JP2019100841A - Tree diameter measurement device and measurement method - Google Patents

Tree diameter measurement device and measurement method Download PDF

Info

Publication number
JP2019100841A
JP2019100841A JP2017231612A JP2017231612A JP2019100841A JP 2019100841 A JP2019100841 A JP 2019100841A JP 2017231612 A JP2017231612 A JP 2017231612A JP 2017231612 A JP2017231612 A JP 2017231612A JP 2019100841 A JP2019100841 A JP 2019100841A
Authority
JP
Japan
Prior art keywords
tree
diameter
unit
laser
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017231612A
Other languages
Japanese (ja)
Other versions
JP7061868B2 (en
Inventor
渡辺 浩
Hiroshi Watanabe
浩 渡辺
遥 嶋元
Haruka Shimamoto
遥 嶋元
浩尚 村松
Hirohisa Muramatsu
浩尚 村松
清彦 水口
Kiyohiko Mizuguchi
清彦 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Tekku Kk
Nishimu Electronics Industries Co Inc
C Tech Corp
Original Assignee
C Tekku Kk
Nishimu Electronics Industries Co Inc
C Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Tekku Kk, Nishimu Electronics Industries Co Inc, C Tech Corp filed Critical C Tekku Kk
Priority to JP2017231612A priority Critical patent/JP7061868B2/en
Publication of JP2019100841A publication Critical patent/JP2019100841A/en
Application granted granted Critical
Publication of JP7061868B2 publication Critical patent/JP7061868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

To achieve a tree diameter measurement device that enables an easy operation and simple configuration to correctly measure a diameter of a tree upon conducting laser irradiation with respect to the tree to measure the diameter of the tree.SOLUTION: A tree diameter measurement device, which measures a diameter of a tree, comprises: a rod-like part 4 that extends from a device main body, and has a tip part abuttable with the tree; a range finding-purpose laser irradiation unit 11 that irradiates the tree with laser light; a laser light reception unit 13 that receives the reflecting laser light from the tree; a drive unit that causes the range finding-purpose laser irradiation unit a bobbing action; a trigger part (a switch part) 3 that causes the bobbing action of the range finding-purpose laser irradiation unit to start; and an analysis unit 22 that calculates a diameter of the tree on the basis of an angle to be measured by reflection light from the bobbing action of the range finding-purpose laser irradiation unit, and the shortest distance to be obtained by abutting the road-like part with the tree.SELECTED DRAWING: Figure 2

Description

本発明は、樹木の直径を測定する測定装置に関し、特に測定するに際して、簡便な操作で正確な測定を可能とする樹木径測定装置及び樹木径測定方法に関する。   The present invention relates to a measuring device for measuring the diameter of a tree, and more particularly to a tree diameter measuring device and a tree diameter measuring method capable of performing accurate measurement with a simple operation at the time of measurement.

樹木径測定装置には、樹木を挟むことで樹木径を測定する装置が提案されている。この種の樹木径測定装置は、例えば特許文献1乃至特許文献3の樹木径測定器に示されるように、一対の挟み体で樹木を挟むように配置し、挟み体同士の距離を測定することで樹木の直径を測定する。   As a tree diameter measuring device, a device for measuring a tree diameter by sandwiching a tree is proposed. For example, as shown in the tree diameter measuring devices of Patent Documents 1 to 3, for example, the tree diameter measuring device of this type is disposed so as to sandwich the tree with a pair of sandwiching members, and the distance between the sandwiching members is measured. Measure the diameter of trees with

また、特許文献4の三次元測定対象物の形態調査方法には、樹木に対してレーザ光を照射し、レーザ光による多数の反射点の各点を三次元座標化された点として取得し、これらをコンピュータ上で解析することで、樹木の形態調査を行う方法が開示されている。   Further, in the method of investigating the form of a three-dimensional measurement object according to Patent Document 4, a tree is irradiated with a laser beam, and each point of a large number of reflection points by the laser beam is acquired as a three-dimensional coordinate point There is disclosed a method of conducting tree shape investigation by analyzing these on a computer.

特公平7−72688号公報Japanese Examined Patent Publication 7-72688 特開平2−78901号公報Unexamined-Japanese-Patent No. 2-78901 特開2010−243383号公報JP, 2010-243383, A 特開2014−232111号公報JP, 2014-232111, A

特許文献1乃至特許文献3に記載の樹木径測定器によれば、一対の挟み体で樹木を一本一本挟み込む必要があるため、測定作業が煩雑になるという問題点があった。   According to the tree diameter measuring device described in Patent Document 1 to Patent Document 3, since it is necessary to sandwich a tree one by one with a pair of sandwiching members, there is a problem that the measurement operation becomes complicated.

特許文献4に記載の三次元測定対象物の形態調査方法によれば、樹木から取得した三次元座標化された点に関して解析するので、処理が複雑になり大掛かりな装置になるという問題点があった。   According to the method of investigating the form of the three-dimensional measurement object described in Patent Document 4, there is a problem that processing becomes complicated and a large-scaled device is obtained because analysis is performed on the three-dimensional coordinate point acquired from the tree. The

本発明は上記実情に鑑みて提案されたもので、樹木に対してレーザ照射を行って樹木の直径を測定するに際し、簡便な操作且つ簡単な構成で直径を正確に測定することができる樹木径測定装置及び樹木径測定方法を提供することを目的としている。   The present invention has been proposed in view of the above situation, and when measuring the diameter of a tree by irradiating a tree with a laser, the diameter of the tree can be measured accurately by a simple operation and a simple configuration. It aims at providing a measuring device and a tree diameter measuring method.

上記目的を達成するため請求項1の発明は、樹木の直径を測定する樹木径測定装置において、
装置本体から伸長し前記樹木に先端部が当接可能な棒状部と、
前記樹木に対してレーザ光を照射する測距用レーザ照射部と、
前記樹木から反射するレーザ光を受光するレーザ受光部と、
前記測距用レーザ照射部を首振り動作させる駆動部と、
前記駆動部の首振り動作を開始させるスイッチ部と、
測距用レーザの首振り動作からの反射光で計測する角度と、前記棒状部を前記樹木に当接させて得られる最短距離とにより、前記樹木の直径を算出する解析部と、
を備えたことを特徴としている。
In order to achieve the above object, the invention of claim 1 relates to a tree diameter measuring device for measuring the diameter of a tree,
A rod-like portion which extends from the device main body and whose tip can abut on the tree;
A distance measuring laser irradiating unit for irradiating the tree with a laser beam;
A laser light receiving unit that receives laser light reflected from the tree;
A driving unit that swings the laser irradiation unit for distance measurement;
A switch unit for starting an oscillating operation of the drive unit;
An analysis unit that calculates the diameter of the tree from the angle measured by the reflected light from the swinging motion of the distance measurement laser and the shortest distance obtained by bringing the rod portion into contact with the tree;
It is characterized by having.

請求項2の発明は、樹木の直径を測定する樹木径測定装置において、
前記樹木に対してレーザ光を照射する測距用レーザ照射部と、前記樹木との最短距離を計測するためのレーザ光を照射する補正用レーザ照射部と、前記樹木から反射するレーザ光を受光するレーザ受光部とを有するレーザ測距部と、
前記測距用レーザ照射部を首振り動作させる駆動部と、
前記駆動部の首振り動作を開始させるスイッチ部と、
測距用レーザの首振り動作からの反射光で計測する角度と前記最短距離により、前記樹木の直径を算出する解析部と、
を備えたことを特徴としている。
The invention of claim 2 relates to a tree diameter measuring device for measuring the diameter of a tree,
A distance measuring laser irradiating unit for irradiating the tree with a laser beam, a correction laser irradiating unit for irradiating a laser beam for measuring the shortest distance to the tree, and a laser beam reflected from the tree are received A laser distance measuring unit having a laser light receiving unit;
A driving unit that swings the laser irradiation unit for distance measurement;
A switch unit for starting an oscillating operation of the drive unit;
An analysis unit that calculates the diameter of the tree from the angle measured by the reflected light from the swinging motion of the distance measurement laser and the shortest distance;
It is characterized by having.

請求項3の発明は、請求項1又は請求項2に記載の樹木測定装置において、
前記駆動部はモータで構成されるとともに、前記スイッチ部はトリガスイッチで構成され、スイッチのオンで前記モータに通電し自動的に前記首振り動作を行うことを特徴としている。
The invention of claim 3 is the tree measurement device according to claim 1 or 2.
The drive unit is configured by a motor, and the switch unit is configured by a trigger switch. When the switch is turned on, the motor is energized and the swing operation is automatically performed.

請求項4の発明は、請求項3の樹木測定装置において、
前記スイッチ部は、引き金状のスイッチで構成されることを特徴としている。
The invention of claim 4 relates to the tree measuring apparatus according to claim 3;
The switch unit is characterized by comprising a trigger switch.

請求項5の発明は、請求項1又は請求項2に記載の樹木径測定装置において、
前記首振り動作は、前記レーザ光の照射先が樹木中心から外側端に動作し始め、前記外側端から反対側の外側端に動作して元の位置に戻る動作であることを特徴としている。
The invention of claim 5 is the tree diameter measuring device according to claim 1 or 2.
The swinging motion is characterized in that the irradiation destination of the laser light starts to move from the center of the tree to the outer end, and moves from the outer end to the opposite outer end to return to the original position.

請求項6の発明は、請求項1又は請求項2に記載の樹木径測定装置において、
前記首振り動作は、前記レーザ光の照射先が樹木の一方の外側端の外側から始まり、他方の外側端で終了することを特徴としている。
The invention of claim 6 relates to the tree diameter measuring device according to claim 1 or 2.
The swinging motion is characterized in that the irradiation destination of the laser light starts from the outside of one outer end of the tree and ends at the other outer end.

請求項7の発明は、請求項1又は請求項2に記載の樹木径測定装置において、
前記解析部は、樹木種類に応じた角度と前記樹木径測定装置との最短距離に対応する直径のマップを備え、選択された樹木種類により前記マップを参照して直径を補正することを特徴としている。
The invention of claim 7 relates to the tree diameter measuring device according to claim 1 or 2.
The analysis unit includes a map of an angle corresponding to a kind of tree and a diameter corresponding to the shortest distance to the tree diameter measuring device, and corrects the diameter with reference to the map according to the selected tree kind. There is.

請求項8の樹木径測定方法は、樹木径測定装置を用いて樹木の直径を測定する方法であって、
前記樹木に対して前記樹木径測定装置に設けた測距用レーザを首振り動作させながら照射して首振り角度を取得する角度取得手順と、
前記樹木と前記樹木径測定装置との最短距離を測定する最短距離測定手順と、
前記首振り角度及び前記最短距離から前記樹木の直径を算出する直径算出手順と、
を含むことを特徴としている。
The tree diameter measuring method according to claim 8 is a method of measuring the diameter of a tree using a tree diameter measuring device,
An angle acquisition procedure for acquiring a swing angle by irradiating the distance measuring laser provided in the tree diameter measuring device with respect to the tree while swinging movement;
A shortest distance measuring procedure for measuring the shortest distance between the tree and the tree diameter measuring device;
A diameter calculation procedure for calculating the diameter of the tree from the swing angle and the shortest distance;
It is characterized by including.

請求項9の発明は、請求項8の樹木径測定方法において、
前記最短距離の測定は、前記樹木に対して前記樹木径測定装置に設けた補正用レーザを照射し、その反射光を受光することで得ることを特徴としている。
The invention according to claim 9 is the tree diameter measuring method according to claim 8.
The measurement of the shortest distance may be obtained by irradiating the tree with the correction laser provided in the tree diameter measuring device and receiving the reflected light.

請求項10の発明は、請求項8の樹木径測定方法において、
前記各手順は自動的に複数回行われ、複数回計測後に算出した直径の平均値を取得することを特徴としている。
The invention according to claim 10 is the tree diameter measuring method according to claim 8.
Each of the above procedures is automatically performed a plurality of times, and is characterized in that the average value of the diameters calculated after the measurement is obtained a plurality of times.

請求項11の発明は、請求項8の樹木径測定方法において、
前記各手順は異なる三つの方向から行われ、複数回計測後に算出した直径の平均値を取得することを特徴としている。
The invention according to claim 11 relates to the tree diameter measuring method according to claim 8.
Each of the above procedures is performed from three different directions, and is characterized in that an average value of diameters calculated after measurement a plurality of times is obtained.

請求項1(樹木径測定装置)によれば、測距用レーザを樹木に照射し、首振り動作による樹木からの反射光で計測した角度と、棒状部を樹木に当接することで得られる樹木との最短距離を基に樹木の直径を算出することができる。   According to claim 1 (tree diameter measuring device), the tree obtained by irradiating the distance measuring laser to the tree and measuring the angle measured by the reflected light from the tree due to the swinging motion and bringing the rod portion into contact with the tree The diameter of the tree can be calculated based on the shortest distance between

請求項2によれば、棒状部に代えて補正用レーザ照射部を設け、樹木へのレーザ光の照射で樹木との最短距離を得ることができる。また、最短距離を測定するために、装置を樹木に接触させる必要がないので、樹木から離れた位置から樹木径を測定することができる。   According to the second aspect, instead of the rod-shaped portion, the correction laser irradiation unit is provided, and the shortest distance to the tree can be obtained by irradiating the tree with the laser light. Also, since it is not necessary to bring the device into contact with trees in order to measure the shortest distance, it is possible to measure the tree diameter from a position distant from the trees.

請求項3によれば、スイッチのオンで自動的に首振り動作を往復運動で行うことが可能となるので、装置自体の首振り動作を行わせることなく、樹木の中心に装置を向けた状態を維持するだけで、レーザ光の照射方向を自動的に変化させることができる。
このため、手の動きに連動してレーザ光の首振り動作を行う場合に比較して、手ぶれの影響を受けることが少なくなり、より正確な直径を測定することができる。
According to the third aspect, since it becomes possible to automatically perform the swinging motion by reciprocating motion when the switch is turned on, a state in which the device is directed to the center of the tree without swinging the device itself. The irradiation direction of the laser beam can be automatically changed only by maintaining.
For this reason, compared with the case where the oscillating motion of the laser beam is performed in conjunction with the movement of the hand, the influence of camera shake is reduced, and a more accurate diameter can be measured.

請求項4によれば、引き金状のスイッチでトリガ操作による首振り動作を行わせることができる。   According to the fourth aspect, it is possible to cause the trigger switch to perform the swing operation by the trigger switch.

請求項5によれば、樹木中心から外側端に照射先が移動するように首振り動作させることで、樹木の外側端を確実に検知することができる。
また、樹木の直径に対応する首振り角を往復動作により2回測定できるので、その平均を採ることで正確な樹木径を算出することができる。
According to the fifth aspect, by oscillating the irradiation destination so that the irradiation destination moves from the center of the tree to the outer end, the outer end of the tree can be reliably detected.
In addition, since the swing angle corresponding to the diameter of the tree can be measured twice by reciprocation, an accurate tree diameter can be calculated by taking the average.

請求項6によれば、樹木の一方の一端側から他方の一端側まで照射先が移動するように首振り動作させることで、最小の首振り角度で樹木の径を検出することができる。   According to the sixth aspect of the invention, the diameter of the tree can be detected at the minimum swing angle by causing the irradiation destination to move so that the irradiation destination moves from one end side of the tree to the other end side of the tree.

請求項7によれば、マップを使用することで樹木種類に応じて直径を補正することができる。   According to claim 7, by using the map, the diameter can be corrected according to the type of tree.

請求項8(樹木径測定方法)によれば、測距用レーザを樹木に照射し、首振り動作による樹木からの反射光で計測した角度と、樹木との最短距離を基に樹木の直径を算出することができる。   According to claim 8 (tree diameter measuring method), the distance measuring laser is irradiated to the tree, and the diameter of the tree is measured based on the angle measured by the reflected light from the tree by the swinging motion and the shortest distance to the tree. It can be calculated.

請求項9によれば、補正用レーザの樹木への照射で樹木との最短距離を得ることができる。   According to the ninth aspect, the shortest distance to the tree can be obtained by irradiating the tree with the correction laser.

請求項10によれば、複数回計測後に算出した直径の平均値を取得することで、測定精度を向上させることができる。   According to the tenth aspect, the measurement accuracy can be improved by acquiring the average value of the diameters calculated after the plurality of measurements.

請求項11によれば、異なる三つの方向から計測された直径の平均値を取得することで、円形でない樹木の大きさに対して、実際の樹木に近い大きさを把握することができる。   According to claim 11, by acquiring the average value of the diameters measured from three different directions, it is possible to grasp the size close to the actual tree with respect to the size of the non-circular tree.

樹木径測定装置の外観を示すもので、(a)は側面説明図、(b)は平面説明図である。The external appearance of a tree diameter measuring device is shown, (a) is side explanatory drawing, (b) is plane explanatory drawing. 図1の樹木径測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the tree diameter measurement apparatus of FIG. 図1の樹木径測定装置を使用して樹木の直径を測定する場合(レーザ測距部10の中心線X上に樹木の中心が位置している)の測定手順を説明するためのモデル図である。It is a model diagram for explaining the measurement procedure in the case of measuring the diameter of a tree using the tree diameter measuring device of FIG. 1 (the center of the tree is located on the center line X of the laser distance measuring unit 10). is there. 樹木径測定装置の他の例の外観を示すもので、(a)は側面説明図、(b)は平面説明図である。The external appearance of the other example of a tree diameter measurement apparatus is shown, (a) is side explanatory drawing, (b) is plane explanatory drawing. 図4の樹木径測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the tree diameter measurement apparatus of FIG. 図4の樹木径測定装置を使用して樹木の直径を測定する場合(レーザ測距部10の中心線X上に樹木の中心が位置している)の測定手順を説明するためのモデル図である。It is a model diagram for explaining the measurement procedure in the case of measuring the diameter of a tree using the tree diameter measuring device of FIG. 4 (the center of the tree is located on the center line X of the laser distance measuring unit 10). is there. 図4の樹木径測定装置を使用して樹木の直径を測定する場合(レーザ測距部10の中心線X上から樹木の中心がずれている)の測定手順を説明するためのモデル図である。It is a model figure for demonstrating the measurement procedure in the case of measuring the diameter of a tree using the tree diameter measuring device of FIG. 4 (the center of a tree is shifted from on center line X of laser ranging part 10). .

以下、本発明に係る樹木径測定装置の一実施形態について、図面を参照しながら説明する。
図1は、全体がピストル型形状で形成された樹木径測定装置の外観構成を示すもので、図2は、樹木径測定装置の機能ブロック図に示すものである。樹木径測定装置は、図1に示すように、測定装置が内在された本体部1と、本体部1から延長される取手部2と、測定装置のスイッチとなる引き金部(スイッチ部を構成するピストル型レバー)3と、本体部1から前方方向に伸長し、樹木に先端部4aが当接可能な棒状部4と、から構成されている。取手部2を設けたことにより、片手で樹木測定装置を持って引き金部(ピストル型レバー)3を操作できるようになっている。また、取手部2の内部には、後述する電動モータ駆動用の電池が収納されるようになっている。
Hereinafter, an embodiment of a tree diameter measuring device according to the present invention will be described with reference to the drawings.
FIG. 1 shows an appearance configuration of a tree diameter measuring device formed in a pistol shape as a whole, and FIG. 2 is a functional block diagram of the tree diameter measuring device. The tree diameter measuring device, as shown in FIG. 1, comprises a body portion 1 in which the measuring device is embedded, a handle portion 2 extended from the body portion 1, and a trigger portion (switch portion serving as a switch of the measuring device It comprises a pistol type lever 3 and a rod-like portion 4 which extends in the forward direction from the main body 1 and can contact the tree with a tip 4a. By providing the handle portion 2, the trigger portion (pistol lever) 3 can be operated by holding the tree measuring device with one hand. Further, a battery for driving an electric motor, which will be described later, is accommodated in the inside of the handle portion 2.

棒状部4は、平らな先端部4aを有する円柱状又は方柱状等の形状で構成され、先端部4aを樹木に当接させることで、樹木と測定装置との距離を一定にするバーの役割を有している。また、棒状部4の長さは18〜22cm、好ましくは20cmであり、70cm程度までの直径を有する樹木径を測定することができる。なお、棒状部4の長さを18〜22cm、とすることで、30cmや40cmとするより測定精度が高まることを実測により確認した。
また、樹木径測定装置は、図2の機能ブロック図に示すように、レーザ測距部10と、角度検出部21と、解析部22と、操作部23と、表示部24を備えて構成されている。
The rod-like portion 4 is formed in a cylindrical or square shape having a flat tip portion 4a, and the role of a bar for making the distance between the tree and the measuring device constant by bringing the tip portion 4a into contact with the tree. have. Moreover, the length of the rod-shaped part 4 is 18-22 cm, Preferably it is 20 cm, and the tree diameter which has a diameter of about 70 cm can be measured. In addition, it was confirmed by measurement that the measurement accuracy is enhanced by setting the length of the rod-shaped portion 4 to 18 to 22 cm, rather than 30 cm or 40 cm.
Further, as shown in the functional block diagram of FIG. 2, the tree diameter measuring device is configured to include the laser distance measuring unit 10, the angle detection unit 21, the analysis unit 22, the operation unit 23, and the display unit 24. ing.

レーザ測距部10は、樹木に対してレーザ光を照射する測距用レーザ照射部11と、前記樹木から反射するレーザ光を受光するレーザ受光部13を備えている。
測距用レーザ照射部11は、発光部と受光部が一体となって構成され、それぞれ発光部から樹木に対して照射されたレーザ光の対象物(樹木)からの反射光をレーザ 受光部13が検出する。
The laser distance measuring unit 10 includes a distance measuring laser irradiating unit 11 for irradiating a tree with laser light, and a laser light receiving unit 13 for receiving the laser light reflected from the tree.
The laser irradiation unit 11 for distance measurement includes a light emitting unit and a light receiving unit as one unit, and the laser light receiving unit 13 reflects the reflected light from the object (tree) of the laser light emitted to the trees from the light emitting unit. Detects.

測距用レーザ照射部11は、樹木の幅方向にレーザ光を照射させるための首振り機構(駆動部)を備えて構成されている。首振り機構(駆動部)は、駆動源を電動モータとし、レーザ光の照射方向が120度程度の範囲で首振り動作が可能に構成されている。測距用レーザ照射部11から照射されたレーザ光は、樹木で反射しその反射光をレーザ受光部13で受光する。
測距用レーザ照射部11では、樹木からの反射光を受光することで、照射方向に対応する首振り角度を検出可能としている。
The distance measurement laser irradiation unit 11 is configured to include a swing mechanism (drive unit) for irradiating the laser light in the width direction of the tree. The swing mechanism (drive unit) uses a drive source as an electric motor, and is configured to be able to perform a swing operation when the irradiation direction of the laser beam is about 120 degrees. The laser light emitted from the distance measurement laser irradiation unit 11 is reflected by the tree, and the reflected light is received by the laser light receiving unit 13.
The distance measurement laser irradiation unit 11 can detect a swing angle corresponding to the irradiation direction by receiving the reflected light from the tree.

角度検出部21は、測距用レーザ照射部11によるレーザ光の照射角度を検出する。樹木の表面が極端に滑らかでない限り、樹木端でのレーザ光照射による乱反射で何らかの反射光を受けることができるため、樹木の左右の外周付近からの反射光を受光することで、樹木の両端位置に対応する首振り角度が検出可能となる。
すなわち、図3に示すように、角度検出部21による計測は、測距用レーザ照射部11の中心線Xの位置から、先ず左方向に振ってセンターに対する樹木端部の首振り角度θ1を検出し、次に右方向に振って中央に対する樹木端部の首振り角度(θ1+θ2)を検出し、センターに戻るように動作する。測距用レーザ照射部11から照射されるレーザ光の反射光の値が一定範囲を超えた場合に樹木の外周を越えたと判断し、その時の角度(θ1)及び角度(θ1+θ2)を記録する。
The angle detection unit 21 detects the irradiation angle of the laser light by the distance measurement laser irradiation unit 11. As long as the surface of the tree is not extremely smooth, any reflected light can be received by diffuse reflection due to laser light irradiation at the tree edge, so by receiving the reflected light from the vicinity of the left and right outer periphery of the tree, both end positions of the tree The swing angle corresponding to can be detected.
That is, as shown in FIG. 3, the measurement by the angle detection unit 21 first shakes leftward from the position of the center line X of the distance measurement laser irradiation unit 11 to detect the swing angle θ1 of the tree end relative to the center Then, it swings rightward to detect the swing angle (θ1 + θ2) of the end of the tree with respect to the center, and operates to return to the center. When the value of the reflected light of the laser beam irradiated from the distance measurement laser irradiating unit 11 exceeds a predetermined range, it is determined that the outer periphery of the tree is exceeded, and the angle (θ1) and the angle (θ1 + θ2) at that time are recorded.

首振り動作は、樹木中心から外側端に照射先を動かすので、樹木の外側端を確実に検出することできる。また、前記外側端から反対側の外側端に動かすことで、反対側の外側端を確実に検出することできる。
また、樹木の直径に対応する首振り角を往復動作により2回測定できるので、その平均を採ることで正確な樹木径を算出することができる。
The swing motion moves the irradiation destination from the center of the tree to the outer end, so that the outer end of the tree can be detected reliably. Further, by moving from the outer end to the opposite outer end, the opposite outer end can be reliably detected.
In addition, since the swing angle corresponding to the diameter of the tree can be measured twice by reciprocation, an accurate tree diameter can be calculated by taking the average.

測定値(角度や距離)は、内蔵フラッシュROM及びSDカードに記録されるように構成されている。
また、この樹木径測定装置によれば、図3に示すように、樹木Wの側面に棒状部4の先端を接触させ、この状態を維持することにより樹木Wに対するレーザ測距部10の位置を固定し、予め求めた長さMを測距用レーザ照射部11と樹木Wと間の最短距離とすることができる。
The measurement values (angle and distance) are configured to be recorded in the built-in flash ROM and the SD card.
Further, according to this tree diameter measuring device, as shown in FIG. 3, the tip of the rod portion 4 is brought into contact with the side surface of the tree W, and the position of the laser distance measuring unit 10 with respect to the tree W is maintained by maintaining this state. The length M can be fixed and determined in advance to be the shortest distance between the distance measurement laser emitting unit 11 and the tree W.

解析部22では、レーザ測距部11及び角度検出部21で取得したデータ(θ1,θ2)、予め設定されている長さM(樹木との最短距離M)から樹木の直径を算出する計算が行われる。   The analysis unit 22 calculates the diameter of the tree from the data (θ1, θ2) acquired by the laser ranging unit 11 and the angle detection unit 21 and the preset length M (the shortest distance M to the tree). To be done.

例えば、計算を簡単にするため、θ1=θ2とし、最短距離Mとして、樹木の直径を算出する場合、樹木が真円であると仮定した時の半径をrとすると、
(式1)
sinθ1=r/(M+r)
r=Msinθ1/(1−sinθ1)
となる。
そして、直径は、補正係数kとした場合、2krとなる。
For example, in order to simplify the calculation, when θ1 = θ2 and the diameter of the tree is calculated as the shortest distance M, assuming that the radius when the tree is a true circle is r,
(Formula 1)
sin θ1 = r / (M + r)
r = M sin θ1 / (1-sin θ1)
It becomes.
The diameter is 2 kr when the correction coefficient k is used.

補正係数kは、樹木の種類(松、杉、檜等)によって表面の状態(つるつる、皮がはげやすい、凸凹が多いなど)が異なるため、樹木の種類により0.7〜1.0の範囲で予め設定された定数である。マップの補正係数kは、複数種類の樹木に関して、測定した角度と樹木径測定装置との最短距離に対応する直径について、予め多数の実測データを収集しておき、例えば実測データの平均値より導き出した値である。   The correction coefficient k is in the range of 0.7 to 1.0 depending on the type of tree since the surface state (slippery, peelable, peelable, etc. is different) differs depending on the type of tree (pine, cedar, mulberry etc.) Is a constant set in advance. For the correction coefficient k of the map, a large number of actual measurement data are collected in advance for diameters corresponding to the shortest distance between the measured angle and the tree diameter measuring device with respect to a plurality of types of trees. Value.

操作部23は、樹木の直径を算出するために必要なデータを入力するための設定ボタンとして、本体部1の裏面側に装備されている。設定項目としては、使用履歴を記憶するために入力するユーザーID、補正係数を選択するために入力する樹木種類等がある。   The operation unit 23 is provided on the back side of the main unit 1 as a setting button for inputting data required to calculate the diameter of a tree. The setting items include a user ID input to store the usage history, a tree type input to select the correction coefficient, and the like.

表示部24は、入力された設定項目、過去の算出データ、測定時刻等が表示されるように、本体部1の裏面側に配置された液晶画面により構成されている。   The display unit 24 is configured of a liquid crystal screen disposed on the back side of the main unit 1 so that the input setting items, past calculation data, measurement time and the like are displayed.

続いて、上述した樹木径測定装置を使用して樹木の測定を行う手順について説明する。
樹木の正面に立ち、樹木径測定装置の取手部2を片手で持ち、棒状部4の先端部4aを樹木に当接させた状態で、樹木の中心(中心線X)にレーザ測距部10を向けて、引き金部(ピストル型レバー)3を引く。引き金部3の引きがトリガとなって、レーザ測距部10の測距用レーザ照射部11による首振り動作が開始される。すなわち、ピストルの引き金のように、引き金部3の留め具が外れる位置を超えた時点で電動モータによる所定の首振り動作が自動的に行われる。
そのため、樹木の中心(中心線X)に沿って棒状部4の先端部4aを樹木に当接させ、この状態を維持するだけで、測距用レーザ照射部11によるレーザ光の照射方向を自動的に変化させることができる。このため、手の動きに連動してレーザ照射光の首振り動作を行う場合に比較して、手ぶれの影響を受けることが少なくなり、より正確な直径を測定することができる。
Then, the procedure which measures a tree using the tree diameter measurement apparatus mentioned above is demonstrated.
Standing in front of a tree, holding the handle portion 2 of the tree diameter measuring apparatus with one hand and bringing the end 4a of the rod portion 4 into contact with the tree, the laser distance measuring unit 10 is centered on the tree (center line X). And pull the trigger (pistol lever) 3. Pulling of the trigger unit 3 is a trigger, and the swinging operation by the distance measurement laser irradiating unit 11 of the laser distance measuring unit 10 is started. That is, as in the case of the trigger of the pistol, a predetermined swinging operation by the electric motor is automatically performed at the time when the position at which the clamp of the trigger portion 3 is released is exceeded.
Therefore, the tip 4a of the rod 4 is brought into contact with the tree along the center (center line X) of the tree, and the irradiation direction of the laser beam by the distance measurement laser irradiator 11 is automatically made only by maintaining this state. Can be changed. For this reason, compared with the case where the oscillating motion of the laser irradiation light is performed in conjunction with the movement of the hand, the influence of camera shake is reduced, and a more accurate diameter can be measured.

なお、図1の例では、トリガスイッチを引き金部3で形成したが、図1における取手部2の前側位置に点線で示したようなボタン部25を形成し、ボタン部25の押下をトリガとして首振り動作が自動的に行われるようにしても良い。   Although the trigger switch is formed by the trigger 3 in the example of FIG. 1, the button 25 as shown by the dotted line is formed on the front side position of the handle 2 in FIG. The swinging action may be performed automatically.

すなわち、この測距用レーザ照射部11による首振り動作により、先ず、図3における中心線Xから左側方向にレーザ光の照射を振り、反射光の値が一定範囲を超えた場合に樹木の外周を越えたと判断し、その時の角度(θ1)を検出し、樹木端で首振り動作を止める(動作31)。
続いて、樹木端から右側方向にレーザ光の照射を振り、反射光の値が一定範囲を超えた場合に樹木の外周を越えたと判断し、その時の角度(θ1+θ2)を検出し、樹木端で首振り動作を止める(動作32)。
再び、樹木端から左側方向にレーザ光の照射を振り、中央位置で静止させる(動作33)。
That is, by the swinging operation by the laser irradiation unit 11 for distance measurement, first, the irradiation of the laser beam is swung leftward from the center line X in FIG. 3 and the value of the reflected light exceeds the predetermined range. It is determined that the angle (θ1) at that time is detected, and the swinging motion is stopped at the end of the tree (operation 31).
Subsequently, the laser light is swung from the end of the tree to the right, and when the value of the reflected light exceeds a certain range, it is determined that the outer periphery of the tree is exceeded, and the angle (θ1 + θ2) at that time is detected. Stop the swing motion (action 32).
Again, the irradiation of the laser light is shaken in the left direction from the end of the tree and is stopped at the central position (operation 33).

また、上述の例では、首振り動作(樹木径に対応する首振角を2回検出)は、樹木中心から外側端に照射先が移動し始めるように往復運動するようにしたが、樹木の一方の端部からの往復運動による首振り動作(樹木径に対応する首振角を2回検出)で樹木径を算出するようにしてもよい。
更に、首振り動作は、レーザ光の照射先が樹木の一方の外側端の外側から始まり、他方の外側端で終了する一方向の首振り動作(樹木径に対応する首振角を1回検出)であってもよい。この場合、一方向のみの首振り動作となるので、最小の首振り角度で樹木の径を検出することができる。
In the above example, the swinging motion (detecting the swing angle corresponding to the diameter of the tree twice) reciprocates so that the irradiation destination starts to move from the center of the tree to the outer edge, but The tree diameter may be calculated by a swinging motion (a swing angle corresponding to a tree diameter is detected twice) by reciprocating motion from one end.
Furthermore, the swinging motion is one-way swinging motion (the swing angle corresponding to the diameter of the tree is detected once when the laser light irradiation destination starts from the outside of one outside end of the tree and ends at the other outside end ) May be. In this case, since the swing motion is performed only in one direction, the diameter of the tree can be detected with the minimum swing angle.

上述したレーザ測距部10のように樹木径計測時にレーザ光を使用すると、表皮の剥がれ等により誤差が生じるが、樹木の種類によって最適な数値となるように補正を行うことで、正確な直径を算出することが可能となる。   If laser light is used during tree diameter measurement as in the laser distance measuring unit 10 described above, an error occurs due to peeling of the skin, etc., but the correct diameter can be obtained by performing correction so as to be an optimal value depending on the type of tree. It becomes possible to calculate

上述した樹木径測定装置における直径算出の各手順は自動的に複数回行われ、複数回計測後に算出した直径の平均値を取得するようにしてもよい。その結果、より正確な直径を算出することができる。   Each procedure of diameter calculation in the above-described tree diameter measuring device may be automatically performed plural times, and an average value of diameters calculated after plural times of measurement may be acquired. As a result, a more accurate diameter can be calculated.

この樹木径測定装置によれば、図3に示すように、樹木Wと棒状部4の先端とを接触させることにより、レーザ測距部10と樹木Wの位置を固定させて、予め求めた長さMを測距用レーザ照射部11と樹木Wと間の距離とすることができるので、首振り動作による角度のみ測定すれば樹木径を算出できるため、簡単な構成で樹木径を測定する装置とすることができる。   According to this tree diameter measuring device, as shown in FIG. 3, the position of the laser distance measuring unit 10 and the tree W is fixed by bringing the tree W into contact with the tip of the rod portion 4 Since the distance M can be set as the distance between the distance measurement laser irradiation unit 11 and the tree W, the tree diameter can be calculated by measuring only the angle by the swinging motion, so the device for measuring the tree diameter with a simple configuration It can be done.

図4及び図5は、樹木径測定装置の他の実施形態を示すもので、図1及び図2と同じ構成を採用する部分については同一符号を付している。
図4の樹木径測定装置では、樹木との距離を測定するための棒状部4を省略するとともに、レーザ測距部10内に樹木との最短距離を計測するためのレーザ光を照射する補正用レーザ照射部12を設けている。
FIGS. 4 and 5 show another embodiment of the tree diameter measuring apparatus, and the parts adopting the same configuration as in FIG. 1 and FIG.
In the tree diameter measuring device shown in FIG. 4, the rod-like portion 4 for measuring the distance to the tree is omitted, and the laser distance measuring unit 10 is irradiated with laser light for measuring the shortest distance to the tree. A laser irradiation unit 12 is provided.

レーザ測距部10は、樹木に対してレーザ光を照射する測距用レーザ照射部11と、前記樹木との最短距離を計測するためのレーザ光を照射する補正用レーザ照射部12と、前記樹木から反射するレーザ光を受光するレーザ受光部13を備えている。
測距用レーザ照射部11及び補正用レーザ照射部12は、発光部と受光部が一体となって構成され、それぞれ発光部から樹木に対して照射されたレーザ光の対象物(樹木)からの反射光をレーザ受光部13が検出する。
The laser distance measuring unit 10 includes a distance measuring laser irradiating unit 11 which irradiates a tree with a laser beam, a correction laser irradiating unit 12 which irradiates a laser light for measuring the shortest distance to the tree, and A laser light receiving unit 13 for receiving a laser beam reflected from a tree is provided.
The laser irradiation unit 11 for distance measurement and the laser irradiation unit 12 for correction are integrally configured by the light emitting unit and the light receiving unit, and from the object (tree) of the laser light irradiated to the tree from the light emitting unit. The laser light receiving unit 13 detects the reflected light.

すなわち、測距用レーザ照射部11では、樹木からの反射光を受光することで、照射方向に対応する首振り角度を検出可能とするとともに、反射光の受光による時間差で樹木との間で変化する距離を検出可能になっている。樹木との距離は、首振り動作中に随時検出され、最短距離L(首を振った結果の最短距離)が検出される。   That is, the distance measurement laser irradiation unit 11 can detect the swing angle corresponding to the irradiation direction by receiving the reflected light from the tree, and changes with the tree due to the time difference due to the reception of the reflected light. It is possible to detect the distance to The distance to the tree is detected at any time during the swinging motion, and the shortest distance L (the shortest distance resulting from shaking the head) is detected.

補正用レーザ照射部12は、樹木と樹木径測定装置との最短距離Aを計測するためのもので、正面方向に照射したレーザ光の反射光をレーザ受光部13で受光するように構成されている。
補正用レーザ照射部12では、測距用レーザ照射部11と同様に、反射光の受光による時間差で樹木との間の一定の距離(最短距離A)を検出する。
The correction laser irradiating unit 12 is for measuring the shortest distance A between the tree and the tree diameter measuring device, and is configured to receive the reflected light of the laser light irradiated in the front direction by the laser light receiving unit 13 There is.
Similar to the distance measurement laser irradiation unit 11, the correction laser irradiation unit 12 detects a constant distance (the shortest distance A) between the tree and the tree due to the time difference due to the reception of the reflected light.

この樹木径測定装置の場合、図6に示すように、樹木の正面から離れた位置で樹木径測定装置の取手部2を片手で持ち、樹木の中心(中心線X)にレーザ測距部10を向けて、引き金部(ピストル型レバー)3を引く。そして、測距用レーザ照射部11による首振り動作により、図3と同様に、動作31、動作32、動作33が行われ、θ1及びθ2が検出される。測距用レーザ照射部11の首振り動作を行っている際には、常時、樹木との距離(最短距離Lが含まれる)が検出される。
また、引き金部(ピストル型レバー)3がスイッチとなって、レーザ測距部10の補正用レーザ照射部12による樹木との最短距離Aの測距が行われる。
In the case of this tree diameter measuring device, as shown in FIG. 6, the handle portion 2 of the tree diameter measuring device is held with one hand at a distance from the front of the tree, and the laser distance measuring unit 10 is positioned at the center of the tree (center line X). And pull the trigger (pistol lever) 3. Then, by the swinging operation by the distance measurement laser emitting unit 11, as in FIG. 3, the operations 31, 32 and 33 are performed, and θ1 and θ2 are detected. When the swinging operation of the distance measurement laser emitting unit 11 is performed, the distance to the tree (including the shortest distance L) is always detected.
Further, the trigger unit (pistol lever) 3 serves as a switch, and the distance measurement with the shortest distance A with the tree by the correction laser irradiating unit 12 of the laser distance measuring unit 10 is performed.

図6に示すように、測距用レーザ照射部11が首振り動作を行った結果検出された距離で最短の距離(最短距離L)が補正用レーザ照射部12による最短距離Aと数値が一致していれば、レーザ測距部10の中心線X上に樹木Wの中心が位置していると判断し、樹木Wの中心が中心線Xからずれていれば、樹木の直径を算出するに際しての補正が行われる。   As shown in FIG. 6, the shortest distance (shortest distance L) at the distance detected as a result of the distance measurement laser irradiating unit 11 performing the swing operation is the shortest distance A by the correcting laser irradiating unit 12 and the numerical value is one. If it is determined that the center of the tree W is located on the center line X of the laser ranging unit 10, and if the center of the tree W deviates from the center line X, the diameter of the tree is calculated. Correction is performed.

解析部22では、レーザ測距部10及び角度検出部21で取得したデータ(θ1,θ2,最短距離L)、補正用レーザ測距部で取得したデータ(最短距離A)、から樹木の直径を算出する計算が行われる。
図6に示すように、最短距離Aと最短距離Lが一致し、θ1とθ2とが同じ角度であれば、樹木の直径2rは上述した(式1)で算出することができる。
In the analysis unit 22, the diameter of the tree is determined from the data (θ 1, θ 2, shortest distance L) acquired by the laser distance measuring unit 10 and the angle detecting unit 21 and the data (shortest distance A) acquired by the correction laser distance measuring unit. Calculation to calculate is performed.
As shown in FIG. 6, if the shortest distance A and the shortest distance L coincide with each other and θ1 and θ2 are at the same angle, the diameter 2r of the tree can be calculated by the above-described (Equation 1).

また、図6では、樹木の正面にレーザ測距部10が位置し、レーザ測距部10の中心線X上に樹木の中心が位置している場合(最短距離Lと最短距離Aが一致)について説明したが、中心線Xから樹木の中心位置がずれている場合の計測について、図7を参照しながら説明する。
この場合、測距用レーザ照射部11による首振り動作により、先ず、図7における中心線Xから左側方向にレーザ光の照射を振り、反射光の値が一定範囲を超えた場合に樹木の外周を越えたと判断し、その時の角度(θ1+θ3)を検出し、樹木端で首振り動作を止める(動作31)。
Further, in FIG. 6, when the laser ranging unit 10 is positioned in front of the tree and the center of the tree is positioned on the center line X of the laser ranging unit 10 (the shortest distance L and the shortest distance A coincide) The measurement when the center position of the tree deviates from the center line X will be described with reference to FIG.
In this case, the swinging operation by the distance measurement laser emitting unit 11 first shakes the laser beam irradiation from the center line X in FIG. 7 to the left side, and the value of the reflected light exceeds the predetermined range. It is determined that the angle (θ1 + θ3) at that time is detected, and the swinging motion is stopped at the end of the tree (operation 31).

続いて、樹木端から右側方向にレーザ光の照射を振り、反射光の値が一定範囲を超えた場合に樹木の外周を越えたと判断し、その時の角度(θ1+θ2+θ3)を検出し、樹木端で首振り動作を止める(動作32)。
再び、樹木端から左側方向にレーザ光の照射を振り、中央位置で静止させる(動作33)。
また、首振り動作を行っている際には、常時、樹木との距離(最短距離Lが含まれる)が検出される。
Subsequently, the laser light is irradiated from the end of the tree to the right, and when the value of the reflected light exceeds a certain range, it is determined that the outer periphery of the tree is exceeded, and the angle (θ1 + θ2 + θ3) at that time is detected. Stop the swing motion (action 32).
Again, the irradiation of the laser light is shaken in the left direction from the end of the tree and is stopped at the central position (operation 33).
In addition, when the swinging motion is performed, the distance to the tree (including the shortest distance L) is always detected.

中心線Xから樹木Wの中心位置がずれている場合、レーザ光の反射光によりθ1を直接求めることができないが、最短距離Lを検出した首振り角度θ3は検出できるので、角度(θ1+θ3)から角度θ3を減じることでθ1を算出する。
θ1が算出できれば、上述した(式1)により樹木の直径2rが算出でき、必要に応じて補正係数kを乗じた2krが算出できる。
When the center position of the tree W deviates from the center line X, θ1 can not be determined directly by the reflected light of the laser light, but the swing angle θ3 at which the shortest distance L is detected can be detected, so from the angle (θ1 + θ3) The angle θ3 is reduced to calculate θ1.
If θ1 can be calculated, the diameter 2r of the tree can be calculated by (Equation 1) described above, and 2kr can be calculated by multiplying the correction coefficient k as necessary.

上述した樹木径測定装置における直径算出の各手順は自動的に複数回行われ、複数回計測後に算出した直径の平均値を取得するようにしてもよい。その結果、より正確な直径を算出することができる。
また、上述した測定例では、一方向からのレーザ光の照射で直径を算出するようにしたが、異なる3方向から計測し記憶された値の平均値を直径とすることで、樹木が真円でない場合においても、実際の樹木の断面積に近い直径を算出することができる。この場合の3方向は、ユーザーが位置を決定し、その位置から樹木径を測定する。
Each procedure of diameter calculation in the above-described tree diameter measuring device may be automatically performed plural times, and an average value of diameters calculated after plural times of measurement may be acquired. As a result, a more accurate diameter can be calculated.
Moreover, in the measurement example mentioned above, although diameter was calculated by irradiation of the laser beam from one direction, a tree is a perfect circle by making the average value of the value measured and memorize | stored from 3 different directions into diameter. Even if not, it is possible to calculate a diameter close to the cross-sectional area of the actual tree. In the three directions in this case, the user determines the position and measures the tree diameter from that position.

上述した各樹木径測定装置によれば、測距用レーザ照射部11からのレーザ光を樹木Wに照射し、首振り動作による樹木Wからの反射光で計測した角度と、樹木Wとの最短距離(棒状部4を設けることで予め設定した値M、又は、補正用レーザ照射部12で得られる樹木との最短距離A)を基に樹木Wの直径を算出することができるので、簡便な操作且つ簡単な構成で直径を正確に測定することができる。   According to each tree diameter measuring device mentioned above, the laser beam from the laser irradiation part 11 for ranging is irradiated to the tree W, and the angle measured by the reflected light from the tree W by swinging operation and the shortest of the tree W Since the diameter of the tree W can be calculated based on the distance (the value M set in advance by providing the rod-like portion 4 or the shortest distance A to the tree obtained by the correction laser irradiation unit 12), it is simple The diameter can be accurately measured with a simple operation and operation.

また、引き金部(ピストル型レバー)3がトリガスイッチとなって測距用レーザ照射部11の首振り動作が行われるので、装置自体の首振り動作を行わせることなく、樹木の中心(中心線X)に測距用レーザ照射部11を向けた状態を維持するだけで、測距用レーザ照射部11によるレーザ光の照射方向を自動的に変化させることができる。このため、手の動きに連動してレーザ照射光の首振り動作を行う場合に比較して、手ぶれの影響を受けることが少なくなり、より正確な直径を測定することができる。   In addition, since the trigger unit (pistol type lever) 3 serves as a trigger switch and the swinging operation of the distance measurement laser irradiation unit 11 is performed, the center of the tree (center line is not performed without performing the swing operation of the device itself. It is possible to automatically change the irradiation direction of the laser light by the distance measurement laser irradiation unit 11 only by maintaining the state in which the distance measurement laser irradiation unit 11 is directed to X). For this reason, compared with the case where the oscillating motion of the laser irradiation light is performed in conjunction with the movement of the hand, the influence of camera shake is reduced, and a more accurate diameter can be measured.

1…本体部、 2…取手部、 3…引き金部(スイッチ部を構成するピストル型レバー)、 4…棒状部、 4a…先端部、 10…レーザ測距部、 11…測距用レーザ照射部(測距用レーザ)、 12…補正用レーザ照射部(補正用レーザ)、 13…レーザ受光部、 21…角度検出部、 22…解析部、 23…操作部、 24…表示部、 25…ボタン部(スイッチ部)、 W…樹木。   DESCRIPTION OF SYMBOLS 1 ... Main-body part 2 ... Handle part 3 ... Trigger part (pistol type lever which comprises a switch part) 4 ... Rod-like part, 4a ... Tip part, 10 ... Laser ranging part, 11 ... Laser irradiation part for ranging (Laser for distance measurement), 12: Laser irradiation unit for correction (laser for correction), 13: Laser light receiving unit, 21: Angle detection unit, 22: Analysis unit, 23: Operation unit, 24: Display unit, 25: Button Part (switch part), W ... tree.

Claims (11)

樹木の直径を測定する装置において、
装置本体から伸長し前記樹木に先端部が当接可能な棒状部と、
前記樹木に対してレーザ光を照射する測距用レーザ照射部と、
前記樹木から反射するレーザ光を受光するレーザ受光部と、
前記測距用レーザ照射部を首振り動作させる駆動部と、
前記駆動部の首振り動作を開始させるスイッチ部と、
測距用レーザの首振り動作からの反射光で計測する角度と、前記棒状部を前記樹木に当接させて得られる最短距離とにより、前記樹木の直径を算出する解析部と、
を備えたことを特徴とする樹木径測定装置。
In an apparatus for measuring the diameter of trees,
A rod-like portion which extends from the device main body and whose tip can abut on the tree;
A distance measuring laser irradiating unit for irradiating the tree with a laser beam;
A laser light receiving unit that receives laser light reflected from the tree;
A driving unit that swings the laser irradiation unit for distance measurement;
A switch unit for starting an oscillating operation of the drive unit;
An analysis unit that calculates the diameter of the tree from the angle measured by the reflected light from the swinging motion of the distance measurement laser and the shortest distance obtained by bringing the rod portion into contact with the tree;
The tree diameter measuring device characterized by having.
樹木の直径を測定する装置において、
前記樹木に対してレーザ光を照射する測距用レーザ照射部と、前記樹木との最短距離を計測するためのレーザ光を照射する補正用レーザ照射部と、前記樹木から反射するレーザ光を受光するレーザ受光部とを有するレーザ測距部と、
前記測距用レーザ照射部を首振り動作させる駆動部と、
前記駆動部の首振り動作を開始させるスイッチ部と、
測距用レーザの首振り動作からの反射光で計測する角度と前記最短距離により、前記樹木の直径を算出する解析部と、
を備えたことを特徴とする樹木径測定装置。
In an apparatus for measuring the diameter of trees,
A distance measuring laser irradiating unit for irradiating the tree with a laser beam, a correction laser irradiating unit for irradiating a laser beam for measuring the shortest distance to the tree, and a laser beam reflected from the tree are received A laser distance measuring unit having a laser light receiving unit;
A driving unit that swings the laser irradiation unit for distance measurement;
A switch unit for starting an oscillating operation of the drive unit;
An analysis unit that calculates the diameter of the tree from the angle measured by the reflected light from the swinging motion of the distance measurement laser and the shortest distance;
The tree diameter measuring device characterized by having.
前記駆動部はモータで構成されるとともに、前記スイッチ部はトリガスイッチで構成され、スイッチのオンで前記モータに通電し自動的に前記首振り動作を行う請求項1又は請求項2に記載の樹木測定装置。   The tree according to claim 1 or 2, wherein the drive unit is configured by a motor, and the switch unit is configured by a trigger switch, and when the switch is turned on, the motor is energized and the swing operation is automatically performed. measuring device. 前記スイッチ部は、引き金状のスイッチで構成される請求項3に記載の樹木径測定装置。   The tree diameter measuring device according to claim 3, wherein the switch unit is configured by a trigger switch. 前記首振り動作は、前記レーザ光の照射先が樹木中心から外側端に動作し始め、前記外側端から反対側の外側端に動作して元の位置に戻る動作である請求項1又は請求項2に記載の樹木径測定装置。   The swing operation is an operation in which the irradiation destination of the laser light starts operating from the center of the tree to the outer end, and moves from the outer end to the opposite outer end to return to the original position. The tree diameter measuring device as described in 2. 前記首振り動作は、前記レーザ光の照射先が樹木の一方の外側端の外側から始まり、他方の外側端で終了する請求項1又は請求項2に記載の樹木径測定装置。   The tree diameter measuring device according to claim 1 or 2, wherein the swinging motion starts from the outside of one outer end of the tree and ends at the other outer end of the irradiation destination of the laser light. 前記解析部は、樹木種類に応じた角度と前記樹木径測定装置との最短距離に対応する直径のマップを備え、選択された樹木種類により前記マップを参照して直径を補正する請求項1又は請求項2に記載の樹木径測定装置。   The analysis unit includes a map of an angle corresponding to a tree type and a diameter corresponding to the shortest distance to the tree diameter measuring device, and corrects the diameter with reference to the map according to the selected tree type. The tree diameter measurement device according to claim 2. 樹木径測定装置を用いて樹木の直径を測定する方法であって、
前記樹木に対して前記樹木径測定装置に設けた測距用レーザを首振り動作させながら照射して首振り角度を取得する角度取得手順と、
前記樹木と前記樹木径測定装置との最短距離を測定する最短距離測定手順と、
前記首振り角度及び前記最短距離から前記樹木の直径を算出する直径算出手順と、
を含むことを特徴とする樹木径測定方法。
A method of measuring the diameter of a tree using a tree diameter measuring device,
An angle acquisition procedure for acquiring a swing angle by irradiating the distance measuring laser provided in the tree diameter measuring device with respect to the tree while swinging movement;
A shortest distance measuring procedure for measuring the shortest distance between the tree and the tree diameter measuring device;
A diameter calculation procedure for calculating the diameter of the tree from the swing angle and the shortest distance;
A tree diameter measuring method characterized by including.
前記最短距離の測定は、前記樹木に対して前記樹木径測定装置に設けた補正用レーザを照射し、その反射光を受光することで得る請求項8に記載の樹木径測定方法。   The tree diameter measuring method according to claim 8, wherein the measurement of the shortest distance is obtained by irradiating the correction laser provided to the tree diameter measuring device to the tree and receiving the reflected light. 前記各手順は自動的に複数回行われ、複数回計測後に算出した直径の平均値を取得する請求項8に記載の樹木径測定方法。   The tree diameter measuring method according to claim 8, wherein each of the steps is automatically performed a plurality of times, and an average value of diameters calculated after the plurality of measurements is acquired. 前記各手順は異なる三つの方向から行われ、複数回計測後に算出した直径の平均値を取得する請求項8に記載の樹木径測定方法。   The tree diameter measuring method according to claim 8, wherein each of the steps is performed from three different directions, and an average value of diameters calculated after measurement is obtained a plurality of times.
JP2017231612A 2017-12-01 2017-12-01 Tree diameter measuring device and measuring method Active JP7061868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231612A JP7061868B2 (en) 2017-12-01 2017-12-01 Tree diameter measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231612A JP7061868B2 (en) 2017-12-01 2017-12-01 Tree diameter measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2019100841A true JP2019100841A (en) 2019-06-24
JP7061868B2 JP7061868B2 (en) 2022-05-02

Family

ID=66976829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231612A Active JP7061868B2 (en) 2017-12-01 2017-12-01 Tree diameter measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP7061868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664794A (en) * 2020-05-11 2020-09-15 中国水产科学研究院珠江水产研究所 Device and method for detecting application biomass
CN111692948A (en) * 2020-05-27 2020-09-22 北京安海之弋园林古建工程有限公司 Tree diameter monitoring device
JP2021148485A (en) * 2020-03-17 2021-09-27 株式会社アライドマテリアル Information conveyance device for micrometer
CN113884046A (en) * 2020-07-01 2022-01-04 大族激光科技产业集团股份有限公司 Cylindrical product outer diameter measuring device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103655A (en) * 1973-02-01 1974-10-01
JPH0278901A (en) * 1988-09-14 1990-03-19 Chuo Denshi Kk Method and device for measuring external diameter of columnar body
JP2014232111A (en) * 2014-07-25 2014-12-11 富士設計株式会社 Form investigation method for three-dimensional measurement object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103655A (en) * 1973-02-01 1974-10-01
JPH0278901A (en) * 1988-09-14 1990-03-19 Chuo Denshi Kk Method and device for measuring external diameter of columnar body
JP2014232111A (en) * 2014-07-25 2014-12-11 富士設計株式会社 Form investigation method for three-dimensional measurement object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148485A (en) * 2020-03-17 2021-09-27 株式会社アライドマテリアル Information conveyance device for micrometer
JP7170683B2 (en) 2020-03-17 2022-11-14 株式会社アライドマテリアル Information transmission device for micrometer
CN111664794A (en) * 2020-05-11 2020-09-15 中国水产科学研究院珠江水产研究所 Device and method for detecting application biomass
CN111692948A (en) * 2020-05-27 2020-09-22 北京安海之弋园林古建工程有限公司 Tree diameter monitoring device
CN111692948B (en) * 2020-05-27 2021-12-03 北京安海之弋园林古建工程有限公司 Tree diameter monitoring device
CN113884046A (en) * 2020-07-01 2022-01-04 大族激光科技产业集团股份有限公司 Cylindrical product outer diameter measuring device and method
CN113884046B (en) * 2020-07-01 2024-04-05 大族激光科技产业集团股份有限公司 Device and method for measuring outer diameter of cylindrical product

Also Published As

Publication number Publication date
JP7061868B2 (en) 2022-05-02

Similar Documents

Publication Publication Date Title
JP2019100841A (en) Tree diameter measurement device and measurement method
JP6291562B2 (en) Diagnose and eliminate multipath interference in 3D scanners with directed probing
RU2013158008A (en) DETERMINING AND CALIBRATING THE NEEDLE LENGTH FOR THE NEEDLE GUIDING SYSTEM
JP2015089383A5 (en)
CN107743428B (en) Hand tool tracking and guidance using inertial measurement unit
JP2008055101A5 (en)
JP2002214344A (en) Range-finding device
JP2014534878A (en) Method and apparatus for detecting human bioimpedance data
JP7060377B2 (en) Surveying device, surveying control device, surveying control method and surveying control processing program
JP2020085717A5 (en) Shape measurement system, probe tip, shape measurement method, and program
US11642800B2 (en) Apparatus and method for use with robot
KR20180052048A (en) A laser range finder and object width measuremet method using the same
US10636273B2 (en) Coordinate measuring device
JP2010184049A5 (en)
CN109425435B (en) Temperature measuring device with measurement alignment and measurement alignment method
JP7141344B2 (en) Tree diameter measuring device and measuring method
EP3416379A1 (en) Projection mapping system and apparatus
JP2011110675A (en) Shape measuring device
JP7240834B2 (en) surveying equipment
US11060837B2 (en) Method of calibrating an apparatus for pointing spatial coordinates as well as a corresponding apparatus
US11639848B2 (en) Eyeglass frame shape measurement device and lens processing device
KR20170126042A (en) Vibration Correctable Surface Shape Measurement Device and Vibration Correcting Method Using the Same
JP5789393B2 (en) Laser processing equipment
JP2001087249A (en) Blood component measuring device
JP2014044128A (en) Seat thickness measurement device, program, recording medium, and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220419

R150 Certificate of patent or registration of utility model

Ref document number: 7061868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150