JP2019100942A - 移動体、測位システム、測位プログラム及び測位方法 - Google Patents

移動体、測位システム、測位プログラム及び測位方法 Download PDF

Info

Publication number
JP2019100942A
JP2019100942A JP2017234153A JP2017234153A JP2019100942A JP 2019100942 A JP2019100942 A JP 2019100942A JP 2017234153 A JP2017234153 A JP 2017234153A JP 2017234153 A JP2017234153 A JP 2017234153A JP 2019100942 A JP2019100942 A JP 2019100942A
Authority
JP
Japan
Prior art keywords
unit
mobile
map
carrier phase
gnss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017234153A
Other languages
English (en)
Inventor
嵩明 加藤
Takaaki Kato
嵩明 加藤
崇紘 辻井
Takahiro Tsujii
崇紘 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2017234153A priority Critical patent/JP2019100942A/ja
Priority to EP18886021.7A priority patent/EP3722835A4/en
Priority to CN201880077325.6A priority patent/CN111406226A/zh
Priority to PCT/JP2018/038670 priority patent/WO2019111549A1/ja
Priority to US16/768,083 priority patent/US11366237B2/en
Publication of JP2019100942A publication Critical patent/JP2019100942A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Abstract

【課題】搬送波位相を含むGNSSによる高精度な自己位置推定を高速に行うことが可能な移動体、測位システム、測位プログラム及び測位方法を提供する。【解決手段】移動体210は、センサ211と、マップ位置推定部231と、相対位置推定部232と、GNSS受信部212と、絶対位置推定部234とを具備する。センサは周囲の情報を取得する。マップ位置推定部231は、センサの出力に基づいてローカルマップにおける自己の位置を推定する。GNSS受信部212は、第1の搬送波位相距離を用いたGNSS測位情報を受信する。絶対位置推定部234は、第1の搬送波位相距離を用いたGNSS測位情報と、他の移動体220において受信された第2の搬送波位相距離を用いたGNSS測位情報と、相対位置に基づいて自己の絶対位置を推定する。【選択図】図6

Description

本技術は、人工衛星から受信する電波を利用して自己位置の推定を行う移動体、測位システム、測位プログラム及び測位方法に関する。
に関する。
自動車等の移動体は、GNSS(Global Navigation Satellite System)によって自己位置を測定することができる。自動運転等の分野においては自己位置の精度が重要であり、GNSSのさらなる測定精度向上が求められている。例えば特許文献1及び2には、自動車等の自己位置推定に関する技術が開示されている。
近年、注目されている自己位置測定方法として、「搬送波位相距離を用いた高精度なGNSS」がある。この技術は衛星から受信する搬送波の位相を測定し、基準局から移動局に搬送波位相データを送信する。移動局は自己の測定した位相と基準局から送信された搬送波位相データを用いて自己の位置を特定する。
代表的な搬送波位相を用いた手法であるRTK−GPSでは、測位結果の二重差を利用することで通常のGPSで生じる電離層による外乱や時計ずれ等の誤差をキャンセルすることが可能であり、屋外では数mm精度での高精度の測位が可能である。また、別の手法として、電離層による外乱や時計ずれを事前に推定することで、基地局を利用せずに高精度なGNSS測位を行う手法(PPP−RTK)も存在する。
特開2002−013940号公報 特開2005−031082号公報
上述した搬送波位相を用いたGNSSでは、初期化として整数バイアスの推定が必要となる。基準局と移動局の受信機がそれぞれ搬送波を受信すると、その位相は測定できるが、受信機と衛星の間の波数(整数バイアス)は不明であり、この整数バイアスを解くことによって自己位置測定が可能となる。
整数バイアスを解くために採られる方法は二つがある。一つは位置が既知の基準局をアンカーとして利用する方法である。しかしながら、この方法では十分な数の基準局を準備することが困難である。この問題を解決するための手法としてPPP−RTKが存在するが、共に、推定を安定させるために複数の移動観測が必要であり、分単位の時間が必要になる。この推定は、例えばトンネルの中に入って位置を見失うと都度必要な処理である。
推定を高速化するために、剛体固定された複数の受信機によって観測する方法である。しかしながら、この方法では受信機同士の数が十分に離れる必要があり、受信機を搭載するデバイスによる物理的制約が存在する。
以上のような事情に鑑み、本技術の目的は、搬送波位相を含むGNSSによる高精度な自己位置推定を高速に行うことが可能な移動体、測位システム、測位プログラム及び測位方法を提供することにある。
上記目的を達成するため、本技術の一形態に係る移動体は、センサと、マップ位置推定部と、相対位置推定部と、相対位置推定部と、GNSS受信部と、絶対位置推定部とを具備する。
上記センサは周囲の情報を取得する。
上記マップ位置推定部は、上記センサの出力に基づいてローカルマップにおける自己の位置を推定する。
上記GNSS受信部は、第1の搬送波位相距離を用いたGNSS測位情報を受信する。
上記絶対位置推定部は、上記第1の搬送波位相距離を用いたGNSS測位情報と、上記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する。
この構成によれば、移動体は、ローカルマップを他の移動体と共有することにより他の移動体との相対位置を推定することができ、その相対位置と、GNSS受信部で受信した搬送波位相距離を用いたGNSS測位情報(第1の搬送波位相距離を用いたGNSS測位情報)及び他の移動体で受信された搬送波位相距離を用いたGNSS測位情報(第2の搬送波位相距離を用いたGNSS測位情報)を用いて自己の絶対位置を推定することができる。これにより、搬送波位相距離を用いたGNSS測位を実施する上で高速に、高精度な自己位置推定が可能である。
上記センサは、画像の撮像が可能な画像センサであり、
上記マップ位置推定部は、上記画像センサによって撮像された第1の撮像画像において特徴点を抽出し、上記ローカルマップに含まれるランドマークと、上記移動体の移動による上記特徴点の変化から上記ローカルマップにおける自己の位置を推定してもよい。
移動体は、画像センサによって撮像された第1の撮像画像に基づいてローカルマップにおける自己の位置を推定することが可能である。
上記相対位置推定部は、上記マップ位置推定部によって推定された上記ローカルマップにおける自己の位置と、上記他の移動体から受信した上記ローカルマップにおける上記他の移動体の位置から上記相対位置を推定する。
移動体はローカルマップにおける他の移動体の位置を他の移動体から受信し、移動体と他の移動体の相対位置を推定することができる。
上記マップ位置推定部は、上記他の移動体が備える画像センサによって撮像された第2の撮像画像を上記他の移動体から受信し、上記ローカルマップにおける上記他の移動体の位置をさらに推定し、
上記相対位置推定部は、上記マップ位置推定部によって推定された上記ローカルマップにおける自己の位置と、上記ローカルマップにおける上記他の移動体の位置から上記相対位置を推定してもよい。
移動体は、ローカルマップにおける他の移動体の位置を他の移動体から受信する代わりに他、の移動体によって撮像された第2の撮像画像を他の移動体から受信し、ローカルマップにおける他の移動体の位置を推定してもよい。
上記特徴点の時間変化と、上記マップ位置推定部によって推定された上記ローカルマップにおける自己の位置を用いて上記ランドマークを作成するマップ記述部をさらに具備してもよい。
この構成によれば、移動体による搬送波位相距離を用いたGNSS測位を継続することにより、マップ位置の推定に利用するランドマークの数を増加させることが可能となる。
上記第1の撮像画像と上記第2の撮像画像は、同時刻に撮像された画像であってもよい。
第1の撮像画像と第2の撮像画像は、同一のランドマークを含む画像であれば異なる時刻に撮像された画像であってもよく、同時刻に撮像された画像であってもよい。
上記移動体は、上記第1の搬送波位相距離を用いたGNSS測位情報から算出される候補位置を、搬送波位相距離を用いない一般的な単独測位に基づいて選択する初期絶対位置推定部をさらに具備してもよい。
GNSS受信部は、搬送波位相距離を用いたGNSS測位に加えて単独測位(一般的なGNSS測位)を行うことができ、その測位結果から移動体の大まかな位置を推定することができる。初期絶対位置推定部は、移動体の大まかな位置から搬送波位相距離を用いたGNSS測位による候補位置を絞り込むことができる。
上記移動体は、上記第2の搬送波位相距離を用いたGNSS測位情報を受信する通信部をさらに具備し、
上記通信部は、上記他の移動体から上記第2の搬送波位相距離を用いたGNSS測位情報を受信してもよい。
移動体は、他の移動体で受信された第2の搬送波位相距離を用いたGNSS測位情報を、車間通信により他の移動体から直接受信してもよい。
上記移動体は、上記第2の搬送波位相距離を用いたGNSS測位情報を受信する通信部をさらに具備し、上記通信部は、サーバーから上記第2の搬送波位相距離を用いたGNSS測位情報を受信してもよい。
他の移動体は、受信した第2の搬送波位相を用いたGNSS測位情報をサーバーに送信することができ、移動体は第2の搬送波位相を用いたGNSS測位情報をサーバーから受信してもよい。
上記目的を達成するため、本技術の一形態に係る測位システムは、第1の移動体と、第2の移動体とを具備する。
上記第1の移動体は、周囲の情報を取得する第1のセンサと、上記第1のセンサの出力に基づいてローカルマップにおける自己の位置を推定する第1のマップ位置推定部と、上記ローカルマップにおける第2の移動体の位置と上記ローカルマップにおける自己の位置から上記第2の移動体に対する自己の相対位置を推定する相対位置推定部と、第1の搬送波位相距離を用いたGNSS測位情報を受信する第1のGNSS受信部と、上記第2の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報を受信する第1の通信部と、上記第1の搬送波位相距離を用いたGNSS測位情報と、上記第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部とを備える。
上記第2の移動体は、周囲の情報を取得する第2のセンサと、上記第2の搬送波位相距離を用いたGNSS測位情報を受信する第2のGNSS受信部と、上記第2の搬送波位相距離を用いたGNSS測位情報を上記第1の通信部に送信する第2の通信部とを備える。
上記第1の移動体は、上記第2の搬送波位相距離を用いたGNSS測位情報を受信する第1の通信部をさらに備え、
上記第2の移動体は、上記第2の搬送波位相距離を用いたGNSS測位情報を上記第1の通信部に送信する第2の通信部をさらに備えてもよい。
上記第2の移動体は、上記第2のセンサの出力に基づいて上記ローカルマップにおける上記第2の移動体の位置を推定する第2のマップ位置推定部をさらに具備してもよい。
上記目的を達成するため、本技術の一形態に係る測位システムは、第1の移動体と、第2の移動体と、サーバーとを具備する。
上記第1の移動体は、周囲の情報を取得する第1のセンサと、第1の搬送波位相距離を用いたGNSS測位情報を受信する第1のGNSS受信部とを備える。
上記第2の移動体は、周囲の情報を取得する第2のセンサと、第2の搬送波位相距離を用いたGNSS測位情報を受信する第2のGNSS受信部とを備える。
上記サーバーは、上記第1のセンサの出力に基づいてローカルマップにおける上記第1の移動体の位置を推定し、上記第2のセンサの出力に基づいて上記ローカルマップにおける上記第2の移動体の位置を推定するマップ位置推定部と、上記ローカルマップにおける上記第1の移動体の位置と、上記ローカルマップにおける上記第2の移動体の位置から、上記第2の移動体に対する上記第1の移動体の相対位置を推定する相対位置推定部と、上記第1の搬送波位相距離を用いたGNSS測位情報と、上記第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて上記第1の移動体の絶対位置を推定する絶対位置推定部とを備える。
上記目的を達成するため、本技術の一形態に係る測位プログラムは、マップ位置推定部と、相対位置推定部と、絶対位置推定部として情報処理装置を機能させる。
上記マップ位置推定部は、周囲の情報を取得するセンサの出力に基づいてローカルマップにおける自己の位置を推定する。
上記相対位置推定部は、上記ローカルマップにおける他の移動体の位置と上記ローカルマップにおける自己の位置から上記他の移動体に対する自己の相対位置を推定する。
上記絶対位置推定部は、GNSS受信部によって受信された第1の搬送波位相距離を用いたGNSS測位情報と、上記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する。
上記目的を達成するため、本技術の一形態に係る測位方法は、マップ位置推定部が、周囲の情報を取得するセンサの出力に基づいてローカルマップにおける自己の位置を推定し、
相対位置推定部が、上記ローカルマップにおける他の移動体の位置と上記ローカルマップにおける自己の位置から上記他の移動体に対する自己の相対位置を推定し、
絶対位置推定部が、GNSS受信部によって受信された第1の搬送波位相距離を用いたGNSS測位情報と、上記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する。
以上のように、本技術によれば、搬送波位相距離を用いたGNSS測位による高精度な自己位置推定を高速に行うことが可能な移動体、測位システム、測位プログラム及び測位方法を提供することが可能である。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
搬送波位相距離を用いたGNSSの概要を示す模式図である。 搬送波位相距離を用いたGNSSでの搬送波の位相差を示す模式図である。 搬送波位相距離を用いたGNSSによる移動局の候補位置を示す模式図である。 本実施形態に係る測位システムの構成を示す模式図である。 本技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な機能の構成例を示すブロック図である。 本実施形態に係る測位システムの機能的構成を示すブロック図である。 同測位システムが備えるローカルマップの模式図である。 同測位システムが備える第1移動体によって撮像される第1撮像画像と第1撮像画像から抽出される特徴点の例である。 同測位システムが備える第1移動体の移動による第1撮像画像の変化を示す模式図である 同測位システムにおける、第1移動体とランドマーク点の位置関係を示す模式図である。 同測位システムにおける、第1移動体と第2移動体のローカルマップの共有による相対位置の推定を示す模式図である。 同測位システムにおける、第1移動体及び第2移動体の絶対位置の推定を示す模式図である。 同測位システムにおける、ローカルマップの作成方法を示す模式図である。 本実施形態に係る、他の構成を有する測位システムの機能的構成を示すブロック図である。 本実施形態に係る、他の構成を有する測位システムの構成を示す模式図である。 同測位システムの機能的構成を示すブロック図である。
本実施形態に係る測位システムについて説明する。
[RTK−GPSについて]
搬送波位相を用いたGNSSの一例であるRTK−GPS(Real Time Kinematic−Global Positioning System)について説明する。
図1は、一般的なRTK−GPSの模式図である。このRTK−GPSは、衛星1010、基準局1020及び移動局1030から構成されている。基準局1020は地上の特定の位置に固定されており、移動局1030は自動車等の移動体である。
同図に示すように、基準局1020及び移動局1030はそれぞれ衛星1010から搬送波Hを受信し、位相を測定する。基準局1020は、自己の位置及び位相の測定結果を含む搬送波位相データDを無線通信等によって移動局1030に送信する。移動局1030は、自己の位相の測定結果と受信した搬送波位相データから自己の位置を測定することができる。
基準局1020及び移動局1030の一つの衛星1010に対する搬送波位相の差(一重差)を利用することにより、衛星1010の時計誤差が打ち消される。また、基準局1020及び移動局1030の一重差の異なる二つの衛星1010間での差分(二重差)を利用することにより、時計誤差に加え、対流圏及び電離層等による遅延が打ち消される。これにより、屋外で数mm精度の高精度で位置を測定することが可能となる。
具体的には、移動局1030の位置を決定するためには、整数バイアスの推定が必要となる。図2は、搬送波の位相差を示す模式図である。同図に示すように、基準局1020と移動局1030での位相差Sが測定された場合、移動局1030は、基準局1020に対する位相差がSとなる位置に存在するが、移動局1030と衛星1010の間の波数(整数バイアス)は不明である。このため、移動局1030は、図2に示すように基準局1020に対する位相差がSとなる候補位置のいずれかに存在する。
図3は、基準局1020に対する位相差がSとなる候補位置Pを示す模式図であり、衛星1010Aから送信される搬送波線を線L1で示し、衛星1010Bから送信される搬送波を線L2で示す。線L1の間隔及び線L2の間隔(搬送波の波長)は例えば19cmである。
基準局1020が線L1と線L2の交点の位置にあり、基準局1020と移動局1030の間で搬送波の位相差がゼロの場合、移動局1030は基準局1020に対して位相差がゼロとなる位置にあり、即ち、線L1と線L2の交点が候補位置Pとなる。基準局1020の位置が既知であれば、移動局1030が存在する候補位置Pを時間経過による位置変化を観測することで特定することが可能である。
このように、一般的なRTK−GPSでは、位置が既知の基準局から基準局の位置及び位相の測定結果を含む搬送波位相データを取得することによって移動局は自己の位置を推定することが可能である。しかしながら、RTK−GPSを広範囲にわたって利用する場合には基準局の設置が容易ではない。また、別の技術として電離層の影響などを事前に計算することで基地局無しでの搬送波位相を用いたGNSS測位も存在するが、共に整数値バイアスを取るために分単位の推定が必要である。
本実施形態に係る測位システムでは、高速に搬送波位相距離を用いた高精度なGNSS測位による自己位置推定が可能である。
[測位システムについて]
図4は、本実施形態に係る測位システム200の構成を示す模式図である。同図に示すように、測位システム200は、第1移動体210と第2移動体220から構成されている。なお、測位システム200はより多数の移動体から構成されてもよい。
第1移動体210及び第2移動体220は、移動可能なものであればよく、典型的には自動車である。また、第1移動体210及び第2移動体220は例えば、ドローン、農業機械又は電子機器等であってもよい。
第1移動体210は、第1画像センサ211、第1GNSS受信部212、第1通信部213及び第1情報処理部214を有する。また、第2移動体220は、第2画像センサ221、第2GNSS受信部222、第2通信部223及び第2情報処理部224を備える。
第1画像センサ211は、第1移動体210の周囲、典型的には前方を撮像可能なセンサである。第1画像センサ211は撮像した画像(以下、第1撮像画像)を第1情報処理部214に出力する。第1GNSS受信部212は、搬送波位相距離を用いたGNSS測位情報及び単独測位情報を衛星から受信し、第1情報処理部214に出力する。
第1通信部213は、第2通信部223との間で通信を行う。通信方法は特に限定されないが、例えば無線通信である。第1情報処理部214は、第1画像センサ211、第1GNSS受信部212及び第1通信部213に接続され、これらの出力に基づいて後述する情報処理を実行する。
第2画像センサ221は、第2移動体220の周囲、典型的には前方を撮像可能なセンサである。第2画像センサ221は撮像した画像(以下、第2撮像画像)を第2情報処理部224に出力する。第2GNSS受信部222は、搬送波位相距離を用いたGNSS測位情報及び単独測位情報を衛星から受信し、第2情報処理部224に出力する。
第2通信部223は、第1通信部213との間で通信を行う。第2情報処理部214は、第2画像センサ221、第2GNSS受信部222及び第2通信部223に接続され、これらの出力に基づいて述する情報処理情報処理を実行する。
なお、第1通信部213と第2通信部223は、図4に示すように直接に通信を行ってもよく、通信を媒介する機器や設備を介して通信を行っても良い。
[移動体の具体例]
第1移動体210及び第2移動体220は移動体制御システムを備えるものとすることができる。図5は、本技術が適用され得る移動体制御システムの一例である車両制御システム100の概略的な機能の構成例を示すブロック図である。
なお、以下、車両制御システム100が設けられている車両を他の車両と区別する場合、自車又は自車両と称する。
車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。
なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。
入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。
データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。
例えば、データ取得部102は、自車の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。
また、例えば、データ取得部102は、自車の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、自車の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
さらに、例えば、データ取得部102は、自車の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。
通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基準局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である
例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。
さらに、例えば、通信部103は、基準局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、自車と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。
車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、自車に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
出力制御部105は、自車の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
出力部106は、自車の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。
駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
駆動系システム108は、自車の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。
ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。
記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、自車の周囲の情報を含むローカルマップ等の地図データを記憶する。
自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、自車の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、自車の衝突警告、又は、自車のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143を備える。
車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の外部の情報の検出処理を行う。例えば、車外情報検出部141は、自車の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、自車の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。
車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の状態の検出処理を行う。検出対象となる自車の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。
状況分析部133は、自車及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。
マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、自車の周囲の信号の位置及び状態、自車の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。
状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の認識処理を行う。例えば、状況認識部153は、自車の状況、自車の周囲の状況、及び、自車の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、自車の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。
認識対象となる自車の状況には、例えば、自車の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる自車の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。
状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の予測処理を行う。例えば、状況予測部154は、自車の状況、自車の周囲の状況、及び、運転者の状況等の予測処理を行う。
予測対象となる自車の状況には、例えば、自車の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる自車の周囲の状況には、例えば、自車の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための自車の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した自車の行動を示すデータを動作計画部163等に供給する
動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための自車の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した自車の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。
動作制御部135は、自車の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。
緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための自車の動作を計画する。緊急事態回避部171は、計画した自車の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。
加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
方向制御部173は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
車両制御システム100は以上のような構成を有する。第1移動体210及び第2移動体220が備える第1画像センサ211、第2画像センサ221、第1GNSS受信部212及び第2GNSS受信部222は車両制御システム100が備えるデータ取得部102に含まれる。
また、第1移動体210及び第2移動体220が備える第1通信部213及び第2通信部223は、車両制御システム100が備える通信部103に相当する。さらに第1移動体210及び第2移動体220が備える第1情報処理部214及び第2情報処理部214は車両制御システム100が備える自己位置推定部に相当する。
なお、車両制御システム100の構成は一例であり、第1移動体210及び第2移動体220は後述する搬送波位相距離を含むGNSS測位が実現できるものであればよく、必ずしも車両制御システム100と同一の構成を有するものでなくてもよい。
[測位システムの機能的構成]
図6は、測位システム200の機能的構成を示すブロック図である。
同図に示すように、第1移動体210は、第1画像センサ211、第1GNSS受信部212、第1マップ位置推定部231、相対位置推定部232、初期絶対位置推定部233、絶対位置推定部234、マップ記述部235及びローカルマップ236を備える。
また、第2移動体220は、第2画像センサ221、第2GNSS受信部222、第2マップ位置推定部241及び絶対位置受信部242を備える。
図7はローカルマップ236の概要を示す模式図である。同図に示すように、ローカルマップ236にはランドマーク点Mが含まれている。ランドマーク点Mは、画像において特徴的な、三次元座標が既知の点である。また、ローカルマップ236にはランドマーク点Mを特定の方向から見た特徴点の二次元座標も含まれている。ランドマーク点Mは予め設定されていてもよく、後述するようにマップ記述部235によって設定されてもよい。
第1マップ位置推定部231は、ローカルマップ236に対する第1移動体210の位置(以下、第1マップ位置)を推定する。マップ位置推定部231は、SLAM(Simultaneous Localization And Mapping)を利用して第1マップ位置を推定することができる。
具体的には、第1マップ位置推定部231は、第1画像センサ211によって撮像された第1撮像画像において特徴点を抽出する。図8は第1撮像画像Gと第1マップ位置推定部231によって抽出される特徴点Rを示す模式図である。
第1マップ位置推定部231は、任意の画像処理によって特徴点を抽出することができる。さらに、第1マップ位置推定部231は、抽出した特徴点Rと、ローカルマップ236に含まれる特徴点(特定の方向から見たランドマーク点M)をマッチングする。
また、第1マップ位置推定部231は、第1移動体210の移動による、特徴点の移動を算出する。図9は、第1撮像画像G1及び第1撮像画像G2を示す模式図である。第1撮像画像G2は第1撮像画像G1の次のフレームである。第1撮像画像G1及び第1撮像画像G2に示す枠Fは、被写体の同一範囲を示している。
同図に示すように、第1移動体210の移動に伴って第1撮像画像は変化し、特徴点も移動する。この移動量及び移動方向は、第1画像センサ211と被写体の位置関係によって異なる。
図10は、第1移動体210とランドマーク点Mの位置関係を示す模式図である。第1マップ位置推定部231は、同図に示すようにランドマーク点Mの三次元座標と第1移動体210の移動に伴う特徴点の変化から第1マップ位置を特定することができる。
なお、第1マップ位置推定部231は、ビジュアルオドメトリ等のSLAM以外の手法によってマップ位置を指定することも可能である。第1マップ位置推定部231は推定した第1マップ位置を相対位置推定部232に供給する。
また、第2移動体220において第2マップ位置推定部241は、ローカルマップ236に対する第2移動体220の位置(以下、第2マップ位置)を推定する。第2マップ位置推定部241は、第2通信部223を介して第1移動体210からローカルマップ236を取得することができる。
第2マップ位置推定部241は、第1マップ位置推定部231と同様に第2画像センサ221によって撮像された第2撮像画像において特徴点を抽出し、抽出した特徴点と、ローカルマップ236に含まれる特徴点をマッチングする。さらに、第2マップ位置推定部241は、ランドマーク点Mの三次元座標と第2移動体220の移動に伴う特徴点の変化から第2マップ位置を推定することができる。
第2マップ位置推定部241は、推定した第2マップ位置を第2通信部223を介して相対位置推定部232に供給する。
相対位置推定部232は、第1移動体210と第2移動体220の相対位置を推定する。相対位置推定部232は、第1マップ位置と第2マップ位置から第1移動体210と第2移動体220の相対位置を推定することができる。
図11は、ローカルマップ236の共有による相対位置の推定を示す模式図である。同図に示すように相対位置推定部232は、ローカルマップ236におけるランドマーク点Mに対する第1移動体210及び第2移動体220のそれぞれの位置関係から、第1移動体210と第2移動体220の相対位置を推定することができる。相対位置推定部232は推定した相対位置を絶対位置推定部234に供給する。
第1GNSS受信部212は、測定した搬送波位相距離を含むGNSS測位情報(以下、第1搬送波位相距離を用いたGNSS測位情報)を初期絶対位置推定部233に供給する。また、第1GNSS受信部212は、測定した単独測位情情報も初期絶対位置推定部233に供給する。
初期絶対位置推定部233は、単独測位情情報に基づいて第1搬送波位相距離を用いたGNSS測位情報から算出される候補位置(図3参照)を選択する。初期絶対位置推定部233は、単独測位情情報から得られる第1移動体210の大まかな存在位置から遠い候補位置を除外し、第1移動体の大まかな存在位置に近い候補位置を選択することができる。初期絶対位置推定部233は選択した候補位置と第1搬送波位相距離を用いたGNSS測位情情報を絶対位置推定部234に出力する。
第2移動体220において、第2GNSS受信部222は、測定した搬送波位相距離を用いたGNSS測位情情報(以下、第2搬送波位相距離を用いたGNSS測位情報)を第2通信部223及び第1通信部213を介して絶対位置推定部234に供給する。
絶対位置推定部234は、第1移動体210及び第2移動体220の絶対位置を推定する。絶対位置推定部234は、第1移動体210と第2移動体220の相対位置、第1搬送波位相距離を用いたGNSS測位情報及び第2搬送波位相距離を用いたGNSS測位情報に基づいて、第1移動体210及第2移動体220の絶対位置を推定することができる。
図12は、絶対位置推定部234による第1移動体210及び第2移動体220の絶対位置の推定方法を示す模式図である。同図における候補位置P1は、第1GNSS受信部212の候補位置であり、第1GNSS受信部212によって測定された搬送波の位相と同じ位相となる位置である。同図における候補位置P2は、第2GNSS受信部222の候補位置であり、第2GNSS受信部222によって測定された搬送波の位相と同じ位相となる位置である。
同図に示すように、候補位置P1と候補位置P2が重複する位置P3が特定されると、整数バイアスの解が得られ、絶対位置推定部234は第1GNSS受信部212と第2GNSS受信部222の絶対位置、即ち第1移動体210と第2移動体220の絶対位置を推定することができる。
絶対位置推定部234は推定した第1移動体210の絶対位置をマップ記述部235に供給する。また、絶対位置推定部234は、推定した第2移動体220の絶対位置を第2通信部223を介して絶対位置受信部242に供給する。
絶対位置受信部242が第1移動体210から第2移動体220の絶対位置を受信することで、第2移動体220は自己の絶対位置を取得することができる。
マップ記述部235は、後述するように第1移動体210の絶対位置及びマップ相対位置を用いてローカルマップ236に情報を追加することができる。
測位システム200は以上のようにして第1移動体210及び第2移動体220の絶対位置を推定する。上記のように、測位システム200は、第1移動体210及び第2移動体220の相対位置を利用することによって整数バイアスを解消することが可能であり、高速な搬送波位相距離を用いたGNSS測位が可能となる。
なお、上記説明では、第1移動体210が備える絶対位置推定部234が第1移動体210と第2移動体220の絶対位置を推定し、第2移動体220に絶対位置を伝達するとしたが、測位システム200の構成はこれに限られない。第2移動体220も第1移動体210と同様の構成を有し、第1マップ位置と第1搬送波位相距離を用いたGNSS測位情報を第1移動体210から取得して、自己の絶対位置を推定してもよい。
また、第1移動体210と第2移動体220は第1通信部213と第2通信部223を介して通信するとしたが、第1通信部213と第2通信部223はサーバーを介して通信してもよい。例えば、第2通信部223は第2搬送波位相距離を用いたGNSS測位情報と第2マップ位置をサーバーに送信し、第1通信部213はサーバーから第2搬送波位相距離を用いたGNSS測位情報と第2マップ位置を受信してもよい。
また、ローカルマップ236もサーバーが備え、第1移動体210が第1通信部213を介してサーバーから取得し、利用してもよい。
さらに、第1マップ位置推定部231及び第2マップ位置推定部241は、第1画像センサ211及び第2画像センサ221によって撮像された撮像画像とローカルマップを用いて第1マップ位置と第2マップ位置を推定するとしたが、これに限られない。
第1移動体210及び第2移動体220は画像センサ以外の周囲情報検出センサ(上述のLiDAR等)を備え、第1マップ位置推定部231及び第2マップ位置推定部241はその出力とローカルマップを用いて第1マップ位置と第2マップ位置を推定してもよい。
[マップ位置推定部及びマップ記述部について]
図13は、第1マップ位置推定部231とマップ記述部235によるローカルマップ236の作成方法を示す模式図である。
同図に示すように、第1マップ位置推定部231は、第1画像センサ211から取得した第1撮像画像から特徴点を抽出し、抽出した特徴点とローカルマップ236に含まれる特徴点をマッチング(St1)する。
続いて、第1マップ位置推定部231は、特徴点のマッチング結果に基づいて、ローカルマップ236における第1移動体210のポーズ(位置及び向き)を推定する(St2)。第1マップ位置推定部231は、推定した第1移動体210のポーズをローカルマップ236に供給する。
マップ記述部235は、撮像画像間のフレーム間での特徴点の移動量から、第1移動体210の移動による視差を推定し(St3)、第1移動体210の絶対位置及び第1マップ位置と視差に基づいて特徴点の3次元空間における位置、即ちランドマーク点を作成する。マップ記述部235は、作成したランドマーク点をローカルマップ236に記述し、ローカルマップ236を更新する。
第1マップ位置推定部231及びマップ記述部235は以上のようにしてローカルマップ236を作成することができる。
[撮像時刻について]
上述のように、第1マップ位置推定部231及び第2マップ位置推定部241は、第1撮像画像及び第2撮像画像に含まれるランドマーク点Mを利用して第1マップ位置及び第2マップ位置を推定する。また、相対位置推定部232は、第1マップ位置及び第2マップ位置に基づいて第1移動体210と第2移動体220の相対位置を推定する。
ここで、第1撮像画像及び第2撮像画像は、特定のランドマーク点Mを含むものであればよく、第1撮像画像と第2撮像画像は同時に撮像されたものでなくてもよい。即ち、第1画像センサ211が視野にランドマーク点Mが含まれた状態で第1撮像画像を撮像し、一定時間後に第2画像センサ221が視野に当該ランドマーク点Mが含まれた状態で第2撮像画像を撮像してもよい。
この場合であっても、特定時刻の第1マップ位置における第1搬送波位相距離を用いたGNSS測位情報と、異なる時刻の第2マップ位置における第2搬送波位相距離を用いたGNSS測位情報に基づいて、第1移動体210及び第2移動体220の絶対位置を推定することが可能である。
[測位システムの他の構成]
本実施形態に係る測位システムは以下のような構成であってもよい。図14は本実施形態に係る測位システム300の機能的構成を有する模式図である。なお、測位システム300の構成において上記測位システム200と同様の構成については同一の符号を付し、説明を省略する。同図に示すように、第1移動体210は第1マップ位置推定部231に代えてマップ位置推定部251を備えている。
マップ位置推定部251は、第1撮像画像とローカルマップ236から第1マップ位置を推定する。また、マップ位置推定部251は、第2移動体220から第2画像センサ221によって撮像された第2撮像画像を取得し、第2撮像画像とローカルマップ236から第2マップ位置を推定する。
マップ位置推定部251は、推定した第1マップ位置と第2マップ位置を相対位置推定部232に供給する。このように、第2移動体220から第1移動体210に第2撮像画像を送信し、第1移動体210において第2マップ位置の推定を行ってもよい。
また、本実施形態に係る測位システムは、第1移動体210及び第2移動体220及びサーバーによって実現されてもよい。図15は、第1移動体210、第2移動体220及びサーバー260を備える測位システム400の模式図である。なお、測位システム400の構成において上記測位システム200と同様の構成については同一の符号を付し、説明を省略する。
同図に示すように、第1移動体210及び第2移動体220は、第1通信部213及び第2通信部223を介してそれぞれサーバー260に接続されている。図16は、測位システム400の機能的構成を示す模式図である。
第1移動体210は、第1画像センサ211、第1GNSS受信部212及び絶対位置受信部215を備え、第2移動体220は第2画像センサ221、第2GNSS受信部222及び絶対位置受信部225を備える。
サーバー260は、マップ位置推定部251、相対位置推定部232、初期絶対位置推定部233、絶対位置推定部234、マップ記述部235及びローカルマップ236を備える。
この構成においては第1画像センサ211によって撮像された第1撮像画像及び第2画像センサ221によって撮像された第2撮像画像はマップ位置推定部251に送信され、マップ位置推定部251によって第1マップ位置及び第2マップ位置が推定される。
また、第1GNSS受信部212によって受信された単独測位情報及び第1搬送波位相距離を用いたGNSS測位情報は初期絶対位置推定部233を介して絶対位置推定部234に送信される。さらに、第2GNSS受信部222によって受信された第2搬送波位相距離を用いたGNSS測位情報は絶対位置推定部234に送信される。
絶対位置推定部234は、第1移動体210及び第2移動体220の相対位置と、第1搬送波位相距離を用いたGNSS測位情報及び第2搬送波位相距離を用いたGNSS測位情報に基づいて、第1移動体210及び第2移動体220の絶対位置を推定することができる。
第1移動体210の絶対位置は、サーバー260から絶対位置受信部215に送信され、第2移動体220の絶対位置は、サーバー260から絶対位置受信部225に送信される。このようにして、第1移動体210及び第2移動体220は自己の絶対位置を取得することができる。
また、第1移動体210及び第2移動体220の少なくとも一方はマップ位置推定部を備え、撮像画像に代えて第1マップ位置及び第2マップ位置を相対位置推定部232に供給してもよい。
なお、本技術は以下のような構成もとることができる。
(1)
周囲の情報を取得するセンサと、
上記センサの出力に基づいてローカルマップにおける自己の位置を推定するマップ位置推定部と、
上記ローカルマップにおける他の移動体の位置と上記ローカルマップにおける自己の位置から上記他の移動体に対する自己の相対位置を推定する相対位置推定部と、
第1の搬送波位相距離を用いたGNSS測位情報を受信するGNSS受信部と、
上記第1の搬送波位相距離を用いたGNSS測位情報と、上記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部と
を具備する移動体。
(2)
上記(1)に記載の移動体であって、
上記センサは、画像の撮像が可能な画像センサであり、
上記マップ位置推定部は、上記画像センサによって撮像された第1の撮像画像において特徴点を抽出し、上記ローカルマップに含まれるランドマークと、上記移動体の移動による上記特徴点の変化から上記ローカルマップにおける自己の位置を推定する
移動体。
(3)
上記(2)に記載の移動体であって、
上記相対位置推定部は、上記マップ位置推定部によって推定された上記ローカルマップにおける自己の位置と、上記他の移動体から受信した上記ローカルマップにおける上記他の移動体の位置から上記相対位置を推定する
移動体。
(4)
上記(2)に記載の移動体であって、
上記マップ位置推定部は、上記他の移動体が備える画像センサによって撮像された第2の撮像画像を上記他の移動体から受信し、上記ローカルマップにおける上記他の移動体の位置をさらに推定し、
上記相対位置推定部は、上記マップ位置推定部によって推定された上記ローカルマップにおける自己の位置と、上記ローカルマップにおける上記他の移動体の位置から上記相対位置を推定する
移動体。
(5)
上記(2)から(4)のうちいずれか一つに記載の移動体であって、
上記特徴点の時間変化と、上記マップ位置推定部によって推定された上記ローカルマップにおける自己の位置を用いて上記ランドマークを作成するマップ記述部
をさらに具備する移動体。
(6)
上記(4)に記載の移動体であって、
上記第1の撮像画像と上記第2の撮像画像は、同時刻に撮像された画像である
移動体。
(7)
上記(1)から(6)のうちいずれか一つに記載の移動体であって、
上記移動体は、第1の搬送波位相距離を用いたGNSS測位情報から算出される候補位置を、単独測位に基づいて選択する初期絶対位置推定部をさらに具備する
移動体。
(8)
上記(1)から(7)のうちいずれか一つに記載の移動体であって、
上記第2の搬送波位相距離を用いたGNSS測位情報を受信する通信部をさらに具備し、
上記通信部は、上記他の移動体から上記第2の搬送波位相距離を用いたGNSS測位情報を受信する
移動体。
(9)
上記(1)から(7)のうちいずれか一つに記載の移動体であって、
上記第2の搬送波位相距離を用いたGNSS測位情報を受信する通信部をさらに具備し、
上記通信部は、サーバーから上記第2の搬送波位相距離を用いたGNSS測位情報を受信する
移動体。
(10)
周囲の情報を取得する第1のセンサと、上記第1のセンサの出力に基づいてローカルマップにおける自己の位置を推定する第1のマップ位置推定部と、上記ローカルマップにおける第2の移動体の位置と上記ローカルマップにおける自己の位置から上記第2の移動体に対する自己の相対位置を推定する相対位置推定部と、第1の搬送波位相距離を用いたGNSS測位情報を受信する第1のGNSS受信部と、上記第1の搬送波位相距離を用いたGNSS測位情報と、上記第2の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部とを備える第1の移動体と、
周囲の情報を取得する第2のセンサと、上記第2の搬送波位相距離を用いたGNSS測位情報を受信する第2のGNSS受信部とを備える第2の移動体と
を具備する測位システム。
(11)
上記(10)に記載の測位システムであって、
上記第1の移動体は、上記第2の搬送波位相距離を用いたGNSS測位情報を受信する第1の通信部をさらに備え、
上記第2の移動体は、上記第2の搬送波位相距離を用いたGNSS測位情報を上記第1の通信部に送信する第2の通信部をさらに備える
測位システム。
(12)
上記(10)又は(11)に記載の測位システムであって、
上記第2の移動体は、上記第2のセンサの出力に基づいて上記ローカルマップにおける上記第2の移動体の位置を推定する第2のマップ位置推定部をさらに具備する
測位システム。
(13)
周囲の情報を取得する第1のセンサと、第1の搬送波位相距離を用いたGNSS測位情報を受信する第1のGNSS受信部とを備える第1の移動体と、
周囲の情報を取得する第2のセンサと、第2の搬送波位相距離を用いたGNSS測位情報を受信する第2のGNSS受信部とを備える第2の移動体と、
上記第1のセンサの出力に基づいてローカルマップにおける上記第1の移動体の位置を推定し、上記第2のセンサの出力に基づいて上記ローカルマップにおける上記第2の移動体の位置を推定するマップ位置推定部と、上記ローカルマップにおける上記第1の移動体の位置と、上記ローカルマップにおける上記第2の移動体の位置から、上記第2の移動体に対する上記第1の移動体の相対位置を推定する相対位置推定部と、上記第1のRTK−GPS測位情報と、上記第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて上記第1の移動体の絶対位置を推定する絶対位置推定部とを備えるサーバーと
を具備する測位システム。
(14)
周囲の情報を取得するセンサの出力に基づいてローカルマップにおける自己の位置を推定するマップ位置推定部と、
上記ローカルマップにおける他の移動体の位置と上記ローカルマップにおける自己の位置から上記他の移動体に対する自己の相対位置を推定する相対位置推定部と、
GNSS受信部によって受信された第1の搬送波位相距離を用いたGNSS測位情報と、上記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部と
として情報処理装置を機能させる
測位プログラム。
(15)
マップ位置推定部が、周囲の情報を取得するセンサの出力に基づいてローカルマップにおける自己の位置を推定し、
相対位置推定部が、上記ローカルマップにおける他の移動体の位置と上記ローカルマップにおける自己の位置から上記他の移動体に対する自己の相対位置を推定し、
絶対位置推定部が、GNSS受信部によって受信された第1の搬送波位相距離を用いたGNSS測位情報と、上記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、上記相対位置に基づいて自己の絶対位置を推定する
測位方法。
200、300、400…測位システム
210…第1移動体
211…第1画像センサ
212…第1GNSS受信部
213…第1通信部
214…第1情報処理部
220…第2移動体
221…第2画像センサ
222…第2GNSS受信部
223…第2通信部
224…第情報処理部
231…第1マップ位置推定部
232…相対位置推定部
233…初期絶対位置推定部
234…絶対位置推定部
235…マップ記述部
236…ローカルマップ
241…第2マップ位置推定部
242…絶対位置受信部
260…サーバー

Claims (15)

  1. 周囲の情報を取得するセンサと、
    前記センサの出力に基づいてローカルマップにおける自己の位置を推定するマップ位置推定部と、
    前記ローカルマップにおける他の移動体の位置と前記ローカルマップにおける自己の位置から前記他の移動体に対する自己の相対位置を推定する相対位置推定部と、
    第1の搬送波位相距離を用いたGNSS(Global Navigation Satellite System)測位情報を受信するGNSS受信部と、
    前記第1の搬送波位相距離を用いたGNSS測位情報と、前記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、前記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部と
    を具備する移動体。
  2. 請求項1に記載の移動体であって、
    前記センサは、画像の撮像が可能な画像センサであり、
    前記マップ位置推定部は、前記画像センサによって撮像された第1の撮像画像において特徴点を抽出し、前記ローカルマップに含まれるランドマークと、前記移動体の移動による前記特徴点の変化から前記ローカルマップにおける自己の位置を推定する
    移動体。
  3. 請求項2に記載の移動体であって、
    前記相対位置推定部は、前記マップ位置推定部によって推定された前記ローカルマップにおける自己の位置と、前記他の移動体から受信した前記ローカルマップにおける前記他の移動体の位置から前記相対位置を推定する
    移動体。
  4. 請求項2に記載の移動体であって、
    前記マップ位置推定部は、前記他の移動体が備える画像センサによって撮像された第2の撮像画像を前記他の移動体から受信し、前記ローカルマップにおける前記他の移動体の位置をさらに推定し、
    前記相対位置推定部は、前記マップ位置推定部によって推定された前記ローカルマップにおける自己の位置と、前記ローカルマップにおける前記他の移動体の位置から前記相対位置を推定する
    移動体。
  5. 請求項2に記載の移動体であって、
    前記特徴点の時間変化と、前記マップ位置推定部によって推定された前記ローカルマップにおける自己の位置を用いて前記ランドマークを作成するマップ記述部
    をさらに具備する移動体。
  6. 請求項4に記載の移動体であって、
    前記第1の撮像画像と前記第2の撮像画像は、同時刻に撮像された画像である
    移動体。
  7. 請求項1に記載の移動体であって、
    前記移動体は、前記第1の搬送波位相距離を用いたGNSS測位情報から算出される候補位置を、単独測位に基づいて選択する初期絶対位置推定部をさらに具備する
    移動体。
  8. 請求項1に記載の移動体であって、
    前記第2の搬送波位相距離を用いたGNSS測位情報を受信する通信部をさらに具備し、
    前記通信部は、前記他の移動体から前記第2の搬送波位相距離を用いたGNSS測位情報を受信する
    移動体。
  9. 請求項1に記載の移動体であって、
    前記第2の搬送波位相距離を用いたGNSS測位情報を受信する通信部をさらに具備し、
    前記通信部は、サーバーから前記第2の搬送波位相距離を用いたGNSS測位情報を受信する
    移動体。
  10. 周囲の情報を取得する第1のセンサと、前記第1のセンサの出力に基づいてローカルマップにおける自己の位置を推定する第1のマップ位置推定部と、前記ローカルマップにおける第2の移動体の位置と前記ローカルマップにおける自己の位置から前記第2の移動体に対する自己の相対位置を推定する相対位置推定部と、第1の搬送波位相距離を用いたGNSS測位情報を受信する第1のGNSS受信部と、前記第1の搬送波位相距離を用いたGNSS測位情報と、前記第2の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、前記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部とを備える第1の移動体と、
    周囲の情報を取得する第2のセンサと、前記第2の搬送波位相距離を用いたGNSS測位情報を受信する第2のGNSS受信部とを備える第2の移動体と
    を具備する測位システム。
  11. 請求項10に記載の測位システムであって、
    前記第1の移動体は、前記第2の搬送波位相距離を用いたGNSS測位情報を受信する第1の通信部をさらに備え、
    前記第2の移動体は、前記第2の搬送波位相距離を用いたGNSS測位情報を前記第1の通信部に送信する第2の通信部をさらに備える
    測位システム。
  12. 請求項10に記載の測位システムであって、
    前記第2の移動体は、前記第2のセンサの出力に基づいて前記ローカルマップにおける前記第2の移動体の位置を推定する第2のマップ位置推定部をさらに具備する
    測位システム。
  13. 周囲の情報を取得する第1のセンサと、第1の搬送波位相距離を用いたGNSS測位情報を受信する第1のGNSS受信部とを備える第1の移動体と、
    周囲の情報を取得する第2のセンサと、第2の搬送波位相距離を用いたGNSS測位情報を受信する第2のGNSS受信部とを備える第2の移動体と、
    前記第1のセンサの出力に基づいてローカルマップにおける前記第1の移動体の位置を推定し、前記第2のセンサの出力に基づいて前記ローカルマップにおける前記第2の移動体の位置を推定するマップ位置推定部と、前記ローカルマップにおける前記第1の移動体の位置と、前記ローカルマップにおける前記第2の移動体の位置から、前記第2の移動体に対する前記第1の移動体の相対位置を推定する相対位置推定部と、前記第1の搬送波位相距離を用いたGNSS測位情報と、前記第2の搬送波位相距離を用いたGNSS測位情報と、前記相対位置に基づいて前記第1の移動体の絶対位置を推定する絶対位置推定部とを備えるサーバーと
    を具備する測位システム。
  14. 周囲の情報を取得するセンサの出力に基づいてローカルマップにおける自己の位置を推定するマップ位置推定部と、
    前記ローカルマップにおける他の移動体の位置と前記ローカルマップにおける自己の位置から前記他の移動体に対する自己の相対位置を推定する相対位置推定部と、
    GNSS受信部によって受信された第1の搬送波位相距離を用いたGNSS測位情報と、前記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、前記相対位置に基づいて自己の絶対位置を推定する絶対位置推定部と
    として情報処理装置を機能させる
    測位プログラム。
  15. マップ位置推定部が、周囲の情報を取得するセンサの出力に基づいてローカルマップにおける自己の位置を推定し、
    相対位置推定部が、前記ローカルマップにおける他の移動体の位置と前記ローカルマップにおける自己の位置から前記他の移動体に対する自己の相対位置を推定し、
    絶対位置推定部が、GNSS受信部によって受信された第1の搬送波位相距離を用いたGNSS測位情報と、前記他の移動体において受信された第2の搬送波位相距離を用いたGNSS測位情報と、前記相対位置に基づいて自己の絶対位置を推定する
    測位方法。
JP2017234153A 2017-12-06 2017-12-06 移動体、測位システム、測位プログラム及び測位方法 Pending JP2019100942A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017234153A JP2019100942A (ja) 2017-12-06 2017-12-06 移動体、測位システム、測位プログラム及び測位方法
EP18886021.7A EP3722835A4 (en) 2017-12-06 2018-10-17 MOVABLE BODY, POSITIONING SYSTEM, POSITIONING PROGRAM AND POSITIONING METHOD
CN201880077325.6A CN111406226A (zh) 2017-12-06 2018-10-17 移动物体、定位系统、定位程序和定位方法
PCT/JP2018/038670 WO2019111549A1 (ja) 2017-12-06 2018-10-17 移動体、測位システム、測位プログラム及び測位方法
US16/768,083 US11366237B2 (en) 2017-12-06 2018-10-17 Mobile object, positioning system, positioning program, and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234153A JP2019100942A (ja) 2017-12-06 2017-12-06 移動体、測位システム、測位プログラム及び測位方法

Publications (1)

Publication Number Publication Date
JP2019100942A true JP2019100942A (ja) 2019-06-24

Family

ID=66750477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234153A Pending JP2019100942A (ja) 2017-12-06 2017-12-06 移動体、測位システム、測位プログラム及び測位方法

Country Status (5)

Country Link
US (1) US11366237B2 (ja)
EP (1) EP3722835A4 (ja)
JP (1) JP2019100942A (ja)
CN (1) CN111406226A (ja)
WO (1) WO2019111549A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005687A1 (ja) * 2019-07-08 2021-01-14 三菱電機株式会社 位置推定装置および位置推定方法
CN113242597B (zh) * 2021-05-13 2023-06-02 北斗星通智联科技有限责任公司 位姿信息的确定方法、装置及终端设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286858A (ja) * 1994-04-20 1995-10-31 Hitachi Ltd 障害物検知装置及び障害物検知装置を備えるナビゲーション装置
US6282486B1 (en) 2000-04-03 2001-08-28 International Business Machines Corporation Distributed system and method for detecting traffic patterns
US7110882B2 (en) 2003-07-07 2006-09-19 Robert Bosch Gmbh Method for improving GPS integrity and detecting multipath interference using inertial navigation sensors and a network of mobile receivers
JP2009257763A (ja) * 2006-06-30 2009-11-05 Nec Corp 車輌用位置推定装置、車輌用位置推定方法、および車輌用位置推定プログラム
US20080243378A1 (en) 2007-02-21 2008-10-02 Tele Atlas North America, Inc. System and method for vehicle navigation and piloting including absolute and relative coordinates
JP4807376B2 (ja) * 2008-05-07 2011-11-02 トヨタ自動車株式会社 移動体間干渉測位装置及び方法
JP2012211843A (ja) * 2011-03-31 2012-11-01 Daihatsu Motor Co Ltd 位置補正装置および車車間通信システム
CN105745693B (zh) * 2013-11-18 2017-08-08 三菱电机株式会社 车车间通信装置
US20160327653A1 (en) 2014-02-03 2016-11-10 Board Of Regents, The University Of Texas System System and method for fusion of camera and global navigation satellite system (gnss) carrier-phase measurements for globally-referenced mobile device pose determination
EP2966477B1 (en) * 2014-07-09 2021-08-11 ANavS GmbH Method for determining the position and attitude of a moving object using low-cost receivers
US10753757B2 (en) * 2015-09-30 2020-08-25 Sony Corporation Information processing apparatus and information processing method
JP2017181109A (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 受信機、測位システム、車両及び測位方法
US20170285637A1 (en) * 2016-03-31 2017-10-05 GM Global Technology Operations LLC Driving assistance methods and systems
WO2018060313A1 (en) * 2016-09-28 2018-04-05 Tomtom Global Content B.V. Methods and systems for generating and using localisation reference data
US10430968B2 (en) * 2017-03-14 2019-10-01 Ford Global Technologies, Llc Vehicle localization using cameras

Also Published As

Publication number Publication date
US11366237B2 (en) 2022-06-21
EP3722835A4 (en) 2020-11-25
EP3722835A1 (en) 2020-10-14
CN111406226A (zh) 2020-07-10
WO2019111549A1 (ja) 2019-06-13
US20200309963A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019111702A1 (ja) 情報処理装置、情報処理方法、およびプログラム
JP2019045892A (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
WO2019035300A1 (ja) 車両走行制御装置、および車両走行制御方法、並びにプログラム
WO2019130945A1 (ja) 情報処理装置、情報処理方法、プログラム、及び移動体
US11915452B2 (en) Information processing device and information processing method
US11100675B2 (en) Information processing apparatus, information processing method, program, and moving body
WO2019073920A1 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
US20200272834A1 (en) Information processing apparatus, information processing method, program, and mobile object
US11501461B2 (en) Controller, control method, and program
WO2019098002A1 (ja) 情報処理装置、情報処理方法、プログラム、及び移動体
WO2019026715A1 (ja) 制御装置、および制御方法、プログラム、並びに移動体
US11200795B2 (en) Information processing apparatus, information processing method, moving object, and vehicle
WO2019098081A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、車両
WO2019044571A1 (ja) 画像処理装置、および画像処理方法、プログラム、並びに移動体
WO2019082670A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
JPWO2019181284A1 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
WO2019039281A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
JP2019061603A (ja) 情報処理装置、移動装置、および方法、並びにプログラム
US20200230820A1 (en) Information processing apparatus, self-localization method, program, and mobile body
JP2019045364A (ja) 情報処理装置、自己位置推定方法、及び、プログラム
WO2019111549A1 (ja) 移動体、測位システム、測位プログラム及び測位方法
US20220277556A1 (en) Information processing device, information processing method, and program
WO2019097884A1 (ja) 情報処理装置と管理装置および方法とプログラム
US20200357284A1 (en) Information processing apparatus and information processing method
WO2020090250A1 (ja) 画像処理装置と画像処理方法およびプログラム