JP2019099818A - Shaping fuel, method for producing the same, and method for baking limestone - Google Patents

Shaping fuel, method for producing the same, and method for baking limestone Download PDF

Info

Publication number
JP2019099818A
JP2019099818A JP2018224919A JP2018224919A JP2019099818A JP 2019099818 A JP2019099818 A JP 2019099818A JP 2018224919 A JP2018224919 A JP 2018224919A JP 2018224919 A JP2018224919 A JP 2018224919A JP 2019099818 A JP2019099818 A JP 2019099818A
Authority
JP
Japan
Prior art keywords
fuel
carbon
limestone
less
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018224919A
Other languages
Japanese (ja)
Other versions
JP6692877B2 (en
Inventor
木村 慎吾
Shingo Kimura
慎吾 木村
義文 林田
Yoshifumi Hayashida
義文 林田
竹内 克己
Katsumi Takeuchi
克己 竹内
仁 天谷
Hitoshi Amaya
仁 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Publication of JP2019099818A publication Critical patent/JP2019099818A/en
Priority to JP2020059412A priority Critical patent/JP6967106B2/en
Application granted granted Critical
Publication of JP6692877B2 publication Critical patent/JP6692877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

To provide a shaping fuel having high strength, environmentally friendly, and capable of reducing a pelletizing cost, and to provide a method for producing the same, and a method for baking limestone.SOLUTION: This invention relates to a shaping fuel, comprising a carbon material and a binder, wherein: the content ratio of carbon in the carbon material is 60 mass% or more based on a dried state; and in a state before reaction, the binder mainly comprises calcium oxide, has an average particle diameter of 15 μm or less, and has a powdering rate of 30% or less.SELECTED DRAWING: None

Description

本発明は、成形燃料、その製造方法、及び石灰石の焼成方法に関し、詳細には、石灰石の焼成により排出された排出ダストを利用した成形燃料、その製造方法、及び石灰石の焼成方法に関する。   The present invention relates to a shaped fuel, a method for producing the same, and a method for firing limestone, and more particularly, to a shaped fuel using exhaust dust discharged by firing limestone, a method for producing the same, and a method for firing limestone.

日本国内で供給可能な鉱石の一つが石灰石であり、従来、石灰石を焼成(熱分解)して生石灰を製造してきた。生石灰は、石灰石を無煙炭や石炭コークス等の燃料とともに焼成炉に投入し、これら燃料からの熱量を石灰石に与え続けることで製造される。また、石灰石焼成時には、炉内を通過する空気の酸素が消費されて二酸化炭素を多量に含んだガスが炉外へ排出される。ガスは、気体成分だけでなく、様々な工程で発生した細かい石灰石、生石灰、燃料未燃分等の固形分を含み、これら固形分を同時に運搬する。そのまま煙突より排出すると大気汚染を生ずるため、集塵設備でガスから固形分が取り除かれる。   One of the ores that can be supplied in Japan is limestone, and in the past, limestone has been calcined (thermally decomposed) to produce quicklime. Limestone is produced by charging limestone with a fuel such as anthracite or coal coke into a calciner and continuously supplying the heat from the fuel to the limestone. Further, at the time of limestone firing, oxygen of air passing through the furnace is consumed, and a gas containing a large amount of carbon dioxide is discharged to the outside of the furnace. The gas contains not only gaseous components but also solids such as fine limestone, quicklime, unburned fuel, etc. generated in various processes, and these solids are simultaneously transported. If the gas is discharged from the chimney as it is, air pollution will occur, so solids are removed from the gas by the dust collection facility.

石灰石の焼成に用いられる燃料として、無煙炭や石炭コークスよりも安価である石炭コークス粉を用いる試みがなされている。しかしながら、燃料には、ある程度の大きさと強度が必要である。例えば、輸送工程で崩れた粉状の燃料は、ガス流に乗り燃焼に寄与出来ず、炉外に排出され、また、炉内の石灰石に圧縮され粉体になった場合には、石灰石間の空間を埋め、ガス流の妨げとなるためである。そこで、石炭コークス粉にバインダーを配合し、造粒した燃料の開発が進められている。   Attempts have been made to use coal coke powder, which is less expensive than anthracite or coal coke, as a fuel used for calcining limestone. However, fuel needs to have a certain size and strength. For example, powdery fuel broken in the transportation process can not contribute to combustion due to the gas flow and is discharged to the outside of the furnace, and when it is compressed to limestone in the furnace and becomes powder, This is to fill the space and impede the gas flow. Therefore, development of a fuel in which a binder is blended with coal coke powder and granulated is being promoted.

例えば、特許文献1には、粉コークスに、生石灰と消石灰の1種又は2種(生消石灰)を配合し、その後造粒し養生することを特徴とする焼結用粒状燃料及びその製造方法が記載され、0.5〜3mm程度の消石灰が記載されている。また、特許文献2には、微粉の石炭、コークス混合物にセメント・高炉水砕スラグ等の水硬性結合材を添加し造粒・養生して粒状燃料を作成することが記載され、前記混合物の10重量%以下の石灰石(粒径44μm以下のものが58.7%)を混ぜてもよいことが記載されている。   For example, Patent Document 1 discloses a particulate fuel for sintering, which comprises blending powdered coke with one or two types of quick lime and slaked lime (fresh lime), followed by granulation and curing. It describes and the slaked lime of about 0.5-3 mm is described. Patent Document 2 describes addition of a hydraulic binder such as cement and ground granulated blast furnace slag to finely divided coal and coke mixture to granulate and cure it to form granular fuel; It is stated that limestone or less (58.7% of particles having a particle size of 44 μm or less) may be mixed.

特開2006−290925号公報JP, 2006-290925, A 特開昭62−220590号公報Japanese Patent Application Laid-Open No. 62-220590

しかしながら、引用文献1に記載の条件では、造粒が難しく、特に石灰石焼成用としては強度を得られないという問題がある。また、引用文献2に記載の粒状燃料は、石炭自体を用いているため、コストが高くなってしまう問題がある。   However, under the conditions described in Patent Document 1, there is a problem that granulation is difficult, and in particular, strength can not be obtained for limestone firing. Moreover, since the granular fuel as described in Patent Document 2 uses coal itself, there is a problem that the cost becomes high.

本発明の目的は、強度が高く、更に、環境に優しく造粒費用を低減させることが可能な成形燃料、その製造方法、及び石灰石の焼成方法を提供することにある。   An object of the present invention is to provide a molded fuel which is high in strength and is environmentally friendly and capable of reducing granulation cost, a method for producing the same, and a method for calcining limestone.

本発明者らは、以上の目的を達成するために、鋭意検討した結果、炭素の含有率が乾燥基準で60質量以上である炭素原料に、特定の結合材を配合することにより、強度が高く、更に、環境に優しく造粒費用を低減させることができることを見出し、本発明を完成させるに至った。   As a result of intensive investigations to achieve the above object, the present inventors have high strength by blending a specific binder with a carbon material having a carbon content of 60 mass or more on a dry basis. Furthermore, they have found that they can be environmentally friendly and reduce granulation costs, and have completed the present invention.

すなわち、本発明は、炭素原料と結合材とを含有する成形燃料であって、前記炭素原料は炭素の含有率が乾燥基準で60質量%以上であり、前記結合材は反応前の状態で、酸化カルシウムを主成分として平均粒子径が15μm以下であり、粉化率が30%以下であることを特徴とする成形燃料に関する。   That is, the present invention is a molded fuel containing a carbon source and a binder, wherein the carbon source has a carbon content of 60% by mass or more on a dry basis, and the binder is in a state before reaction. The present invention relates to a molded fuel characterized by containing calcium oxide as a main component and having an average particle diameter of 15 μm or less and a powdering ratio of 30% or less.

また、本発明は、炭素原料と、石灰石を焼成したときに排出された平均粒子径が15μm以下の排出ダストとを混合して混合物を得る混合工程と、前記混合物を造粒して造粒物を得る造粒工程と、前記造粒物を養生して成形燃料を得る養生工程とを有することを特徴とする成形燃料の製造方法に関する。   In the present invention, there is also provided a mixing step of mixing a carbon raw material and discharge dust having an average particle diameter of 15 μm or less discharged when calcining limestone to obtain a mixture, and granulating the mixture to obtain a granulated product. The present invention relates to a method for producing a formed fuel, comprising the steps of: obtaining a granulated fuel; and curing the granulated product to obtain a molded fuel.

また、本発明は、炭素原料と、石灰石を焼成したときに排出された排出ダストとを含有する成形燃料を得る燃料製造工程と、前記成形燃料を用いて石灰石を焼成する焼成工程とを有することを特徴とする石灰石の焼成方法に関する。   In addition, the present invention has a fuel production process for obtaining a molded fuel containing a carbon raw material and exhaust dust discharged when calcining limestone, and a sintering process for sintering limestone using the molded fuel. The present invention relates to a method for calcining limestone characterized by

本発明によれば、強度が高く、更に、環境に優しく造粒費用を低減させることが可能な成形燃料、その製造方法、及び石灰石の焼成方法を提供することができる。   According to the present invention, it is possible to provide a molded fuel which has high strength and can be environmentally friendly and can reduce granulation cost, a method for producing the same, and a method for calcining limestone.

1.成形燃料
本発明に係る成形燃料は、炭素の含有率が乾燥基準で60質量%以上の炭素原料と、反応前の状態で、酸化カルシウムを主成分として平均粒子径が15μm以下である結合材(バインダー)とを含有する。本明細書において「乾燥基準」とは、含水率が1%未満の成形燃料を基準とするものである。
1. Molded Fuel A molded fuel according to the present invention comprises a carbon material having a carbon content of 60% by mass or more on a dry basis, and a binder having an average particle diameter of 15 μm or less mainly containing calcium oxide in a state before reaction. And a binder). As used herein, "dry basis" is based on a shaped fuel having a moisture content of less than 1%.

本発明に係る成形燃料において、炭素の含有率が乾燥基準で60質量%以上の炭素原料としては、石炭コークス粉、無煙炭の粉末、一般炭の粉末、すす、及びコークスダスト等の粉状燃焼物が挙げられる。石炭コークス粉単独で、炭素原料として用いることができる。石炭コークス粉は、0〜30%程度のファインスラグ、又は0〜25%程度のPCカーボンと組み合わせて混合炭素原料として用いてもよい。混合炭素原料は、0〜15%程度のファインスラグとともに0〜10%程度のPCカーボンを含有することもできる。なお、炭素とは固定炭素をさす。   In the formed fuel according to the present invention, as a carbon raw material having a carbon content of 60% by mass or more on a dry basis, powdery combustion products such as coal coke powder, powder of anthracite coal, powder of steam coal, soot and coke dust Can be mentioned. Coal coke powder alone can be used as a carbon source. Coal coke powder may be used as a mixed carbon raw material in combination with about 0 to 30% of fine slag or about 0 to 25% of PC carbon. The mixed carbon raw material can also contain about 0 to 10% of PC carbon together with about 0 to 15% of fine slag. In addition, carbon means fixed carbon.

炭素原料(以下、可燃物とも称する)は、乾燥基準で炭素を60質量%以上含むが、炭素含有率は70質量%以上が好ましく、成形燃料の発熱量確保の観点から、80質量%以上がより好ましい。炭素原料は、炭素以外にも、水分、硫黄、灰分等を含む場合がある。乾燥基準の炭素含有率は、炭素原料の含水質量、含水量、炭素量を用いて求めることができる。
また、炭素原料は、粒径10mm以下の割合が95質量%以上であることが好ましく、粒径8mm以下の割合が95質量%以上であることがより好ましい。炭素原料の平均粒子径は、15mm以下が好ましく、10mm以下がより好ましい。炭素原料の平均粒子径は、試験用篩いを用いた手篩い及びレーザー回折法により求めることができる。
The carbon material (hereinafter also referred to as a flammable material) contains 60% by mass or more of carbon on a dry basis, but the carbon content is preferably 70% by mass or more, and from the viewpoint of securing the calorific value of the formed fuel, 80% by mass or more More preferable. The carbon raw material may contain moisture, sulfur, ash and the like in addition to carbon. The carbon content on a dry basis can be determined using the water content mass, water content, and carbon content of the carbon raw material.
The carbon raw material preferably has a particle diameter of 10 mm or less at 95% by mass or more, and more preferably a particle diameter of 8 mm or less at 95% by mass or more. 15 mm or less is preferable and, as for the average particle diameter of a carbon raw material, 10 mm or less is more preferable. The average particle size of the carbon raw material can be determined by hand sieving using a test sieve and laser diffraction method.

反応前の状態で、酸化カルシウムを主成分として平均粒子径が15μm以下である結合材としては、石灰石を焼成したときに排出された排出ダストが挙げられる。「反応前の状態」とは、水および炭酸ガスと反応する前の酸化カルシウムが主成分である状態をさし、成分分析により確認することができる。また、「主成分とする」とは、全体の40〜65質量%を占めていることをさす。結合材の平均粒子径は15μm以下であるが、10μm以下がより好ましい。結合材の平均粒子径は、レーザー回折法により求めることができる。   An example of the binder having calcium oxide as a main component and an average particle diameter of 15 μm or less before the reaction includes an exhaust dust discharged when calcining limestone. The “pre-reaction state” refers to a state in which calcium oxide before reacting with water and carbon dioxide gas is the main component, and can be confirmed by component analysis. Moreover, "having as a main component" means that 40 to 65 mass% of the whole is occupied. The average particle size of the binder is 15 μm or less, preferably 10 μm or less. The average particle size of the binder can be determined by laser diffraction.

石灰石を焼成したときに排出された排出ダストは、石灰石の焼成における様々な工程で発生した細かい石灰石、生石灰、燃料未燃分等の固形分を含むダストであり、焼成炉から二酸化炭素と固形分を含んだガスが排出される際に、サイクロンセパレーター、バグフィルター等で構成される集塵設備でガスから固形分を取り除くことで得られる。本発明においては、平均粒子径が15μm以下である排出ダストを得るために、バグフィルターで取り除かれた排出ダストを用いる。   Exhaust dust discharged when calcining limestone is dust containing solids such as fine limestone, quicklime, unburned fuel, etc. generated in various steps of calcining limestone, and carbon dioxide and solid content from calciner When the gas containing this is discharged, it is obtained by removing solid content from the gas with a dust collection facility composed of a cyclone separator, a bag filter and the like. In the present invention, in order to obtain an exhaust dust having an average particle size of 15 μm or less, the exhaust dust removed by a bag filter is used.

排出ダストは、主成分としてのCaOの含有量が40〜65質量%であることが好ましい。排出ダストにおける不純物成分は、10〜30質量%のSiO2、0.5〜5質量%のFe23、1〜10質量%のAl23、5質量%以下のMgO、5質量%以下のP、5質量%以下のS、5質量%以下のNa、5質量%以下のKであることが好ましい。 It is preferable that content of CaO as a main component is 40-65 mass% of discharge dust. The impurity component in the exhaust dust is 10 to 30% by mass of SiO 2 , 0.5 to 5% by mass of Fe 2 O 3 , 1 to 10% by mass of Al 2 O 3 , 5% by mass or less of MgO, 5% by mass It is preferable that it is following P, 5 mass% or less S, 5 mass% or less Na, 5 mass% or less K.

本発明に係る成形燃料の粉化率は、30%以下であり、20%以下が好ましく、10%以下がより好ましい。本明細書において、粉化率は、後述する実施例に記載の方法で測定した粉化率と定義する。粉化率が30%より大きいと、輸送工程で崩れる場合があり、崩れた粉状の燃料は、ガス流に乗り燃焼に寄与せず、炉外に排出されることとなるため好ましくない。   The pulverization rate of the formed fuel according to the present invention is 30% or less, preferably 20% or less, and more preferably 10% or less. In the present specification, the powdering rate is defined as the powdering rate measured by the method described in the examples described later. If the pulverization rate is more than 30%, the powdery fuel may collapse in the transportation process, and the pulverized fuel in powder form is not preferable because it travels to the gas flow and does not contribute to combustion and is discharged out of the furnace.

本発明に係る成形燃料は、石灰石焼成用として特に好ましく用いられ、粒径が好ましくは10〜100mmの範囲、より好ましくは20〜70mmの範囲である。本明細書において成形燃料の粒径とは、成形燃料の中心を通過して、成形燃料の表面上の任意の2点を繋ぐ線分の中で、最も短い線分の長さをさす。粒径が10mmより小さいと、石灰石等を焼成する際に、充填された石灰石の隙間に詰まり、ガス流を阻害する場合がある。また、粒径が100mmより大きいと、製造が難しく、また、石灰石と共に充填した際に割れて石灰石の隙間に詰まり易くなる傾向にある。   The shaped fuel according to the present invention is particularly preferably used for calcining limestone, and the particle size is preferably in the range of 10 to 100 mm, more preferably in the range of 20 to 70 mm. In the present specification, the particle diameter of the formed fuel refers to the length of the shortest line segment among the line segments passing through the center of the formed fuel and connecting any two points on the surface of the formed fuel. When the particle size is smaller than 10 mm, when calcining limestone or the like, the gaps in the filled limestone may be clogged to inhibit the gas flow. If the particle size is larger than 100 mm, the production is difficult, and when packed with limestone, it tends to be broken and clogged in gaps of limestone.

本発明に係る成形燃料の圧潰強度は、成形燃料が圧潰する荷重で1500N以上が好ましく、2000N以上がより好ましく、3000N以上がさらに好ましい。また、圧潰応力としては、2.0N/mm2以上が好ましく、2.7N/mm2がより好ましく、4.0N/mm2以上がさらに好ましい。本明細書において、圧潰強度及び圧潰応力は、後述する実施例に記載の方法で測定した圧潰強度及び圧潰応力と定義する。圧潰する荷重が1500N未満であると、焼成時に強度が低下して燃焼炉内で成形燃料の形状を保つことが出来ない場合がある。成形燃料が炉内の石灰石に圧縮され粉体になると、石灰石間の空間を埋め、ガス流の妨げとなるため好ましくない。 The crushing strength of the formed fuel according to the present invention is preferably 1500 N or more, more preferably 2000 N or more, and still more preferably 3000 N or more at a load at which the formed fuel crushes. As the crushing stress, preferably 2.0 N / mm 2 or more, more preferably 2.7N / mm 2, 4.0N / mm 2 or more is more preferable. In the present specification, the crush strength and crush stress are defined as crush strength and crush stress measured by the method described in the examples described later. If the crushing load is less than 1500 N, the strength may decrease at the time of firing, and the shape of the formed fuel may not be maintained in the combustion furnace. If the formed fuel is compressed into limestone in the furnace to become powder, it fills up the space between the limestone, which is not preferable because it obstructs the gas flow.

2.成形燃料の製造方法
本発明に係る成形燃料は、以下に示す本発明に係る成形燃料の製造方法によって得られる。本発明に係る成形燃料の製造方法は、炭素原料と、石灰石を焼成したときに排出された平均粒子径が15μm以下の排出ダストとを混合して混合物を得る混合工程と、前記混合物を造粒して造粒物を得る造粒工程と、前記造粒物を養生して成形燃料を得る養生工程とを有する。
2. Method for Producing Molded Fuel The molded fuel according to the present invention can be obtained by the method for producing a molded fuel according to the present invention described below. The method for producing a shaped fuel according to the present invention comprises mixing a carbon raw material and an exhaust dust having an average particle diameter of 15 μm or less discharged when calcining limestone to obtain a mixture; granulating the mixture And a granulating step of obtaining a granulated product, and a curing step of curing the granulated product to obtain a shaped fuel.

(混合工程)
混合工程は、炭素原料と、石灰石を焼成したときに排出された平均粒子径が15μm以下の排出ダストとを混合して混合物を得る工程である。
炭素原料は、炭素の含有率が乾燥基準で60質量%以上であることが好ましい。乾燥基準の炭素含有率が異なる複数の炭素原料を用いる場合には、炭素原料全体の炭素含有率を60質量%となるように配合すればよい。
(Mixing process)
The mixing step is a step of mixing the carbon raw material and the discharge dust having an average particle diameter of 15 μm or less, which is discharged when the limestone is calcined, to obtain a mixture.
The carbon source preferably has a carbon content of 60% by mass or more on a dry basis. In the case of using a plurality of carbon raw materials having different carbon contents on a dry basis, the carbon content of the entire carbon raw material may be blended so as to be 60% by mass.

炭素原料と排出ダストとの混合に当たっては、こうした炭素原料(可燃物)を乾燥基準で80〜90質量%と、バインダーとして、石灰石を焼成したときに排出された平均粒子径が15μm以下である排出ダストを乾燥基準で10〜20質量%とを用いることができる。炭素原料の割合は、好ましくは70〜90質量%である。可燃物、排出ダストから持ち込まれる水分も加味して、全体の水分量が10〜30%になるように添加する水分量を調整し、均一に混合することで達成される。
混合には、例えば石臼(フレットミル)、ミックスマーラーなどの機器を用いることができる。混合後、造粒までの時間が短いほど、特性の優れた成形燃料が得られる。具体的には、混合から造粒までの時間が短いほど、得られる成形燃料の強度が向上する。
When mixing carbon source and exhaust dust, 80% to 90% by mass of such carbon source (combustible) on a dry basis, and an average particle diameter of 15 μm or less discharged when calcining limestone as a binder Dust can be used at 10 to 20% by mass on a dry basis. The proportion of the carbon source is preferably 70 to 90% by mass. It is achieved by adjusting the amount of water to be added so that the total amount of water is 10 to 30% in consideration of the moisture brought in from the combustibles and the discharged dust, and uniformly mixing.
For mixing, for example, a device such as a mill (fret mill) or mix miller can be used. The shorter the time to granulation after mixing, the better the properties of the formed fuel are obtained. Specifically, the shorter the time from mixing to granulation, the higher the strength of the resulting shaped fuel.

ここで用いられる可燃物は顆粒状、若しくは粉末状であり、2種類以上の可燃物を混合した混合品であって当該混合品の総量で炭素を乾燥基準で60質量%以上含むものでも良い。炭素を乾燥基準で60質量%以上含む可燃物は、一般に粘性成分に乏しく、そのままで造粒することは困難である。石灰石を焼成したときに排出された排出ダストを、インダーとして添加することで、可燃物中の炭素と、排出ダスト中の不純物成分(上記SiO2、Al23等)とCa成分との間で反応が起こる。カルシウム化合物(カルシウムアルミネート、カルシウムシリケート等)が生成され、その生成物が成形燃料としたときの特性に影響を及ぼすと考えられる。 The combustibles used here are granular or powdery, and they may be a mixture of two or more types of combustibles, and the total amount of the mixture may contain 60% by mass or more of carbon on a dry basis. In general, combustibles containing 60% by mass or more of carbon on a dry basis are poor in viscosity components, and are difficult to be granulated as they are. By adding the discharge dust discharged when calcining limestone as an inder, it is between the carbon in the combustibles and the impurity component (the above SiO 2 , Al 2 O 3 etc.) and the Ca component in the discharge dust. The reaction takes place. It is believed that calcium compounds (such as calcium aluminate, calcium silicate, etc.) are formed and that the product affects the properties of the formed fuel.

(造粒工程)
造粒工程は、前記混合工程で得られた混合物を造粒して造粒物を得る工程である。
造粒工程において、造粒方法としては、一対の成形ロールを有するブリケットマシン(ロール型圧縮造粒機)でピロー形ブリケットやアーモンド形ブリケットを製造する圧縮造粒法や、パンペレタイザ(パン型造粒機)で球形に成形する転動造粒法等を適宜適用できる。
(Granulation process)
The granulation step is a step of granulating the mixture obtained in the mixing step to obtain a granulated product.
In the granulation step, as a granulation method, a compression granulation method for producing a pillow type briquette or an almond type briquette with a briquette machine (roll type compression granulator) having a pair of forming rolls, a pan pelletizer (pan type granulation Rolling granulation method etc. which are formed into a spherical shape by

造粒条件としては、30〜100N/mm2の圧力で、20〜70mm程度の大きさに造粒することが好ましい。また、造粒直後の造粒物に含まれる水分を10〜25%に調整することで、次の養生工程において排出ダスト中の不純物成分(上記SiO2、Al23等)とCa成分との間の反応を効率的に進めることができる。造粒物中の水分は、15〜20%であることがより好ましい。 As granulation conditions, it is preferable to granulate to a size of about 20 to 70 mm at a pressure of 30 to 100 N / mm 2 . In addition, by adjusting the water content in the granulated material immediately after granulation to 10 to 25%, in the next curing step, the impurity component (the above-mentioned SiO 2 , Al 2 O 3 etc.) and the Ca component in the discharged dust Reaction can be efficiently advanced. The water content in the granulated material is more preferably 15 to 20%.

(養生工程)
養生工程は、前記造粒工程で得られた造粒物を養生して成形燃料を得る工程である。養生工程を経ることで、造粒物は、強固な成形燃料となる。
養生条件としては、気温0〜100℃、湿度60〜100%の条件下で、所定の強度(例えば、1500N)に達するまで養生する。一例として、大気下(気温10〜30℃、湿度60〜100%)であれば、24時間養生を行えば、概ね所定の強度を得ることができる。温度や湿度が高いほど、養生時間を短縮することができる。
(Care process)
The curing step is a step of curing the granulated product obtained in the granulation step to obtain a shaped fuel. Through the curing step, the granulated material becomes a strong molded fuel.
As curing conditions, curing is carried out under conditions of temperature 0 to 100 ° C. and humidity 60 to 100% until reaching a predetermined strength (for example, 1500 N). As an example, if it is under the atmosphere (temperature: 10 to 30 ° C., humidity: 60 to 100%), almost predetermined strength can be obtained by curing for 24 hours. The higher the temperature and humidity, the shorter the curing time.

3.石灰石の焼成方法
本発明に係る石灰石の焼成方法は、炭素原料と、石灰石を焼成したときに排出された排出ダストとを含有する成形燃料を得る燃料製造工程と、前記成形燃料を用いて石灰石を焼成する焼成工程とを有する。
3. A method of calcining limestone according to the present invention comprises the steps of: producing a shaped fuel containing a carbon raw material and exhaust dust discharged when calcining the limestone; and using the shaped fuel to produce limestone. And a firing step of firing.

(燃料製造工程)
燃料製造工程では、炭素原料と、石灰石を焼成したときに排出された排出ダストとを含有する成形燃料を得る。炭素原料は、炭素の含有率が乾燥基準で60質量%以上であることが好ましい。排出ダストは、平均粒子径が15μm以下であることが好ましい。
燃料製造工程で得られる成形燃料は、上述した本発明に係る成形燃料と同様であり、説明を省略する。
(Fuel production process)
In the fuel production process, a shaped fuel is obtained that contains a carbon source and exhaust dust discharged when calcining limestone. The carbon source preferably has a carbon content of 60% by mass or more on a dry basis. The discharged dust preferably has an average particle size of 15 μm or less.
The molded fuel obtained in the fuel manufacturing process is the same as the molded fuel according to the present invention described above, and the description will be omitted.

(焼成工程)
焼成工程は、前記燃料製造工程で得られた成形燃料を用いて、石灰石を焼成する工程である。焼成炉としては、特に限定はなく、例えばメルツ炉、ベッケンバッハ炉、混焼炉、シャフトキルン、及びコマ式炉等の縦型焼成炉、並びにロータリーキルン等の横型焼成炉等が挙げられる。中でも、縦型焼成炉が好ましく、ベッケンバッハ炉が特に好ましい。焼成条件は、それぞれの焼成炉の焼成条件を用いることができるが、例えば、ベッケンバッハ炉においては、最大生産能力200〜400t/日のベッケンバッハ炉で、最高温度1000℃、滞留時間24時間の方法等が挙げられる。ただし、この条件に限定されない。
また、焼成工程で排出された排出ダストを用いて、再度燃料製造工程を経ることで、焼成工程と燃料製造工程とを循環させてリサイクルが可能であり、環境への配慮とコスト削減とを両立することが可能となる。
(Firing process)
The firing step is a step of firing limestone using the molded fuel obtained in the fuel production step. The firing furnace is not particularly limited, and examples thereof include vertical furnaces such as Meltz furnace, Beckenbach furnace, co-fired furnace, shaft kiln, and top furnace, and horizontal furnaces such as rotary kiln. Among them, the vertical firing furnace is preferable, and the Beckenbach furnace is particularly preferable. The firing conditions may be the firing conditions of the respective firing furnaces. For example, in the Beckenbach furnace, in the Beckenbach furnace with a maximum production capacity of 200 to 400 t / day, the maximum temperature is 1000 ° C., and the residence time is 24 hours Methods etc. However, it is not limited to this condition.
In addition, by using the exhaust dust discharged in the firing process and passing through the fuel production process again, it is possible to circulate the firing process and the fuel production process to enable recycling, thus achieving both environmental considerations and cost reduction. It is possible to

以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではなく、また、本発明は、これら実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but these do not limit the object of the present invention, and the present invention is not limited to these examples.

まず、本実施例で用いた測定方法、炭素原料、及びバインダーを示す。
[落下強度(粉化率)]
成形燃料を1mの高さから繰返し5回、地面(滑らかなコンクリート床)に落下させた。落下の衝撃で発生した8mm以下の破砕物を篩い分けて質量を測定し、全体量に対する割合を粉化率として落下強度を評価した。
[圧潰強度]
円柱状に製造された成形燃料を電気炉内に置き、昇温速度5℃/minで400℃まで加熱した。400℃を保持しつつ30分経過後、円柱の軸方向に荷重をかけて一軸圧縮することで耐荷重である圧潰強度を測定した。耐荷重を圧縮面(円柱の端面)の断面積で除して、圧潰応力を算出した。
First, the measurement method, the carbon raw material, and the binder used in the present example are shown.
[Fall strength (powdering rate)]
The formed fuel was dropped 5 times repeatedly from the height of 1 m onto the ground (smooth concrete floor). The crushed material of 8 mm or less generated by the impact of falling was sieved to measure the mass, and the falling strength was evaluated using the ratio to the total amount as the powdering rate.
[Crushing strength]
The cylindrically produced molded fuel was placed in an electric furnace and heated to 400 ° C. at a heating rate of 5 ° C./min. After 30 minutes while maintaining the temperature at 400 ° C., a load was applied in the axial direction of the cylinder to perform uniaxial compression, thereby measuring a crushing strength which is a load resistance. The load resistance was divided by the cross-sectional area of the compression surface (end face of the cylinder) to calculate the crush stress.

[炭素原料]
炭素原料として、石炭コークス粉、石炭ガス化炉から発生する残渣物の微粉部分であるファインスラグ(FS)、及びオイルコークス燃焼ボイラから発生する未燃分を電気集塵機で捕集したPCカーボンを用いた。各炭素原料の組成を下記表1に示す。なお、石炭コークス粉、ファインスラグ、PCカーボンの平均粒子径は、それぞれ2000μm、108μm、112μmである。
[Carbon raw material]
As a carbon material, use is made of coal coke powder, fine slag (FS) which is a fine powder portion of the residue generated from a coal gasification furnace, and PC carbon obtained by collecting unburned components generated from an oil coke combustion boiler with an electrostatic precipitator It was. The composition of each carbon source is shown in Table 1 below. In addition, the average particle diameter of coal coke powder, fine slag, and PC carbon is respectively 2000 micrometers, 108 micrometers, and 112 micrometers.

[バインダー]
ベッケンバッハ炉を用いて1000℃で24時間、石灰石を焼成した際に排出された排ガスのうち、サイクロンセパレーターを通過した後バグフィルターに捕集されたバグフィルター(BF)ダスト、サイクロンセパレーターに捕集されたサイクロンダスト、原料石灰石の輸送系統で集塵された石灰石ダストを用いた。各ダストに含有される化合物の組成を、下記表2に示す。なお、BFダスト、サイクロンダスト、石灰石ダストの平均粒子径は、それぞれ6μm、150μm、55μmである。
[binder]
Among the exhaust gases discharged from calcining limestone at 1000 ° C for 24 hours using a Beckenbach furnace, bag filter (BF) dust collected on a bag filter after passing through a cyclone separator, collected on a cyclone separator Used cyclone dust, limestone dust collected by transportation system of raw material limestone. The composition of the compound contained in each dust is shown in Table 2 below. The average particle sizes of BF dust, cyclone dust and limestone dust are 6 μm, 150 μm and 55 μm, respectively.

(実施例1) 石炭コークス粉とバグフィルター(BF)ダスト
粒子径8mm以下、水分7%、固定炭素87%を含む石炭コークス粉22gに粒子径20μm以下、水分2%のBFダストを5g加えた。さらに、水3gを加えて袋内で1分間振り混ぜ、手混合を行った。混合物を直径30mmの金枠に入れ、100N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで実施例1に係る直径30mm×高さ28mmの円柱状の成形燃料を得た。
(Example 1) Coal coke powder and bag filter (BF) dust 5 g of BF dust having a particle diameter of 20 μm or less and 2% moisture was added to 22 g of coal coke powder containing particle size 8 mm or less, moisture 7%, and fixed carbon 87%. . Further, 3 g of water was added, and the mixture was shaken in the bag for 1 minute to perform hand mixing. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 100 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was carried out to obtain a cylindrical shaped fuel with a diameter of 30 mm and a height of 28 mm according to Example 1.

(実施例2) 石炭コークス粉とファインスラグ(FS):置換率15%およびバグフィルター(BF)ダスト
粒子径8mm以下、水分7%、固定炭素87%を含む石炭コークス粉18gに粒子径0.7mm以下、水分50%、固定炭素68%を含むファインスラグ6gを加え、袋内で均一になるまで振り混ぜた。次に、石炭コークス粉とファインスラグとの混合炭素原料24gに粒子径20μm以下、水分2%のBFダスト5gを加え、さらに水2gを加えて袋内で1分間振り混ぜた。混合物を直径30mmの金枠に入れ、50N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで実施例2に係る直径30mm×高さ28mmの円柱状の成形燃料を得た。
(Example 2) Coal coke powder and fine slag (FS): 15% substitution rate and bag filter (BF) dust particle diameter 8 mm or less, moisture 7%, coal carbon powder containing 87% fixed carbon particle diameter 0. 6 g of fine slag containing 7 mm or less, 50% moisture, and 68% fixed carbon was added, and the mixture was shaken until uniform in the bag. Next, 5 g of BF dust having a particle diameter of 20 μm or less and 2% of water was added to 24 g of a mixed carbon raw material of coal coke powder and fine slag, 2 g of water was further added, and the mixture was shaken for 1 minute in a bag. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 50 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was carried out to obtain a cylindrical shaped fuel with a diameter of 30 mm and a height of 28 mm according to Example 2.

(実施例3) 石炭コークス粉とファインスラグ(FS):置換率25%およびバグフィルター(BF)ダスト
粒子径8mm以下、水分7%、固定炭素87%を含む石炭コークス粉16gに粒子径0.7mm以下、水分50%、固定炭素68%を含むファインスラグ10gを加え、袋内で均一になるまで振り混ぜた。次に、石炭コークス粉とファインスラグとの混合炭素原料26gに粒子径20μm以下、水分2%のBFダスト5gを加え、さらに水1gを加えて袋内で1分間振り混ぜた。混合物を直径30mmの金枠に入れ、50N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで実施例3に係る直径30mm×高さ28mmの円柱状の成形燃料を得た。
(Example 3) Coal coke powder and fine slag (FS): substitution rate 25% and bag filter (BF) dust particle diameter 8 mm or less, moisture 7%, coal carbon powder 16% containing fixed carbon 87% particle diameter 0. 10 g of fine slag containing 7 mm or less, 50% moisture, and 68% fixed carbon was added, and the mixture was shaken until uniform in the bag. Next, 5 g of BF dust having a particle diameter of 20 μm or less and 2% of water content was added to 26 g of a mixed carbon raw material of coal coke powder and fine slag, 1 g of water was further added, and the mixture was shaken for 1 minute in a bag. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 50 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was performed to obtain a cylindrical shaped fuel with a diameter of 30 mm and a height of 28 mm according to Example 3.

(実施例4) 石炭コークス粉とPCカーボン(PC):置換率20%およびバグフィルター(BF)ダスト
粒子径8mm以下、水分7%、固定炭素87%を含む石炭コークス粉17gに粒子径0.5mm以下、水分1%、固定炭素92%を含むPCカーボン4gを加え、袋内で均一になるまで振り混ぜた。次に、石炭コークス粉とPCカーボンとの混合炭素原料21gに粒子径20μm以下、水分2%のBFダスト5gを加え、さらに水5gを加えて袋内で1分間振り混ぜた。混合物を直径30mmの金枠に入れ、38N/mm2の圧力で造粒した。造粒物を室温で72h放置し、養生を行うことで実施例4に係る直径30mm×高さ28mmの円柱状の成形燃料を得た。
(Example 4) Coal coke powder and PC carbon (PC): 20% substitution rate and bag filter (BF) dust particle diameter 8 mm or less, water content 7% coal coke powder containing 87% fixed carbon particle diameter 0. 4 g of PC carbon containing 5 mm or less, 1% moisture, and 92% fixed carbon was added, and the mixture was shaken until uniform in the bag. Next, 5 g of BF dust having a particle diameter of 20 μm or less and 2% of water was added to 21 g of a mixed carbon raw material of coal coke powder and PC carbon, 5 g of water was further added, and the mixture was shaken for 1 minute in a bag. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 38 N / mm 2 . The granulated product was left at room temperature for 72 hours, and curing was performed to obtain a cylindrical shaped fuel with a diameter of 30 mm and a height of 28 mm according to Example 4.

実施例1〜4の成形燃料に用いた炭素原料の質量、水分含有量、及び炭素含有量を下記表3にまとめる。   The mass, the water content, and the carbon content of the carbon raw materials used for the molded fuels of Examples 1 to 4 are summarized in Table 3 below.

実施例1〜4で用いたBFダストは、含水質量5g、乾燥質量4.9g、含水率2%、含水量0.1gである。
下記表4には、各成形燃料における乾燥基準の質量比をまとめる。
The BF dust used in Examples 1 to 4 has a water content of 5 g, a dry weight of 4.9 g, a water content of 2%, and a water content of 0.1 g.
Table 4 below summarizes the dry basis mass ratio of each of the molded fuels.

(比較例1) 石炭コークス粉とサイクロンダスト
粒子径8mm以下、水分12%、固定炭素87%を含む石炭コークス粉24gに粒子径200μm以下、水分1%のサイクロンダスト6gを加え、袋内で1分間、手混合を行った。混合物を直径30mmの金枠に入れ、100N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで比較例1に係る直径30mm×高さ28mmの成形燃料を得た。
Comparative Example 1 Coal Coke Powder and Cyclone Dust 6 g of cyclone dust having a particle diameter of 200 μm or less and 1% water was added to 24 g of coal coke powder containing particle size 8 mm or less, moisture 12%, and fixed carbon 87%. Hand mixing was done for a minute. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 100 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was performed to obtain a shaped fuel having a diameter of 30 mm and a height of 28 mm according to Comparative Example 1.

(比較例2)
養生日数を72hに変更する以外は比較例1と同様にして、比較例2に係る成形燃料を得た。
(Comparative example 2)
A molded fuel according to Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the number of days for aging was changed to 72 h.

(比較例3) 石炭コークス粉と石灰石ダスト
粒子径8mm以下、水分12%、固定炭素87%を含む石炭コークス粉24gに粒子径100μm以下、水分1%の石灰石ダスト6gを加え、袋内で1分間、手混合を行った。混合物を直径30mmの金枠に入れ、100N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで比較例3に係る直径30mm×高さ28mmの成形燃料を得た。
Comparative Example 3 Coal Coke Powder and Limestone Dust 6 g of limestone dust having a particle diameter of 100 μm or less and 1% water is added to 24 g of coal coke powder containing particle diameter 8 mm or less, moisture 12%, fixed carbon 87%. Hand mixing was done for a minute. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 100 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was performed to obtain a shaped fuel having a diameter of 30 mm and a height of 28 mm according to Comparative Example 3.

(比較例4)
養生日数を72hに変更する以外は比較例3と同様にして、比較例4に係る成形燃料を得た。
(Comparative example 4)
A molded fuel according to Comparative Example 4 was obtained in the same manner as in Comparative Example 3 except that the number of days for aging was changed to 72 h.

(比較例5) 石炭コークス粉
粒子径8mm以下、水分12%、固定炭素87%を含む石炭コークス粉30gを直径30mmの金枠に入れ、100N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで比較例5に係る直径30mm×高さ28mmの成形燃料を得た。
Comparative Example 5 Coal Coke Powder 30 g of coal coke powder containing a particle diameter of 8 mm or less, moisture 12%, and fixed carbon 87% was placed in a metal frame with a diameter of 30 mm, and granulated at a pressure of 100 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was performed to obtain a shaped fuel having a diameter of 30 mm and a height of 28 mm according to Comparative Example 5.

(比較例6) 石炭コークス粉と澱粉
粒子径8mm以下、水分12%、固定炭素87%を含む石炭コークス粉30gに澱粉0.9gを加え、袋内で1分間、手混合を行った。混合物を直径30mmの金枠に入れ、100N/mm2の圧力で造粒した。造粒物を室温で24h放置し、養生を行うことで比較例6に係る直径30mm×高さ28mmの成形燃料を得た。
(Comparative Example 6) Coal coke powder and starch 0.9 g of starch was added to 30 g of coal coke powder containing a particle diameter of 8 mm or less, moisture 12%, and fixed carbon 87%, and hand mixing was performed for 1 minute in a bag. The mixture was placed in a 30 mm diameter metal frame and granulated at a pressure of 100 N / mm 2 . The granulated product was left to stand at room temperature for 24 hours, and curing was performed to obtain a shaped fuel having a diameter of 30 mm and a height of 28 mm according to Comparative Example 6.

実施例1〜4、及び比較例1〜6の成形燃料の落下強度(粉化率)、圧潰強度及び圧潰応力を、下記表5にまとめる。   The drop strength (powdering ratio), crushing strength and crushing stress of the molded fuels of Examples 1 to 4 and Comparative Examples 1 to 6 are summarized in Table 5 below.

表5より、バインダーとしてBSダスト(平均粒子径6μm)を用いた実施例1〜4に係る成形燃料は、比較例と比べて粉化率が低く、圧潰強度及び圧潰応力が高いことが分かる。   From Table 5, it can be seen that the shaped fuels according to Examples 1 to 4 using BS dust (average particle diameter 6 μm) as a binder have a low pulverization ratio and high crushing strength and crushing stress as compared with Comparative Examples.

Claims (6)

炭素原料と結合材とを含有する成形燃料であって、
前記炭素原料は炭素の含有率が乾燥基準で60質量%以上であり、
前記結合材は反応前の状態で、酸化カルシウムを主成分とし、平均粒子径が15μm以下であり、
粉化率が30%以下であることを特徴とする成形燃料。
A shaped fuel containing a carbon source and a binder,
The carbon raw material has a carbon content of 60% by mass or more on a dry basis,
The binder is mainly composed of calcium oxide and has an average particle diameter of 15 μm or less in a state before the reaction,
A shaped fuel having a powderization rate of 30% or less.
前記結合材は、石灰石を焼成したときに排出された排出ダストであることを特徴とする請求項1に記載の成形燃料。   The formed fuel according to claim 1, wherein the binder is an exhaust dust discharged when calcining limestone. 粒径が10〜100mmであり、圧潰強度が1500N以上である請求項1又は2記載の成形燃料。   The molded fuel according to claim 1 or 2, wherein the particle size is 10 to 100 mm and the crushing strength is 1,500 N or more. 石灰石焼成用である請求項1乃至3のいずれかに記載の成形燃料。   The shaped fuel according to any one of claims 1 to 3, which is for limestone firing. 炭素原料と、石灰石を焼成したときに排出された平均粒子径が15μm以下の排出ダストとを混合して混合物を得る混合工程と、
前記混合物を造粒して造粒物を得る造粒工程と、
前記造粒物を養生して成形燃料を得る養生工程と
を有することを特徴とする成形燃料の製造方法。
A mixing step of mixing a carbon raw material and discharge dust having an average particle diameter of 15 μm or less discharged when calcining limestone to obtain a mixture;
Granulating the mixture to obtain a granulated product;
And curing the granulated material to obtain a shaped fuel.
炭素原料と、石灰石を焼成したときに排出された排出ダストとを含有する成形燃料を得る燃料製造工程と、
前記成形燃料を用いて石灰石を焼成する焼成工程と
を有することを特徴とする石灰石の焼成方法。
A fuel production process for obtaining a shaped fuel containing a carbon source and exhaust dust discharged when calcining limestone;
And a calcining step of calcining limestone using the formed fuel.
JP2018224919A 2017-12-07 2018-11-30 Molded fuel, manufacturing method thereof, and calcination method of limestone Active JP6692877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059412A JP6967106B2 (en) 2017-12-07 2020-03-30 Molding fuel, its manufacturing method, and limestone firing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235491 2017-12-07
JP2017235491 2017-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020059412A Division JP6967106B2 (en) 2017-12-07 2020-03-30 Molding fuel, its manufacturing method, and limestone firing method

Publications (2)

Publication Number Publication Date
JP2019099818A true JP2019099818A (en) 2019-06-24
JP6692877B2 JP6692877B2 (en) 2020-05-13

Family

ID=66976182

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018224919A Active JP6692877B2 (en) 2017-12-07 2018-11-30 Molded fuel, manufacturing method thereof, and calcination method of limestone
JP2020059412A Active JP6967106B2 (en) 2017-12-07 2020-03-30 Molding fuel, its manufacturing method, and limestone firing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020059412A Active JP6967106B2 (en) 2017-12-07 2020-03-30 Molding fuel, its manufacturing method, and limestone firing method

Country Status (1)

Country Link
JP (2) JP6692877B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220590A (en) * 1986-03-22 1987-09-28 Nippon Steel Corp Production of granular fuel
JPS6310698A (en) * 1986-06-10 1988-01-18 ジエフリ− トンプソン Method for making solid fuel composition and harmful waste inoxious
JP2006290925A (en) * 2005-04-06 2006-10-26 Nippon Steel Corp Granular fuel for sintering and method for producing the same
JP2008094637A (en) * 2006-10-06 2008-04-24 Ube Ind Ltd Modified ash, method of modified ash and cement composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220590A (en) * 1986-03-22 1987-09-28 Nippon Steel Corp Production of granular fuel
JPS6310698A (en) * 1986-06-10 1988-01-18 ジエフリ− トンプソン Method for making solid fuel composition and harmful waste inoxious
JP2006290925A (en) * 2005-04-06 2006-10-26 Nippon Steel Corp Granular fuel for sintering and method for producing the same
JP2008094637A (en) * 2006-10-06 2008-04-24 Ube Ind Ltd Modified ash, method of modified ash and cement composition

Also Published As

Publication number Publication date
JP6967106B2 (en) 2021-11-17
JP6692877B2 (en) 2020-05-13
JP2020111758A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP5031131B2 (en) Cement mixed material, cement additive, and mixed cement manufacturing method
KR102022214B1 (en) Method for preparing briquettes comprising calcium-magnesium compounds and iron-based compounds and briquettes obtained thereby
JP6540359B2 (en) Modified carbon material for producing sintered ore and method for producing sintered ore using the same
CN110461486B (en) Method for producing modified fly ash
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
EA023830B1 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
JPH0121855B2 (en)
KR102574057B1 (en) Method and apparatus for reforming fly ash
JPH024658B2 (en)
EP3197828B1 (en) Phosphorous pentoxide producing methods and systems with increased agglomerate compression strength
JP6692877B2 (en) Molded fuel, manufacturing method thereof, and calcination method of limestone
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP6333770B2 (en) Method for producing ferronickel
JP7188126B2 (en) Method for manufacturing carbon-containing non-fired pellets for blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5817156B2 (en) Method for agglomerating powdery material containing iron and moisture
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP6869115B2 (en) How to make briquette for waste melting furnace and how to use briquette
JP2007269549A (en) Method of producing artificial aggregate
JP2004305909A (en) Sludge solidifying material using by-product fine powder from concrete lump as main component and manufacturing method for cement clinker
JPH0337144A (en) Milling system for ultrafine particle powder
JPS6214356B2 (en)
US20120211913A1 (en) Pelletization and calcination of green coke
JPH0331429A (en) Production of granular raw material for sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200415

R150 Certificate of patent or registration of utility model

Ref document number: 6692877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250