JP2019098352A - Method for manufacturing tube with hollow step - Google Patents

Method for manufacturing tube with hollow step Download PDF

Info

Publication number
JP2019098352A
JP2019098352A JP2017229589A JP2017229589A JP2019098352A JP 2019098352 A JP2019098352 A JP 2019098352A JP 2017229589 A JP2017229589 A JP 2017229589A JP 2017229589 A JP2017229589 A JP 2017229589A JP 2019098352 A JP2019098352 A JP 2019098352A
Authority
JP
Japan
Prior art keywords
die
diameter
small
tube
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017229589A
Other languages
Japanese (ja)
Inventor
西川 彰
Akira Nishikawa
彰 西川
智史 宇田川
Satoshi UDAGAWA
智史 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2017229589A priority Critical patent/JP2019098352A/en
Publication of JP2019098352A publication Critical patent/JP2019098352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

To provide a method for manufacturing a tube with a hollow step that can manufacture the tube with a hollow step easier than before, and can achieve characteristics of strength and dimension accuracy which are equal to or higher than conventional characteristics thereof.SOLUTION: In the method for manufacturing a tube with a hollow step, an original tube 10 is prepared, and a drawing device 5 comprising a large-diameter die 51 and a small-diameter die 52 which are arranged on a coaxial wire is used. A two-step simultaneous drawing processing is performed in which a tip of the original tube 10 is processed so that an outer diameter of the tip becomes smaller than a small-diameter part 12 to form a mouth-forming part 15 and the large-diameter die 51 and the small-diameter die 52 are sequentially passed, with the mouth-forming part 15 put in the lead, and the drawing processing is stopped before the whole length of the original pipe 10 passes through the small-diameter die 52. This can achieve the small-diameter part 12 formed by passing the large-diameter die 51 and the small-diameter die 52, a large-diameter part 11 formed just by passing the large-diameter die 51, and a boundary part 13, interposed between the small-diameter part 12 and the large-diameter part 11, which is made of a part which is being reduced in a diameter at an entry side of the small-diameter die 52.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、自動車におけるインストルメントパネルリィンフォースメント等に用いることができる中空段付き管の製造方法に関する。   The present invention relates to a method of manufacturing a hollow stepped tube that can be used, for example, for instrument panel reinforcement in an automobile.

近年、環境保護の観点から自動車などの輸送機器の軽量化が求められている。この軽量化を達成するために、構造体の素材として、鉄鋼材料よりも軽量のアルミニウム合金がしばしば用いられる。アルミニウム合金が構造体として使用される場合、一つの構造体の中で、部位により異なる強度が必要とされる場合や、長手方向で外径等の寸法を変化させることが求められる場合がある。   In recent years, weight reduction of transport devices such as automobiles has been required from the viewpoint of environmental protection. In order to achieve this weight reduction, aluminum alloys, which are lighter than steel materials, are often used as materials for structures. In the case where an aluminum alloy is used as a structure, in one structure, different strength may be required depending on the part, or changing of dimensions such as an outer diameter in the longitudinal direction may be required.

例えば、特許文献1には、インパネリィンフォースメントにおいて、断面形状が大小異なる中空押出形材をボルト締結することによって、長手方向において形状が異なる部品を構成することが提案されている。   For example, in Patent Document 1, it is proposed that, in instrumental reinforcement, parts having different shapes in the longitudinal direction be configured by bolting hollow extruded materials having different cross-sectional shapes.

特開2001−253368号公報JP 2001-253368 A

しかしながら、特許文献1のように、断面形状の大小異なる中空材、つまり、大径の中空材と小径の中空材を組み合わせる製造方法では、径の異なる二種類の中空材を準備する必要がある。また、大径の中空材の内部に小径の中空材を挿入し、重なり合った部分にボルトを貫通させて連結する構成が示されているが、この構成では、ボルトによる重量増が生じ、素材としてアルミニウム合金を用いることによるメリットが低減される。また、ボルト止めされた構造体は、機械的に一体化しただけで、中空材同士は別体のままであるため、ボルトの緩みなどにより一体化の安定性に不安が残る。また、径の異なる中空材を溶接により一体化させることも考えられるが、この場合においても、径の異なる二種類の中空材を準備する必要がある点に違いはなく、さらに、溶接工程の増加を要するうえに、溶接時の熱の影響により、寸法精度を維持することが困難となることがある。   However, as in Patent Document 1, it is necessary to prepare two types of hollow materials having different diameters in the manufacturing method in which hollow materials having different cross-sectional shapes, that is, a large diameter hollow material and a small diameter hollow material are combined. In addition, although a small diameter hollow material is inserted into the large diameter hollow material, and a bolt is penetrated and connected in an overlapping portion, in this configuration, the weight increase due to the bolt occurs, and as a material The benefits of using an aluminum alloy are reduced. In addition, since the hollow members are separate bodies only by mechanically integrating the bolted structure, the stability of the integration remains uneasy due to loosening of the bolts and the like. In addition, it is conceivable to integrate hollow materials having different diameters by welding, but also in this case, there is no difference in that two types of hollow materials having different diameters need to be prepared, and further, an increase in the number of welding processes In addition, the influence of heat during welding may make it difficult to maintain dimensional accuracy.

本発明は、かかる背景に鑑みてなされたもので、従来よりも容易に中空段付き管を製造することができ、かつ、強度および寸法精度についても従来と同等以上の特性が得られる中空段付き管の製造方法を提供するものである。   The present invention has been made in view of the above background, and it is possible to manufacture a hollow stepped tube more easily than in the prior art, and also to provide the same level of strength and dimensional accuracy as the prior art. It provides a method of manufacturing a tube.

本発明の一態様は、太径部と、該太径部よりも外径の小さい細径部と、これらの間に介在する境界部とを一体的に備えた中空管である中空段付き管を製造する方法であって、
上記太径部よりも外径が大きい素管を準備し、
上記太径部の外径に相当する孔径を有する太径ダイスと、上記細径部の外径に相当する孔径を有する細径ダイスとを備え、両者を同軸線上に配置した抽伸装置を用い、
上記素管の先端を上記細径部よりも小さい外径となるよう加工して口付け部を形成し、
該口付け部を先頭にして、上記太径ダイス及び上記細径ダイスを順次通過させる2段同時抽伸加工を施し、かつ、上記素管の全長が上記細径ダイスを通過する前に抽伸加工を停止し、
上記太径ダイス及び上記細径ダイスを通過させて形成した上記細径部と、上記太径ダイスのみを通過させて形成した上記太径部と、上記細径ダイスの入側において縮径途中の状態の部分からなる上記細径部と上記太径部との間に介在する上記境界部とを得る、
中空段付き管の製造方法にある。
One aspect of the present invention is a hollow step having a large diameter portion, a small diameter portion having an outer diameter smaller than the large diameter portion, and a boundary portion interposed therebetween, which is a hollow tube integrally A method of manufacturing a tube,
Prepare a hollow tube whose outer diameter is larger than the above-mentioned large diameter portion,
Using a drawing apparatus including a large diameter die having a hole diameter corresponding to the outer diameter of the large diameter portion and a small diameter die having a hole diameter corresponding to the outer diameter of the small diameter portion,
Forming the mouthpiece by processing the end of the raw tube so as to have an outer diameter smaller than that of the small diameter portion;
Two-step simultaneous drawing processing in which the large diameter die and the small diameter die are sequentially passed with the attachment portion at the top, and the drawing process is stopped before the entire length of the raw tube passes the small diameter die And
The small diameter portion formed by passing the large diameter die and the small diameter die, the large diameter portion formed by passing only the large diameter die, and the diameter reduction halfway on the entry side of the small diameter die Obtaining the above-mentioned boundary part interposed between the above-mentioned narrow diameter part and the above-mentioned wide diameter part consisting of a part of a state
It is in the manufacturing method of the hollow stepped tube.

上記中空段付き管の製造方法においては、上記太径ダイスと細径ダイスとを備えた抽伸装置を用いて、上記2段同時抽伸加工を施し、上記のごとく、素管の全長が細径ダイスを通過する前にこの抽伸加工を停止する。これにより、上記太径ダイス及び上記細径ダイスを通過して形成された細径部と、太径ダイスのみを通過して形成された太径部とを形成できると共に、細径ダイスの入側における縮径途中の状態の部分からなる境界部を形成することができる。そして、この境界部により太径部と細径部とを一体的に連ねた中空段付き管を得ることができる。すなわち、2段同時抽伸加工という一つの工程を経るだけで、一つの素管から中空段付き管を形成することができる。そのため、太径部用の素管と細径部用の素管の2種類の材料を準備することが不要で、一種類の素管のみを準備すればよく、従来よりも容易に中空段付き管を製造することが可能となる。   In the method of manufacturing the hollow stepped tube, the two-stage simultaneous drawing process is performed using a drawing apparatus provided with the large diameter die and the small diameter die, and as described above, the whole length of the raw tube is a small diameter die Stop this drawing process before passing through. Thus, it is possible to form the narrow diameter portion formed by passing the large diameter die and the small diameter die, and the large diameter portion formed by passing only the large diameter die, and the entry side of the small diameter die The boundary part which consists of a part of the state in the middle of diameter-reduction in in can be formed. Then, a hollow stepped tube in which the large diameter portion and the small diameter portion are integrally connected can be obtained by this boundary portion. That is, a hollow stepped tube can be formed from one raw tube only through one step of two-stage simultaneous drawing processing. Therefore, it is not necessary to prepare two types of materials, a raw tube for the large diameter part and a raw tube for the small diameter part, and it is sufficient to prepare only one kind of raw pipe, and the hollow step is easier than before. It is possible to produce a tube.

上記細径部は、上記太径ダイスと細径ダイスとを用いた2回の抽伸加工を経て形成される。そのため、1回の成形では困難なサイズまで小径化することができ、さらに広い用途に対応することが可能となる。   The small diameter portion is formed through two drawing processes using the large diameter die and the small diameter die. Therefore, the diameter can be reduced to a size that is difficult in one molding, and it becomes possible to cope with wider applications.

上記細径部だけでなく、太径部も抽伸加工が施される。そのため、抽伸加工による寸法精度の向上効果を両方の部位において得ることができる。さらに、抽伸加工による加工硬化によって強度向上効果も得られ、抽伸時の加工度の設定によって強度調整を行うことも可能となる。   Not only the above-mentioned small diameter portion but also the large diameter portion is subjected to drawing processing. Therefore, the improvement effect of the dimensional accuracy by drawing process can be acquired in both site | parts. Furthermore, the strength improvement effect is also obtained by work hardening by the drawing process, and it becomes possible to adjust the strength by setting the degree of processing at the time of the drawing process.

このように、上記中空段付き管の製造方法によれば、従来よりも容易に中空段付き管を製造することができ、かつ、強度および寸法精度についても従来と同等以上の特性が得られる中空段付き管を得ることができる。   As described above, according to the above-described method for manufacturing a hollow stepped tube, a hollow stepped tube can be manufactured more easily than in the prior art, and the same strength and dimensional accuracy as those in the conventional hollow or more can be obtained. A stepped tube can be obtained.

実施例における、(a)抽伸加工開始直前の口付け部を太径ダイスに挿入する際の状態、(b)細径部の成形を開始する際の状態、(c)抽伸加工が完了した状態、(d)得られた中空段付き管、をそれぞれ示す説明図。In the embodiment, (a) a state when inserting the mouthpiece immediately before the start of the drawing process into the large diameter die, (b) a state when the forming of the small diameter part is started, (c) a state when the drawing process is completed, (D) Explanatory drawing which each shows the obtained hollow stepped tube.

以下、本発明の実施の形態について説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の態様で実施しうる。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment, It can implement in a various aspect in the range which does not deviate from the summary of this invention.

上記中空段付き管における太径部及び細径部の断面形状は、円形状あるいは多角形状等の抽伸加工可能な種々の形状を採用することが可能であるが、円形状が特に好ましい。太径部及び細径部の断面形状が円形状(リング状)である場合には、全方位からの曲げ剛性を高めることができると共に、他の形状の場合よりも成形が容易である。また、側面に平坦な面を設けることにより、前後の部品との連結が容易になる場合があるので、断面形状は、要求品質に応じて適宜選択できる。   The cross-sectional shapes of the large diameter portion and the small diameter portion in the hollow stepped tube can adopt various shapes which can be drawn out, such as a circular shape or a polygonal shape, but the circular shape is particularly preferable. When the cross-sectional shape of the large diameter portion and the small diameter portion is circular (ring shape), bending rigidity from all directions can be enhanced, and molding is easier than in the case of other shapes. Further, by providing a flat surface on the side surface, connection with the front and rear parts may be facilitated, so the cross-sectional shape can be appropriately selected according to the required quality.

太径部と細径部との間に形成される上記境界部は、上記細径ダイスの軸方向の孔形状に対応した形状に成形される。ダイスの軸方向孔形状は、テーパ状あるいは円弧状にする場合があるが、その形状の選択によって上記境界部の外観形状を制御することができる。   The boundary portion formed between the large diameter portion and the small diameter portion is formed into a shape corresponding to the hole shape in the axial direction of the small diameter die. The axial hole shape of the die may be tapered or arc-shaped, but the external shape of the boundary can be controlled by selecting the shape.

上記素管としては、例えば、押出加工によって製造されたアルミニウム合金管を用いることができる。素管の製造方法としては、公知の種々の方法が適用できる。なお、素管は、得ようとする中空段付き管の太径部の外径よりも大きい外径のものを選択する必要がある。   As the raw pipe, for example, an aluminum alloy pipe manufactured by extrusion processing can be used. Various known methods can be applied as a method of manufacturing the raw pipe. In addition, it is necessary to select the raw tube of the outer diameter larger than the outer diameter of the large diameter part of the hollow stepped tube to be obtained.

素管に抽伸加工を施す抽伸装置としては、上述したごとく、上記太径部の外径に相当する孔径を有する太径ダイスと、上記細径部の外径に相当する孔径を有する細径ダイスとを備え、両者を同軸線上に配置した抽伸装置を用いる。上記太径ダイスと細径ダイスとの間隔は、得ようとする中空段付き管のサイズ等によって最適範囲が異なってくる。少なくとも、両ダイスの間隔は、得ようとする中空段付き管の太径部の長さ以上の長さが必要である。なお、太径ダイスと細径ダイスとを相対的に移動可能に配置し、上記間隔を変更できるようにすることも考えられるが、この場合においても、成形完了時には、太径部の長さ以上の長さの間隔を設ける必要がある。   As described above, as a drawing apparatus for drawing an element tube, a large diameter die having a hole diameter corresponding to the outer diameter of the large diameter portion and a small diameter die having a hole diameter corresponding to the outer diameter of the small diameter portion And a drawing apparatus in which both are arranged coaxially. The optimum range of the distance between the large diameter die and the small diameter die differs depending on the size of the hollow stepped tube to be obtained. At least the distance between the two dies must be equal to or greater than the length of the large diameter portion of the hollow stepped tube to be obtained. It is also conceivable to arrange the large diameter die and the small diameter die so as to be relatively movable and to change the above-mentioned interval, but also in this case, the length of the large diameter portion is longer than the length of the large diameter portion It is necessary to set a distance of

加工時の安定性を考慮すると、太径ダイスを素管の全長が通過した直後で抽伸加工を終了することができる間隔に設定することが最も好ましい。すなわち、得ようとする中空段付き管の太径部の長さに若干の余裕分を加えた程度の間隔に設定することが好ましい。   In consideration of the processing stability, it is most preferable to set an interval at which the drawing process can be finished immediately after the full length of the blank passes through the large diameter die. That is, it is preferable to set the gap to such an extent that a slight allowance is added to the length of the large diameter portion of the hollow stepped tube to be obtained.

太径ダイスと細径ダイスの両方で同時に抽伸加工を行っている状態は比較的安定した加工状態を維持できるが、素管の後端が太径ダイスを通過した後に更に細径ダイスだけで抽伸を長く続ける場合には、太径部を支持するものがないために安定的であるとは言えない。そのため、上述したごとく、太径ダイスを素管の全長が通過した直後で抽伸加工を終了することが好ましい。なお、素管の後端部を太径ダイスの入側に残したまま抽伸を終了することも可能であるが、この場合には、成形後の中空段付き管を抽伸装置から抜き出す作業が困難となるだけでなく、材料歩留まりも低下するのであまり好ましくない。   While the drawing process is simultaneously performed by both the large diameter die and the small diameter die, the relatively stable processing state can be maintained, but after the rear end of the raw tube passes the large diameter die, the drawing operation can be performed with only the small diameter die Is not stable because there is nothing to support the large diameter part. Therefore, as described above, it is preferable to finish the drawing process immediately after the full length of the blank passes through the large diameter die. In addition, it is possible to finish drawing while leaving the rear end of the raw pipe on the entrance side of the large diameter die, but in this case, it is difficult to take out the hollow stepped pipe after forming from the drawing machine. Not only because the material yield also decreases.

例えば、太径ダイスと細径ダイスの間隔は、600mm〜1000mmの範囲とすることが好ましい。後述するインストルメントパネルリィンフォースメント等の用途を考慮すると、上記特定の範囲の間隔とすることによって、太径部及び細径部の必要な長さを確保しつつ、安定的な加工状態を確保することができる。   For example, the distance between the large diameter die and the small diameter die is preferably in the range of 600 mm to 1000 mm. In consideration of applications such as instrument panel reinforcement, which will be described later, a stable processing state can be ensured while securing the required lengths of the large diameter portion and the small diameter portion by setting the intervals within the above specific range. can do.

上記抽伸装置を用いて上記素管を加工する際には、素管の先端を上記細径部よりも小さい外径となるよう加工して口付け部を形成する。具体的には、素管の先端を縮径するように潰して、引き抜き力を付与するチャックでクランプできるように口付け部を設ける。そして、口付け部を先頭にして、上記太径ダイス及び上記細径ダイスを順次通過させる2段同時抽伸加工を施す。   When the raw pipe is processed using the drawing apparatus, the tip end of the raw pipe is processed to have an outer diameter smaller than that of the small diameter portion to form a mouthpiece. Specifically, the tip end of the raw tube is crushed so as to reduce its diameter, and a fitting portion is provided so that it can be clamped by a chuck that applies a pulling force. Then, a two-stage simultaneous drawing process in which the large diameter die and the small diameter die are sequentially passed is performed with the attachment portion at the top.

上記口付け部をチャックでクランプするタイミングとしては、口付け部が太径ダイスを通過する前あるいは通過した後のいずれの方法も取りうる。また、太径ダイスと細径ダイスとを相対的に移動可能な可動式としておき、抽伸加工開始時には太径ダイスと細径ダイスの間の距離を縮めておき、最初から細径ダイスを通過させた口付け部をチャックによりクランプし、抽伸加工開始と共に太径ダイスと細径ダイスとの距離を所定距離に移動させる方法をとることもできる。   The timing at which the mouthpiece is clamped by the chuck can be either before or after the mouthpiece passes through the large diameter die. Also, move the large diameter die and the small diameter die relatively movable, and at the start of the drawing, reduce the distance between the large diameter die and the small diameter die, and pass the small diameter die from the beginning It is also possible to use a method in which the attachment portion is clamped by a chuck and the distance between the large diameter die and the small diameter die is moved to a predetermined distance with the start of the drawing process.

上記太径ダイス、細径ダイス、それぞれのダイスの入側では、抽伸油を材料に供給することが好ましい。抽伸油としては、粘度が200〜300cst程度であることが好ましい。この粘度範囲の抽伸油を選択することにより、材料に供給した状態で適度にダイスの加工孔内に供給することができ、高い加工度での加工が行い易くなり、油不足による焼き付き防止にもつながる。   It is preferable to supply a drawn oil to the material on the inlet side of each of the large diameter die and the small diameter die. The drawn oil preferably has a viscosity of about 200 to 300 cst. By selecting a drawing oil in this viscosity range, it is possible to appropriately supply the material in the processing hole of the die in a state of being supplied to the material, processing at a high processing degree becomes easy to be performed, and also to prevent seizure due to lack of oil. Connect.

上記細径ダイスによる抽伸加工は、上記素管内に上記細径部の内径規制用のプラグを挿入配置して行うことが好ましい。プラグの挿入配置は必須要件ではないが、これを行うことにより、得られる細径部の内面形状の安定性向上及び内径寸法の精度向上などの効果を得ることができる。   It is preferable that the drawing by the small diameter die be performed by inserting and arranging a plug for controlling the inner diameter of the small diameter portion in the hollow tube. Although the insertion arrangement of the plug is not an essential requirement, by doing this, effects such as the stability improvement of the inner surface shape of the obtained small diameter portion and the accuracy improvement of the inner diameter can be obtained.

使用するプラグとしては、通常の抽伸加工で使用されるような、プラグがロッドにより固定されるものでもよいし、ロッドのないフローティングプラグを使用してもよい。フローティングプラグを使用する場合、細径ダイスによる加工開始直前で素管の引抜きを一旦停止し、プラグが細径ダイスにおける加工部に安定的に位置するように、フローティングプラグを挿入配置後、太径部に加工された素管の外周面を若干内方に潰す加工を行って、プラグ位置を細径ダイス前に固定してから細径ダイスによる抽伸加工を開始することもできる。   As a plug to be used, a plug may be fixed by a rod as used in a usual drawing process, or a floating plug without a rod may be used. When a floating plug is used, the drawing of the raw tube is temporarily stopped immediately before the start of processing by the small diameter die, and after inserting and arranging the floating plug so that the plug is stably positioned at the processing portion of the small diameter die It is also possible to squeeze the outer peripheral surface of the raw tube processed into a part slightly inward and fix the plug position before the small diameter die and then start the drawing operation with the small diameter die.

上記中空段付き管は、インストルメントパネルリィンフォースメント用であることが好ましい。自動車用のインストルメントパネルリィンフォースメントとしては、前述の特許文献1にも記載されているように、自動車のダッシュボードの内部において、車体の幅方向に沿って配置されると共に、ステアリングシャフト、各種の計器類、エアコン、又はエアバッグ等を支持するための取付ブラケットを固定するためものである。そして、一般に、インストルメントパネルリィンフォースメントは、運転者側の太径の管と助手席側に位置する細径の管とを有する構成となる。そのため、上述した製造方法により製造された太径部と細径部とこれらの間に介在する境界部とを一体的に備えた中空段付き管は、インストルメントパネルリィンフォースメントに適用することができる。   The hollow stepped tube is preferably for instrument panel reinforcement. As instrument panel reinforcements for automobiles, as described in the above-mentioned Patent Document 1, they are disposed along the width direction of the vehicle body inside the dashboard of the automobile, and various steering shafts, The mounting brackets for supporting instruments, air conditioners, air bags, etc. are fixed. And, generally, the instrument panel reinforcement is configured to have a large diameter tube on the driver side and a small diameter tube located on the front passenger seat side. Therefore, the hollow stepped tube integrally provided with the large diameter portion and the small diameter portion and the boundary portion interposed between them manufactured by the above-described manufacturing method may be applied to instrument panel reinforcement it can.

そして、上記製造方法により製造された中空段付き管よりなるインストルメントパネルリィンフォースメントは、一本の素管から製造された1ピースの部品からなり、上記太径部、境界部及び細径部が完全に一体化している。そのため、ボルト止めあるいは溶接等によって太径部と細径部とを連結した場合よりも高い構造安定性を容易に確保することができる。また、太径部と細径部の両方が抽伸加工されているため、外径寸法精度が非常に高く、自動車部品として好適に利用できる。また、太径部と細径部に求められる強度特性に対しても、素管の寸法、太径ダイス及び細径ダイスの孔径等を調整して各部の加工度を調整することにより、比較的容易に対応することができる。   And, the instrument panel reinforcement consisting of the hollow stepped tube manufactured by the above manufacturing method comprises one piece of parts manufactured from one raw pipe, and the large diameter portion, the boundary portion and the small diameter portion Is completely integrated. Therefore, higher structural stability can be easily secured as compared to the case where the large diameter portion and the small diameter portion are connected by bolting or welding. Further, since both the large diameter portion and the small diameter portion are drawn, the outer diameter dimension accuracy is very high, and can be suitably used as an automobile part. In addition, the strength characteristics required for the large diameter portion and the small diameter portion are adjusted relatively by adjusting the dimensions of the raw pipe, the hole diameter of the large diameter die and the small diameter die, and the like and adjusting the processing degree of each portion. It can be easily coped with.

上記太径ダイスによる抽伸加工は、5〜10%の断面減少率の範囲で行うことが好ましい。太径ダイスによる抽伸における断面減少率が5%未満の場合には、十分な加工硬度が得られないおそれがある。一方、太径ダイスによる抽伸における断面減少率が10%を超える場合には、細径ダイスで抽伸加工した際に、総断面減少率が大きくなり材料が加工途中で破断するおそれがある。   It is preferable to perform the drawing process by the said large diameter dice | dies in the range of a 5-10% cross-section reduction rate. If the reduction in area in drawing by a large diameter die is less than 5%, there is a possibility that sufficient working hardness can not be obtained. On the other hand, when the cross-sectional reduction rate in drawing by a large diameter die exceeds 10%, when drawing processing by a small diameter die, there is a possibility that the total cross-section reduction rate becomes large and the material breaks in the middle of processing.

上記細径ダイスによる抽伸加工は、上記太径ダイスと上記細径ダイスの総断面減少率が40〜60%となる断面減少率の範囲で行うことが好ましい。細径ダイスによる抽伸における断面減少率が、太径ダイスと合わせた総断面減少率が40%未満となる断面減少率の場合には、最終的に得られる細径部の断面減少率が低いため、太径部よりも断面積の小さいと細径部を備えることによる軽量化効果が十分にはえられないおそれがある。一方、細径ダイスによる抽伸における断面減少率が60%を超える場合には、加工限界を超えて材料が加工途中で破断する可能性がある。   It is preferable that the drawing process by the small diameter die is performed in the range of the reduction in area where the total reduction in area of the large diameter die and the small diameter die is 40 to 60%. In the case of a reduction in area where the reduction in area by drawing with a small diameter die is less than 40%, the reduction in area of the small diameter portion finally obtained is low. If the cross-sectional area is smaller than the large diameter portion, the weight reduction effect by providing the small diameter portion may not be obtained sufficiently. On the other hand, if the reduction in area in drawing by a small diameter die exceeds 60%, the material may break in the process of processing exceeding the processing limit.

上記素管の外径D0と上記細径部の外径D2及び上記素管の肉厚t0と上記細径部の肉厚t2は、40<〔1-{D2 2−(D2−2×t22}/{D0 2−(D0−2×t02}〕×100<60の範囲内であることが望ましい。この範囲外の場合は、抽伸切れなどのおそれがある。 The outer diameter D 0 and the outer diameter D 2 and the thickness t 0 and the thickness t 2 of the small-diameter portion of the blank tube of the small-diameter portion of the blank tube is 40 <[1- {D 2 2 - ( It is desirable that D 2 −2 × t 2 ) 2 } / {D 0 2 − (D 0 −2 × t 0 ) 2 }] × 100 <60. If it is out of this range, there is a risk that the drawing out may occur.

なお、上記素管の材質は特に限定されないが、加工性、および所定の強度を確保することを考慮すると、3000系、5000系、又は6000系のアルミニウム合金を用いることが好ましい。   The material of the raw pipe is not particularly limited, but in consideration of securing processability and predetermined strength, it is preferable to use a 3000 series, 5000 series or 6000 series aluminum alloy.

6000系のような熱処理により強度が得られる合金については、抽伸加工後の中空段付き管に対して、時効処理(熱処理)を施してもよい。時効処理としては、例えば、180℃〜220℃の温度に1〜4hr保持する条件で行うことができる。この場合には、太径部と細径部の加工硬化による強度差が小さい方がよいという強度要求があった場合に、時効処理を施すことによって対応可能である。例えば、太径部と細径部の断面減少率差が40%である場合、加工硬化による強度差は25Hv程度に及ぶことがあるが、これに時効処理を施すことで強度差を10Hv以下とすることができる。すなわち、長手方向において断面減少率が異なる加工履歴があっても、熱処理追加により全長においてほぼ同じ強度の中空段付き管を得ることができる。この場合には、中空段付き管に対して機械加工を施す場合に、部位によらず、同じ加工を施しやすくなるといったメリットがある。   With an alloy such as 6000 series that can obtain strength by heat treatment, the hollow stepped tube after drawing may be subjected to aging treatment (heat treatment). As an aging treatment, it can carry out on the conditions hold | maintained at the temperature of 180 degreeC-220 degreeC for 1 to 4 hours, for example. In this case, when there is a demand for strength that the difference in strength due to work hardening of the large diameter portion and the small diameter portion is small, this can be coped with by performing the aging treatment. For example, when the difference in area reduction rate between the large diameter portion and the small diameter portion is 40%, the strength difference due to work hardening may reach about 25 Hv, but by subjecting this to an aging treatment, the strength difference is 10 Hv or less. can do. That is, even if there is a processing history in which the cross-sectional reduction rate is different in the longitudinal direction, it is possible to obtain a hollow stepped tube having substantially the same strength in the entire length by adding heat treatment. In this case, when machining the hollow stepped tube, there is an advantage that the same processing can be easily performed regardless of the part.

3000系、5000系合金を使用する場合には、上述したように、素管の外径、太径ダイス及び細径ダイスの孔径の設定によって加工度を調整し、各部の強度を調整することが可能である。   In the case of using a 3000 or 5000 series alloy, as described above, the degree of processing may be adjusted by setting the outer diameter of the blank and the hole diameter of the large diameter die and the small diameter die to adjust the strength of each part. It is possible.

上記中空段付き管の製造方法にかかる実施例について説明する。本例では、図1(d)に示すごとく、太径部11と、太径部11よりも外径の小さい細径部12と、これらの間に介在する境界部13とを一体的に備えた中空管である中空段付き管1を製造する。   The Example concerning the manufacturing method of the said hollow stepped tube is described. In this example, as shown in FIG. 1D, the large diameter portion 11, the small diameter portion 12 having a smaller outer diameter than the large diameter portion 11, and the boundary portion 13 interposed therebetween are integrally provided. The hollow stepped tube 1 which is a hollow tube is manufactured.

抽伸装置としては、図1(a)〜(c)に示すごとく、太径部11の外径φ70mmに相当する孔径を有する太径ダイス51と、細径部12の外径φ55mmに相当する孔径を有する細径ダイス52とを備え、両者を太径部11の所望長さ以上の間隔D(本例では、D=600mm)を設けて同軸線上に配置した抽伸装置5を用いる。   As a drawing apparatus, as shown in FIGS. 1A to 1C, a large diameter die 51 having a hole diameter corresponding to the outer diameter φ70 mm of the large diameter portion 11 and a hole diameter corresponding to the outer diameter φ55 mm of the small diameter portion 12 A drawing and drawing apparatus 5 is used which is provided on a coaxial line with a small diameter die 52 having a diameter D and a gap D (in this example, D = 600 mm in this example) equal to or greater than the desired length of the large diameter portion 11.

そして、まずは、表1に示す材質−質別のアルミニウム合金よりなる中空押出材を素管10として準備した。素管(中空押出材)10の寸法は、外径φ76mm、板厚2.0mm、長さ1800mmであり、断面形状が円形の円筒管である。   Then, first, a hollow extruded material made of an aluminum alloy classified by material and quality shown in Table 1 was prepared as the raw tube 10. The dimensions of the raw pipe (hollow extruded material) 10 are a cylindrical pipe having an outer diameter of 76 mm, a plate thickness of 2.0 mm, and a length of 1800 mm, and having a circular cross-sectional shape.

次に、各素管10の先端を細径部12よりも小さい外径となるよう加工して口付け部15を形成する。本例では、先端の約200mm長さの部分を外径がφ30mm程度となるまで縮管して口付け部15とした。   Next, the tip of each raw tube 10 is processed to have an outer diameter smaller than that of the small diameter portion 12 to form the mouthing portion 15. In this example, a portion having a length of about 200 mm at the tip end is contracted to form a mouthpiece part 15 until the outer diameter becomes about φ30 mm.

そして、図1(a)〜(c)に示すごとく、口付け部15を先頭にして、太径ダイス51及び細径ダイス52を順次通過させる2段同時抽伸加工を施す。このとき同図に示すごとく、ロッド61の先端に接続されたプラグ6を素管10の後端開口部から内部に挿入し、細径ダイス52の入側に配置する。プラグ6は、先端外径がφ51.2mmであり、細径部12の肉厚の狙い値を1.4mmとしている。   Then, as shown in FIGS. 1A to 1C, a two-step simultaneous drawing process in which the large diameter die 51 and the small diameter die 52 are sequentially passed is performed with the attachment portion 15 at the top. At this time, as shown in the figure, the plug 6 connected to the tip of the rod 61 is inserted into the inside from the rear end opening of the raw tube 10 and disposed on the entry side of the small diameter die 52. The plug 6 has a tip outer diameter of 51.2 mm, and the target value of the thickness of the small diameter portion 12 is 1.4 mm.

この2段同時抽伸加工においては、素管10の全長が細径ダイス52を通過する前に抽伸加工を停止する。本例では、素管10の後端19が太径ダイス51を通過した直後に停止する。このようにして、図1(d)に示す中空段付き管1が得られる。本例では、すべての中空段付き管1に対して、追加の熱処理は行わなかった。   In the two-step simultaneous drawing process, the drawing process is stopped before the entire length of the raw pipe 10 passes the small diameter die 52. In this example, the rear end 19 of the raw pipe 10 stops immediately after passing through the large diameter die 51. Thus, the hollow stepped tube 1 shown in FIG. 1 (d) is obtained. In the present example, no additional heat treatment was performed on all the hollow stepped tubes 1.

得られた全ての中空段付き管1について、太径部11と細径部12の表面硬さ(ビッカース硬さ)を測定した。また、参考のために、素管10の表面硬さも示した。表面硬さは、各部の定常部において3点測定し、これらを平均した値を用いた。中空段付き管1の状態においては、太径部11及び細径部12共に、素管10における表面硬さよりも硬さが向上し、強度アップが図れていることがわかる。また、インストルメントパネルリィンフォースメントにおいては、太径部及び細径部の両方において少なくとも50Hv以上の硬さが必要であると考えられるが、本例において作製したすべての中空段付き管1は、その要件を満たし、インストルメントパネルリィンフォースメントに適用可能であることが分かった。   The surface hardness (Vickers hardness) of the large diameter portion 11 and the small diameter portion 12 was measured for all the hollow stepped tubes 1 obtained. Moreover, the surface hardness of the raw pipe 10 was also shown for reference. The surface hardness was measured at three points in the steady part of each part, and a value obtained by averaging these was used. In the state of the hollow stepped tube 1, it can be seen that the hardness is improved more than the surface hardness of the raw tube 10 in both the large diameter portion 11 and the small diameter portion 12, and the strength can be increased. In addition, in instrument panel reinforcement, it is considered that a hardness of at least 50 Hv or more is necessary in both the large diameter portion and the small diameter portion, but all hollow stepped tubes 1 produced in this example are It has been found that it meets the requirements and is applicable to instrument panel reinforcement.

Figure 2019098352
Figure 2019098352

(実施例2)
本例では、実施例1における素管を用い、太径部及び細径部の寸法を変更した複数の試験を行った結果を示す。表2に示すごとく、本例では、9種類の素管に対して、それぞれ3種類の寸法の試験、つまり、合計27種類の試験を行い、実施例1と同様の評価を行った。なお、合格不合格は、あくまでも現段階の要求に対するインストルメントパネルリィンフォースメントへの適用性に関するものであり、他用途においては合格と判断される場合もあり得る。
(Example 2)
In this example, the results obtained by conducting a plurality of tests in which the dimensions of the large diameter portion and the small diameter portion are changed using the raw pipe in Example 1 are shown. As shown in Table 2, in this example, tests of three types of dimensions were performed on nine types of raw pipes, that is, a total of 27 types of tests were performed, and evaluation similar to that of Example 1 was performed. It should be noted that pass / fail only relates to the applicability to instrument panel reinforcement with respect to current requirements, and may be judged as pass in other applications.

Figure 2019098352
Figure 2019098352

表2に示すごとく、すべての材質において、素管から太径部への断面減少率が5%以上(8.1%)の場合には、太径部の表面硬さが50Hv以上となり、インストルメントパネルリィンフォースメントにおける要求強度を満たす一方、素管から太径部への断面減少率が10%を超える場合には、素管から細径部へのトータルの断面減少率の60%超え(63.5%)につながり、抽伸工程途中で管が切れてしまうという加工性の問題につながった。従って、上記中空段付き管の製造方法を適用する場合には、太径ダイスによる抽伸加工は、素管から太径部への断面減少率が5〜10%の範囲で行い、かつ、細径ダイスによる抽伸加工は、素管から細径部へのトータルの断面減少率が60%以下の範囲となるように行うことが好ましいことがわかる。また、トータルの断面減少率が40%未満の場合には、強度としては合格しても、細径部の軽量化効果が低いので、インストルメントパネルリィンフォースメントとしては不合格とした。   As shown in Table 2, in all materials, the surface hardness of the large diameter portion is 50 Hv or more when the reduction in area from the raw pipe to the large diameter portion is 5% or more (8.1%). More than 60% of the total reduction in area from the raw pipe to the small diameter part when the reduction in cross section from the raw pipe to the large diameter part exceeds 10% while satisfying the required strength in the mental panel reinforcement 63.5%), which led to the problem of processability in which the pipe was cut during the drawing process. Therefore, when applying the above-described method of manufacturing a hollow stepped tube, the drawing process with the large diameter die is performed in the range of 5 to 10% in area reduction rate from the raw pipe to the large diameter portion, and small diameter It is understood that it is preferable to carry out the drawing process using a die so that the total reduction in area from the raw pipe to the small diameter portion is in the range of 60% or less. In addition, when the total cross-sectional reduction rate is less than 40%, the weight reduction effect of the small diameter portion is low even if the strength is passed, so the instrument panel reinforcement is rejected.

1 中空段付き管
10 素管
11 太径部
12 細径部
13 境界部
15 口付け部
5 抽伸装置
51 太径ダイス
52 細径ダイス
6 プラグ
DESCRIPTION OF SYMBOLS 1 hollow step tube 10 raw material pipe 11 large diameter part 12 small diameter part 13 boundary part 15 soldered part 5 drawing machine 51 large diameter dice 52 small diameter dice 6 plug

Claims (7)

太径部と、該太径部よりも外径の小さい細径部と、これらの間に介在する境界部とを一体的に備えた中空管である中空段付き管を製造する方法であって、
上記太径部よりも外径が大きい素管を準備し、
上記太径部の外径に相当する孔径を有する太径ダイスと、上記細径部の外径に相当する孔径を有する細径ダイスとを備え、両者を同軸線上に配置した抽伸装置を用い、
上記素管の先端を上記細径部よりも小さい外径となるよう加工して口付け部を形成し、
該口付け部を先頭にして、上記太径ダイス及び上記細径ダイスを順次通過させる2段同時抽伸加工を施し、かつ、上記素管の全長が上記細径ダイスを通過する前に抽伸加工を停止し、
上記太径ダイス及び上記細径ダイスを通過させて形成した上記細径部と、上記太径ダイスのみを通過させて形成した上記太径部と、上記細径ダイスの入側において縮径途中の状態の部分からなる上記細径部と上記太径部との間に介在する上記境界部とを得る、
中空段付き管の製造方法。
A method of manufacturing a hollow stepped tube which is a hollow tube integrally provided with a large diameter portion, a small diameter portion having an outer diameter smaller than the large diameter portion, and a boundary portion interposed therebetween. ,
Prepare a hollow tube whose outer diameter is larger than the above-mentioned large diameter portion,
Using a drawing apparatus including a large diameter die having a hole diameter corresponding to the outer diameter of the large diameter portion and a small diameter die having a hole diameter corresponding to the outer diameter of the small diameter portion,
Forming the mouthpiece by processing the end of the raw tube so as to have an outer diameter smaller than that of the small diameter portion;
Two-step simultaneous drawing processing in which the large diameter die and the small diameter die are sequentially passed with the attachment portion at the top, and the drawing process is stopped before the entire length of the raw tube passes the small diameter die And
The small diameter portion formed by passing the large diameter die and the small diameter die, the large diameter portion formed by passing only the large diameter die, and the diameter reduction halfway on the entry side of the small diameter die Obtaining the above-mentioned boundary part interposed between the above-mentioned narrow diameter part and the above-mentioned wide diameter part consisting of a part of a state
Method of manufacturing hollow stepped tube.
上記細径ダイスによる抽伸加工は、上記素管内に上記細径部の内径規制用のプラグを挿入配置して行う、請求項1に記載の中空段付き管の製造方法。   The method for manufacturing a hollow stepped tube according to claim 1, wherein the drawing by the small diameter die is performed by inserting and arranging a plug for controlling the inner diameter of the small diameter portion in the blank. 上記中空段付き管は、インストルメントパネルリィンフォースメント用である、請求項1又は2に記載の中空段付き管の製造方法。   The method for manufacturing a hollow stepped tube according to claim 1, wherein the hollow stepped tube is for instrument panel reinforcement. 上記太径ダイスによる抽伸加工は、5〜10%の断面減少率の範囲で行う、請求項1〜3のいずれか1項に記載の中空段付き管の製造方法。   The method for manufacturing a hollow stepped tube according to any one of claims 1 to 3, wherein the drawing by the large diameter die is performed in a range of a reduction in area of 5 to 10%. 上記細径ダイスによる抽伸加工は、上記太径ダイスと上記細径ダイスの総断面減少率が40〜60%となる断面減少率の範囲で行う、請求項1〜4のいずれか1項に記載の中空段付き管の製造方法。   The drawing process using the small diameter die is performed in a range of a reduction in area where the total reduction in area of the large diameter die and the small diameter die is 40 to 60%. Method for the production of hollow stepped tubes. 上記太径ダイスと上記細径ダイスの配置間隔は、600mm以上1000mm以下とする、請求項1〜5のいずれか1項に記載の中空段付き管の製造方法。   The method for manufacturing a hollow stepped tube according to any one of claims 1 to 5, wherein an arrangement distance between the large diameter die and the small diameter die is 600 mm or more and 1000 mm or less. 上記素管の外径D0と上記細径部の外径D2及び上記素管の肉厚t0と上記細径部の肉厚t2は、40<〔1-{D2 2−(D2−2×t22}/{D0 2−(D0−2×t02}〕×100<60の範囲内である、請求項1〜6のいずれか1項に記載の中空段付き管の製造方法。 The outer diameter D 0 and the outer diameter D 2 and the thickness t 0 and the thickness t 2 of the small-diameter portion of the blank tube of the small-diameter portion of the blank tube is 40 <[1- {D 2 2 - ( D 2 -2 × t 2) 2 } / {D 0 2 - (D 0 -2 × t 0) 2} ] is in the range of × 100 <60, according to any one of claims 1 to 6 Method for the production of hollow stepped tubes.
JP2017229589A 2017-11-29 2017-11-29 Method for manufacturing tube with hollow step Pending JP2019098352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229589A JP2019098352A (en) 2017-11-29 2017-11-29 Method for manufacturing tube with hollow step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229589A JP2019098352A (en) 2017-11-29 2017-11-29 Method for manufacturing tube with hollow step

Publications (1)

Publication Number Publication Date
JP2019098352A true JP2019098352A (en) 2019-06-24

Family

ID=66975075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229589A Pending JP2019098352A (en) 2017-11-29 2017-11-29 Method for manufacturing tube with hollow step

Country Status (1)

Country Link
JP (1) JP2019098352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413531A (en) * 2022-01-11 2022-04-29 河南新科隆电器有限公司 Novel liquid storage tank for refrigerator/freezer and processing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413531A (en) * 2022-01-11 2022-04-29 河南新科隆电器有限公司 Novel liquid storage tank for refrigerator/freezer and processing method thereof
CN114413531B (en) * 2022-01-11 2024-03-01 河南新科隆电器有限公司 Novel liquid storage tank for refrigerator/freezer and processing method thereof

Similar Documents

Publication Publication Date Title
US8079243B2 (en) Plug, method of expanding inside diameter of metal pipe or tube using such plug, method of manufacturing metal pipe or tube, and metal pipe or tube
EP2493638B1 (en) Method for producing welded helical-seam tubes having optimized tube geometry
CN100493762C (en) Die, method of manufacturing stepped metal tube, and stepped metal tube
JP4798674B1 (en) Rack bar and manufacturing method thereof
RU2564763C2 (en) Component, in particular control lever for vehicle, and method of its manufacturing
EP2687392B1 (en) Method for producing a pipe stabiliser for a motor vehicle
US20110025010A1 (en) Link part for vehicle
DE202015102899U1 (en) Pressed aluminum tube with positioning feature
US20210023596A1 (en) Functionally Graded Coatings and Claddings
CN107813874A (en) The manufacture method of reinforcement of instrument panel and reinforcement of instrument panel
US6651477B2 (en) Process for forming tubular components
DE102013102292A1 (en) Instrument panel carrier assembly in a motor vehicle
EP1933998B1 (en) Method for manufacturing an axle component
JP2019098352A (en) Method for manufacturing tube with hollow step
JP6253488B2 (en) Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus
JP2989155B2 (en) Parts made of AlMgSi type alloy
EP3154718B1 (en) Method and arrangement for producing open or closed annular structural components made of light metal and alloys thereof, having a two- or three-dimensional structure
JP2010172915A (en) Method of manufacturing different diameter steel pipe
EP2963140B1 (en) Method for manufacturing a motor vehicle part made of aluminium
EP3668673B1 (en) Method for producing a pipe fitting, in particular by weld overlay
US7454942B2 (en) Hollow molded part with closed cross-section and a reinforcement
US20210148492A1 (en) Stepped pipe member and stepped pipe member production method
AT413195B (en) METHOD FOR THE PRODUCTION OF CYLINDRICAL HOLLOW BODIES AND THE USE THEREOF
JP2010179319A (en) Method of manufacturing different diameter steel tube
KR100724231B1 (en) Die, method of manufacturing stepped metal tube, and stepped metal tube