JP2019102140A - Manufacturing method for battery - Google Patents

Manufacturing method for battery Download PDF

Info

Publication number
JP2019102140A
JP2019102140A JP2017228404A JP2017228404A JP2019102140A JP 2019102140 A JP2019102140 A JP 2019102140A JP 2017228404 A JP2017228404 A JP 2017228404A JP 2017228404 A JP2017228404 A JP 2017228404A JP 2019102140 A JP2019102140 A JP 2019102140A
Authority
JP
Japan
Prior art keywords
electrode
separator
new
stack
pressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017228404A
Other languages
Japanese (ja)
Other versions
JP6848833B2 (en
Inventor
孝博 工原
Takahiro Kohara
孝博 工原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017228404A priority Critical patent/JP6848833B2/en
Publication of JP2019102140A publication Critical patent/JP2019102140A/en
Application granted granted Critical
Publication of JP6848833B2 publication Critical patent/JP6848833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a manufacturing method for a battery capable of manufacturing not only an electrode body but also a battery at a low cost by preventing an electrode laminate from being damaged or partially considerably deformed even while preventing positional displacement.SOLUTION: According to a manufacturing method for a battery 1, a laminating step S9 of forming an electrode 20 includes an adhering step S11 of pressing a pressed part 30p(n+1) of a new electrode laminate 30(n+1) from an outside in a lamination direction GH and adhering the new electrode laminate 30(n+1) to an electrode laminate group 30z. In the adhering step S11, the new electrode laminate 30(n+1)is pressed while defining a portion which is not at least partially overlapped in the lamination direction GH with a pressed part 30p(n) in an electrode laminate 30(n) at a destination in contact with the new electrode laminate 30(n+1) in the electrode laminate group 30z as the pressed part 30p(n+1) of the new electrode laminate 30(n+1).SELECTED DRAWING: Figure 8

Description

本発明は、第1電極板及び第2電極板がセパレータを介して交互に複数積層された積層型の電極体を備える電池の製造方法に関する。   The present invention relates to a method of manufacturing a battery including a stacked electrode assembly in which a plurality of first electrode plates and second electrode plates are alternately stacked via a separator.

リチウムイオン二次電池などの電池の電極体として、矩形状等をなす正極板及び負極板をセパレータを介して交互に複数積層した積層型の電極体が知られている。このような積層型の電極体は、例えば、以下の手法により製造する。即ち、負極板の両主面に第1セパレータ及び第2セパレータを密着させて、これらの複合体を形成する。その後、この複合体と正極板とを密着させて、第1セパレータ、負極板、第2セパレータ、正極板の順で積層されて一体化された電極積層体を形成する。   As an electrode body of batteries, such as a lithium ion secondary battery, the laminated-type electrode body which laminated | stacked multiple positive electrode plates and negative electrode plates which make rectangular shape etc. alternately via the separator is known. Such a stacked electrode assembly is manufactured, for example, by the following method. That is, the first separator and the second separator are brought into close contact with both main surfaces of the negative electrode plate to form a composite of these. Thereafter, the composite and the positive electrode plate are brought into close contact with each other to form an integrated electrode laminate in which the first separator, the negative electrode plate, the second separator, and the positive electrode plate are laminated in this order.

その後、この電極積層体を複数積み重ねて電極体を形成する。その際、既に複数の電極積層体を積み重ねた電極積層体群において、電極積層体同士の間で位置ズレが生じるのを防止するべく、上方から電極積層体群の四隅近傍をそれぞれツメで押さえながら、次の新たな電極積層体を積み重ねる手法が知られている(特許文献1の図6,図9,図18〜図23等を参照)。   Thereafter, a plurality of the electrode stacks are stacked to form an electrode body. At that time, in the electrode stack group in which a plurality of electrode stacks are already stacked, in order to prevent positional deviation between the electrode stacks, pressing near the four corners of the electrode stack group from above with claws The method of stacking the following new electrode laminated body is known (refer FIG. 6, FIG. 9, FIG. 18-FIG. 23 grade | etc., Of patent document 1).

具体的には、電極積層体群をツメで押さえた状態で、その上から新たな電極積層体を積み重ねる。すると、ツメの上にも電極積層体が重なるので、ツメは電極積層体同士の間(電極積層体群と新たに積み重ねた電極積層体との間)に挟まれた状態となる(特許文献1の図19等を参照)。その後、ツメを電極積層体同士の間から抜いて、上方に移動させ、この新たに積み重ねた電極積層体を含む電極積層体群を上方から押さえる(特許文献1の図20〜図22等を参照)。これを繰り返して電極体を形成する。   Specifically, a new electrode stack is stacked on the electrode stack group while holding the electrode stack group with a claw. Then, since the electrode stacks also overlap on the claws, the claws are sandwiched between the electrode stacks (between the electrode stack group and the electrode stack newly stacked) (Patent Document 1). See Figure 19 of Thereafter, the claws are pulled out from between the electrode stacks, moved upward, and the electrode stack group including the newly stacked electrode stack is pressed from above (see, for example, FIGS. ). This is repeated to form an electrode body.

特開2012−227130号公報JP 2012-227130 A

しかしながら、特許文献1の手法では、上述のように、新たな電極積層体を積み重ねた後、ツメを電極積層体同士の間から抜いて移動させるため、その際にツメにより上側或いは下側の電極積層体が傷付くおそれがある。   However, in the method of Patent Document 1, as described above, after the new electrode stack is stacked, the claw is moved out of the space between the electrode stacks. The laminate may be damaged.

この問題を解決する手法として、電極積層体群に新たな電極積層体を積み重ねた後、これを積層方向に全面プレスして、この新たな電極積層体を電極積層体群に密着させることにより、電極積層体群において電極積層体同士の間に位置ズレが生じるのを防止しつつ、電極積層体の積み重ねを繰り返すことが考えられる。しかし、この手法は、電極積層体群を十分な圧力で全面プレスするためには、大型なプレス装置が必要となる上、プレスの速度が遅くなりがちであり、電極体及び電池の製造コストが高くなる点で好ましくない。   As a method of solving this problem, after stacking a new electrode stack on an electrode stack group, the entire electrode stack is pressed in the stacking direction to bring the new electrode stack into close contact with the electrode stack group. It is conceivable to repeat stacking of electrode stacks while preventing occurrence of positional deviation between the electrode stacks in the electrode stack group. However, this method requires a large-sized pressing device to fully press the electrode stack group at a sufficient pressure, and the speed of pressing tends to be slow, and the production cost of the electrode body and battery It is not preferable because it becomes high.

そこで、本発明者は、新たな電極積層体を積み重ねた後、この新たな電極積層体の一部のみを積層方向に押圧することよって、この新たな電極積層体を電極積層体群に密着させることを検討した。しかしながら、この手法で製造すると、電極積層体群は、電極積層体の拡がり方向の同じ部位を繰り返し積層方向に押圧されるため、被押圧部とその周囲の部分との境界部分で、電極積層体をなす各電極板及びセパレータが大きく変形しがちである。その結果、この変形した部位で伝導イオンの透過性が変化するなどして、電池性能が低下するおそれがあった。   Therefore, after stacking a new electrode stack, the present inventor brings the new electrode stack into close contact with the electrode stack group by pressing only a part of the new electrode stack in the stacking direction. We considered that. However, when manufactured by this method, since the electrode laminate group is repeatedly pressed in the laminating direction at the same portion in the spreading direction of the electrode laminate, the electrode laminate is formed at the boundary between the pressed portion and the surrounding portion. The electrode plates and separators that make up the As a result, there is a possibility that the battery performance may be deteriorated due to the change of the permeability of the conductive ion at the deformed portion.

本発明は、かかる現状に鑑みてなされたものであって、電極体を形成する際に、積み重なった電極積層体群において電極積層体同士の間に位置ズレが生じるのを防止しながらも、電極積層体が傷付いたり、電極積層体(これをなす各電極板及びセパレータ)の一部が大きく変形するのを抑制し、低コストで電極体をひいては電池を製造できる電池の製造方法を提供することを目的とする。   The present invention has been made in view of the present situation, and in forming the electrode body, the electrodes are prevented from causing positional displacement between the electrode stacks in the stacked electrode stack group. Provided is a method of manufacturing a battery capable of manufacturing an electrode body at a low cost and, consequently, a battery by suppressing the damage of the laminate and a large deformation of a part of the electrode laminate (each electrode plate and the separators forming the electrode laminate). The purpose is

上記課題を解決するための本発明の一態様は、第1セパレータ、第1電極板、第2セパレータ及び第2電極板が、この順に積層されて一体化された電極積層体を、複数積み重ねてなる積層型の電極体を備える電池の製造方法であって、新たな上記電極積層体の上記第1セパレータが、既に複数の上記電極積層体が積み重なった電極積層体群の最上層に位置する上記第2電極板に密着するように、上記新たな電極積層体を上記電極積層体群に積み重ねるのを繰り返して、上記電極体を形成する積み重ね工程を備え、上記積み重ね工程は、上記新たな電極積層体を上記電極積層体群に積み重ねた後、次の新たな上記電極積層体を積み重ねる前に、上記新たな電極積層体の一部である被押圧部を外部から積層方向に押圧して、上記新たな電極積層体を上記電極積層体群に密着させる密着工程を有し、上記密着工程は、上記電極積層体群をなす複数の上記電極積層体のうち、上記新たな電極積層体と接する先の電極積層体において、既に押圧された上記被押圧部とは、上記積層方向に少なくとも一部が重ならない部位を、上記新たな電極積層体の上記被押圧部として、上記新たな電極積層体を押圧する電池の製造方法である。   One aspect of the present invention for solving the above problems is that a plurality of electrode stacks in which a first separator, a first electrode plate, a second separator, and a second electrode plate are stacked and integrated in this order are stacked. The first separator of the new electrode stack is located in the uppermost layer of the electrode stack group in which a plurality of the electrode stacks are already stacked. The step of stacking the new electrode stack on the group of electrode stacks is repeated so as to be in close contact with the second electrode plate to form the electrode body, and the step of stacking includes the step of stacking the new electrode stack. After stacking the body on the group of electrode stacks, pressing the pressed portion which is a part of the new electrode stack from the outside in the stacking direction, before stacking the next new electrode stack, New electrode laminate The method further includes an adhesion step of closely adhering to the electrode stack group, wherein the adhesion step is performed in the electrode stack of the plurality of electrode stacks forming the electrode stack group in a portion in contact with the new electrode stack, The method for manufacturing a battery, in which a portion to which at least a portion does not overlap in the stacking direction is the portion to which at least a part does not overlap with the pressed portion as the pressed portion of the new electrode stack. It is.

上述の電池の製造方法では、複数の電極積層体を積み重ねて電極体を形成する積み重ね工程において、新たな電極積層体を電極積層体群に積み重ねた後、次の新たな電極積層体を積み重ねる前に、新たな電極積層体の一部(被押圧部)を押圧して、新たな電極積層体を電極積層体群に密着させる。このようにすることで、積み重ね済みの電極積層体群において電極積層体同士の間に位置ズレが生じるのを防止しながらも、特許文献1の手法のように、ツメで電極積層体が傷付くことを防止できる。また、新たな電極積層体を全面プレスするのではなく、新たな電極積層体の一部のみを押圧するため、押圧装置を小型化したり、生産速度を上げることができ、低コストで電極体をひいては電池を製造できる。   In the above-described battery manufacturing method, in the stacking step of stacking a plurality of electrode stacks to form an electrode body, a new electrode stack is stacked on an electrode stack group and then the next new electrode stack is not stacked. Then, a part of the new electrode stack (pressed portion) is pressed to bring the new electrode stack into close contact with the electrode stack group. By doing this, while preventing the occurrence of positional deviation between the electrode stacks in the stacked electrode stack group, the electrode stack is scratched with claws as in the method of Patent Document 1 Can be prevented. In addition, since only a part of the new electrode laminate is pressed instead of pressing the new electrode laminate on the entire surface, the pressing device can be miniaturized or the production speed can be increased, and the electrode assembly can be manufactured at low cost. As a result, the battery can be manufactured.

更に、上述の製造方法では、電極積層体群の先の電極積層体において既に押圧された被押圧部とは、積層方向に少なくとも一部が重ならない部位を、新たな電極積層体の被押圧部として、新たな電極積層体を押圧する。これにより、電極積層体群は、電極積層体の拡がり方向の同じ部位が繰り返し積層方向に押圧されるのを抑制でき、電極積層体(これをなす各電極板及びセパレータ)の一部が大きく変形するのを抑制できる。   Furthermore, in the above-described manufacturing method, a portion to which at least a portion does not overlap in the stacking direction is a portion to which the pressed portion already pressed in the previous electrode stack of the electrode stack group belongs. And press the new electrode stack. Thereby, in the electrode laminate group, the same portion in the spreading direction of the electrode laminate can be suppressed from being repeatedly pressed in the laminating direction, and a part of the electrode laminate (each electrode plate and separators forming the electrode laminate is largely deformed) You can suppress it.

「電極積層体群の先の電極積層体において既に押圧された被押圧部とは積層方向に少なくとも一部が重ならない部位を、新たな電極積層体の被押圧部として、新たな電極積層体を押圧する」具体的な手法としては、例えば、直前に積層された先の電極積層体の被押圧部と新たな電極積層体の被押圧部とが積層方向に全く重ならないように、新たな電極積層体の被押圧部を変えていく手法が挙げられる。この場合、電極体が形成されるまでのすべての電極積層体の被押圧部が積層方向に全く重ならないように各被押圧部の位置を変えてもよいし、一部で積層方向に重なる(例えば、2ヶ目の電極積層体の被押圧部と4ヶ目の電極積層体の被押圧部とが一部または全部で積層方向に重なる)ようにしてもよい。
或いは、直前に積層された先の電極積層体の被押圧部と新たな電極積層体の被押圧部とが一部で積層方向に重ならないように、新たな電極積層体の被押圧部を変えていく手法も挙げられる。この場合、新たな電極積層体の被押圧部を直前に積層された先の電極積層体の被押圧部から少しずつズラしていく手法が挙げられる。
なお、「被押圧部」は、単数でも複数でもよい。即ち、電極積層体のうち一箇所の部位のみを被押圧部としてもよいし、電極積層体のうち複数の部位を被押圧部としてもよい。
"A new electrode laminate is used as a portion to be pressed of a new electrode laminate, in a portion where at least a portion does not overlap with the pressed portion in the previous electrode laminate of the electrode laminate group in the stacking direction. As a specific method of “pressing”, for example, a new electrode such that the pressed portion of the previous electrode stack laminated immediately before and the pressed portion of the new electrode stack do not overlap at all in the stacking direction. The method of changing the to-be-pressed part of a laminated body is mentioned. In this case, the positions of the pressed portions may be changed so that the pressed portions of all the electrode stacks until the electrode body is not overlapped at all in the stacking direction, or partially overlap in the stacking direction ( For example, the pressed portion of the second electrode stack and the pressed portion of the fourth electrode stack may partially or entirely overlap in the stacking direction.
Alternatively, the pressed portion of the new electrode stack is changed so that the pressed portion of the previous electrode stack stacked immediately before and the pressed portion of the new electrode stack do not partially overlap in the stacking direction. There is also a way to In this case, there is a method of shifting the pressed portion of the new electrode stack little by little from the pressed portion of the previous electrode stack stacked immediately before.
In addition, "a pressed portion" may be singular or plural. That is, only one part of the electrode laminate may be used as the pressed part, or a plurality of parts of the electrode laminate may be used as the pressed part.

実施形態に係る電池の斜視図である。It is a perspective view of the battery concerning an embodiment. 実施形態に係る電池の断面図である。It is a sectional view of a battery concerning an embodiment. 実施形態に係る電極体の断面図である。It is a sectional view of an electrode body concerning an embodiment. 実施形態に係る電極積層体の断面図である。It is a sectional view of an electrode layered product concerning an embodiment. 実施形態に係る電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the battery which concerns on embodiment. 実施形態に係り、電極体を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that it concerns on embodiment and forms an electrode body. 実施形態に係り、積み重ね工程で新たな電極積層体の一部を押圧する様子を上方から見た平面図である。It is the top view which looked at a mode that a part of new electrode laminated body was pressed in the stacking | stacking process concerning an embodiment from upper direction. 実施形態に係り、図7におけるA−A部分断面図である。FIG. 8 is a partial cross-sectional view taken along line A-A in FIG. 7 according to the embodiment. 比較形態に係り、積み重ね工程で新たな電極積層体の一部を押圧する様子を上方から見た平面図である。It is the top view which looked at a mode which concerns on a comparison form and presses a part of new electrode laminated body by the stacking process from upper direction. 比較形態に係り、図9におけるB−B部分断面図である。FIG. 10 is a partial cross-sectional view taken along line B-B in FIG. 9 according to a comparative example.

以下、本発明の実施形態を、図面を参照しつつ説明する。以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池1の斜視図及び断面図を示す。また、図3に電池1に収容される電極体20の断面図を、図4に電極体20を構成する電極積層体30の断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。また、電極体20の縦方向EH、横方向FH及び積層方向GHを、図3及び図2に示す方向と定めて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a perspective view and a cross-sectional view of a battery 1 according to the present embodiment. Further, FIG. 3 shows a cross-sectional view of the electrode assembly 20 accommodated in the battery 1, and FIG. 4 shows a cross-sectional view of the electrode stack 30 constituting the electrode assembly 20. Hereinafter, the battery longitudinal direction BH, the battery lateral direction CH, and the battery thickness direction DH of the battery 1 will be described as the directions shown in FIGS. 1 and 2. The longitudinal direction EH, the lateral direction FH, and the stacking direction GH of the electrode body 20 will be described as the directions shown in FIGS. 3 and 2.

電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。この電池1は、直方体箱状で金属からなる電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材70及び負極端子部材80等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。   The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, and an electric car. The battery 1 includes a battery case 10 made of metal in a rectangular box shape, an electrode body 20 housed inside the battery case 10, and a positive electrode terminal member 70 and a negative electrode terminal member 80 supported by the battery case 10. In the battery case 10, an electrolytic solution 17 is accommodated, and a part thereof is impregnated in the electrode body 20.

正極端子部材70は、電池ケース10内で電極体20のうち各正極板(第2電極板)31の正極露出部31mに接続し導通する一方、電池ケース10のケース蓋部材13を貫通して電池外部まで延びている。また、負極端子部材80は、電池ケース10内で電極体20のうち各負極板(第1電極板)41の負極露出部41mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。   The positive electrode terminal member 70 is electrically connected to the positive electrode exposed portion 31m of each positive electrode plate (second electrode plate) 31 of the electrode body 20 in the battery case 10 and penetrates the case lid member 13 of the battery case 10 It extends to the outside of the battery. Further, the negative electrode terminal member 80 is connected to the negative electrode exposed portion 41m of each negative electrode plate (first electrode plate) 41 of the electrode body 20 in the battery case 10 so as to be conductive, while penetrating the case lid member 13 It extends up to Further, a bag-like insulating film enclosure 19 made of an insulating film is disposed between the electrode body 20 and the battery case 10.

電極体20(図3参照)は、概略直方体状であり、矩形状の正極板31及び矩形状の負極板41が矩形状のセパレータ(第1セパレータ51及び第2セパレータ61)を介して交互に複数積層された積層型の電極体である。この電極体20は、後述するように、第1セパレータ51、負極板41、第2セパレータ61及び正極板31がこの順に積層された電極積層体30(図4参照)を、複数積層して一体化したものである。   The electrode body 20 (see FIG. 3) has a substantially rectangular parallelepiped shape, and the rectangular positive electrode plate 31 and the rectangular negative electrode plate 41 are alternately interposed via the rectangular separators (first separator 51 and second separator 61). It is a stacked electrode assembly in which a plurality of layers are stacked. As described later, the electrode assembly 20 is integrally formed by laminating a plurality of electrode stacks 30 (see FIG. 4) in which the first separator 51, the negative electrode plate 41, the second separator 61, and the positive electrode plate 31 are stacked in this order. It is

このうち正極板31は、矩形状のアルミニウム箔からなる正極集電箔32の両主面に、正極活物質を含む正極活物質層33,33を矩形状にそれぞれ設けてなる。正極板31のうち、図3及び図4中、左側の端部は、厚み方向(図3及び図4中、上下方向)に正極活物質層33が存在せず、正極集電箔32が厚み方向に露出した正極露出部31mとなっている。
負極板41は、矩形状の銅箔からなる負極集電箔42の両主面に、負極活物質を含む負極活物質層43,43を矩形状にそれぞれ設けてなる。負極板41のうち、図3及び図4中、右側の端部は、厚み方向(図3及び図4中、上下方向)に負極活物質層43が存在せず、負極集電箔42が厚み方向に露出した負極露出部41mとなっている。
Among them, the positive electrode plate 31 is formed by providing the positive electrode active material layers 33 and 33 including the positive electrode active material in a rectangular shape on both main surfaces of the positive electrode current collector foil 32 made of rectangular aluminum foil. In the positive electrode plate 31, the end on the left side in FIGS. 3 and 4 has no positive electrode active material layer 33 in the thickness direction (vertical direction in FIGS. 3 and 4), and the positive electrode current collector foil 32 has a thickness The positive electrode exposed portion 31m is exposed in the direction.
The negative electrode plate 41 is formed by providing negative electrode active material layers 43 and 43 including a negative electrode active material in a rectangular shape on both main surfaces of a negative electrode current collector foil 42 made of rectangular copper foil. Of the negative electrode plate 41, the end on the right side in FIGS. 3 and 4 has no negative electrode active material layer 43 in the thickness direction (vertical direction in FIGS. 3 and 4), and the negative electrode current collector foil 42 has a thickness The negative electrode exposed portion 41m is exposed in the direction.

第1セパレータ51は、正極板31とその上に配置された負極板41にそれぞれ密着した状態で、これらの正極板31と負極板41との間に介在している。この第1セパレータ51は、矩形板状でポリエチレンの多孔質膜からなるセパレータ本体52と、このセパレータ本体52の両主面に全面にわたりそれぞれ形成された多孔質の密着層53,53とからなる。この密着層53は、ポリエチレン粒子と、このポリエチレン粒子同士及びポリエチレン粒子とセパレータ本体52とを結着する結着剤とからなる。   The first separator 51 is interposed between the positive electrode plate 31 and the negative electrode plate 41 in a state of being in close contact with the positive electrode plate 31 and the negative electrode plate 41 disposed thereon. The first separator 51 is composed of a rectangular plate-shaped separator main body 52 made of a porous film of polyethylene, and porous adhesion layers 53 and 53 formed on both main surfaces of the separator main body 52, respectively. The adhesion layer 53 is made of polyethylene particles and a binder for binding the polyethylene particles to each other and the polyethylene particles and the separator main body 52.

第2セパレータ61は、負極板41とその上に配置された正極板31にそれぞれ密着した状態で、これらの負極板41と正極板31との間に介在している。この第2セパレータ61も、矩形板状でポリエチレンの多孔質膜からなるセパレータ本体62と、このセパレータ本体62の両主面に全面にわたりそれぞれ形成された多孔質の密着層63,63とからなる。この密着層63も、ポリエチレン粒子と結着剤とからなる。   The second separator 61 is interposed between the negative electrode plate 41 and the positive electrode plate 31 in a state in which the second separator 61 is in close contact with the negative electrode plate 41 and the positive electrode plate 31 disposed thereon. The second separator 61 is also composed of a separator main body 62 formed of a porous film of polyethylene in a rectangular plate shape, and porous adhesion layers 63 and 63 formed on both main surfaces of the separator main body 62 respectively. The adhesion layer 63 also comprises polyethylene particles and a binder.

次いで、上記電池1の製造方法について説明する(図5〜図8参照)。まず、「帯状正極板形成工程S1」において、切断により矩形状の正極板31となる帯状正極板31xを形成する。即ち、帯状のアルミニウム箔からなる正極集電箔32を用意し、その一方の主面に、正極活物質を含む正極ペーストを塗布し、加熱乾燥させて正極活物質層33を形成する。また、正極集電箔32の反対側の主面にも同様に上記正極ペーストを塗布し、加熱乾燥させて正極活物質層33を形成する。その後、この正極板をロールプレス機でプレスして、正極活物質層33,33の密度を高める。これにより、帯状正極板31xが形成される。   Then, the manufacturing method of the said battery 1 is demonstrated (refer FIGS. 5-8). First, in the “strip-shaped positive electrode plate forming step S1”, a strip-shaped positive electrode plate 31x to be a rectangular positive electrode plate 31 is formed by cutting. That is, a positive electrode current collector foil 32 made of a strip-like aluminum foil is prepared, and a positive electrode paste containing a positive electrode active material is applied to one main surface thereof, and dried by heating to form a positive electrode active material layer 33. Further, the above-mentioned positive electrode paste is similarly applied to the main surface on the opposite side of the positive electrode current collector foil 32 and dried by heating to form a positive electrode active material layer 33. Thereafter, the positive electrode plate is pressed by a roll press to increase the density of the positive electrode active material layers 33, 33. Thus, the strip-shaped positive electrode plate 31x is formed.

また別途、「帯状負極板形成工程S2」を行って、切断により矩形状の負極板41となる帯状負極板41xを形成する。即ち、帯状の銅箔からなる負極集電箔42を用意し、その一方の主面に、負極活物質を含む負極ペーストを塗布し、加熱乾燥させて負極活物質層43を形成する。また、負極集電箔42の反対側の主面にも同様に上記負極ペーストを塗布し、加熱乾燥させて負極活物質層43を形成する。その後、この負極板をロールプレス機でプレスして、負極活物質層43,43の密度を高める。これにより、帯状負極板41xが形成される。   In addition, separately, “strip-shaped negative electrode plate forming step S2” is performed to form a strip-shaped negative electrode plate 41x that is to be a rectangular negative electrode plate 41 by cutting. That is, a negative electrode current collector foil 42 made of a strip-shaped copper foil is prepared, and a negative electrode paste containing a negative electrode active material is coated on one main surface thereof, and dried by heating to form a negative electrode active material layer 43. Further, the above-mentioned negative electrode paste is similarly applied to the main surface on the opposite side of the negative electrode current collector foil 42 and dried by heating to form the negative electrode active material layer 43. Thereafter, the negative electrode plate is pressed by a roll press to increase the density of the negative electrode active material layers 43, 43. Thus, the strip-shaped negative electrode plate 41x is formed.

また別途、「帯状第1セパレータ形成工程S3」を行って、切断により矩形状の第1セパレータ51となる帯状第1セパレータ51xを形成する。即ち、ポリエチレンの多孔質膜からなる帯状のセパレータ本体52を用意し、このセパレータ本体52の一方の主面に、ポリエチレン粒子及び結着剤を分散媒にさせた分散液を塗布し、加熱乾燥させて、密着層53を形成する。また、セパレータ本体52の反対側の主面にも同様に上記分散液を塗布し、加熱乾燥させて密着層53を形成する。これにより、帯状第1セパレータ51xが形成される。   In addition, separately, “strip-shaped first separator forming step S3” is performed to form a strip-shaped first separator 51x that is to be a rectangular first separator 51 by cutting. That is, a strip-shaped separator main body 52 made of a porous film of polyethylene is prepared, and a dispersion liquid containing polyethylene particles and a binder as a dispersion medium is applied to one main surface of the separator main body 52, and dried by heating. The adhesion layer 53 is formed. Further, the above-mentioned dispersion is similarly applied to the main surface on the opposite side of the separator main body 52, and dried by heating to form the adhesion layer 53. Thereby, the strip-shaped first separator 51x is formed.

また別途、「帯状第2セパレータ形成工程S4」を行って、切断により矩形状の第2セパレータ61となる帯状第2セパレータ61xを形成する。即ち、帯状第1セパレータ形成工程S3と同様に、セパレータ本体62の一方の主面に、前述のポリエチレン粒子等を含む分散液を塗布し、加熱乾燥させて、密着層63を形成する。また、セパレータ本体52の反対側の主面にも同様に上記分散液を塗布し、加熱乾燥させて密着層63を形成する。これにより、帯状第2セパレータ61xが形成される。   Further, separately, the “strip second separator forming step S4” is performed to form a second strip separator 61x which is to be a rectangular second separator 61 by cutting. That is, as in the strip-like first separator formation step S3, a dispersion containing the above-described polyethylene particles and the like is applied to one main surface of the separator main body 62 and dried by heating to form the adhesion layer 63. Also, the above-mentioned dispersion is similarly applied to the main surface on the opposite side of the separator main body 52, and dried by heating to form the adhesion layer 63. Thereby, the strip-shaped second separator 61x is formed.

次に、これら帯状正極板31x、帯状負極板41x、帯状第1セパレータ51x及び帯状第2セパレータ61xを用いて、電極体製造装置100により電極体20を形成する。
まず、電極体製造装置100について説明する(図6参照)。この電極体製造装置100は、負極板供給部110と、第1セパレータ供給部120と、第2セパレータ供給部130と、正極板供給部140と、正極板切断部150と、第1ロールプレス部160と、第2ロールプレス部170と、積層体切断部180と、積層部190とを備える。
Next, an electrode assembly 20 is formed by the electrode assembly manufacturing apparatus 100 using the strip positive electrode plate 31x, the strip negative electrode plate 41x, the strip first separator 51x, and the strip second separator 61x.
First, the electrode body manufacturing apparatus 100 will be described (see FIG. 6). This electrode assembly manufacturing apparatus 100 includes a negative electrode plate supply unit 110, a first separator supply unit 120, a second separator supply unit 130, a positive electrode plate supply unit 140, a positive electrode plate cutting unit 150, and a first roll press unit. And 160, a second roll press unit 170, a laminated body cutting unit 180, and a laminated unit 190.

このうち負極板供給部110には、巻出ロール111に巻かれた帯状負極板41xが取り付けられており、この負極板供給部110から帯状負極板41xが長手方向EX(図6中、左右方向)に送り出されるようになっている。
負極板供給部110の下方には、第1セパレータ供給部120が配置されている。この第1セパレータ供給部120には、巻出ロール121に巻かれた帯状第1セパレータ51xが取り付けられており、この第1セパレータ供給部120から帯状第1セパレータ51xが長手方向EXに送り出されるようになっている。
また、負極板供給部110の上方には、第2セパレータ供給部130が配置されている。この第2セパレータ供給部130には、巻出ロール131に巻かれた帯状第2セパレータ61xが取り付けられており、この第2セパレータ供給部130から帯状第2セパレータ61xが長手方向EXに送り出されるようになっている。
Among them, a strip-like negative electrode plate 41x wound around the unwinding roll 111 is attached to the negative electrode plate feeding portion 110, and the strip-like negative electrode plate 41x extends in the longitudinal direction EX from the negative electrode plate feeding portion 110 (in FIG. Are sent out).
Below the negative electrode plate supply unit 110, a first separator supply unit 120 is disposed. A strip-shaped first separator 51x wound around the unwinding roll 121 is attached to the first separator feeding portion 120, and the strip-shaped first separator 51x is fed out from the first separator feeding portion 120 in the longitudinal direction EX. It has become.
Further, the second separator supply unit 130 is disposed above the negative electrode plate supply unit 110. A strip-shaped second separator 61x wound around the unwinding roll 131 is attached to the second separator feeding portion 130, and the strip-shaped second separator 61x is fed from the second separator feeding portion 130 in the longitudinal direction EX. It has become.

正極板供給部140には、巻出ロール141に巻かれた帯状正極板31xが取り付けられており、この正極板供給部140から帯状正極板31xが長手方向EXに送り出されるようになっている。
正極板供給部140の下流には、正極板切断部150が配置されている。この正極板切断部150は、帯状正極板31xを長手方向EXに所定間隔毎に切断して、矩形状の正極板31を形成する部位である。
A strip-like positive electrode plate 31x wound around an unwinding roll 141 is attached to the positive electrode plate feeding portion 140, and the strip-like positive electrode plate 31x is fed from the positive electrode plate feeding portion 140 in the longitudinal direction EX.
The positive electrode plate cutting unit 150 is disposed downstream of the positive electrode plate supply unit 140. The positive electrode plate cutting portion 150 is a portion for cutting the strip-shaped positive electrode plate 31 x at predetermined intervals in the longitudinal direction EX to form the rectangular positive electrode plate 31.

第1ロールプレス部160は、帯状第1セパレータ51x、帯状負極板41x及び帯状第2セパレータ61xをロールプレスにより加圧して一体化させる部位である。具体的には、第1ロールプレス部160は、第1プレスロール161と、これに間隙を介して平行に配置された第2プレスロール163とを有する。これら第1プレスロール161と第2プレスロール163との間隙において、帯状第1セパレータ51x、帯状負極板41x及び帯状第2セパレータ61xを長手方向EXに連続的に加圧し一体化させて、帯状複合体25xを形成する。   The first roll press unit 160 is a portion where the strip-shaped first separator 51 x, the strip-shaped negative electrode plate 41 x and the strip-shaped second separator 61 x are pressed by a roll press to be integrated. Specifically, the first roll press unit 160 includes a first press roll 161 and a second press roll 163 disposed in parallel to the first press roll 161 with a gap therebetween. In the gap between the first press roll 161 and the second press roll 163, the strip-shaped first separator 51x, the strip-shaped negative electrode plate 41x and the strip-shaped second separator 61x are continuously pressurized in the longitudinal direction EX and integrated Form the body 25x.

第2ロールプレス部170は、第1ロールプレス部160の下流に配置されている。この第2ロールプレス部170は、帯状複合体25x及び矩形状に切断された正極板31を加圧して一体化させる部位である。具体的には、第2ロールプレス部170は、第3プレスロール171と、これに間隙を介して平行に配置された第4プレスロール173とを有する。これら第3プレスロール171と第4プレスロール173との間隙において、帯状複合体25x及び正極板31を連続的に加圧し一体化させて、帯状電極積層体30xを形成する。   The second roll press unit 170 is disposed downstream of the first roll press unit 160. The second roll press portion 170 is a portion where the strip composite 25x and the positive electrode plate 31 cut into a rectangular shape are integrated by pressing. Specifically, the second roll press unit 170 has a third press roll 171 and a fourth press roll 173 disposed parallel to the third press roll 171 with a gap therebetween. In the gap between the third press roll 171 and the fourth press roll 173, the strip composite 25x and the positive electrode plate 31 are continuously pressed and integrated to form a strip electrode laminate 30x.

積層体切断部180は、第2ロールプレス部170の下流に配置されている。この積層体切断部180は、帯状電極積層体30xを長手方向EXに所定間隔毎に切断して、矩形状の電極積層体30を形成する部位である。   The laminate cutting unit 180 is disposed downstream of the second roll pressing unit 170. The laminate cutting portion 180 is a portion where the strip electrode laminate 30 x is cut at predetermined intervals in the longitudinal direction EX to form the rectangular electrode laminate 30.

積層部190は、複数の電極積層体30を積み重ねて電極体20を形成する部位であり、電極積層体30を載置する平坦な載置台191を有する。また、積層部190は、積み重ねた電極積層体30の一部である被押圧部30pを上方から積層方向GHに押圧する押圧装置200を備える(図6〜図8参照)。この押圧装置200は、2つの円柱状の加圧部210と、これらの加圧部210を支持する支持部220と、支持部220の中心に固定された中心軸230と、中心軸230を回動可能でかつ中心軸230を上下に移動可能な移動機構240とを有する。   The stacked portion 190 is a portion where the plurality of electrode stacked bodies 30 are stacked to form the electrode body 20, and has a flat mounting table 191 on which the electrode stacked body 30 is mounted. The stacking unit 190 also includes a pressing device 200 that presses the pressed portion 30p, which is a part of the stacked electrode stack 30, from above in the stacking direction GH (see FIGS. 6 to 8). The pressing device 200 has two cylindrical pressure parts 210, a support part 220 for supporting the pressure parts 210, a central axis 230 fixed at the center of the support part 220, and a central axis 230. And a movable mechanism 240 capable of moving the central shaft 230 up and down.

このうち、2つの加圧部210は、それぞれ、先端部210sが半球状とされた円柱状をなし、加圧部210が積層方向GHと平行となるように、かつ、加圧部210同士が所定間隔を空けた状態で支持部220に取り付けられている。
移動機構240は、中心軸230を回動可能に、かつ中心軸230を上下に(積層方向GHに)移動可能に構成されている。移動機構240により中心軸230が回動すると、中心軸230に固定された支持部220及び支持部220に固定された各加圧部210が、電極積層体30の拡がり方向IH(縦方向EH及び横方向FH)に回動する。これにより、加圧部210によって電極積層体30を押圧する部位(被押圧部30p)を拡がり方向IHに変更できる。また、移動機構240により中心軸230が上下に(積層方向GHに)移動すると、支持部220及び各加圧部210も上下に(積層方向GHに)移動する。これにより、加圧部210の先端部210sで、積み重ねた電極積層体30の一部(被押圧部30p)を上方から積層方向GHに押圧できる。
Among these, each of the two pressing parts 210 has a cylindrical shape in which the tip end part 210s has a hemispherical shape, and the pressing parts 210 are arranged so that the pressing parts 210 become parallel to the stacking direction GH. It is attached to the support part 220 in the state which spaced apart predetermined intervals.
The moving mechanism 240 is configured to be able to pivot the central axis 230 and to move the central axis 230 up and down (in the stacking direction GH). When the central shaft 230 is rotated by the moving mechanism 240, the support portion 220 fixed to the central shaft 230 and the pressing portions 210 fixed to the support portion 220 extend in the expansion direction IH of the electrode stack 30 (longitudinal direction EH and Rotate in the lateral direction FH). Thereby, the part (pressed portion 30p) for pressing the electrode stack 30 by the pressing unit 210 can be changed to the spreading direction IH. In addition, when the central shaft 230 moves up and down (in the stacking direction GH) by the moving mechanism 240, the support portions 220 and the pressing units 210 also move up and down (in the stacking direction GH). As a result, a part (the pressed portion 30p) of the stacked electrode stack 30 can be pressed from above in the stacking direction GH at the tip end portion 210s of the pressing portion 210.

この電極体製造装置100を用いた電極体20の形成に当たっては、まず「帯状複合体形成工程S5」(図5参照)において、帯状第1セパレータ51x、帯状負極板41x及び帯状第2セパレータ61xがこの順に積層されて一体化された帯状複合体25xを形成する。具体的には、負極板供給部110から搬送された帯状負極板41x、第1セパレータ供給部120から搬送され帯状第1セパレータ51x、及び、第2セパレータ供給部130から搬送された帯状第2セパレータ61xは、それぞれ第1ロールプレス部160に向かう。   In forming the electrode assembly 20 using the electrode assembly manufacturing apparatus 100, first, in the “strip-shaped complex formation step S5” (see FIG. 5), the strip-shaped first separator 51x, the strip-shaped negative electrode plate 41x and the strip-shaped second separator 61x The strip-shaped composite 25x which is laminated in this order and integrated is formed. Specifically, the strip-shaped negative electrode plate 41x transported from the negative electrode plate supply unit 110, the strip-shaped first separator 51x transported from the first separator supply unit 120, and the strip-shaped second separator transported from the second separator supply unit 130 Each 61 x is directed to the first roll press unit 160.

そして、第1ロールプレス部160の第1プレスロール161と第2プレスロール163との間隙KG1で、帯状第1セパレータ51xと帯状第2セパレータ61xとの間に帯状負極板41xが重なった状態で、これらを長手方向EXに連続的に加圧して一体化させる。これにより、帯状第1セパレータ51x、帯状負極板41x及び帯状第2セパレータ61xが互いに密着した帯状複合体25xが形成される。   Then, in a state in which the strip-shaped negative electrode plate 41x is overlapped between the strip-shaped first separator 51x and the strip-shaped second separator 61x in the gap KG1 between the first press roll 161 and the second press roll 163 of the first roll press unit 160. , These are continuously pressurized in the longitudinal direction EX to be integrated. As a result, a strip-shaped complex 25x in which the strip-shaped first separator 51x, the strip-shaped negative electrode plate 41x and the strip-shaped second separator 61x are in close contact with each other is formed.

またこれと並行して、「帯状正極板切断工程S6」を行う。即ち、正極板切断部150により、帯状正極板31xを長手方向EXに所定間隔W1毎に切断して、矩形状の正極板31を得る。   At the same time, the "strip-like positive electrode plate cutting step S6" is performed. That is, the strip-like positive electrode plate 31 x is cut at predetermined intervals W 1 in the longitudinal direction EX by the positive electrode plate cutting portion 150 to obtain the rectangular positive electrode plate 31.

次に、「帯状電極積層体形成工程S7」において、帯状複合体25xと矩形状の正極板31とが一体化された帯状電極積層体30xを得る。具体的には、帯状複合体25xの帯状第2セパレータ61xの上に、矩形状に切断された正極板31を重ねる。そして、これら帯状複合体25x及び正極板31を、第2ロールプレス部170の第3プレスロール171と第4プレスロール173との間隙KG2で加圧して一体化させる。これにより、帯状複合体25xと正極板31とが密着した帯状電極積層体30xが形成される。   Next, in the “strip electrode stack forming step S7”, a strip electrode stack 30x in which the strip composite 25x and the rectangular positive electrode plate 31 are integrated is obtained. Specifically, the positive electrode plate 31 cut in a rectangular shape is superimposed on the strip-shaped second separator 61x of the strip-shaped complex 25x. Then, the band-shaped composite 25x and the positive electrode plate 31 are integrated by applying pressure by the gap KG2 between the third press roll 171 and the fourth press roll 173 of the second roll press unit 170. Thus, a strip electrode laminate 30x in which the strip composite 25x and the positive electrode plate 31 are in close contact with each other is formed.

その後、「帯状電極積層体切断工程S8」において、積層体切断部180により、帯状電極積層体30xを長手方向EXに所定間隔W2(W2>W1)毎に切断して、矩形状の電極積層体30を得る。この電極積層体30は、図4に示したように、第1セパレータ51、負極板41、第2セパレータ61及び正極板31が、この順に積層されて一体化されている。   Thereafter, in the “strip electrode stack cutting step S8”, the strip electrode stack 30x is cut by the stack cutting portion 180 in the longitudinal direction EX at predetermined intervals W2 (W2> W1) to form a rectangular electrode stack Get thirty. In the electrode stack 30, as shown in FIG. 4, the first separator 51, the negative electrode plate 41, the second separator 61, and the positive electrode plate 31 are laminated in this order and integrated.

次に、「積み重ね工程S9」において、新たな電極積層体30(n+1)の第1セパレータ51が、既に複数(nヶ)の電極積層体30(1〜n)が積み重なった電極積層体群30zの最上層に位置する正極板31に密着するように、新たな電極積層体30(n+1)を電極積層体群30zに積み重ねるのを繰り返して、電極体20を形成する(図7及び図8参照)。
具体的には、まず、nヶの電極積層体30(1〜n)からなる電極積層体群30zの上に、即ち、電極積層体群30zのうち、直前に積み重ねたnヶ目の電極積層体30(n)の上に、新たな(n+1)ヶ目の電極積層体30(n+1)を位置合わせして載せる(載置工程S10)。
Next, in “stacking step S9”, an electrode stack in which the first separator 51 of the new electrode stack 30 (n + 1) has already been stacked with a plurality (n pieces) of electrode stacks 30 (1 to n). The electrode stack 20 is formed by repeatedly stacking new electrode stacks 30 (n + 1) on the electrode stack group 30z so as to be in close contact with the positive electrode plate 31 positioned in the uppermost layer of the group 30z (FIG. 7). And Figure 8).
Specifically, first, on the electrode stack group 30z consisting of n electrode stacks 30 (1 to n), that is, of the electrode stack group 30z, the n-th electrode stack stacked immediately before that A new (n + 1) -th electrode laminate 30 (n + 1) is aligned and placed on the body 30 (n) (placement step S10).

その後、新たな(n+1)ヶ目の電極積層体30(n+1)の一部である被押圧部30p(n+1)を積層方向GHに押圧して、新たな(n+1)ヶ目の電極積層体30(n+1)を、電極積層体群30zの最上部のnヶ目の電極積層体30(n)に密着させる(密着工程S11)。具体的には、押圧装置200の移動機構240で中心軸230を下降させることにより、中心軸230に固定された支持部220及び各加圧部210を下降させて、各加圧部210の半球状の先端部210sで電極積層体30(n+1)の一部である2つの被押圧部30p(n+1)を積層方向GHにそれぞれ押圧する。そして、新たな(n+1)ヶ目の電極積層体30(n+1)を電極積層体群30zのnヶ目の電極積層体30(n)に密着させる。   Thereafter, the pressed portion 30p (n + 1), which is a part of the new (n + 1) th electrode laminate 30 (n + 1), is pressed in the stacking direction GH, and the new (n + 1) th electrode The electrode stack 30 (n + 1) is brought into close contact with the nth electrode stack 30 (n) at the top of the electrode stack group 30z (adhesion step S11). Specifically, by lowering the central shaft 230 with the moving mechanism 240 of the pressing device 200, the support portion 220 fixed to the central shaft 230 and the pressure portions 210 are lowered to move the hemispheres of the pressure portions 210. The two pressed portions 30p (n + 1), which are a part of the electrode stack 30 (n + 1), are pressed in the stacking direction GH by the tip portion 210s of the shape. Then, the new (n + 1) th electrode stack 30 (n + 1) is brought into close contact with the nth electrode stack 30 (n) of the electrode stack group 30z.

その際、電極積層体群30zのうち、最上層のnヶ目の電極積層体30(n)において、既に押圧された被押圧部30p(n)とは、積層方向GHに一部が重ならない部位を、新たな(n+1)ヶ目の電極積層体30(n+1)の被押圧部30p(n+1)とする。なお、図7及び図8においては、新たな(n+1)ヶ目の電極積層体30(n+1)において、加圧部210により被押圧部30p(n+1)を押圧する様子を実線で示してある。   At this time, in the n-th electrode stack 30 (n) of the uppermost layer in the electrode stack 30f, a portion does not partially overlap with the pressed portion 30p (n) that has already been pressed. The portion is a pressed portion 30p (n + 1) of a new (n + 1) -th electrode stack 30 (n + 1). In FIGS. 7 and 8, in the new (n + 1) -th electrode laminate 30 (n + 1), a state in which the pressing portion 210 presses the pressed portion 30p (n + 1) is indicated by a solid line. It is shown.

具体的には、押圧装置200の移動機構240で中心軸230を図7中、時計回りに回動させることにより、中心軸230に固定された支持部220及び各加圧部210を、電極積層体30の拡がり方向IHに、図7中、時計回りに回動させる。これにより、各加圧部210の拡がり方向IHの位置が変更される。その後、前述のように、各加圧部210をそれぞれ下降させて、(n+1)ヶ目の電極積層体30(n+1)の一部である被押圧部30p(n+1)を積層方向GHに押圧する。これにより、(n+1)ヶ目の電極積層体30(n+1)の被押圧部30p(n+1)を、nヶ目の電極積層体30(n)の被押圧部30p(n)から少しずらして、(n+1)ヶ目の電極積層体30(n+1)を押圧できる。   Specifically, by rotating the central shaft 230 clockwise in FIG. 7 by the moving mechanism 240 of the pressing device 200, the support portion 220 and the pressure portions 210 fixed to the central shaft 230 are stacked. The body 30 is rotated clockwise in FIG. 7 in the spreading direction IH. Thereby, the position of the spreading direction IH of each pressing unit 210 is changed. Thereafter, as described above, each pressing portion 210 is lowered to stack the pressed portion 30p (n + 1) which is a part of the (n + 1) th electrode stack 30 (n + 1). Press to GH. As a result, the pressed portion 30p (n + 1) of the (n + 1) -th electrode laminate 30 (n + 1) is compared with the pressed portion 30p (n) of the n-th electrode laminate 30 (n). The (n + 1) -th electrode stack 30 (n + 1) can be pressed while being slightly shifted.

その後は、上述の載置工程S10及び密着工程S11を繰り返し行って、電極体20を形成する。その後、この電極体20を平面プレスして、電極積層体30同士が全面にわたり互いに密着した電極体20を形成する。   Thereafter, the mounting step S10 and the adhesion step S11 described above are repeated to form the electrode assembly 20. Thereafter, the electrode assembly 20 is flat-pressed to form the electrode assembly 20 in which the electrode stacks 30 are in close contact with each other over the entire surface.

次に、「組立工程S12」において、電池1を組み立てる。具体的には、ケース蓋部材13を用意し、これに正極端子部材70及び負極端子部材80を固設する(図1及び図2参照)。その後、電極体20のうち複数の正極板31の正極露出部31m同士を互いに重ねて、これに正極端子部材70を溶接すると共に、電極体20のうち複数の負極板41の負極露出部41m同士を互いに重ねて、これに負極端子部材80を溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。その後、この電池1について各種の検査を行う。かくして、電池1が完成する。   Next, the battery 1 is assembled in "assembly step S12". Specifically, the case lid member 13 is prepared, and the positive electrode terminal member 70 and the negative electrode terminal member 80 are fixed thereto (see FIGS. 1 and 2). Thereafter, the positive electrode exposed portions 31m of the plurality of positive electrode plates 31 of the electrode body 20 are overlapped with each other, and the positive electrode terminal member 70 is welded thereto. The negative electrode exposed portions 41m of the plurality of negative electrode plates 41 of the electrode body 20 Are mutually stacked, and the negative electrode terminal member 80 is welded to this. Next, the insulating film enclosure 19 is put on the electrode body 20, and these are inserted into the case body member 11, and the opening of the case body member 11 is closed by the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10. Thereafter, the electrolyte solution 17 is injected into the battery case 10 through the injection hole 13 h and impregnated in the electrode body 20. Thereafter, the liquid injection hole 13 h is sealed by the sealing member 15. Thereafter, various tests are performed on the battery 1. Thus, the battery 1 is completed.

以上で説明したように、電池1の製造方法では、複数の電極積層体30を積み重ねて電極体20を形成する積み重ね工程S9において、新たな電極積層体30(n+1)を電極積層体群30zに積み重ねた後、次の新たな電極積層体30(n+2)を重ねる前に、新たな電極積層体30(n+1)の一部である被押圧部30p(n+1)を押圧して、新たな電極積層体30(n+1)を電極積層体群30zに密着させる。このようにすることで、積み重ね済みの電極積層体群30zにおいて電極積層体30(1〜n)同士の間に位置ズレが生じるのを防止しながらも、電極積層体30が傷付くことを防止できる。また、新たな電極積層体30(n+1)を全面プレスするのではなく、新たな電極積層体30(n+1)の一部(被押圧部30p(n+1))のみを押圧するため、押圧装置200を小型化したり、生産速度を上げることができ、低コストで電極体20をひいては電池1を製造できる。   As described above, in the method of manufacturing the battery 1, in the stacking step S <b> 9 of stacking the plurality of electrode stacks 30 to form the electrode body 20, the new electrode stack 30 (n + 1) After stacking at 30z, the pressed portion 30p (n + 1), which is a part of the new electrode stack 30 (n + 1), is stacked before stacking the next new electrode stack 30 (n + 2). By pressing, a new electrode stack 30 (n + 1) is brought into close contact with the electrode stack 30z. In this way, it is possible to prevent the electrode stack 30 from being damaged while preventing the occurrence of positional deviation between the electrode stacks 30 (1 to n) in the stacked electrode stack group 30z. it can. Further, instead of pressing the new electrode stack 30 (n + 1) over the entire surface, only a part (pressed portion 30p (n + 1)) of the new electrode stack 30 (n + 1) is pressed. Therefore, the pressing device 200 can be downsized, and the production speed can be increased, and the electrode body 20 can be manufactured at low cost as a result.

ここで、図9及び図10に比較形態として、積み重ね工程S9において、電極積層体30の拡がり方向IH(縦方向EH及び横方向FH)の同じ部位(被押圧部30p)が繰り返し積層方向GHに押圧される場合を示す。この比較形態では、拡がり方向IHの位置が固定された4つ加圧部210により、電極積層体30の四隅近傍の所定位置(4つの被押圧部30p)を積層方向GHにそれぞれ上述の実施形態と同じ押圧力で押圧する。このように電極積層体30の被押圧部30pが積層方向GHに重なると、被押圧部30pとその周囲の部分との境界部分30rで、電極積層体30をなす正極板31、第2セパレータ61、負極板41及び第1セパレータ51が大きく変形する。すると、このようにして形成した電極体20を用いた電池1において、この変形した部位(境界部分30r)でリチウムイオンの透過性が変化するなどして、電池性能が低下することがある。   Here, as a comparative embodiment in FIGS. 9 and 10, in the stacking step S9, the same portion (pressed portion 30p) in the spreading direction IH (longitudinal direction EH and horizontal direction FH) of the electrode stack 30 is repeated in the stacking direction GH. The case where it is pressed is shown. In this comparative embodiment, the predetermined positions (four pressed portions 30p) in the vicinity of the four corners of the electrode stack 30 are each set in the stacking direction GH by the four pressing portions 210 in which the position in the spreading direction IH is fixed. Press with the same pressure as. Thus, when the pressed portion 30p of the electrode stack 30 overlaps the stacking direction GH, the positive electrode plate 31 and the second separator 61 that form the electrode stack 30 at the boundary 30r between the pressed portion 30p and the surrounding portion. The negative electrode plate 41 and the first separator 51 are largely deformed. Then, in the battery 1 using the electrode assembly 20 formed in this manner, the battery performance may be degraded due to, for example, a change in lithium ion permeability at the deformed portion (boundary portion 30r).

これに対し、本実施形態の電池1の製造方法では、電極積層体群30zの最上部の先の電極積層体30(n)において既に押圧された被押圧部30p(n)とは積層方向GHに一部が重ならない部位を、新たな電極積層体30(n+1)の被押圧部30p(n+1)として、新たな電極積層体30を押圧する(図7及び図8参照)。これにより、電極積層体群30zは、電極積層体30の拡がり方向IH(縦方向EH及び横方向FH)の同じ部位が繰り返し積層方向GHに押圧されるのを抑制でき、電極積層体30(これをなす正極板31、第2セパレータ61、負極板41及び第1セパレータ51)の一部が大きく変形するのを抑制できる。   On the other hand, in the method of manufacturing the battery 1 of the present embodiment, the pressed portion 30p (n) already pressed in the electrode stack 30 (n) at the top of the electrode stack group 30z is the stacking direction GH. A new electrode stack 30 is pressed as a portion to be pressed 30p (n + 1) of the new electrode stack 30 (n + 1) (see FIGS. 7 and 8). As a result, the electrode stack group 30z can suppress repeated pressing of the same portion in the spreading direction IH (longitudinal direction EH and horizontal direction FH) of the electrode stack 30 in the stacking direction GH. It is possible to suppress large deformation of part of the positive electrode plate 31, the second separator 61, the negative electrode plate 41 and the first separator 51).

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、本発明における第1電極板を負極板41とし、第2電極板を正極板31として説明したが、これに限られない。例えば、第1電極板を正極板31とし、第2電極板を負極板41とすることもできる。
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be appropriately modified and applied without departing from the scope of the invention.
For example, in the embodiment, the first electrode plate in the present invention is described as the negative electrode plate 41, and the second electrode plate is described as the positive electrode plate 31, but the present invention is not limited thereto. For example, the first electrode plate may be the positive electrode plate 31 and the second electrode plate may be the negative electrode plate 41.

また、実施形態では、直前に積層された先の電極積層体30(n)の被押圧部30p(n)と新たな電極積層体30(n+1)の被押圧部30p(n+1)とが一部で積層方向GHに重ならないように、新たな電極積層体30(n+1)の被押圧部30p(n+1)を少しずつズラしていく手法を例示したが、これに限られない。例えば、直前に積層された先の電極積層体30(n)の被押圧部30p(n)と新たな電極積層体30(n+1)の被押圧部30p(n+1)とが積層方向GHに全く重ならないように、新たな電極積層体30(n+1)の被押圧部30p(n+1)を変更してもよい。この場合、電極体20が形成されるまでのすべての電極積層体30の被押圧部30pが積層方向GHに全く重ならないように各被押圧部30pの位置を変えてもよいし、一部で積層方向GHに重なるようにしてもよい。   In the embodiment, the pressed portion 30p (n) of the previous electrode stack 30 (n) stacked immediately before and the pressed portion 30p (n + 1) of the new electrode stack 30 (n + 1). In this example, the method of shifting the pressed portions 30p (n + 1) of the new electrode stack 30 (n + 1) little by little so that the portions do not partially overlap the stacking direction GH is exemplified. It is not limited. For example, the pressed portion 30p (n) of the previous electrode stack 30 (n) stacked immediately before and the pressed portion 30p (n + 1) of the new electrode stack 30 (n + 1) are stacked in the stacking direction. The pressed portion 30p (n + 1) of the new electrode stack 30 (n + 1) may be changed so as not to overlap with GH at all. In this case, the positions of the pressed portions 30p may be changed so that the pressed portions 30p of all the electrode stacks 30 until the electrode body 20 is formed do not overlap at all in the stacking direction GH. It may be made to overlap in the stacking direction GH.

また、実施形態では、2つの加圧部210を用いて電極積層体30の一部(被押圧部30p)を押圧する場合(被押圧部30pが2つの部位からなる場合)を例示したが、これに限られない。例えば、1つの加圧部210を用いて電極積層体30の一部(被押圧部30p)を押圧してもよいし(この場合、被押圧部30pは1つの部位のみからなる)、3つ以上の加圧部210を用いて電極積層体30の一部(被押圧部30p)を押圧してもよい(この場合、被押圧部30pは3つ以上の部位からなる)。   Further, in the embodiment, the case where the part (the pressed portion 30p) of the electrode stack 30 is pressed using the two pressing portions 210 (the pressed portion 30p has two parts) is exemplified. It is not restricted to this. For example, one pressing portion 210 may be used to press a part (the pressed portion 30p) of the electrode stack 30 (in this case, the pressed portion 30p is formed of only one portion), or three You may press a part (to-be-pressed part 30p) of the electrode laminated body 30 using the above pressurizing part 210 (In this case, the to-be-pressed part 30p consists of three or more site | parts).

例えば、1つの加圧部210で電極積層体30を押圧する場合でも、実施形態のように、先の電極積層体30(n)の被押圧部30p(n)と新たな電極積層体30(n+1)の被押圧部30p(n+1)とが一部で積層方向GHに重ならないように、新たな電極積層体30(n+1)の被押圧部30p(n+1)を少しずつズラしていく手法を採用できる。また、先の電極積層体30(n)の被押圧部30p(n)と新たな電極積層体30(n+1)の被押圧部30p(n+1)とが積層方向GHに全く重ならないように、新たな電極積層体30(n+1)の被押圧部30p(n+1)を変更する手法を採用してもよい。   For example, even when pressing the electrode stack 30 with one pressing unit 210, as in the embodiment, the pressed portion 30p (n) of the previous electrode stack 30 (n) and the new electrode stack 30 ( The pressed portion 30p (n + 1) of the new electrode stack 30 (n + 1) is set so that the pressed portion 30p (n + 1) of n + 1) does not partially overlap in the stacking direction GH. It is possible to adopt a method of gradually shifting. In addition, the pressed portion 30p (n) of the previous electrode stack 30 (n) and the pressed portion 30p (n + 1) of the new electrode stack 30 (n + 1) do not overlap at all in the stacking direction GH. As described above, a method may be adopted in which the pressed portion 30p (n + 1) of the new electrode stack 30 (n + 1) is changed.

また、実施形態では、先端部210sが半球状である形態の加圧部210を用いて、電極積層体30の一部(被押圧部30p)を押圧したが、加圧部の形態はこれに限られない。例えば、かまぼこ状(長手方向に直交する断面が半円状)をなす加圧部を用いて、電極積層体30の一部(被押圧部30p)を押圧してもよい。   Further, in the embodiment, a part (the pressed part 30p) of the electrode stack 30 is pressed using the pressing part 210 in which the tip part 210s has a hemispherical shape, but the form of the pressing part It is not limited. For example, it is possible to press a part (the pressed portion 30p) of the electrode stack 30 by using a pressing portion having a semicylindrical shape (a cross section orthogonal to the longitudinal direction is a semicircle).

また、実施形態では、第1セパレータ51及び第2セパレータ61として、セパレータ本体52,62の両主面に、ポリエチレン粒子及び結着剤からなる密着層53,63をそれぞれ設けたセパレータを例示したが、密着層53,63はポリエチレン粒子及び結着剤からなるものに限られない。例えば、密着層53,63を結着剤のみから形成することもできる。この場合、電極体20を構成した状態において(図3参照)、負極板41と第1セパレータ51とは密着層53により接着すると共に、負極板41と第2セパレータ61とは密着層63により接着する。また、正極板31と第1セパレータ51とは密着層53により接着すると共に、正極板31と第2セパレータ61とは密着層63により接着する。   Further, in the embodiment, as the first separator 51 and the second separator 61, separators in which adhesion layers 53 and 63 made of polyethylene particles and a binder are respectively provided on both main surfaces of the separator bodies 52 and 62 are illustrated. The adhesion layers 53 and 63 are not limited to those made of polyethylene particles and a binder. For example, the adhesion layers 53 and 63 can be formed of only the binder. In this case, in a state where the electrode assembly 20 is configured (see FIG. 3), the negative electrode plate 41 and the first separator 51 are adhered by the adhesion layer 53, and the negative electrode plate 41 and the second separator 61 are adhered by the adhesion layer 63. Do. Further, the positive electrode plate 31 and the first separator 51 are adhered by the adhesion layer 53, and the positive electrode plate 31 and the second separator 61 are adhered by the adhesion layer 63.

1 電池
20 電極体
30,30(n) 電極積層体
30p,30p(n) 被押圧部
30z 電極積層体群
31 正極板(第2電極板)
41 負極板(第1電極板)
51 第1セパレータ
61 第2セパレータ
100 電極体製造装置
190 積層部
200 押圧装置
210 加圧部
EH 縦方向
FH 横方向
GH 積層方向
IH 拡がり方向
KG1,KG2 間隙
W1,W2 所定間隔
S1 帯状正極板形成工程
S2 帯状負極板形成工程
S3 帯状第1セパレータ形成工程
S4 帯状第2セパレータ形成工程
S5 帯状複合体形成工程
S6 帯状正極板切断工程
S7 帯状電極積層体形成工程
S8 帯状電極積層体切断工程
S9 積み重ね工程
S10 載置工程
S11 密着工程
S12 組立工程
DESCRIPTION OF SYMBOLS 1 Battery 20 Electrode body 30, 30 (n) Electrode laminated body 30p, 30p (n) Pressed part 30z Electrode laminated body group 31 Positive electrode plate (2nd electrode plate)
41 Negative plate (first electrode plate)
51 first separator 61 second separator 100 electrode body manufacturing device 190 stacked portion 200 pressing device 210 pressing portion EH longitudinal direction FH horizontal direction GH stacking direction IH spreading direction KG1, KG2 gap W1, W2 predetermined interval S1 strip-shaped positive electrode plate forming step S2 Strip negative electrode plate forming step S3 Strip first separator forming step S4 Strip second separator forming step S5 Strip composite forming step S6 Strip positive electrode plate cutting step S7 Strip electrode laminate forming step S8 Strip electrode laminate cutting step S9 Stacking step S10 Mounting step S11 Adhesion step S12 Assembly step

Claims (1)

第1セパレータ、第1電極板、第2セパレータ及び第2電極板が、この順に積層されて一体化された電極積層体を、複数積み重ねてなる積層型の電極体を備える電池の製造方法であって、
新たな上記電極積層体の上記第1セパレータが、既に複数の上記電極積層体が積み重なった電極積層体群の最上層に位置する上記第2電極板に密着するように、上記新たな電極積層体を上記電極積層体群に積み重ねるのを繰り返して、上記電極体を形成する積み重ね工程を備え、
上記積み重ね工程は、
上記新たな電極積層体を上記電極積層体群に積み重ねた後、次の新たな上記電極積層体を積み重ねる前に、上記新たな電極積層体の一部である被押圧部を外部から積層方向に押圧して、上記新たな電極積層体を上記電極積層体群に密着させる密着工程を有し、
上記密着工程は、
上記電極積層体群をなす複数の上記電極積層体のうち、上記新たな電極積層体と接する先の電極積層体において、既に押圧された上記被押圧部とは、上記積層方向に少なくとも一部が重ならない部位を、上記新たな電極積層体の上記被押圧部として、上記新たな電極積層体を押圧する
電池の製造方法。
A manufacturing method of a battery including a laminated electrode body in which a plurality of electrode laminates in which a first separator, a first electrode plate, a second separator, and a second electrode plate are laminated and integrated in this order are stacked. ,
The new electrode laminate such that the first separator of the new electrode laminate is in close contact with the second electrode plate positioned in the uppermost layer of the electrode laminate group in which a plurality of the electrode laminates are already stacked. Repeatedly stacking the electrode stacks on the electrode stack group to form the electrode body,
The above stacking process is
After stacking the new electrode stack on the electrode stack group and before stacking the next new electrode stack, the pressed portion which is a part of the new electrode stack is externally applied in the stacking direction A pressing step of pressing the new electrode laminate into contact with the electrode laminate group by pressing;
The above adhesion process is
Among the plurality of electrode laminates forming the electrode laminate group, in the electrode laminate at a point in contact with the new electrode laminate, at least a portion of the pressed portion already pressed in the lamination direction is The manufacturing method of the battery which presses the said new electrode laminated body as a to-be-pressed part of the said new electrode laminated body the site | part which does not overlap.
JP2017228404A 2017-11-28 2017-11-28 Battery manufacturing method Active JP6848833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017228404A JP6848833B2 (en) 2017-11-28 2017-11-28 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228404A JP6848833B2 (en) 2017-11-28 2017-11-28 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2019102140A true JP2019102140A (en) 2019-06-24
JP6848833B2 JP6848833B2 (en) 2021-03-24

Family

ID=66973996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228404A Active JP6848833B2 (en) 2017-11-28 2017-11-28 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6848833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142658A1 (en) * 2022-01-28 2023-08-03 广东利元亨智能装备股份有限公司 Electrode sheet compounding and cutting machine and electrode sheet compounding and cutting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130453A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Method and device for manufacturing bipolar battery
JP2014127273A (en) * 2012-12-25 2014-07-07 Nissan Motor Co Ltd Electrode position detection device
JP2015528629A (en) * 2013-06-28 2015-09-28 エルジー・ケム・リミテッド Method for manufacturing electrode assembly including separator cutting step
JP2017120791A (en) * 2012-03-30 2017-07-06 日本電気株式会社 Sheet-laminating device and sheet-laminating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130453A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Method and device for manufacturing bipolar battery
JP2017120791A (en) * 2012-03-30 2017-07-06 日本電気株式会社 Sheet-laminating device and sheet-laminating method
JP2014127273A (en) * 2012-12-25 2014-07-07 Nissan Motor Co Ltd Electrode position detection device
JP2015528629A (en) * 2013-06-28 2015-09-28 エルジー・ケム・リミテッド Method for manufacturing electrode assembly including separator cutting step

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142658A1 (en) * 2022-01-28 2023-08-03 广东利元亨智能装备股份有限公司 Electrode sheet compounding and cutting machine and electrode sheet compounding and cutting method

Also Published As

Publication number Publication date
JP6848833B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
US10283806B1 (en) Manufacturing method for laminated secondary battery
JP5825436B2 (en) ELECTRODE ASSEMBLY EXCELLENT IN ELECTRODE TAB CONNECTIVITY, BATTERY CELL CONTAINING THE SAME, DEVICE AND MANUFACTURING METHOD
KR101755873B1 (en) Method of manufacturing secondary battery, and secondary battery
JP5987119B2 (en) Method for manufacturing electrode assembly
KR101531234B1 (en) High-Speed Staking Apparatus for Secondary Battery and Method of the same
JP6787241B2 (en) Manufacturing method of electrode laminate and battery
JP7162236B2 (en) battery
US10897058B2 (en) Secondary battery, apparatus for manufacturing the same, and method of manufacturing the same
JP6210352B2 (en) Lamination device including electrode guide
CN110521020B (en) Method of making an electric vehicle battery cell with a polymer frame support
JP7368052B2 (en) Cell manufacturing equipment and method
KR20140035646A (en) Cell stacking method for secondary battery and cell stack for using the same
KR101799570B1 (en) Electrode Assembly Folded in the Bi-Direction and Lithium Secondary Battery Comprising the Same
JP2012129098A (en) Manufacturing method and manufacturing apparatus of secondary battery
JP5992105B2 (en) Electrode assembly, battery and device including the same
KR101291063B1 (en) Stacking system and method for Secondary Battery
WO2014141640A1 (en) Laminate exterior cell
JP2016219274A (en) Method for manufacturing electrode assembly and electrode laminate
JP6848833B2 (en) Battery manufacturing method
KR101590991B1 (en) Electrode Assembly Having Separators Attached to Each Other and Battery Cell Comprising the Same
JP2018018712A (en) Method for manufacturing secondary battery
KR20200145375A (en) Manufacturing method of electrode assembly
JP2019102196A (en) Manufacturing method of battery
JP6373208B2 (en) Thin battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6848833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151