and the maximum value in the Y axis (pore volume or pore specific surface area) of the distribution curve in the integrated pore size distribution measured by mercury porosimetry. It was calculated as the median diameter which is the value of the axis (pore diameter).

(浸透短絡評価)
浸透短絡を抑制する効果を評価した。充電が完了した鉛蓄電池を、湯浴温度が25℃±2℃に設定された水槽中に配置した。浸透短絡試験では、以下のサイクルユニット(a)〜(d)の順に実施した。結果を表1に示す。
(a)3.4A(0.05C相当)で10.5Vまで放電。
(b)水槽の温度を40℃±2℃に設定し、鉛蓄電池を10Wの白熱電球に接続し、5日間抵抗放電。
(c)水槽の温度を25℃±2℃に再設定し、50A(1.43C相当)を最大電流値として4時間充電。充電上限電圧は14Vとした。
(d)上記(a)〜(c)を繰り返し、(c)で電流がブレて立ち上がる現象が見られたら、浸透短絡が発生したと判断し、試験を終了。
浸透短絡が発生するまでの週数に応じて、以下の基準により浸透短絡の抑制効果を評価した。なお、(a)〜(c)を1サイクル繰り返すとおよそ1週間程度経過するため、(a)〜(c)を1サイクル終了した時点で1週間経過したと定義する。
A:13週間以上
B:11〜12週間
C:10週間以下
(Penetration short circuit evaluation)
The effect of suppressing the osmotic short circuit was evaluated. The fully charged lead-acid battery was placed in a water bath whose hot water bath temperature was set to 25 ° C. ± 2 ° C. The osmotic short circuit test was performed in the order of the following cycle units (a) to (d). The results are shown in Table 1.
(A) Discharge to 10.5 V at 3.4 A (equivalent to 0.05 C).
(B) Set the temperature of the water tank to 40 ° C. ± 2 ° C., connect a lead storage battery to a 10 W incandescent lamp, and discharge for 5 days.
(C) Re-set the temperature of the water tank to 25 ° C ± 2 ° C, and charge it for 4 hours with 50A (equivalent to 1.43C) as the maximum current value. The charging upper limit voltage was 14V.
(D) Repeat the above (a) to (c), and if the phenomenon that the current is blurred and rises in (c) is observed, it is judged that the osmotic short circuit has occurred, and the test is ended.
According to the number of weeks until the occurrence of the osmotic short circuit, the effect of suppressing the osmotic short circuit was evaluated according to the following criteria. When one cycle of (a) to (c) is repeated, about one week elapses, it is defined that one week has passed when one cycle of (a) to (c) is completed.
A: 13 weeks or more B: 11 to 12 weeks C: 10 weeks or less

<実施例2〜5>
アクリロニトリルと塩化ビニルとのコポリマを以下の各コポリマに変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
実施例2:アクリロニトリルとフッ化ビニルとのコポリマ(アクリロニトリル:フッ化ビニル=85:15(質量比))
実施例3:アクリロニトリルとスチレンとのコポリマ(アクリロニトリル:スチレン=85:15(質量比))
実施例4:アクリロニトリルと塩化ビニリデンとのコポリマ(アクリロニトリル:塩化ビニリデン=85:15(質量比))
実施例5:アクリロニトリルとスチレンとブタジエンとのコポリマ(アクリロニトリル:スチレン:ブタジエン=80:10:10(質量比))
Examples 2 to 5
A lead acid battery was prepared and evaluated in the same manner as in Example 1 except that the copolymers of acrylonitrile and vinyl chloride were changed to the following copolymers.
Example 2: Copolymer of acrylonitrile and vinyl fluoride (acrylonitrile: vinyl fluoride = 85:15 (mass ratio))
Example 3: Copolymer of acrylonitrile and styrene (acrylonitrile: styrene = 85: 15 (mass ratio))
Example 4: Copolymer of acrylonitrile and vinylidene chloride (acrylonitrile: vinylidene chloride = 85: 15 (mass ratio))
Example 5: Copolymer of acrylonitrile, styrene and butadiene (acrylonitrile: styrene: butadiene = 80: 10: 10 (mass ratio))

<実施例6>
鉛蓄電池のサイズを欧州で一般的なLN1サイズ(EN 50342−2。幅:175mm、箱高さ:190mm。負極板の幅:143mm、負極板の高さ(上枠部込み):100mm。)に変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
Example 6
LN1 size (EN 50342-2 width: 175 mm, box height: 190 mm) Width of the negative electrode plate: 143 mm, height of the negative electrode plate (including upper frame part): 100 mm. A lead storage battery was produced and evaluated in the same manner as in Example 1 except that the above was changed to

<比較例1>
負極板上に膜体を設けなかった以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
Comparative Example 1
A lead storage battery was prepared and evaluated in the same manner as in Example 1 except that the film was not provided on the negative electrode plate.

<比較例2>
膜体として、無機不織布(主成分:SiO、平均細孔径:7μm、厚さ:0.2mm)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
Comparative Example 2
A lead storage battery was prepared and evaluated in the same manner as in Example 1 except that an inorganic non-woven fabric (main component: SiO 2 , average pore diameter: 7 μm, thickness: 0.2 mm) was used as a film body.

<比較例3>
膜体として、有機・無機混合不織布(多孔シート、パルプ、ガラス繊維及びシリカ粉末を含む混合繊維から構成される不織布、平均細孔径:3μm、厚さ:0.2mm)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
Comparative Example 3
As a film body, it is carried out except using organic / inorganic mixed non-woven fabric (porous sheet, non-woven fabric composed of mixed fibers including pulp, glass fiber and silica powder, average pore diameter: 3 μm, thickness: 0.2 mm) A lead-acid battery was prepared and evaluated in the same manner as Example 1.

<比較例4>
膜体として、有機不織布(ポリプロピレン製、平均細孔径:15μm、厚さ:0.2mm)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
Comparative Example 4
A lead storage battery was prepared and evaluated in the same manner as in Example 1 except that an organic non-woven fabric (made of polypropylene, average pore diameter: 15 μm, thickness: 0.2 mm) was used as the film body.

Figure 2019102282
Figure 2019102282

以上の結果から、電極板とセパレータとの間に設けた膜体がアクリロニトリル系ポリマの繊維を含む場合に、浸透短絡が抑制されていることが分かる。一方、膜体を設けていない場合、及び、無機不織布又はアクリロニトリル系ポリマを含まない有機・無機混合不織布を用いた場合では、浸透短絡が抑制されないことが分かる。   From the above results, it can be seen that the osmotic short circuit is suppressed when the membrane provided between the electrode plate and the separator contains an acrylonitrile polymer fiber. On the other hand, it is understood that the osmotic short circuit is not suppressed when the membrane is not provided and when the inorganic nonwoven fabric or the organic / inorganic mixed nonwoven fabric not containing the acrylonitrile polymer is used.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。   In addition, this invention is not limited to said Example, A various modification is included. For example, the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to the aspect having all the described configurations.

1…鉛蓄電池、9…負極板、10…正極板、11…セパレータ、18…膜体。   DESCRIPTION OF SYMBOLS 1 ... Lead-acid battery, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 18 ... Film body.

Claims (7)

正極板と、
負極板と、
前記正極板と前記負極板との間に配置されたセパレータと、
前記正極板又は前記負極板と前記セパレータとの間に配置された膜体と、
を備え、
前記膜体は、アクリロニトリルをモノマ単位として有するポリマの繊維を含む、鉛蓄電池。
Positive plate,
A negative electrode plate,
A separator disposed between the positive electrode plate and the negative electrode plate;
A membrane disposed between the positive electrode plate or the negative electrode plate and the separator;
Equipped with
The lead-acid battery, wherein the film body contains a fiber of a polymer having acrylonitrile as a monomer unit.
前記ポリマがコポリマである、請求項1に記載の鉛蓄電池。   The lead-acid battery of claim 1, wherein the polymer is a copolymer. 前記膜体が、平均細孔径が20μm以下の細孔を有する、請求項1又は2に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the membrane has pores having an average pore diameter of 20 μm or less. 前記繊維に占める繊維径が5μm未満の繊維の割合が60%以上である、請求項1〜3のいずれか一項に記載の鉛蓄電池。   The lead storage battery according to any one of claims 1 to 3, wherein a proportion of fibers having a fiber diameter of less than 5 μm in the fibers is 60% or more. 前記繊維に占める繊維径が5μm以上10μm以下の繊維の割合が10%以上である、請求項1〜4のいずれか一項に記載の鉛蓄電池。   The lead storage battery according to any one of claims 1 to 4, wherein a proportion of fibers having a fiber diameter of 5 μm to 10 μm in the fibers is 10% or more. 前記セパレータが袋状のセパレータであり、前記正極板又は前記負極板と前記膜体とが前記セパレータ内に収容されている、請求項1〜5のいずれか一項に記載の鉛蓄電池。   The lead storage battery according to any one of claims 1 to 5, wherein the separator is a bag-like separator, and the positive electrode plate or the negative electrode plate and the film body are accommodated in the separator. 前記膜体の厚さが0.3mm以下である、請求項1〜6のいずれか一項に記載の鉛蓄電池。   The lead storage battery according to any one of claims 1 to 6, wherein a thickness of the film body is 0.3 mm or less.
JP2017232409A 2017-12-04 2017-12-04 lead acid battery Active JP7152831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232409A JP7152831B2 (en) 2017-12-04 2017-12-04 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232409A JP7152831B2 (en) 2017-12-04 2017-12-04 lead acid battery

Publications (2)

Publication Number Publication Date
JP2019102282A true JP2019102282A (en) 2019-06-24
JP7152831B2 JP7152831B2 (en) 2022-10-13

Family

ID=66973949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232409A Active JP7152831B2 (en) 2017-12-04 2017-12-04 lead acid battery

Country Status (1)

Country Link
JP (1) JP7152831B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201310A (en) * 1993-12-28 1995-08-04 Nippon Muki Co Ltd Separator for sealed lead-acid battery and its manufacture and sealed lead-acid battery
JPH09289013A (en) * 1996-04-19 1997-11-04 Furukawa Battery Co Ltd:The Lead-acid battery
WO2012157311A1 (en) * 2011-05-13 2012-11-22 新神戸電機株式会社 Lead battery
WO2013046498A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Separator structure for batteries, and lead-acid battery equipped with said separator structure
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP2016177872A (en) * 2015-03-18 2016-10-06 日立化成株式会社 Lead storage battery
JP2017054629A (en) * 2015-09-08 2017-03-16 日立化成株式会社 Lead storage battery
JP2017142888A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Lead storage battery
WO2017150279A1 (en) * 2016-02-29 2017-09-08 旭化成株式会社 Nonwoven fabric separator for lead storage battery, and lead storage battery using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201310A (en) * 1993-12-28 1995-08-04 Nippon Muki Co Ltd Separator for sealed lead-acid battery and its manufacture and sealed lead-acid battery
JPH09289013A (en) * 1996-04-19 1997-11-04 Furukawa Battery Co Ltd:The Lead-acid battery
WO2012157311A1 (en) * 2011-05-13 2012-11-22 新神戸電機株式会社 Lead battery
WO2013046498A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Separator structure for batteries, and lead-acid battery equipped with said separator structure
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP2016177872A (en) * 2015-03-18 2016-10-06 日立化成株式会社 Lead storage battery
JP2017054629A (en) * 2015-09-08 2017-03-16 日立化成株式会社 Lead storage battery
JP2017142888A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Lead storage battery
WO2017150279A1 (en) * 2016-02-29 2017-09-08 旭化成株式会社 Nonwoven fabric separator for lead storage battery, and lead storage battery using same

Also Published As

Publication number Publication date
JP7152831B2 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP6977770B2 (en) Liquid lead-acid battery
JP7380580B2 (en) lead acid battery
JP6164266B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP4771678B2 (en) Open-type lead-acid battery for automobiles
JP2003077445A (en) Lead acid storage battery
WO2019225389A1 (en) Lead storage battery
JP2006086039A (en) Lead-acid storage battery
JP4639620B2 (en) Alkaline storage battery
JP2017201589A (en) Electricity storage element
JP7152831B2 (en) lead acid battery
JP6953821B2 (en) Liquid lead-acid battery
JP2005285499A5 (en)
WO2020208909A1 (en) Separator for liquid-type lead storage battery and liquid-type lead storage battery
JP7147776B2 (en) lead acid battery
JP7274830B2 (en) lead acid battery
JP2006156060A (en) Lead battery
WO2024043226A1 (en) Aqueous electrolyte secondary battery
JP6323791B2 (en) Liquid lead-acid battery
JP7379417B2 (en) Alkaline secondary battery and method for manufacturing alkaline secondary battery
JP6996264B2 (en) Lead-acid battery
JP2018147644A (en) Power storage element
JPWO2018105134A1 (en) Liquid lead acid battery, charge / discharge method for liquid lead acid battery, and power supply system
JP2017069002A (en) Power storage device
JP6870266B2 (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220927

R150 Certificate of patent or registration of utility model

Ref document number: 7152831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350