JP2019095126A - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP2019095126A
JP2019095126A JP2017224741A JP2017224741A JP2019095126A JP 2019095126 A JP2019095126 A JP 2019095126A JP 2017224741 A JP2017224741 A JP 2017224741A JP 2017224741 A JP2017224741 A JP 2017224741A JP 2019095126 A JP2019095126 A JP 2019095126A
Authority
JP
Japan
Prior art keywords
heat storage
medium
heat
storage material
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017224741A
Other languages
Japanese (ja)
Inventor
竜太郎 篠原
Ryutaro Shinohara
竜太郎 篠原
祐介 後藤
Yusuke Goto
祐介 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2017224741A priority Critical patent/JP2019095126A/en
Publication of JP2019095126A publication Critical patent/JP2019095126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

To provide a heat storage system effective to improve a reaction speed in an adsorption heat storage system using a granular solid heat storage material.SOLUTION: A heat storage system including a reactor (10) having an outer surface (10a) kept into contact with a primary medium (G) as a heat source, an inner surface (10b) kept into contact with a secondary medium (L) at a back side of the outer surface, and an internal space (10c) defined by the inner surface, and a granular heat storage material (15) housed in the internal space of the reactor, and having a property to generate heat by adsorption reaction of the secondary medium and to accumulate heat by desorption reaction of the secondary medium, further includes a heat transfer member (14) extended from the inner surface to the internal space, the heat transfer member includes a partitioning structure portion (14a) having a void (14p) through which the secondary medium can be circulated and the granular heat storage material cannot be passed, and at least a part of the granular heat storage material is housed in a plurality of areas defined by the partitioning structure portion.SELECTED DRAWING: Figure 2

Description

本発明は、蓄熱システム、例えば、車両から排出される熱エネルギーを回収して暖機促進などに利用する車両の蓄熱システムに関する。   The present invention relates to a heat storage system, for example, a heat storage system of a vehicle that recovers thermal energy discharged from a vehicle and uses it for warm-up promotion and the like.

従来、車両から排出される熱エネルギーを一時的に蓄え、冷間始動時の暖機促進や車載暖房などに利用する種々の蓄熱システムが提案されている。特許文献1では、化学水和反応により発熱する蓄熱材として酸化カルシウム、酸化マグネシウムを使用した車両用蓄熱システムが提案されている。   Conventionally, various heat storage systems have been proposed which temporarily store thermal energy discharged from a vehicle and use them for promoting warm-up at the time of cold start, in-vehicle heating, and the like. Patent Document 1 proposes a heat storage system for a vehicle using calcium oxide and magnesium oxide as a heat storage material that generates heat due to a chemical hydration reaction.

特開2009−262748号公報JP, 2009-262748, A

しかしながら、市街地走行において車両から排出される熱の温度は、冷却系では定常的に90℃程度、排気系では、高負荷時には350℃であるものの、アイドリング時には130℃、定常時には200℃程度であるのに対し、化学水和反応に用いる蓄熱材物質の反応温度は、酸化カルシウムが500℃程度、酸化マグネシウムが250℃程度と高く、回収熱量が少ない問題があった。   However, the temperature of the heat discharged from the vehicle during city driving is about 90 ° C. steadily in the cooling system and 350 ° C. in the high load case in the exhaust system, but 130 ° C. in idling and about 200 ° C. in steady operation On the other hand, the reaction temperature of the heat storage material used for the chemical hydration reaction is as high as about 500 ° C. for calcium oxide and about 250 ° C. for magnesium oxide, and there is a problem that the amount of recovered heat is small.

これに対し、吸着反応により発熱する蓄熱材物質は、蓄熱密度はやや低いものの、反応媒体の沸点以上の排熱を回収でき、車両から定常的に排出される排熱をより多く回収できるメリットがある。吸着反応による蓄熱材の具体例としては、ゼオライト、アルミナ、シリカゲル、活性炭などがある。   On the other hand, the heat storage material that generates heat due to the adsorption reaction has a somewhat lower heat storage density, but can recover waste heat above the boiling point of the reaction medium and has the merit of being able to recover more waste heat constantly discharged from the vehicle. is there. Specific examples of the heat storage material by adsorption reaction include zeolite, alumina, silica gel, activated carbon and the like.

しかし、固体蓄熱材を使用した車両用蓄熱システムの全般的な課題として、蓄熱時に車両の排熱を蓄熱材に効率よく伝えることが困難であるとともに、反応媒体を蒸発させて蓄熱材を乾燥させる速度が遅いという課題がある。さらに、例えば、蓄熱材をゼオライト粒子、反応媒体を水とした場合、ゼオライト粒子に水分を吸収させた際に、粒子内でその水分が突沸し、急激な体積膨張で粒子が崩壊して水とともにゼオライト粉末が流出することによる発熱量の低下や冷却系への悪影響が懸念される。   However, as a general problem of a heat storage system for vehicles using a solid heat storage material, it is difficult to efficiently transfer the exhaust heat of the vehicle to the heat storage material at the time of heat storage, and evaporate the reaction medium to dry the heat storage material. There is a problem that the speed is slow. Furthermore, for example, when the heat storage material is zeolite particles, and the reaction medium is water, when the zeolite particles absorb water, the water bumps in the particles, and the particles collapse due to rapid volume expansion and the water There is a concern that the calorific value may be reduced due to the outflow of the zeolite powder, and the cooling system may be adversely affected.

本発明は従来技術の上記の点に鑑みてなされたものであり、その目的は、粒状固体蓄熱材を使用した吸着蓄熱システムにおける反応速度の向上に有利な蓄熱システムを提供することにある。   The present invention has been made in view of the above-described points of the prior art, and an object thereof is to provide a heat storage system that is advantageous for improving the reaction speed in an adsorption heat storage system using a particulate solid heat storage material.

上記課題を解決するために、本発明は、
熱源となる一次媒体に接触する外表面と、前記外表面の裏側で二次媒体が接触する内表面と、前記内表面によって画成された内部空間とを有する反応器と、
前記反応器の前記内部空間に収容され、前記二次媒体の吸着反応により発熱し、前記二次媒体の脱着反応により蓄熱する性質を有する粒状蓄熱材と、
前記吸着反応を行うために前記内部空間に前記二次媒体を導入する手段と、
前記脱着反応で離脱した前記二次媒体を前記内部空間から排出する手段と、
前記内部空間を密閉する手段と、を備えた蓄熱システムにおいて、
前記内表面から前記内部空間に延びる熱伝達部材をさらに備え、
前記熱伝達部材は、前記二次媒体が流通可能かつ前記粒状蓄熱材が通過不可能な空隙を有する仕切り構造部を含み、前記粒状蓄熱材が少なくとも部分的に前記仕切り構造部で区画された複数の領域に収容されていることを特徴とする。
In order to solve the above problems, the present invention is
A reactor having an outer surface in contact with a primary medium serving as a heat source, an inner surface in contact with a secondary medium on the back side of the outer surface, and an inner space defined by the inner surface;
A particulate heat storage material which is contained in the internal space of the reactor, generates heat by the adsorption reaction of the secondary medium, and stores heat by the desorption reaction of the secondary medium;
Means for introducing the secondary medium into the interior space to carry out the adsorption reaction;
Means for discharging the secondary medium separated by the desorption reaction from the internal space;
And means for sealing the internal space.
It further comprises a heat transfer member extending from the inner surface to the inner space,
The heat transfer member includes a partition structure having a space through which the secondary medium can flow and the particulate heat storage material can not pass, and the plurality of particulate heat storage materials are partitioned at least partially by the partition structure Are housed in the area of

本発明に係る蓄熱システムは、上記の通り、反応器の内表面から内部空間に延びる熱伝達部材を備えているので、熱源となる一次媒体との接触で反応器の外表面が加熱され、反応器に収容された粒状蓄熱材が加熱乾燥される脱着反応時に、反応器の内表面から内部空間に延びる熱伝達部材によって、内表面のみならず熱伝達部材からも粒状蓄熱材に熱伝達されることで、反応器の中央に収容された粒状蓄熱材まで効率良く加熱される。   Since the heat storage system according to the present invention includes the heat transfer member extending from the inner surface of the reactor to the inner space as described above, the outer surface of the reactor is heated by contact with the primary medium serving as the heat source. The heat transfer member extending from the inner surface of the reactor to the inner space transfers heat from the heat transfer member to the particulate heat storage material during the desorption reaction in which the particulate heat storage material contained in the vessel is heated and dried. Thus, the particulate heat storage material accommodated at the center of the reactor is efficiently heated.

特に、熱伝達部材は、二次媒体が流通可能かつ粒状蓄熱材が通過不可能な空隙を有する仕切り構造部を含み、粒状蓄熱材が少なくとも部分的に仕切り構造部で区画された複数の領域に収容されているので、反応器の内部に収容された粒状蓄熱材と熱伝達部材の確実な接触が得られ、直接熱伝導されることにより、乾燥(蓄熱)の所要時間を短縮するうえで有利である。   In particular, the heat transfer member includes a partition structure having a space through which the secondary medium can flow and the particulate heat storage material can not pass, and the particulate heat storage material is divided into a plurality of regions at least partially partitioned by the partition structure. As it is contained, reliable contact between the particulate heat storage material contained inside the reactor and the heat transfer member is obtained, and direct heat conduction is advantageous in shortening the time required for drying (heat storage). It is.

本発明実施形態に係る蓄熱システムを備えた車両の排気系および冷却系を示す構成図である。It is a block diagram which shows the exhaust system and cooling system of a vehicle provided with the thermal storage system which concerns on this invention embodiment. 本発明実施形態に係る蓄熱システムの反応器を示す模式的斜視図である。It is a schematic perspective view which shows the reactor of the thermal storage system which concerns on this invention embodiment. 本発明実施形態に係る反応器の伝熱部材を示す模式的斜視図である。It is a schematic perspective view which shows the heat-transfer member of the reactor which concerns on this invention embodiment. (a)は本発明実施形態を示す図1のA−A部分断面図、(b)は比較例を示す図1のA−A断面相当の部分断面図である。(A) is an AA partial cross section of FIG. 1 which shows this invention embodiment, (b) is a fragmentary sectional view equivalent to the AA cross section of FIG. 1 which shows a comparative example. (a)は本発明第2実施形態、(b)は本発明第3実施形態に係る反応器の伝熱部材を示す模式的斜視図である。(A) is this invention 2nd Embodiment, (b) is a typical perspective view which shows the heat-transfer member of the reactor concerning this invention 3rd embodiment. 本発明実施形態に係る蓄熱システムにおける蓄熱材の乾燥時間と温度の関係を示すグラフである。It is a graph which shows the relationship between the drying time and temperature of the thermal storage material in the thermal storage system which concerns on this invention embodiment.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
(蓄熱システムの基本構成)
図1は、本発明に係る蓄熱システムが実施される車両の排気系および冷却系を示しており、図1において、車両は、パワーユニットとして内燃エンジン1を備えた内燃エンジン車両であり、蓄熱システムは、内燃エンジン1から排ガス(一次媒体)とともに排出される熱を回収して蓄え、冷間始動時に冷却液(二次媒体)を加熱して暖機促進に利用するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Basic configuration of heat storage system)
FIG. 1 shows an exhaust system and a cooling system of a vehicle in which the heat storage system according to the present invention is implemented. In FIG. 1, the vehicle is an internal combustion engine vehicle equipped with an internal combustion engine 1 as a power unit, The heat discharged from the internal combustion engine 1 together with the exhaust gas (primary medium) is recovered and stored, and the coolant (secondary medium) is heated at the cold start time to be utilized for warm-up promotion.

内燃エンジン1の排気系は、燃焼室1aから延びる排気管20の途中に、排ガス中の窒素酸化物(NOx)等を除去する触媒を充填した触媒部21が介設され、その下流側は、蓄熱ユニットを構成する反応器10を覆う外筒22(拡径部)およびマフラー(不図示)などを経て外気に連通している。   In the exhaust system of the internal combustion engine 1, a catalyst unit 21 filled with a catalyst for removing nitrogen oxides (NOx) and the like in the exhaust gas is interposed in the middle of an exhaust pipe 20 extending from the combustion chamber 1a. The outside air is communicated through an outer cylinder 22 (expanded diameter portion) covering a reactor 10 constituting the heat storage unit, a muffler (not shown), and the like.

内燃エンジン1の冷却系は、燃焼室1aの外側に設けられた冷却ジャケット1bに冷却液を循環させる冷却液循環経路L1,L2およびポンプP1、冷却液を車両の走行風やファンにより冷却するラジエータ2から主に構成されている。冷却液循環経路L2には、ラジエータ2をバイパスするバイパス経路L3が並列接続され、その分岐点にはサーモスタッド3が介設されており、サーモスタッド3は冷却液の温度に応じて冷却液をバイパス経路L3に切替え、冷却液の温度を調節し、内燃エンジン1の過冷却を防止する。   The cooling system of the internal combustion engine 1 is a coolant circulation path L1, L2 for circulating the coolant through a cooling jacket 1b provided outside the combustion chamber 1a, a pump P1, and a radiator for cooling the coolant by a traveling wind of a vehicle or a fan. Mainly composed of two. A bypass path L3 for bypassing the radiator 2 is connected in parallel to the coolant circulation path L2, and a thermostud 3 is interposed at the branch point, and the thermostud 3 bypasses the coolant according to the temperature of the coolant. The temperature is switched to L3 to adjust the temperature of the coolant to prevent the overcooling of the internal combustion engine 1.

ラジエータ2には、不図示の圧力調整弁を介してリザーバタンク4が接続されており、ラジエータ2内の圧力が設定値を越えると冷却液がリザーバタンク4に排出され、圧力が設定値以下になると、リザーバタンク4内の冷却液がラジエータ2(冷却液循環経路L2)内に戻るように構成されている。なお、リザーバタンク4には、後述する反応器10のパージ経路L13も接続されている。   The reservoir 2 is connected to the radiator 2 via a pressure control valve (not shown), and when the pressure in the radiator 2 exceeds the set value, the coolant is discharged to the reservoir 4 and the pressure becomes less than the set value. Then, the coolant in the reservoir tank 4 is configured to return to the radiator 2 (coolant circulation path L2). In addition, a purge path L13 of the reactor 10 described later is also connected to the reservoir tank 4.

冷却液循環経路L1,L2には、内燃エンジン1で加熱された冷却液の熱を車室内暖房に利用するためのヒータコア5が冷却液循環経路L5により並列接続されている。この冷却液循環経路L5には、切替え弁11を介して分岐する冷却液循環経路L10により蓄熱ユニットを構成する反応器10が並列接続されている。   In the coolant circulation paths L1 and L2, heater cores 5 for utilizing the heat of the coolant heated by the internal combustion engine 1 for heating the vehicle interior are connected in parallel by a coolant circulation path L5. A reactor 10 constituting a heat storage unit is connected in parallel to the coolant circulation path L5 via a coolant circulation path L10 branched off via the switching valve 11.

反応器10は、その周囲を排気管20の拡径部で構成された外筒22で包囲され、排気管20内の排ガス(一次媒体)によって外側から加熱され、その内部に充填された蓄熱材15の脱着反応により排ガスの熱を蓄える一方、冷間始動時には冷却液循環経路L10を介して循環される冷却液に対する吸着反応により発熱して冷却液を加熱し、暖機促進を行うものである。   The reactor 10 is surrounded by an outer cylinder 22 composed of an enlarged diameter portion of the exhaust pipe 20, and is heated from the outside by the exhaust gas (primary medium) in the exhaust pipe 20, and a heat storage material filled therein While the heat of exhaust gas is stored by the desorption reaction of 15, heat is generated by the adsorption reaction to the cooling fluid circulated through the cooling fluid circulation path L10 at the cold start, thereby heating the cooling fluid and promoting warm-up .

切替え弁11は、(1)反応器10への冷却液循環経路L10を閉鎖し、冷却液循環経路L1,L2をヒータコア5の冷却液循環経路L5に連通させる第1位置、(2)ヒータコア5への冷却液循環経路L5を閉鎖し、冷却液循環経路L1,L2を反応器10の冷却液循環経路L10に連通させる第2位置、何れの冷却液循環経路L5、L10をも閉鎖する全閉位置の3ポジションを切替え可能な三方弁である。   The switching valve 11 (1) closes the coolant circulation path L10 to the reactor 10 and communicates the coolant circulation paths L1 and L2 with the coolant circulation path L5 of the heater core 5, (2) the heater core 5 To the second position in which the coolant circulation paths L1 and L2 are communicated with the coolant circulation path L10 of the reactor 10, and the coolant circulation paths L5 and L10 are fully closed. It is a three-way valve that can switch three positions.

反応器10の下流側には、排出弁12を介して補助ポンプP2が接続されており、切替え弁11を冷却液循環経路L10に連通させる第2位置とし、排出弁12を開き、パージ弁13を閉じ、補助ポンプP2を作動状態とすることで、冷却液循環経路L10を通じて冷却液が反応器10に引き込まれ、内燃エンジン1の冷却液循環経路L1に循環される。これに伴う冷却液の不足分はリザーバタンク4から補充される。   The auxiliary pump P2 is connected to the downstream side of the reactor 10 via the discharge valve 12, and the switching valve 11 is set to the second position for communicating with the coolant circulation path L10, and the discharge valve 12 is opened. Is closed and the auxiliary pump P2 is operated, the coolant is drawn into the reactor 10 through the coolant circulation path L10 and circulated to the coolant circulation path L1 of the internal combustion engine 1. The shortage of the coolant accompanying this is replenished from the reservoir tank 4.

反応器10の上部には、反応器10内で気化して蓄熱材15から離脱した気相の冷却液をリザーバタンク4に戻して凝縮させるための冷却液循環経路L13がパージ弁13を介して接続されている。   In the upper part of the reactor 10, a coolant circulation path L13 for returning the vapor phase coolant vaporized in the reactor 10 and separated from the heat storage material 15 back to the reservoir tank 4 for condensation via the purge valve 13 It is connected.

切替え弁11、排出弁12、パージ弁13は、不図示の制御装置(ECU)の制御により動作可能なアクチュエータを備えた弁、例えば電磁弁などで構成され、内燃エンジン1の運転状況や冷却液の温度などに基づいて、ポンプP1および補助ポンプP2とともに所定のタイミングで流路切替えや開閉制御がなされる。   The switching valve 11, the discharge valve 12, and the purge valve 13 are constituted by a valve provided with an actuator operable by control of a control unit (ECU) (not shown), for example, a solenoid valve. The flow path switching and the open / close control are performed at a predetermined timing together with the pump P1 and the auxiliary pump P2 based on the temperature of the above.

(蓄熱ユニット)
図2は、本発明の第1実施形態に係る蓄熱ユニットを構成する反応器10付近を示している。反応器10は、排気管20の拡径部(外筒22)の内部に同軸配置された円筒状の密閉容器であり、反応器10の上部には外筒22を貫通して冷却液循環経路L10(導入側)およびパージ経路L13が接続され、反応器10の下部には外筒22を貫通して冷却液循環経路L10(排出側)が接続されている。
(Heat storage unit)
FIG. 2 shows the vicinity of the reactor 10 constituting the heat storage unit according to the first embodiment of the present invention. The reactor 10 is a cylindrical closed vessel coaxially disposed inside the enlarged diameter portion (outer cylinder 22) of the exhaust pipe 20, and the upper portion of the reactor 10 penetrates the outer cylinder 22 to form a coolant circulation path. L10 (introduction side) and the purge path L13 are connected, and a coolant circulation path L10 (discharge side) is connected to the lower portion of the reactor 10 through the outer cylinder 22.

反応器10の内部には、熱伝達部材14が配設されている。熱伝達部材14は、図3に示すように、反応器10の内表面から内部空間の中央に向かって延びる複数(図示例では8枚)の仕切り構造部14aと、各仕切り構造部14aを中央側で一体に結合する筒状の中央部14cとを備え、それらによって区画された複数(図示例では9つ)の領域に、粒状の蓄熱材15が充填される。   A heat transfer member 14 is disposed inside the reactor 10. As shown in FIG. 3, the heat transfer member 14 includes a plurality of (eight in the illustrated example) partition structure portions 14a extending from the inner surface of the reactor 10 toward the center of the inner space, and each partition structure portion 14a A granular heat storage material 15 is filled in a plurality of (nine in the illustrated example) regions partitioned by the cylindrical central portion 14 c integrally coupled on the side.

換言すれば、熱伝達部材14は、円筒状の反応器10の内部空間の中央部に同軸配置された小径の中央部14cと、該中央部14cから径方向外方に向かって放射状に延びる複数の仕切り構造部14aで構成されている。仕切り構造部14aの放射状配置は、熱交換表面となる反応器10の内表面からの輻射を阻害しない利点もある。   In other words, the heat transfer member 14 has a small-diameter central portion 14c coaxially disposed at the central portion of the internal space of the cylindrical reactor 10, and a plurality of radial transfer members extending radially outward from the central portion 14c. Is constituted by the partition structure 14a. The radial arrangement of the partition structure portion 14a also has an advantage of not inhibiting radiation from the inner surface of the reactor 10 which is to be a heat exchange surface.

熱伝達部材14を構成する仕切り構造部14aおよび中央部14cは、金属メッシュ、または、多孔金属板で構成され、それらを厚さ方向に貫通する空隙14pが全面的に形成されており、それらの間に収容された粒状蓄熱材15に冷却液(二次媒体)が容易に流通可能であるが、空隙14pの大きさ形状は、粒状蓄熱材15が通過不可能な大きさ形状とすることで、熱伝達部材14と粒状蓄熱材15の確実な接触が得られるようにしている。熱伝達部材14が個体熱伝導し得る熱容量を確保するうえでも、空隙14pは(冷却液の流通を阻害しない範囲で)小さい方が好ましい。   The partition structure portion 14a and the central portion 14c constituting the heat transfer member 14 are formed of a metal mesh or a porous metal plate, and an air gap 14p penetrating them in the thickness direction is formed entirely. The cooling fluid (secondary medium) can easily flow through the granular heat storage material 15 contained in between, but the size and shape of the void 14p is such that the granular heat storage material 15 can not pass through. Thus, reliable contact between the heat transfer member 14 and the particulate heat storage material 15 is obtained. Also in order to secure the heat capacity that the heat transfer member 14 can conduct individual heat conduction, it is preferable that the space 14p be as small as possible (within a range not inhibiting the flow of the coolant).

上記のように構成された熱伝達部材14を備えた反応器10は、冷却液(二次媒体)の吸着反応により発熱し、脱着反応により蓄熱する性質を有する粒状蓄熱材15の、脱着反応、すなわち、排ガス(一次媒体)の熱により加熱され、吸着した冷却液を離脱させて蓄熱する反応における蓄熱材15への熱伝達を改善し、蓄熱材15の乾燥速度を向上するうえで有利な構成となっている。   The reactor 10 including the heat transfer member 14 configured as described above generates heat due to the adsorption reaction of the cooling fluid (secondary medium), and the desorption reaction of the particulate heat storage material 15 having the property of storing heat due to the desorption reaction; That is, the configuration is advantageous for improving the heat transfer to the heat storage material 15 in the reaction of heating by the heat of the exhaust gas (primary medium) and causing the adsorbed cooling fluid to separate and store heat, thereby improving the drying speed of the heat storage material 15. It has become.

反応器10内に充填された蓄熱材15は、冷却液(二次媒体)の吸着反応の速度を考慮してビーズ状に成形されており、このような粒状蓄熱材15は、排ガスの熱が反応器10の表面を介して固体熱伝導と輻射によって蓄熱材15に伝達され、蓄熱材15が加熱されることで冷却液(二次媒体)が離脱乾燥する。   The heat storage material 15 filled in the reactor 10 is formed into a bead shape in consideration of the rate of the adsorption reaction of the cooling fluid (secondary medium), and such particulate heat storage material 15 has the heat of the exhaust gas The heat is transferred to the heat storage material 15 by solid heat conduction and radiation through the surface of the reactor 10, and the heat storage material 15 is heated, whereby the coolant (secondary medium) is separated and dried.

ところが、粒状蓄熱材15は相互に点接触であり、また蓄熱材15自体の熱伝導率が低いため、熱伝導効果が低い。そのため、図4(b)の比較例に示すように、反応器10′の中央部10cに充填された蓄熱材15に排ガスGの熱が伝わり難く、脱着乾燥に時間を要する問題があった。   However, since the particulate heat storage materials 15 are in point contact with each other and the heat conductivity of the heat storage materials 15 is low, the heat conduction effect is low. Therefore, as shown in the comparative example of FIG. 4B, the heat of the exhaust gas G is not easily transmitted to the heat storage material 15 filled in the central portion 10c of the reactor 10 ', and there is a problem that it takes time for desorption and drying.

これに対して、本発明実施形態では、図4(a)に示すように、反応器10の内表面10bから中央部10cに向かって延びる熱伝達部材14を通じた熱伝導により、反応器10の中央部10cに充填された蓄熱材15にも排ガスGの熱が伝わり易くなり、脱着乾燥に要する時間を短縮できる。   On the other hand, in the embodiment of the present invention, as shown in FIG. 4 (a), the heat conduction through the heat transfer member 14 extending from the inner surface 10b of the reactor 10 toward the central portion 10c The heat of the exhaust gas G is easily transmitted to the heat storage material 15 filled in the central portion 10c, and the time required for desorption and drying can be shortened.

以上のように構成された熱伝達部材14の効果を検証するために、熱伝達部材14を適用して粒状蓄熱材15を充填した反応器10と、熱伝達部材14を適用せずに粒状蓄熱材15のみを充填した反応器10′を外側から加熱し、それぞれの反応器の中央部の蓄熱材の温度変化を調べる実験を行った。   In order to verify the effect of the heat transfer member 14 configured as above, the reactor 10 filled with the particulate heat storage material 15 by applying the heat transfer member 14 and the particulate heat storage without applying the heat transfer member 14 The reactor 10 'filled with only the material 15 was heated from the outside, and an experiment was conducted to investigate the temperature change of the heat storage material in the central part of each reactor.

この実験では、粒状蓄熱材としてゼオライトビーズ700g(見掛け容積:約0.9L)を反応器10,10′に充填し、反応器内に冷却液を注入してゼオライトビーズに吸着反応を生じさせ、その後、加熱された冷却液を排出してから、反応器10,10′を250℃の雰囲気中に置いて、外側から加熱し、中央部の温度を測定した。   In this experiment, 700 g (approximate volume: about 0.9 L) of zeolite beads as a particulate heat storage material is charged into the reactor 10, 10 ', and a cooling liquid is injected into the reactor to cause adsorption reaction on the zeolite beads. Thereafter, after the heated coolant was discharged, the reactor 10, 10 'was placed in a 250 ° C. atmosphere and heated from the outside, and the temperature of the central portion was measured.

図6は、反応器中央部のゼオライト温度の測定結果を示すグラフであり、図中実線が図4(a)相当の実施例、破線が図4(b)相当の比較例を示している。この例では、熱源温度の250℃に到達する所要時間が4.5時間から2.9時間に36%短縮される結果が得られた。また、グラフから、一度100℃まで昇温し、その後、100℃付近で停滞する機関を経て再び温度上昇に転じる傾向が看取されるが、この停滞期間では、反応器の周辺側の蓄熱材から脱着反応が進行し、その後で中央部での脱着反応が進行する状況を反映しているものと推察され、実施例は熱伝達部材を適用したことにより、比較例に比べて中央部への熱伝達が改善されることを示していると言える。   FIG. 6 is a graph showing the measurement results of the zeolite temperature in the central portion of the reactor, in which the solid line shows an example corresponding to FIG. 4 (a) and the broken line shows a comparative example corresponding to FIG. 4 (b). In this example, the time required to reach 250 ° C. of the heat source temperature was reduced by 36% from 4.5 hours to 2.9 hours. Also, the graph shows that the temperature rises to 100 ° C once and then tends to rise again through the engine stagnating at around 100 ° C, but during this stagnation period, the heat storage material on the peripheral side of the reactor It is inferred from this that the desorbing reaction proceeds, and then the desorbing reaction in the central portion is reflected, and the heat transfer member in the example is applied to the central portion compared to the comparative example. It can be said that it shows that heat transfer is improved.

(蓄熱材および二次媒体)
反応器10に充填される蓄熱材15は、気相または液相の媒体(二次媒体)の吸着反応により発熱し、脱着反応により蓄熱する固体粒子からなる蓄熱材であり、このような蓄熱材としては、上述したゼオライトの他に、シリカゲル、活性化アルミナなどを用いることができるが、実用的な観点から、ゼオライトが好ましい。
(Heat storage material and secondary medium)
The heat storage material 15 filled in the reactor 10 is a heat storage material composed of solid particles that generates heat due to the adsorption reaction of the gas phase or liquid phase medium (secondary medium), and stores heat due to the desorption reaction. In addition to the above-mentioned zeolites, silica gel, activated alumina and the like can be used as the above. However, from the practical viewpoint, zeolite is preferable.

ゼオライトは、X型ゼオライト、Y型ゼオライト、ZSM−5型ゼオライト、A型ゼオライトなどがあるが、特に、A型またはX型ゼオライトが好ましい。粒子の形状としてはビーズ(球状)、ペレット(円柱状)などを用いることができる。   Zeolites include X-type zeolite, Y-type zeolite, ZSM-5 type zeolite, A-type zeolite and the like, and in particular, A-type or X-type zeolite is preferable. As the shape of the particles, beads (spherical), pellets (cylindrical) or the like can be used.

一方、吸着蓄熱材と組合せて用いられる二次媒体(冷却液)としては、以下に述べるような第一の媒体と第二の媒体との混合媒体が好適である。   On the other hand, as a secondary medium (cooling liquid) used in combination with the adsorption heat storage material, a mixed medium of a first medium and a second medium as described below is suitable.

第一の媒体は、混合媒体の主成分となる媒体であり、第二の媒体よりも沸点が低く、第二の媒体よりも蓄熱材に対する吸着能が高く、かつ、蓄熱材への吸着による吸着熱が第二の媒体よりも大きい媒体である。このような第一の媒体としては、水(H2O)、アンモニア(NH3)などがあるが、実用的な観点より、水が好ましい。 The first medium is a medium that is the main component of the mixed medium, has a boiling point lower than that of the second medium, has a higher adsorption capacity for the heat storage material than the second medium, and is adsorbed by adsorption to the heat storage material The heat is a medium larger than the second medium. As such a first medium, there are water (H 2 O), ammonia (NH 3 ) and the like, but water is preferable from the practical viewpoint.

第二の媒体は、混合媒体の副成分となる媒体である。第二の媒体としては、エチレングリコール(C262)、プロピレングリコール(C382)、メタノール(CH4OH)などが想定されるが、実用的な観点より、エチレングリコールが好ましい。 The second medium is a medium that is a secondary component of the mixed medium. As the second medium, ethylene glycol (C 2 H 6 O 2 ), propylene glycol (C 3 H 8 O 2 ), methanol (CH 4 OH), etc. are assumed, but from a practical viewpoint, ethylene glycol Is preferred.

第一の媒体と第二の媒体との混合比は、第一の媒体および第二の媒体が蓄熱材と吸着し、かつ蓄熱材の昇温によって蒸発できる混合比であればよい。例えば、第一の媒体が水、第二の媒体がエチレングリコールの場合、第二の媒体の質量パーセントは、10〜90%とすることができる。実用的には、第二の媒体の質量パーセントは、20〜60%である。   The mixing ratio of the first medium to the second medium may be any mixing ratio that allows the first medium and the second medium to be adsorbed to the heat storage material and to be evaporated by the temperature rise of the heat storage material. For example, when the first medium is water and the second medium is ethylene glycol, the weight percent of the second medium can be 10 to 90%. In practice, the weight percent of the second medium is between 20 and 60%.

上記のような混合媒体を二次媒体(冷却液)として用いた蓄熱システムでは、混合媒体により蓄熱材15が加湿されることにより発熱し、蓄熱材15から混合媒体に熱が取り出される。蓄熱材15の発熱の際、混合媒体中の第二の媒体による蓄熱材の発熱量は、第一の媒体による蓄熱材の発熱量よりも小さい。そのため、第一の媒体のみで加湿した場合と比較して、蓄熱材15の温度上昇速度が抑制され、その結果、蓄熱材が発熱する際の突沸現象の発生とそれに伴う蓄熱材の崩壊や流出が防止され、蓄熱材の減少による発熱量の減少を回避することができる。   In the heat storage system using the mixed medium as described above as the secondary medium (coolant), the heat storage material 15 is humidified by the mixed medium to generate heat, and the heat is extracted from the heat storage material 15 to the mixed medium. At the time of heat generation of the heat storage material 15, the heat generation amount of the heat storage material by the second medium in the mixed medium is smaller than the heat generation amount of the heat storage material by the first medium. Therefore, compared with the case where only the first medium is humidified, the temperature rising speed of the heat storage material 15 is suppressed, and as a result, the occurrence of bumping phenomenon when the heat storage material generates heat and the collapse and outflow of the heat storage material Can be prevented, and a decrease in heat generation due to a decrease in heat storage material can be avoided.

加えて、混合媒体による蓄熱材の加湿をさらに継続すると、混合媒体中の第一の媒体の蓄熱材への吸着能が第二の媒体の蓄熱材よりも高いため、第一の媒体が第二の媒体を置換する。この置換の際、第二の媒体が蓄熱材から脱着する吸熱反応と第一の媒体が蓄熱材に吸着する発熱反応とが同時に起こる。   In addition, when the humidification of the heat storage material by the mixed medium is further continued, the first medium is the second medium because the adsorption capacity of the first medium in the mixed medium to the heat storage material is higher than the heat storage material of the second medium. Replace the medium of During this substitution, an endothermic reaction in which the second medium desorbs from the heat storage material and an exothermic reaction in which the first medium adsorbs on the heat storage material simultaneously occur.

その結果、「(第一の媒体の吸着熱)−(第二の媒体の吸着熱)」で表される正の熱量が継続的に発生して、蓄熱材及び混合媒体の温度は前記置換の反応が続く限度で上昇する。なお、蓄熱材に吸着した第二の媒体は、未反応の新しい混合溶媒による加湿を続けても、全て第一の媒体に置換されることはない。第二の媒体がある割合で蓄熱材に残存した状態になると、前記置換の反応が進行しなくなり、蓄熱材が発熱しない状態となる。   As a result, positive heat quantity represented by “(heat of adsorption of first medium) − (heat of adsorption of second medium)” is continuously generated, and the temperature of the heat storage material and the mixed medium is It rises as far as the reaction continues. The second medium adsorbed to the heat storage material is not completely replaced by the first medium even if it is continuously humidified by the unreacted new mixed solvent. When the second medium remains in the heat storage material in a proportion, the reaction of the replacement does not proceed, and the heat storage material does not generate heat.

(蓄熱システムの動作)
次に、上記実施形態の蓄熱システムの動作について、同システムを備えた内燃エンジン車両の冷間始動時の暖機促進モードと始動後の蓄熱モードを例に図1を参照し説明する。
(Operation of heat storage system)
Next, the operation of the heat storage system according to the above embodiment will be described with reference to FIG. 1 with an example of a warm-up acceleration mode at cold start of the internal combustion engine vehicle equipped with the system and a heat storage mode after start.

通常走行の後に停車した車両では、後述する蓄熱モードによって反応器1内の蓄熱材15は、脱着反応が完了し、三方弁11、排出弁12、パージ弁13が閉鎖されることで乾燥状態に維持されている。   In a vehicle stopped after normal traveling, the desorption reaction of the heat storage material 15 in the reactor 1 is completed by the heat storage mode to be described later, and the three-way valve 11, the discharge valve 12, and the purge valve 13 are closed. It is maintained.

このような車両の内燃エンジン1が所定以下の冷却液温度にて冷間始動されると、制御装置(ECU)の制御により、蓄熱システムは暖機促進モードとなり、三方弁11が冷却液循環経路L10に切替わるとともに排出弁12が開き、ポンプP1および補助ポンプP2が作動状態となり、図2に符号Laで示すように、冷却液が冷却液循環経路L10から反応器10に流入する。   When the internal combustion engine 1 of such a vehicle is cold-started at a coolant temperature lower than a predetermined temperature, the heat storage system enters the warm-up acceleration mode by the control of the control unit (ECU), and the three-way valve 11 After switching to L10, the discharge valve 12 is opened, the pump P1 and the auxiliary pump P2 are activated, and the coolant flows from the coolant circulation path L10 into the reactor 10 as indicated by a symbol La in FIG.

次いで、反応器10内に流入した冷却液により蓄熱材15が加湿され、蓄熱材15に吸着されることで、蓄熱材15の吸着反応による吸着熱が生じ、この吸着熱によって、反応器10内の冷却液が加熱昇温され、排出弁12、補助ポンプP2、ポンプP1を経由して冷却液循環経路L1の冷却ジャケット1bに循環されることで、内燃エンジン1の暖機が促進される。内燃エンジン1を通過した冷却液は冷却液循環経路L10を通じて反応器10に再循環され、冷却液はさらに加熱昇温される。   Next, the heat storage material 15 is humidified by the coolant flowing into the reactor 10, and is adsorbed to the heat storage material 15, so that the heat of adsorption due to the adsorption reaction of the heat storage material 15 is generated. The temperature of the coolant is heated and circulated through the discharge valve 12, the auxiliary pump P2 and the pump P1 to the cooling jacket 1b of the coolant circulation path L1, thereby promoting the warm-up of the internal combustion engine 1. The coolant that has passed through the internal combustion engine 1 is recirculated to the reactor 10 through the coolant circulation path L10, and the coolant is further heated.

上記のような暖機促進モードにおいて、内燃エンジン1の暖機が完了すると、切替え弁11が冷却液循環経路L5に切替わり、反応器10への冷却液の循環が停止されるとともにパージ弁13が開き、反応器10内に残留した冷却液は、図2に符号Lbで示すように、補助ポンプP2によって冷却液循環経路L1に排出される。   In the warm-up promotion mode as described above, when the warm-up of the internal combustion engine 1 is completed, the switching valve 11 is switched to the coolant circulation path L5, and the circulation of the coolant to the reactor 10 is stopped. Is opened, and the coolant remaining in the reactor 10 is discharged to the coolant circulation path L1 by the auxiliary pump P2, as indicated by a symbol Lb in FIG.

排出された冷却液はリザーバタンク4に流入する冷却液の容量増加量となる。なお、暖機モード中に加熱昇温された冷却液は冷却液循環経路L5のヒータコア5に循環されることで車室内暖房に利用される。このヒータコア5は冷却液の昇温を抑制する熱交換器として機能するが、冷却液の温度がさらに上昇すると、サーモスタッド3によってバイパス経路L3から冷却液循環経路L2に切替わり、ラジエータ2により冷却液が冷却される。   The discharged coolant is an increase in the volume of the coolant flowing into the reservoir tank 4. Note that the coolant heated and heated in the warm-up mode is circulated to the heater core 5 of the coolant circulation path L5, and is used for heating the vehicle interior. The heater core 5 functions as a heat exchanger that suppresses the temperature rise of the coolant, but when the temperature of the coolant further rises, the thermostud 3 switches from the bypass path L3 to the coolant circulation path L2, and the radiator 2 Is cooled.

一方、反応器10からの冷却液の排出が完了すると補助ポンプP2が停止するとともに排出弁12が閉じ、反応器10は蓄熱モードに移行する。   On the other hand, when the discharge of the coolant from the reactor 10 is completed, the auxiliary pump P2 is stopped and the discharge valve 12 is closed, and the reactor 10 shifts to the heat storage mode.

すなわち、暖機された内燃エンジン1から排気される排ガス(Ga−Gb)によって、排気管20の拡径部22内で反応器10が加熱され、反応器11内の蓄熱材15が加熱されることで、蓄熱材15に吸着されていた冷却液が気化して離脱し、この脱着反応により蓄熱材15が乾燥状態となることで、排ガスの熱エネルギーが蓄熱材15に蓄熱される。   That is, the reactor 10 is heated in the enlarged diameter portion 22 of the exhaust pipe 20 by the exhaust gas (Ga-Gb) exhausted from the warmed internal combustion engine 1, and the heat storage material 15 in the reactor 11 is heated. As a result, the cooling liquid adsorbed to the heat storage material 15 vaporizes and separates, and the heat storage material 15 is dried due to this desorption reaction, whereby the thermal energy of the exhaust gas is stored in the heat storage material 15.

蓄熱材15から離脱した気相の冷却液は、図2に符号Lcで示すように、パージ経路L13を経てリザーバタンク4に回収され、凝縮される。蓄熱材15の脱着反応および乾燥が完了し、車両の内燃エンジン1が停止した際に、パージ弁13を閉じて反応器10を密閉し、蓄熱材15の吸湿を防止して次回の始動に対備する。   The gas-phase coolant separated from the heat storage material 15 is collected in the reservoir tank 4 through the purge path L13 and condensed as shown by a symbol Lc in FIG. When the desorption reaction and drying of the heat storage material 15 are completed and the internal combustion engine 1 of the vehicle is shut off, the purge valve 13 is closed to seal the reactor 10 to prevent moisture absorption of the heat storage material 15 for the next start. Prepare.

本発明に係る蓄熱システムでは、反応器10内に熱伝導部材14が設置されることで、反応器10内部の粒状蓄熱材15、特に中央部の蓄熱材15まで効率良く加熱され、先述した通り、蓄熱材15の乾燥時間(蓄熱時間)が短縮されることで、比較的短い周期で冷間始動が繰り返されるような場合でも、迅速かつ確実な暖機促進が可能となる。   In the heat storage system according to the present invention, the heat transfer member 14 is installed in the reactor 10, whereby the particulate heat storage material 15 inside the reactor 10, in particular, the heat storage material 15 in the central portion is efficiently heated. Since the drying time (heat storage time) of the heat storage material 15 is shortened, rapid and reliable warm-up can be promoted even when cold start is repeated in a relatively short cycle.

(第2実施形態)
次に、図5(a)は、本発明に係る第2実施形態の反応器210の熱伝導部材214を示している。この熱伝導部材214は、中央に筒状部は設定されておらず、それぞれの仕切り構造部214aが中央部214cで結合されている。この形態は、構造が簡素である半面、中央部214cで隣接する仕切り構造部214aが鋭角で交わるので、この付近における粒状蓄熱材15の充填効率が低下する。
Second Embodiment
Next, FIG. 5A shows a heat conducting member 214 of the reactor 210 of the second embodiment according to the present invention. In the heat conducting member 214, no cylindrical portion is set at the center, and the respective partition structure portions 214a are joined at the central portion 214c. In this embodiment, the partition structure portions 214a adjacent to each other at the central portion 214c intersect at an acute angle while the structure is simple, so that the filling efficiency of the particulate heat storage material 15 in the vicinity thereof is reduced.

第1実施形態では、筒状の中央部14cが設定されるので、このような鋭角での結合部分は生じず、蓄熱材15の全体的な充填効率、および、熱伝導部材14と蓄熱材15の接触効率の何れの点でも、第1実施形態の熱伝導部材14が有利であることが分かる。さらに、構造的な安定性の点でも第1実施形態の熱伝導部材14が有利である。   In the first embodiment, since the cylindrical central portion 14 c is set, such an acute-angled coupling portion does not occur, and the overall filling efficiency of the heat storage material 15, and the heat conducting member 14 and the heat storage material 15. It can be seen that the heat conducting member 14 of the first embodiment is advantageous in any of the contact efficiencies of the first embodiment. Furthermore, the heat conducting member 14 of the first embodiment is advantageous also in terms of structural stability.

なお、第1実施形態、第2実施形態の熱伝導部材14,214は、金属線材が四角格子状に配置され、四角形の空隙14p,214pを有するワイヤーメッシュ(溶接メッシュ、フラットメッシュ)が例示されているが、平織やクリンプ織などの織金網を用いることもできる。   In the heat conducting members 14 and 214 of the first embodiment and the second embodiment, metal wires are arranged in a square grid shape, and wire meshes (welded mesh, flat mesh) having square gaps 14p and 214p are exemplified. However, woven wire mesh such as plain weave or crimp weave can also be used.

また、多孔金属板(パンチングメタル)としては、丸孔や角孔など、各種形状のものを使用できるが、径方向(放射方向)への熱伝導性を考慮して、径方向(横方向)に長い長孔のパンチングメタルが好適であり、これらの場合、丸孔や角孔、長孔が空隙14p,214pとなる。   Also, as the porous metal plate (punching metal), various shapes such as round holes and square holes can be used, but in consideration of the thermal conductivity in the radial direction (radial direction), the radial direction (lateral direction) In these cases, round holes, square holes, and long holes become voids 14p and 214p.

(第3実施形態)
次に、図5(b)は、本発明に係る第3実施形態の反応器310の熱伝導部材314を示している。この熱伝導部材314は、金属メッシュや多孔金属板の代わりに、径方向(放射方向)への熱伝導性を考慮して、径方向(放射方向)に平行に延びる多数の金属線材のみで仕切り構造部314a(ルーバー)を構成しており、空隙314pも径方向に延びている。
Third Embodiment
Next, FIG. 5 (b) shows the heat conducting member 314 of the reactor 310 of the third embodiment according to the present invention. The heat conducting member 314 is divided only by a large number of metal wires extending in parallel to the radial direction (radial direction), in consideration of the thermal conductivity in the radial direction (radial direction) instead of the metal mesh or the porous metal plate. The structural portion 314a (louver) is configured, and the air gap 314p also extends in the radial direction.

各金属線材(314a)は軸方向に延びる金属線材からなる中央部314cによって一体に結合されているが、外周部に軸方向に延びる線材を併用しても良い。この実施形態でも金属メッシュ程度の熱伝導性が得られるが、金属線材の代わりに金属帯材を用いれば、多孔金属板と同様の熱容量や熱伝導性が得られる。   The respective metal wires (314a) are integrally connected by a central portion 314c made of an axially extending metal wire, but an axially extending wire may be used in combination with the outer peripheral portion. Even in this embodiment, a thermal conductivity similar to that of a metal mesh can be obtained, but if a metal band is used instead of the metal wire, the same heat capacity and thermal conductivity as a porous metal plate can be obtained.

上記各実施形態では、何れも仕切り構造部14a,214a,314aが径方向に配向されている場合を示したが、反応器10の内表面10bから内部空間に向かって延びる他の形態とすることもできる。例えば、反応器10の内表面10bから中央部14cに向かって斜めに延びても良いし、中央部14cは円筒状以外の角筒状であっても良い。   Although each partition structure part 14a, 214a, 314a showed the case where the partition structure part 14a, 214a, 314a was orientated to radial direction in each said embodiment, it is set as the other form extended toward internal space from the inner surface 10b of the reactor 10. You can also. For example, it may extend obliquely from the inner surface 10b of the reactor 10 toward the central portion 14c, and the central portion 14c may be in the form of a rectangular tube other than a cylindrical one.

また、各図中省略されているが、反応器10の内底部には、粒状蓄熱材15の排出を防止するストレーナーとして金属メッシュまたは多孔金属板が配設されても良い。   Although not shown in the drawings, a metal mesh or a porous metal plate may be disposed on the inner bottom of the reactor 10 as a strainer for preventing the particulate heat storage material 15 from being discharged.

さらに、上記各実施形態では、何れも反応器10,210,310が円筒状の場合を示したが、円筒状以外の、楕円筒状、角丸筒状、1または複数の扁平筒状等であっても良く、楕円筒状や扁平筒状の場合、仕切り構造部が断面の長軸方向と直交または交差する方向に配向されても良い。   Furthermore, in each of the above embodiments, the case where the reactor 10, 210, 310 has a cylindrical shape is shown, but it is an elliptical cylindrical shape, a rounded cylindrical shape, one or a plurality of flat cylindrical shapes, etc. other than a cylindrical shape. In the case of an elliptic cylindrical shape or a flat cylindrical shape, the partition structure portion may be oriented in a direction orthogonal to or intersecting with the long axis direction of the cross section.

また、上記各実施形態では、何れも反応器10,210,310が排気管20(拡径部22)の内部に配設され、反応器の外表面が熱交換表面となるように蓄熱ユニットを構成する場合を示したが、本発明はこれに限定されるものではなく、排気管20の外周部に反応器が設けられ、排気管の外表面が熱交換表面となるように蓄熱ユニットを構成することもできる。   In each of the above embodiments, the heat storage unit is configured such that the reactors 10, 210, and 310 are disposed inside the exhaust pipe 20 (the enlarged diameter portion 22), and the outer surface of the reactor is a heat exchange surface. Although the case where it comprises is shown, this invention is not limited to this, a reactor is provided in the perimeter of exhaust pipe 20, and a thermal storage unit is constituted so that the outer surface of an exhaust pipe serves as a heat exchange surface. You can also

この形態でも、排気管が円筒状以外の、楕円筒状、角丸筒状、1または複数の扁平筒状等であっても良く、反応器は各種形状の排気管を少なくとも部分的に包囲するような形状とすることができ、熱伝達部材の仕切り構造部が断面の長軸方向と直交または交差する方向に配向される。   Also in this embodiment, the exhaust pipe may be an elliptic cylinder, a rounded cylinder, one or a plurality of flat cylinders, etc. other than a cylindrical one, and the reactor at least partially surrounds the exhaust pipes of various shapes. The heat transfer member partition structure may be oriented in a direction orthogonal or intersecting with the long axis direction of the cross section.

以上、本発明の実施の形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Based on the technical idea of this invention, various deformation | transformation and change are possible further.

例えば、上記実施形態では、本発明を、内燃エンジン車両の排気系/冷却系に実施する場合について述べたが、本発明はこれに限定されるものではなく、電動車両や燃料電池車両など、排熱の発生と暖機等への利用が見込める各種車両、さらには、車両以外の動力機械などにも実施され得ることを付言する。   For example, in the above embodiment, the present invention is described as being applied to the exhaust system / cooling system of an internal combustion engine vehicle, but the present invention is not limited to this. It is added that it can be implemented to various vehicles that can be expected to generate heat and to be used for warm-up, etc., and also to power machines other than vehicles.

1 内燃エンジン
1a 燃焼室
1b 冷却ジャケット
2 ラジエータ
3 サーモスタット
4 リザーバタンク
5 ヒータコア
10,210,310 反応器(蓄熱ユニット)
10a 外表面
10b 内表面
10c 内部空間
11 切替え弁(三方弁)
12 排出弁
13 パージ弁
14,214,314 熱伝達部材
14a,214a,314a 仕切り構造部
14c,214c,314c 中央部
14p,214p,314p 空隙
15 蓄熱材
20 排気管
21 触媒部
22 外筒部
G 排気ガス(一次媒体)
L 冷却液(二次媒体)
L1,L2,L5,L10 冷却液循環経路
L3 バイパス経路
L13 パージ経路
P1 ポンプ
P2 補助ポンプ
DESCRIPTION OF SYMBOLS 1 internal combustion engine 1a combustion chamber 1b cooling jacket 2 radiator 3 thermostat 4 reservoir tank 5 heater core 10, 210, 310 reactor (heat storage unit)
10a outer surface 10b inner surface 10c inner space 11 switching valve (three-way valve)
12 Discharge valve 13 Purge valve 14, 214, 314 Heat transfer member 14a, 214a, 314a Partition structure 14c, 214c, 314c Central part 14p, 214p, 314p Air gap 15 Heat storage material 20 Exhaust pipe 21 Catalyst part 22 Outer cylinder part G Exhaust Gas (primary medium)
L Coolant (secondary medium)
L1, L2, L5, L10 Coolant circulation path L3 Bypass path L13 Purge path P1 Pump P2 Auxiliary pump

Claims (6)

熱源となる一次媒体に接触する外表面と、前記外表面の裏側で二次媒体が接触する内表面と、前記内表面によって画成された内部空間とを有する反応器と、
前記反応器の前記内部空間に収容され、前記二次媒体の吸着反応により発熱し、前記二次媒体の脱着反応により蓄熱する性質を有する粒状蓄熱材と、
前記吸着反応を行うために前記内部空間に前記二次媒体を導入する手段と、
前記脱着反応で離脱した前記二次媒体を前記内部空間から排出する手段と、
前記内部空間を密閉する手段と、を備えた蓄熱システムにおいて、
前記内表面から前記内部空間に延びる熱伝達部材をさらに備え、
前記熱伝達部材は、前記二次媒体が流通可能かつ前記粒状蓄熱材が通過不可能な空隙を有する仕切り構造部を含み、前記粒状蓄熱材が少なくとも部分的に前記仕切り構造部で区画された複数の領域に収容されていることを特徴とする蓄熱システム。
A reactor having an outer surface in contact with a primary medium serving as a heat source, an inner surface in contact with a secondary medium on the back side of the outer surface, and an inner space defined by the inner surface;
A particulate heat storage material which is contained in the internal space of the reactor, generates heat by the adsorption reaction of the secondary medium, and stores heat by the desorption reaction of the secondary medium;
Means for introducing the secondary medium into the interior space to carry out the adsorption reaction;
Means for discharging the secondary medium separated by the desorption reaction from the internal space;
And means for sealing the internal space.
It further comprises a heat transfer member extending from the inner surface to the inner space,
The heat transfer member includes a partition structure having a space through which the secondary medium can flow and the particulate heat storage material can not pass, and the plurality of particulate heat storage materials are partitioned at least partially by the partition structure A heat storage system characterized in that it is housed in the area of
前記反応器が円筒状をなし、前記熱伝達部材の前記仕切り構造部が放射状に配置されていることを特徴とする請求項1記載の蓄熱システム。   The heat storage system according to claim 1, wherein the reactor has a cylindrical shape, and the partition structure portion of the heat transfer member is radially arranged. 前記熱伝達部材は、金属メッシュ、金属線材、金属帯材、および、多孔金属板からなる群から選択された構成を有していることを特徴とする請求項1または2記載の蓄熱システム。   The heat storage system according to claim 1 or 2, wherein the heat transfer member has a configuration selected from the group consisting of metal mesh, metal wire, metal band, and porous metal plate. 前記二次媒体は、第一の媒体と第二の媒体との混合媒体であり、前記第一の媒体は、前記第二の媒体より低い沸点を有し、かつ、前記第二の媒体より前記粒状蓄熱材への吸着能が高く、前記第二の媒体より大きい吸着熱を有することを特徴とする請求項1〜3の何れか一項記載の蓄熱システム。   The secondary medium is a mixed medium of a first medium and a second medium, and the first medium has a boiling point lower than that of the second medium, and the first medium has a lower boiling point than the second medium. The heat storage system according to any one of claims 1 to 3, wherein the heat storage system according to any one of claims 1 to 3, which has a high adsorption capacity to the granular heat storage material and has a larger heat of adsorption than the second medium. 前記粒状蓄熱材はゼオライトであり、前記第一の媒体は水であり、前記第二の媒体はエチレングリコールであることを特徴とする請求項4記載の蓄熱システム。   The heat storage system according to claim 4, wherein the particulate heat storage material is a zeolite, the first medium is water, and the second medium is ethylene glycol. 請求項1〜5の何れか一項記載の蓄熱システムを備えた車両の蓄熱システムであって、
前記一次媒体が前記車両のパワーユニットから排出される排ガスであり、
前記反応器は、前記外表面が前記排ガスの排出経路に臨むように配置され、
前記二次媒体は、前記パワーユニットの冷却液循環経路に流通する冷却液であり、
前記内部空間に前記二次媒体を導入する手段は、前記冷却液循環経路に並列に接続された第二の冷却液循環経路、および、前記第二の冷却液循環経路への切替え弁を含み、
前記二次媒体を前記内部空間から排出する手段は、気化した冷却液を前記冷却液循環経路のリザーバタンクに導いて凝縮させるためのパージ弁を含み、
前記内部空間を密閉する手段は、前記内部空間の導入側に配設された前記切替え弁、前記パージ弁、および、前記内部空間の排出側に配設された排出弁を含み、
前記切替え弁、前記パージ弁、および、前記排出弁を制御する制御手段を備え、前記制御手段は、
前記パワーユニットの冷間始動時に、前記パージ弁を閉じ、前記切替え弁および前記排出弁を開いて前記反応器の前記内部空間に冷却液を流通させ、前記粒状蓄熱材の吸着反応による発熱によって前記冷却液を加熱する暖機促進工程と、
前記パワーユニットの始動後に、前記切替え弁および前記排出弁を閉じ、前記パージ弁を開いて、前記パワーユニットの排ガスの熱により前記粒状蓄熱材を加熱し、前記冷却液を気化して前記粒状蓄熱材の脱着反応により蓄熱する蓄熱工程と、
前記パワーユニットの停止後に、前記パージ弁を閉じて前記内部空間を密閉し、前記粒状蓄熱材の吸湿を防止する工程と、
を選択的に実施可能であることを特徴とする車両の蓄熱システム。
It is a thermal storage system of the vehicle provided with the thermal storage system as described in any one of Claims 1-5, Comprising:
The primary medium is an exhaust gas discharged from a power unit of the vehicle,
The reactor is disposed such that the outer surface faces the exhaust gas discharge path,
The secondary medium is a coolant that flows through a coolant circulation path of the power unit,
The means for introducing the secondary medium into the inner space includes a second coolant circulation path connected in parallel to the coolant circulation path, and a switching valve to the second coolant circulation path.
The means for discharging the secondary medium from the internal space includes a purge valve for guiding the vaporized coolant to a reservoir tank of the coolant circulation path for condensation.
The means for sealing the internal space includes the switching valve disposed on the introduction side of the internal space, the purge valve, and a discharge valve disposed on the discharge side of the internal space,
The switching valve, the purge valve, and control means for controlling the discharge valve, the control means comprising
At the time of cold start of the power unit, the purge valve is closed, the switching valve and the discharge valve are opened to circulate the coolant through the internal space of the reactor, and the heat is generated by the adsorption reaction of the granular heat storage material. A warm-up promoting step of heating the liquid;
After startup of the power unit, the switching valve and the discharge valve are closed, the purge valve is opened, the granular heat storage material is heated by the heat of the exhaust gas of the power unit, and the cooling liquid is vaporized to form the granular heat storage material. A heat storage step of storing heat by desorption reaction,
After stopping the power unit, closing the purge valve to seal the internal space to prevent moisture absorption of the particulate heat storage material;
A heat storage system for a vehicle, characterized in that it can be selectively implemented.
JP2017224741A 2017-11-22 2017-11-22 Heat storage system Pending JP2019095126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224741A JP2019095126A (en) 2017-11-22 2017-11-22 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224741A JP2019095126A (en) 2017-11-22 2017-11-22 Heat storage system

Publications (1)

Publication Number Publication Date
JP2019095126A true JP2019095126A (en) 2019-06-20

Family

ID=66971318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224741A Pending JP2019095126A (en) 2017-11-22 2017-11-22 Heat storage system

Country Status (1)

Country Link
JP (1) JP2019095126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325693A (en) * 2020-11-23 2021-02-05 王龑飞 Heat exchange device for pesticide production and working method thereof
JP2021064450A (en) * 2019-10-10 2021-04-22 日新電機株式会社 Plasma processing device
CN114815095A (en) * 2022-05-30 2022-07-29 武汉电信器件有限公司 Circulating liquid cooling module device and using method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064450A (en) * 2019-10-10 2021-04-22 日新電機株式会社 Plasma processing device
CN112325693A (en) * 2020-11-23 2021-02-05 王龑飞 Heat exchange device for pesticide production and working method thereof
CN114815095A (en) * 2022-05-30 2022-07-29 武汉电信器件有限公司 Circulating liquid cooling module device and using method

Similar Documents

Publication Publication Date Title
RU2433360C2 (en) Chemical heat pump operating with hybrid substance
US7115159B2 (en) Solid filling tank
JP2019095126A (en) Heat storage system
JP2004044848A (en) Cooling system
KR20120114012A (en) Hybrid air conditioning system
JP2016031187A (en) Heat storage system
US6629432B1 (en) Thermal regenerative sorption device
JP6834929B2 (en) EGR cooler
JP4985337B2 (en) Adsorption heat pump device
KR20100105851A (en) Absorption machine having a built-in energy storage working according to the matrix method
CN112977003B (en) Fuel cell automobile cooling water waste heat utilization system
JP2550768B2 (en) Adsorption heat exchanger
JP2016161242A (en) Heat pump and cold heat generation method
JP2002031426A (en) Heat storage device
JP2017166429A (en) Waste heat recovery system
JP3925245B2 (en) Vehicle heat storage system
US10386100B2 (en) Adsorption system heat exchanger
CN210473497U (en) Organic waste gas adsorption device
JP6757613B2 (en) Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device
JP6658303B2 (en) Heat storage system and heat storage method for vehicle
JP2006046859A (en) Chemical heat storage type solar heat pump system, program and recording medium
JP4001025B2 (en) Water heater
JP2502521Y2 (en) Adsorption refrigerator reactor
JP2013164244A (en) Heat storage device
JP2006046674A (en) Latent heat storage system, latent heat storage method, and sorption and desorption tank