JP2019095029A - Gas supply device and gas supply method - Google Patents

Gas supply device and gas supply method Download PDF

Info

Publication number
JP2019095029A
JP2019095029A JP2017226785A JP2017226785A JP2019095029A JP 2019095029 A JP2019095029 A JP 2019095029A JP 2017226785 A JP2017226785 A JP 2017226785A JP 2017226785 A JP2017226785 A JP 2017226785A JP 2019095029 A JP2019095029 A JP 2019095029A
Authority
JP
Japan
Prior art keywords
gas
gas supply
pressure
supply source
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017226785A
Other languages
Japanese (ja)
Other versions
JP6751070B2 (en
Inventor
大介 曽根
Daisuke Sone
大介 曽根
建一 今井
Kenichi Imai
建一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017226785A priority Critical patent/JP6751070B2/en
Publication of JP2019095029A publication Critical patent/JP2019095029A/en
Application granted granted Critical
Publication of JP6751070B2 publication Critical patent/JP6751070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To reduce troublesomeness of work performed by a maintenance person and reduce a risk of a stop of gas supply as a whole.SOLUTION: A liquefied gas supply source 11a includes: a gas container 111a filled with liquefied gas; a pressure-reducing valve 112a for controlling a gas supply amount from the gas container 111a to a consumption facility 100; and a weight detector 113a for substantially measuring a residual amount of the liquefied gas remaining in the gas container 111a by measuring a weight of the gas container 111a. Also, a liquefied gas supply source 11b has the same configuration. In accordance with procedures in a flow chart, a control section 21A controls an opening/closing degree of each of the pressure-reducing valve 112a and a pressure-reducing valve 112b, on the basis of the weight measured by each of the weight detector 113a and a weight detector 113b. Thus, a gas consumption rate of the liquefied gas supply source 11a and a gas consumption rate of the liquefied gas supply source 11b can be made substantially equal to each other.SELECTED DRAWING: Figure 1

Description

本発明は、ガス供給装置及びガス供給方法に関する。   The present invention relates to a gas supply apparatus and a gas supply method.

顧客(消費設備)にガスを供給するシステムにおいては、複数本のガス容器を1つ(1箇所)の供給源として接続するのではなく、それらのガス容器を複数のガス供給源(シリンダーキャビネット等)(複数箇所)として並列的に消費設備に接続することにより、供給可能量を増量させると共に、並列個数に応じて制御系や配管系が複数になるため、一系統の制御系や配管系に不具合が生じて供給不能となっても他の系統が補うことにより、全体として故障リスクに対する耐性を持たせるようにしている。これは、液化ガス及び圧縮ガスのいずれの供給装置でも採用されている。   In a system for supplying gas to customers (consumer equipment), instead of connecting a plurality of gas containers as one (one) supply source, a plurality of gas supply sources (cylinder cabinets etc.) ) (Multiple points) By connecting to the consumption equipment in parallel as it makes possible to increase the supplyable amount, and because there are multiple control systems and piping systems according to the number of parallels, Even if a failure occurs and the system can not be supplied, the other systems compensate for the failure as a whole to make it resistant to the risk of failure. This is employed in both liquefied gas and compressed gas supply devices.

図6(a)は、ガス供給源が2系統ある場合の例を示している。具体的には、消費設備100に対して、ガス供給源101a及びガス供給源101bの2つが並列的に接続されている。ここで、ガス供給源101aは、ガス容器1011aと、減圧弁1012aとで構成され、ガス供給源101bは、ガス容器1011bと、減圧弁1012bとで構成されている。なお、この例においては、消費設備が一の場合を示しているが、複数のガス供給源から複数の消費設備にガスを供給する場合(多対多)もある。   FIG. 6 (a) shows an example where there are two gas supply sources. Specifically, two of the gas supply source 101a and the gas supply source 101b are connected in parallel to the consumption facility 100. Here, the gas supply source 101a includes a gas container 1011a and a pressure reducing valve 1012a, and the gas supply source 101b includes a gas container 1011b and a pressure reducing valve 1012b. In addition, although the case where the number of consumption facilities is one is shown in this example, there are also cases where gas is supplied to a plurality of consumption facilities from a plurality of gas supply sources (many to many).

しかしながら、上述した従来技術においては、各ガス供給源から均等にガスを供給することを期して各供給圧力を各減圧弁にて初期的に同一に設定しても、各ガス供給源から消費設備までの距離の違い等により、供給圧力を設定した時点からガス消費に伴ってそれぞれ刻々と微小でも変化してしまう。従って、次第に各ガス供給源で供給圧力が異なってくることとなり、このような状況に陥ると、供給圧力の低いガス供給源よりも、相対的に供給圧力の高いガス供給源からのガス供給量が多くなり、いわゆる「片流れ」の状態が生じてしまう(図6(b))。換言すれば、特定のガス供給源に負荷が偏る可能性がある。   However, in the above-described prior art, even if each supply pressure is initially set identically by each pressure reducing valve in anticipation of supplying gas from each gas supply source equally, consumption equipment from each gas supply source Due to the difference in the distance to the point, etc., even when the supply pressure is set, the gas changes little by little with the gas consumption. Therefore, the supply pressure will be gradually different in each gas supply source, and in such a situation, the gas supply amount from the gas supply source having a relatively higher supply pressure than the gas supply source having a low supply pressure As a result, a so-called "one-stream" state occurs (Fig. 6 (b)). In other words, the load may be biased to a particular gas source.

かかる場合、各ガス供給源で、容器交換の周期が異なってくることとなり、交換保守の作業が煩雑になる。一方、ガス供給停止のリスクを回避するため、各ガス供給源で容器交換の時期をずらすべく初期的に各ガス供給源のガス量を異なるように設定しても、各周期的に偶々同時にガスがなくなるような事態も発生してしまう可能性があり、その場合には、ガスの供給が停止してしまう時間が生じる。   In such a case, the cycle of container replacement is different for each gas supply source, and the work of replacement maintenance becomes complicated. On the other hand, in order to avoid the risk of stopping the gas supply, even if the gas amounts of the respective gas supply sources are initially set to be different so as to shift the time of container replacement at each gas supply source, There is also a possibility that a situation may occur in which the supply of gas is stopped.

かかる状況に対処するためには、オペレータが各ガス供給源のガス残量やガス消費の推移を把握し、減圧弁を逐次調整する必要があり、設備管理上、負担となるケースが多い。   In order to cope with such a situation, it is necessary for the operator to grasp the remaining amount of gas of each gas supply source and the transition of gas consumption and to adjust the pressure reducing valve one by one, which often causes a burden on facility management.

ここで、上述の課題を一部解決可能な技術として、特許文献1に開示された技術がある。当該文献に開示された技術においては、ガスの残量が最小のガス容器に係るガス供給弁を閉じたり開いたりして、複数のガス容器について、残量差が所定範囲内に常にあるように制御を行っている。   Here, there is a technology disclosed in Patent Document 1 as a technology capable of partially solving the above-mentioned problems. In the technique disclosed in the document, the gas supply valve associated with the gas container with the smallest remaining amount of gas is closed or opened so that the residual amount difference is always within a predetermined range for a plurality of gas containers. I have control.

特許第5111962号公報Patent No. 5111962 gazette 特許第5722186号公報Patent No. 5722186 gazette 特許第5792608号公報Patent No. 5792608

かかる特許文献1の技術によれば、各ガス容器について交換周期は同一になり、かつ残量差を所定範囲内に制御しているので、当該文献の技術の発案の起因となった問題、すなわち、交換時に各ガス容器間で残量がまちまちでガスが無駄になってしまう(段落[0005]の前半)という問題は解決できる。   According to the technique of Patent Document 1, the replacement period is the same for each gas container, and the remaining amount difference is controlled within the predetermined range, so the problem caused by the proposal of the technique of the document, ie, At the time of replacement, the problem that the remaining amount is different among the gas containers and the gas is wasted (the first half of paragraph [0005]) can be solved.

しかしながら、特許文献1においては、ガスの残量が最小のガス容器からのガス供給を間欠的ではあるものの「停止」させているので、残りのガス容器からの供給が故障により途絶える事態を想定すれば、ガス供給の停止のリスクは増大してしまう。   However, in Patent Document 1, although the gas supply from the gas container with the smallest remaining amount of gas is intermittently “stopped”, it is assumed that the supply from the remaining gas containers is interrupted due to a failure. For example, the risk of stopping the gas supply will increase.

しかも、特許文献1においては、ガス容器交換の際には、あくまでも全交換が前提であり(段落[0003]の後半と[0005])、そのために「残量差」を所定範囲内に制御している。従って、特許文献1においては、交換保守の際には必然的にガスを供給できない時間を作ってしまうという課題がある。   Moreover, in Patent Document 1, when replacing the gas container, all replacement is strictly required (the latter half of paragraph [0003] and [0005]), and therefore, the "remaining amount difference" is controlled within a predetermined range. ing. Therefore, in patent document 1, in the case of replacement | maintenance maintenance, the subject that the time which can not be supplied with gas inevitably is made occurs.

なお、特許文献2は、以下のような技術内容が開示されている。すなわち、液化アンモニアのような常温付近での蒸気圧が低い液化ガスの場合、ガス残量がガス容器容積の30%以下になると次第に蒸発量が低下し、ガス使用先に求められている流量でガスを供給することが困難となってため、ガス残量が容器容積の30%程度になったときに、ガス供給を行うガス容器を切り替えて液化ガス残量が少なくなった液化ガス容器を交換しているが、かかる課題を解決するために、古いガス容器から新しいガス容器に切り替える際に、両者から重複して供給する時間を設けて古いガス容器のガスをすべて使い切るようにして、ガス利用効率を高める工夫をしている。また、特許文献3はその改良技術である。   Patent Document 2 discloses the following technical contents. That is, in the case of a liquefied gas having a low vapor pressure near normal temperature such as liquefied ammonia, the amount of evaporation gradually decreases when the remaining amount of gas becomes 30% or less of the volume of the gas container, and the flow rate required of the gas use destination Because it becomes difficult to supply the gas, when the remaining amount of gas reaches about 30% of the container volume, the gas container for supplying the gas is switched to replace the liquefied gas container in which the remaining amount of liquefied gas is reduced However, in order to solve such problems, when switching from an old gas container to a new gas container, it is necessary to provide time for both supplies to be supplied redundantly so that all the gas in the old gas container is used up, We are working to improve the efficiency. Moreover, patent document 3 is the improvement technique.

本発明は、上記事情に鑑みてなされたものであって、保守要員の作業の煩雑さを削減できると共に、ガス供給が全体として停止してしまうというリスクを低減することができるガス供給装置及びガス供給方法を提供することにある。   The present invention has been made in view of the above circumstances, and can reduce the complexity of work of maintenance personnel and can reduce the risk that the gas supply as a whole will stop as a whole. It is to provide a supply method.

上記課題を解決するため、本発明は以下の構成を備える。
[1] ガスを供給すべき設備に配管を介して並列的に接続され、同時にガスを供給可能な2以上のガス供給源と、
2以上の前記ガス供給源の各々の、前記設備に対するガス供給圧力を制御する制御部と、を備えるガス供給装置であって、
前記制御部は、2以上の前記ガス供給源の各々のガス消費率が、実質的に同一になるように各ガス供給圧力を制御する、ガス供給装置。
[2] 前記制御部は、2以上の前記ガス供給源の各々のガス消費量の差が、所定範囲内に収まるように各ガス供給圧力を制御する、請求項1に記載のガス供給装置。
[3] 前記制御部は、
初期的に、2以上の前記ガス供給源の全てに対して、前記ガス供給圧力として、第1の設定供給圧力を設定し、
2以上の前記ガス供給源のうちのガス消費率が最小であるガス供給源と比較して、ガス消費量の差が第1の所定値に到達したガス供給源に対して、前記ガス供給圧力として、前記第1の設定供給圧力よりも低い第2の設定供給圧力を設定し、
その後、前記ガス消費量の差が第2の所定値に到達した時点で、前記ガス供給圧力を、前記第1の設定供給圧力に戻す、請求項2に記載のガス供給装置。
[4] ガスを供給すべき設備に配管を介して並列的に接続され、同時にガスを供給可能な2以上のガス供給源と、2以上の前記ガス供給源の各々の、前記設備に対するガス供給圧力を制御する制御部と、を備えたガス供給装置におけるガス供給方法であって、
前記制御部は、2以上の前記ガス供給源の各々のガス消費率が、実質的に同一になるように各ガス供給圧力を制御する、ガス供給方法。
In order to solve the above-mentioned subject, the present invention comprises the following composition.
[1] Two or more gas supply sources connected in parallel to a facility to be supplied with gas via piping and capable of simultaneously supplying gas,
A control unit configured to control a gas supply pressure to the equipment of each of two or more of the gas supply sources;
The control unit controls each gas supply pressure so that the gas consumption rate of each of the two or more gas supply sources is substantially the same.
[2] The gas supply device according to claim 1, wherein the control unit controls each gas supply pressure such that a difference in gas consumption of each of the two or more gas supply sources falls within a predetermined range.
[3] The control unit
Initially, a first set supply pressure is set as the gas supply pressure for all two or more of the gas supply sources,
The gas supply pressure relative to the gas supply source at which the difference in gas consumption has reached a first predetermined value as compared to the gas supply source having the smallest gas consumption rate of the two or more gas supply sources. Setting a second set supply pressure lower than the first set supply pressure,
3. The gas supply device according to claim 2, wherein the gas supply pressure is returned to the first set supply pressure when the difference in gas consumption reaches a second predetermined value.
[4] Gas supply to the equipment of two or more gas sources connected in parallel to the equipment to be supplied with gas and capable of simultaneously supplying gas, and each of the two or more gas sources A control unit configured to control a pressure;
The control method controls each gas supply pressure such that the gas consumption rate of each of the two or more gas supply sources is substantially the same.

本発明のガス供給装置及びガス供給方法によれば、交換保守要員の保守計画や保守作業の煩雑さを解消できると共に、消費設備へのガス供給が停止してしまう事態を極力回避できる。   According to the gas supply apparatus and the gas supply method of the present invention, it is possible to eliminate the complexity of the maintenance plan and the maintenance work of the replacement maintenance personnel, and to minimize the situation where the gas supply to the consumption facility is stopped.

図1は、供給するガスが液化ガスに基づく場合の実施形態を説明するための図であり、(a)は、当該ガス供給装置の構成図であり、(b)は、その制御部の動作処理を示すフローチャートである。FIG. 1 is a diagram for explaining an embodiment in the case where the gas to be supplied is based on liquefied gas, (a) is a configuration diagram of the gas supply device, and (b) is an operation of its control unit It is a flowchart which shows a process. 図2は、供給するガスが圧縮ガスに基づく場合の実施形態を説明するための図であり、(a)は、当該ガス供給装置の構成図であり、(b)は、その制御部の動作処理を示すフローチャートである。FIG. 2 is a diagram for explaining an embodiment in the case where the gas to be supplied is based on compressed gas, (a) is a configuration diagram of the gas supply device, and (b) is an operation of its control unit It is a flowchart which shows a process. 図3は、詳細な実施形態に係るガス供給装置の構成図である。FIG. 3 is a block diagram of a gas supply apparatus according to a detailed embodiment. 図4は、残ガス圧力P等の時間的推移を示すグラフである。FIG. 4 is a graph showing the temporal transition of the residual gas pressure P and the like. 図5は、時間的な流れに沿った具体的な数値等を示す表である。FIG. 5 is a table showing specific numerical values and the like along the temporal flow. 図6は、従来技術を説明するための図である。FIG. 6 is a diagram for explaining the prior art.

以下、本発明を適用した一実施形態であるガス供給装置の構成について、ガス供給装置を用いたガス供給方法と併せて、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, the configuration of the gas supply apparatus, which is an embodiment to which the present invention is applied, will be described in detail with reference to the drawings, together with a gas supply method using the gas supply apparatus. In the drawings used in the following description, in order to make the features easy to understand, the features that are the features may be enlarged for the sake of convenience, and the dimensional ratio of each component may be limited to the same as the actual Absent.

図1及び図2は、本発明のガス供給装置及びガス供給方法における一実施形態を説明するための図である。
まず、図1は、供給するガスが液化ガスである場合の実施形態を説明するための図であり、図1(a)は、当該ガス供給装置の構成図であり、図1(b)は、その制御部の動作処理を示すフローチャートである。
1 and 2 are views for explaining an embodiment of the gas supply apparatus and the gas supply method of the present invention.
First, FIG. 1 is a diagram for explaining an embodiment in the case where the gas to be supplied is a liquefied gas, and FIG. 1 (a) is a configuration diagram of the gas supply device, and FIG. 6 is a flowchart showing operation processing of the control unit.

図1(a)に示すように、ガス供給装置1Aは、消費設備100に並列的に配管接続された液化ガス供給源11a及び液化ガス供給源11bと、制御部21Aとを備えている。ここで、液化ガス供給源11aは、液化ガスが充填されているガス容器111aと、そのガス容器111aから消費設備100へのガス供給量を制御するための減圧弁112aと、ガス容器111aの重量Waを測定することにより、ガス容器111a内に残っている液化ガスの残量を実質的に測定する重量検出器113aと、を有している。同様に、液化ガス供給源11bは、液化ガスが充填されているガス容器111bと、ガス容器111bから消費設備100へのガス供給量を制御するための減圧弁112bと、ガス容器111bの重量Wbを測定することにより、ガス容器111b内に残っている液化ガスの残量を実質的に測定する重量検出器113bと、を有している。また、制御部21Aは、重量検出器113a及び重量検出器113bが測定したそれぞれの重量Wa及びWbに基づき、減圧弁112a及び減圧弁112bのそれぞれの開閉度を調整する。   As shown to Fig.1 (a), 1 A of gas supply apparatuses are provided with the liquefied gas supply source 11a and the liquefied gas supply source 11b which were piping-connected in parallel with the consumption installation 100, and the control part 21A. Here, the liquefied gas supply source 11a includes a gas container 111a filled with liquefied gas, a pressure reducing valve 112a for controlling a gas supply amount from the gas container 111a to the consumption facility 100, and a weight of the gas container 111a. And a weight detector 113a that substantially measures the remaining amount of the liquefied gas remaining in the gas container 111a by measuring Wa. Similarly, the liquefied gas supply source 11b includes a gas container 111b filled with liquefied gas, a pressure reducing valve 112b for controlling the amount of gas supplied from the gas container 111b to the consumption facility 100, and a weight Wb of the gas container 111b. And a weight detector 113b that substantially measures the remaining amount of liquefied gas remaining in the gas container 111b. Further, the control unit 21A adjusts the open / close degree of each of the pressure reducing valve 112a and the pressure reducing valve 112b based on the weights Wa and Wb measured by the weight detector 113a and the weight detector 113b.

ここで、初期的にガス容器111a及びガス容器111bにどの程度の液化ガスが充填されているかは問題にはならない。むしろ、同時に交換することを避けるためには、残量には差があった方が好ましい。本発明では、消費量の差に注視しており、消費率が実質的(大局的)に同一になるように制御している。   Here, it does not matter how much liquefied gas is filled in the gas container 111a and the gas container 111b initially. Rather, it is preferable to have a difference in the remaining amount in order to avoid simultaneous replacement. In the present invention, attention is paid to the difference in consumption, and the consumption rate is controlled to be substantially (globally) identical.

なお、液化ガス供給源11a及び液化ガス供給源11bに示すような一の供給源の概念としては、ガス容器、シリンダーキャビネット、タンク等の概念に限定されない。それら単体、それらの複数本の組み合わせ等、一の減圧弁で制御されている全てのものが考えられる。その意味において、液化ガス供給源11a及び液化ガス供給源11bの構成は一例であり、また模式図と捉えることもできる。また、液化ガス供給源11a及び液化ガス供給源11bの設置場所は、本発明にあっては任意であり、物理的に近くの場合もあるし、離れている場合もあるが、火災等の外部要因等による損失等を考慮して離して設置する場合もあるだけである。   In addition, as a concept of one supply source as shown to the liquefied gas supply source 11a and the liquefied gas supply source 11b, it is not limited to the concept of a gas container, a cylinder cabinet, a tank etc. All those controlled by one pressure reducing valve are conceivable, such as single substances or combinations of plural ones thereof. In that sense, the configurations of the liquefied gas supply source 11a and the liquefied gas supply source 11b are an example, and can be regarded as a schematic diagram. Further, the installation places of the liquefied gas supply source 11a and the liquefied gas supply source 11b are optional in the present invention, and may be physically close or distant, but they may be separated from each other. There are also cases where they are installed separately in consideration of loss due to factors etc.

次に、図1(b)のフローチャートを参照して、制御部21Aの制御手順を説明する。
制御部21Aは、初期的に、ガスの供給圧力がともに第1設定供給圧力SP1(減圧弁112a及び減圧弁112bのそれぞれに付帯する、図示しない圧力指示調節計で監視)になるように減圧弁112a及び減圧弁112bの開度を調整する(ステップS11)。
Next, the control procedure of the control unit 21A will be described with reference to the flowchart of FIG. 1 (b).
The control unit 21A initially reduces the pressure at which the gas supply pressure is both set to the first set supply pressure SP1 (monitored by the pressure instruction controller (not shown) attached to each of the pressure reducing valve 112a and the pressure reducing valve 112b). The opening degree of 112a and the pressure-reduction valve 112b is adjusted (step S11).

この時点から「監視期間」が開始し、制御部21Aは、この時点からの液化ガス供給源11a及び液化ガス供給源11bからのガス消費量に対応するガス重量の減少量ΔWa及びΔWbの監視を始める。そして、制御部21Aは、常に、減少量(消費量)の差である「|ΔWa−ΔWb|」が、制御開始設定値たる第1閾値に到達したか否かをチェックしている(ステップS12)。   From this point on, the “monitoring period” starts, and the control unit 21A monitors the reduction amounts ΔWa and ΔWb of the gas weight corresponding to the gas consumption from the liquefied gas supply source 11a and the liquefied gas supply source 11b from this point. start. Then, the control unit 21A constantly checks whether “| ΔWa−ΔWb |”, which is the difference between the decrease amounts (consumption amounts), has reached the first threshold, which is the control start set value (step S12). ).

そこで、第1閾値(第1の所定値)に到達していない場合(ステップS12において否定判定)には監視を継続し、一方、第1閾値への到達を判定したら(ステップS12において肯定判定)、監視期間を終了し、ガスの減りの速い方の減圧弁に対して、第1設定供給圧力SP1よりも小さい第2設定供給圧力SP2に対応した開度調節を行う(ステップS13)。   Therefore, monitoring is continued if the first threshold (the first predetermined value) is not reached (negative determination in step S12), and if it is determined that the first threshold is reached (positive determination in step S12) The monitoring period is ended, and the degree of opening adjustment corresponding to the second set supply pressure SP2 smaller than the first set supply pressure SP1 is performed on the pressure reducing valve with the faster gas decrease (step S13).

この時点から「制御期間」が開始する。なお、このように一方の液化ガス供給源の供給圧力を減ずると、減じた方の液化ガス供給源からのガス消費量は減ずる一方で、供給圧力を変えなかった方の液化ガス供給源は、その圧力差により優先的にガスが供給されることから、そのガス供給量は増加する。   The "control period" starts from this point. In addition, when the supply pressure of one liquefied gas supply source is reduced in this way, while the gas consumption amount from the reduced liquefied gas supply source decreases, the liquefied gas supply source of the one whose supply pressure is not changed is Since the gas is preferentially supplied by the pressure difference, the gas supply amount increases.

制御部21Aは、制御期間も引き続き、監視期間開始時からの液化ガス供給源11a及び液化ガス供給源11bからのガス消費量に対応するガス重量の減少量ΔWa及びΔWbの監視を継続し、この制御期間においては、減少量(消費量)の差である「|ΔWa−ΔWb|」が、第1閾値よりも小さい、制御解除設定値たる第2閾値(第2の所定値)に到達したか否かをチェックしている(ステップS14)。   The control unit 21A continues to monitor the reduction amounts ΔWa and ΔWb of the gas weight corresponding to the gas consumption from the liquefied gas supply source 11a and the liquefied gas supply source 11b from the start of the monitoring period also during the control period. During the control period, has the second threshold (the second predetermined value), which is the control cancellation set value, smaller than the first threshold, “| ΔWa−ΔWb |”, which is the difference between the decrease amounts (consumption amounts)? It is checked whether or not it is (step S14).

そこで、第2閾値に到達していない場合(ステップS14において否定判定)には制御を継続し、一方、第2閾値への到達を判定したら(ステップS14において肯定判定)、制御期間を終了し、ステップS11に戻り、第2設定供給圧力SP2に対応した開度調節を行った減圧弁に対して、第1設定供給圧力SP1に対応した開度復帰を行う。   Therefore, control is continued when the second threshold is not reached (negative determination in step S14), and when it is determined that the second threshold is reached (positive determination in step S14), the control period is ended. Returning to step S11, with respect to the pressure reducing valve whose opening degree is adjusted corresponding to the second set supply pressure SP2, opening degree recovery corresponding to the first set supply pressure SP1 is performed.

この時点から監視期間が再開し、制御部21Aは、改めて、液化ガス供給源11a及び液化ガス供給源11bからのガス消費量に対応するガス重量ΔWa及びΔWbの監視を始める。   From this point on, the monitoring period restarts, and the control unit 21A starts monitoring the gas weights ΔWa and ΔWb corresponding to the gas consumption from the liquefied gas supply source 11a and the liquefied gas supply source 11b again.

以上の制御により、液化ガス供給源11aのガス消費率と液化ガス供給源11bのガス消費率を実質的(大局的)に同一にすることができるので、各ガス供給源におけるガス配管の交換周期を同一にすることができ、交換保守要員は計画的に交換保守を実行できる。加えて、同時にガスがなくなることによるガス供給停止のリスクもなくなり、それは初期的にガス充填量が異なっているほど効果的である。   By the above control, the gas consumption rate of the liquefied gas supply source 11a and the gas consumption rate of the liquefied gas supply source 11b can be made substantially (generally) the same. Therefore, the gas piping replacement cycle in each gas supply source Can be identical, and replacement maintenance personnel can perform replacement maintenance systematically. In addition, at the same time the risk of gas supply outages due to out of gas is also eliminated, which is more effective as the gas loadings are initially different.

次に、図2は、供給するガスが圧縮ガスである場合の実施形態を説明するための図であり、(a)は、当該ガス供給装置の構成図であり、(b)は、その制御部の動作処理を示すフローチャートである。   Next, FIG. 2 is a diagram for explaining an embodiment in the case where the gas to be supplied is a compressed gas, (a) is a configuration diagram of the gas supply device, and (b) is a control thereof It is a flowchart which shows the operation processing of a part.

図2(a)において、ガス供給装置1Bは、消費設備100に並列的に配管接続された圧縮ガス供給源12a及びガス容器121bと、制御部21Bとを備えている。ここで、圧縮ガス供給源12aは、圧縮ガスが充填されているガス容器121aと、そのガス容器121aから消費設備100へのガス供給量を制御するための減圧弁122aと、ガス容器121aの残ガス圧力Paを測定する圧力検出器123aと、を有している。同様に、圧縮ガス供給源12bは、圧縮ガスが充填されているガス容器121bと、ガス容器121bから消費設備100へのガス供給量を制御するための減圧弁122bと、ガス容器121bの残ガス圧力Pbを測定する圧力検出器123bと、を有している。また、制御部21Bは、圧力検出器123a及び圧力検出器123bが測定したそれぞれの残ガス圧力Pa及びPbに基づき、減圧弁122a及び減圧弁122bのそれぞれの開閉度を調整する。   In FIG. 2A, the gas supply device 1B includes a compressed gas supply source 12a and a gas container 121b, which are connected by piping in parallel with the consumption facility 100, and a control unit 21B. Here, the compressed gas supply source 12a includes a gas container 121a filled with compressed gas, a pressure reducing valve 122a for controlling the amount of gas supplied from the gas container 121a to the consumption facility 100, and the remainder of the gas container 121a. And a pressure detector 123a that measures the gas pressure Pa. Similarly, the compressed gas supply source 12b includes a gas container 121b filled with compressed gas, a pressure reducing valve 122b for controlling the amount of gas supplied from the gas container 121b to the consumption facility 100, and the remaining gas of the gas container 121b. And a pressure detector 123b that measures the pressure Pb. Further, the control unit 21B adjusts the open / close degree of each of the pressure reducing valve 122a and the pressure reducing valve 122b based on the residual gas pressure Pa and Pb respectively measured by the pressure detector 123a and the pressure sensor 123b.

ここで、初期的にガス容器121a及びガス容器121bにどの程度の圧縮ガスが充填されているかは問題にはならない。むしろ、同時に交換することを避けるためには、残量には差があった方が好ましい。本発明では、消費量の差に注視しており、消費率を実質的(大局的)に同一になるように制御している。   Here, it does not matter what amount of compressed gas is charged into the gas container 121a and the gas container 121b initially. Rather, it is preferable to have a difference in the remaining amount in order to avoid simultaneous replacement. In the present invention, attention is paid to the difference in consumption, and the consumption rate is controlled to be substantially (globally) identical.

次に、図2(b)のフローチャートを参照して、制御部21Bの制御手順を説明する。
制御部21Bは、初期的に、ガスの供給圧力がともに第1設定供給圧力SP1(減圧弁122a及び減圧弁122bのそれぞれに付帯する、図示しない圧力指示調節計で監視)になるように減圧弁122a及び減圧弁122bの開度を調整する(ステップS21)。
Next, the control procedure of the control unit 21B will be described with reference to the flowchart of FIG. 2 (b).
The control unit 21B initially reduces both the supply pressure of the gas to the first set supply pressure SP1 (monitored by the pressure instruction controller (not shown) attached to each of the pressure reducing valve 122a and the pressure reducing valve 122b). The opening degree of the pressure reducing valve 122b is adjusted (step S21).

この時点から「監視期間」が開始し、制御部21Bは、この時点からの圧縮ガス供給源12a及び圧縮ガス供給源12bからのガス消費量に対応する残ガス圧力の減少量ΔPa及びΔPbの監視を始める。そして、制御部21Bは、常に、減少量(消費量)の差である「|ΔPa−ΔPb|」が、制御開始設定値たる第1閾値(第1の所定値)に到達したか否かをチェックしている(ステップS22)。   From this time point, the “monitoring period” starts, and the control unit 21B monitors the reduction amounts ΔPa and ΔPb of the residual gas pressure corresponding to the gas consumption from the compressed gas supply source 12a and the compressed gas supply source 12b from this time. Get started. Then, the control unit 21B constantly determines whether “| ΔPa−ΔPb |”, which is the difference between the decrease amounts (consumption amounts), has reached the first threshold (the first predetermined value), which is the control start set value. It is checked (step S22).

そこで、第1閾値(第1の所定値)に到達していない場合(ステップS22において否定判定)には監視を継続し、一方、第1閾値への到達を判定したら(ステップS22において肯定判定)、監視期間を終了し、ガスの減りの速い方の減圧弁に対して、第1設定供給圧力SP1よりも小さい第2設定供給圧力SP2に対応した開度調節を行う(ステップS23)。   Therefore, monitoring is continued when the first threshold (first predetermined value) is not reached (negative determination in step S22), and when it is determined that the first threshold is reached (positive determination in step S22) The monitoring period is ended, and the degree of opening adjustment corresponding to the second set supply pressure SP2 smaller than the first set supply pressure SP1 is performed on the pressure reducing valve with the faster gas decrease (step S23).

この時点から「制御期間」が開始する。なお、このように一方の圧縮ガス供給源の供給圧力を減ずると、減じた方の圧縮ガス供給源からのガス消費量は減ずる一方で、供給圧力を変えなかった方の圧縮ガス供給源は、その圧力差により優先的にガスが供給されることから、そのガス供給量は増加する。   The "control period" starts from this point. In addition, when the supply pressure of one compressed gas supply source is reduced as described above, the gas consumption amount from the reduced compressed gas supply source is reduced, while the compressed gas supply source of the one which does not change the supply pressure is Since the gas is preferentially supplied by the pressure difference, the gas supply amount increases.

制御部21Bは、制御期間も引き続き、監視期間開始時からの圧縮ガス供給源12a及び圧縮ガス供給源12bからのガス消費量に対応する残ガス圧力の減少量ΔPa及びΔPbの監視を継続し、この制御期間においては、減少量(消費量)の差である「|ΔPa−ΔPb|」が、第1閾値よりも小さい、制御解除設定値たる第2閾値(第2の所定値)に到達したか否かをチェックしている(ステップS24)。   The control unit 21B continues to monitor the reduction amounts ΔPa and ΔPb of the residual gas pressure corresponding to the gas consumption from the compressed gas supply source 12a and the compressed gas supply source 12b from the start of the monitoring period also during the control period, In this control period, “| ΔPa−ΔPb |”, which is the difference between the decrease amounts (consumption amounts), has reached the second threshold (second predetermined value), which is the control cancellation setting value, smaller than the first threshold. It is checked whether or not it is (step S24).

そこで、第2閾値に到達していない場合(ステップS24において否定判定)には制御を継続し、一方、第2閾値への到達を判定したら(ステップS24において肯定判定)、制御期間を終了し、ステップS21に戻り、第2設定供給圧力SP2に対応した開度調節を行った減圧弁に対して、第1設定供給圧力SP1に対応した開度復帰を行う。   Therefore, control is continued when the second threshold is not reached (negative determination in step S24), and when it is determined that the second threshold is reached (positive determination in step S24), the control period is ended. Returning to step S21, with respect to the pressure reducing valve whose opening degree has been adjusted corresponding to the second set supply pressure SP2, opening degree recovery corresponding to the first set supply pressure SP1 is performed.

この時点から監視期間が再開し、制御部21Bは、改めて、圧縮ガス供給源12a及び圧縮ガス供給源12bからのガス消費量に対応する残ガス圧力の減少量ΔPa及びΔPbの監視を始める。   From this point on, the monitoring period restarts, and the control unit 21B starts monitoring the reduction amounts ΔPa and ΔPb of the residual gas pressure corresponding to the gas consumption from the compressed gas supply source 12a and the compressed gas supply source 12b again.

以上の制御により、図2に示した圧縮ガスの場合でも、図1で説明した液化ガスの場合の効果と同様の効果が得られる。   By the above control, even in the case of the compressed gas shown in FIG. 2, the same effect as the effect in the case of the liquefied gas described in FIG. 1 can be obtained.

次に、更なる具体的な実施形態について説明する。図3は、その実施形態に係るガス供給装置の構成図であり、図4は、残ガス圧力P等の時間的推移を示すグラフであり、図5は、時間的な流れに沿った具体的な数値等を示す表である。   Next, further specific embodiments will be described. FIG. 3 is a block diagram of the gas supply apparatus according to the embodiment, FIG. 4 is a graph showing the temporal transition of the residual gas pressure P etc., and FIG. 5 is a specific example along the temporal flow It is a table showing various numerical values and the like.

図3に示すように、本実施形態におけるガス供給装置は、2つの消費設備100a、及び消費設備100bに対して、2つの圧縮ガス供給源12a及び圧縮ガス供給源12bが並列的に接続されている。なお、圧縮ガス供給源12a及び圧縮ガス供給源12bのそれぞれの構成は、図2(a)に示したものと同一であり、また、制御部21Bは省略している。   As shown in FIG. 3, in the gas supply apparatus according to the present embodiment, two compressed gas supply sources 12a and 12b are connected in parallel to two consumption facilities 100a and 100b. There is. The configuration of each of the compressed gas supply source 12a and the compressed gas supply source 12b is the same as that shown in FIG. 2A, and the control unit 21B is omitted.

本実施形態においては、第1設定供給圧力SP1及び第2設定供給圧力SP2を、それぞれ0.4及び0.38とし、第1閾値(制御開始設定値)及び第2閾値(制御解除設定値)を、それぞれ0.5及び0.2としている。また、図4及び図5を参照して、初期的に、圧縮ガス供給源12aの圧力検出器123aと、圧縮ガス供給源12bの圧力検出器123bで測定される残ガス圧力Pa及びPbは、それぞれ、5.0及び8.0としている。これらの値は、前述のようにある程度離れていた方がむしろ好ましい。   In the present embodiment, the first set supply pressure SP1 and the second set supply pressure SP2 are 0.4 and 0.38, respectively, and the first threshold (control start set value) and the second threshold (control release set value) Are respectively 0.5 and 0.2. Further, referring to FIGS. 4 and 5, initially, residual gas pressures Pa and Pb measured by pressure detector 123a of compressed gas supply source 12a and pressure detector 123b of compressed gas supply source 12b are They are 5.0 and 8.0 respectively. It is preferable that these values be separated to some extent as described above.

先ず、制御部21Bは、圧縮ガス供給源12aの減圧弁122aと、圧縮ガス供給源12bの減圧弁122bの両者に、第1設定供給圧力SP1として決定した0.4に対応する開度に設定して、ガスの供給を開始する。これにより監視期間m1が開始する。なお、本実施形態においては、同一の設定供給圧力であっても、圧縮ガス供給源12aのガス消費率が、圧縮ガス供給源12bのガス消費率よりも相対的に高いという前提にしている。   First, the control unit 21B sets both the pressure reducing valve 122a of the compressed gas supply source 12a and the pressure reducing valve 122b of the compressed gas supply source 12b to an opening degree corresponding to 0.4 determined as the first set supply pressure SP1. To start the gas supply. Thus, the monitoring period m1 starts. In the present embodiment, it is assumed that the gas consumption rate of the compressed gas supply source 12a is relatively higher than the gas consumption rate of the compressed gas supply source 12b even at the same set supply pressure.

監視期間m1が継続し、圧縮ガス供給源12aについて圧力検出器123aで測定された残ガス圧力Paが5.0から4.0まで下がり、圧縮ガス供給源12bについて圧力検出器123bで測定された残ガス圧力Pbが8.0から7.5まで下がると、消費量の差に相当する「|ΔPa−ΔPb|」が、(5.0−4.0)−(8.0−7.5)=0.5=第1閾値となり、第1閾値に到達するので、制御部21Bは、圧縮ガス供給源12aの減圧弁122aの開度を、第2設定供給圧力SP2として決定した0.38に対応した開度に変更する。この時点で、監視期間m1が終了し、制御期間c1が開始する。   The monitoring period m1 continues, and the residual gas pressure Pa measured by the pressure detector 123a for the compressed gas supply source 12a falls from 5.0 to 4.0, and is measured by the pressure detector 123b for the compressed gas supply source 12b. When the residual gas pressure Pb decreases from 8.0 to 7.5, “| ΔPa−ΔPb |” corresponding to the difference in consumption is (5.0−4.0) − (8.0−7.5). Since the first threshold is reached, the control unit 21B determines the opening degree of the pressure reducing valve 122a of the compressed gas supply source 12a as the second set supply pressure SP2 0.38. Change to the opening corresponding to. At this point, the monitoring period m1 ends and the control period c1 starts.

制御期間c1が継続し、残ガス圧力Paが4.0から3.9まで下がり、残ガス圧力Pbが7.5から7.1まで下がると、消費量の差に相当する「|ΔPa−ΔPb|」が、(5.0−3.9)−(8.0−7.1)=0.2=第2閾値となり、第2閾値に到達するので、制御部21Bは、圧縮ガス供給源12aの減圧弁122aの開度を、第1設定供給圧力SP1として決定した0.4に対応した開度に戻す。この時点で、制御期間c1が終了し、監視期間m2が開始する(監視期間が再開する)。   When the control period c1 continues and the residual gas pressure Pa falls from 4.0 to 3.9 and the residual gas pressure Pb falls from 7.5 to 7.1, the amount of consumption is equivalent to “| ΔPa−ΔPb”. Since the || becomes (5.0−3.9) − (8.0−7.1) = 0.2 = the second threshold and the second threshold is reached, the control unit 21B is configured to supply the compressed gas supply source. The opening degree of the pressure reducing valve 122a of 12a is returned to the opening degree corresponding to 0.4 determined as the first set supply pressure SP1. At this point, the control period c1 ends and the monitoring period m2 starts (the monitoring period resumes).

監視期間m2が継続し、残ガス圧力Paが3.9から2.9まで下がり、残ガス圧力Pbが7.1から6.6まで下がると、消費量の差に相当する「|ΔPa−ΔPb|」が、(3.9−2.9)−(7.1−6.6)=0.5=第1閾値となり、第1閾値に戻るので、制御部21Bは、圧縮ガス供給源12aの減圧弁122aの開度を、第2設定供給圧力SP2として決定した0.38に対応した開度に再度変更する。この時点で、監視期間m2が終了し、制御期間c2が開始する。   The monitoring period m2 continues, and when the residual gas pressure Pa falls from 3.9 to 2.9 and the residual gas pressure Pb falls from 7.1 to 6.6, the amount of consumption is equivalent to “| ΔPa−ΔPb”. Becomes | (3.9-2.9)-(7.1-6.6) = 0.5 = 1st threshold, and returns to 1st threshold, control part 21B is compressed gas supply source 12a. The opening degree of the pressure reducing valve 122a is changed again to the opening degree corresponding to 0.38 determined as the second set supply pressure SP2. At this point, the monitoring period m2 ends and the control period c2 starts.

制御期間c2が継続し、残ガス圧力Paが2.9から2.8まで下がり、残ガス圧力Pbが6.6から6.2まで下がると、消費量の差に相当する「|ΔPa−ΔPb|」が、(3.9−2.8)−(7.1−6.2)=0.2=第2閾値となり、第2閾値に再到達するので、制御部21Bは、圧縮ガス供給源12aの減圧弁122aの開度を、第1設定供給圧力SP1として決定した0.4に対応した開度に戻す。この時点で、制御期間c2が終了し、次の監視期間が開始する。
以下、同様に、監視期間と制御期間を繰り返す。
When the control period c2 continues and the residual gas pressure Pa falls from 2.9 to 2.8 and the residual gas pressure Pb falls from 6.6 to 6.2, the amount of consumption is equivalent to “| ΔPa−ΔPb”. Since || becomes (3.9-2.8)-(7.1-6.2) = 0.2 = 2nd threshold value and reaches 2nd threshold value again, control part 21 B supplies compressed gas. The opening degree of the pressure reducing valve 122a of the source 12a is returned to the opening degree corresponding to 0.4 determined as the first set supply pressure SP1. At this point, the control period c2 ends and the next monitoring period starts.
Hereinafter, similarly, the monitoring period and the control period are repeated.

以上のように、この実施形態においても。図4に示された、圧縮ガス供給源12a及び圧縮ガス供給源12bのそれぞれの残ガス圧力の推移から分かるように、消費量の差、言い換えれば消費率を実質的(大局的)に同一に制御している。各期間という微視的視点では、消費量の差を一定範囲内に収めている。   As mentioned above, also in this embodiment. As can be seen from the change in residual gas pressure of each of the compressed gas supply source 12a and the compressed gas supply source 12b shown in FIG. 4, the difference in consumption, in other words, the consumption rate is substantially the same (generally). I have control. From the microscopic point of view of each period, the difference in consumption is within a certain range.

なお、以上の実施形態においては、ガス供給源が2つの場合のガス供給装置を説明したが、ガス供給源が3つ以上の場合にも、同様に適用することができる。すなわち、最もガス消費率が低いガス供給源を基準として、他のガス供給源の消費率は、そのガス消費率が最も低いガス供給源の消費率に追従するようにそれぞれ制御を行う。その結果、当該他のガス供給源のそれぞれの監視期間及び制御期間の周期は、それぞれの消費率に応じて異なってくることになる。   In addition, in the above embodiment, although the gas supply apparatus in case the number of gas supply sources was two was demonstrated, it can apply similarly, also when the number of gas supply sources is three or more. That is, based on the gas supply source with the lowest gas consumption rate, the consumption rates of the other gas supply sources are controlled to follow the consumption rate of the gas supply source with the lowest gas consumption rate. As a result, the period of each monitoring period and control period of the other gas supply source will be different depending on the consumption rate.

以上のように、上述の実施の形態によれば、液化ガス及び圧縮ガスのいずれの場合でも、複数のガス供給源11a、11b(12a、12b)のガス消費率を実質的(大局的)に同一にすることにより、各ガス供給源の交換周期を同一とすることができるので、保守要員の保守計画やその作業を容易にし、かつ、各ガス供給源を同時に交換しなければならないことは起こらないのでので、消費設備に対してガス供給停止となる事態を避けることができる。   As described above, according to the above-described embodiment, the gas consumption rates of the plurality of gas supply sources 11a and 11b (12a and 12b) can be substantially (generally) according to any of the liquefied gas and the compressed gas. By making them identical, the replacement cycle of each gas source can be made the same, which facilitates maintenance plans for maintenance personnel and their work, and it is necessary to replace each gas source at the same time. Since it is not, it is possible to avoid the situation where the gas supply is stopped for the consumption facility.

本発明のガス供給装置及びガス供給方法は、例えば、物理的に異なるサイトに複数のガス供給源を設置して、並列的に消費設備にガスを供給するような態様の場合に採用することができる。   The gas supply apparatus and the gas supply method of the present invention may be employed, for example, in the case of installing a plurality of gas supply sources at physically different sites and supplying gas to consumption facilities in parallel. it can.

1A、1B…ガス供給装置、11a、11b…液化ガス供給源、12a、12b…圧縮ガス供給源、111a、111b、121a、121b…ガス容器、112a、112b、122a、122b…減圧弁、113a、113b…重量検出器、123a、123b…圧力検出器、21A、21B…制御部、100…消費設備、101…ガス供給源、1011…ガス容器、1012…減圧弁   1A, 1B: gas supply apparatus 11a, 11b: liquefied gas supply source 12a, 12b: compressed gas supply source 111a, 111b, 121a, 121b: gas container 112a, 112b, 122a, 122b ... pressure reducing valve, 113a, 113b ... weight detector, 123a, 123b ... pressure detector, 21A, 21B ... control unit, 100 ... consumption equipment, 101 ... gas supply source, 1011 ... gas container, 1012 ... pressure reducing valve

Claims (4)

ガスを供給すべき設備に配管を介して並列的に接続され、同時にガスを供給可能な2以上のガス供給源と、
2以上の前記ガス供給源の各々の、前記設備に対するガス供給圧力を制御する制御部と、を備えるガス供給装置であって、
前記制御部は、2以上の前記ガス供給源の各々のガス消費率が、実質的に同一になるように各ガス供給圧力を制御する、ガス供給装置。
Two or more gas supply sources connected in parallel to the equipment to be supplied with gas via piping, and capable of supplying gas simultaneously;
A control unit configured to control a gas supply pressure to the equipment of each of two or more of the gas supply sources;
The control unit controls each gas supply pressure so that the gas consumption rate of each of the two or more gas supply sources is substantially the same.
前記制御部は、2以上の前記ガス供給源の各々のガス消費量の差が、所定範囲内に収まるように各ガス供給圧力を制御する、請求項1に記載のガス供給装置。   The gas supply device according to claim 1, wherein the control unit controls each gas supply pressure such that a difference in gas consumption of each of the two or more gas supply sources falls within a predetermined range. 前記制御部は、
初期的に、2以上の前記ガス供給源の全てに対して、前記ガス供給圧力として、第1の設定供給圧力を設定し、
2以上の前記ガス供給源のうちのガス消費率が最小であるガス供給源と比較して、ガス消費量の差が第1の所定値に到達したガス供給源に対して、前記ガス供給圧力として、前記第1の設定供給圧力よりも低い第2の設定供給圧力を設定し、
その後、前記ガス消費量の差が第2の所定値に到達した時点で、前記ガス供給圧力を、前記第1の設定供給圧力に戻す、請求項2に記載のガス供給装置。
The control unit
Initially, a first set supply pressure is set as the gas supply pressure for all two or more of the gas supply sources,
The gas supply pressure relative to the gas supply source at which the difference in gas consumption has reached a first predetermined value as compared to the gas supply source having the smallest gas consumption rate of the two or more gas supply sources. Setting a second set supply pressure lower than the first set supply pressure,
3. The gas supply device according to claim 2, wherein the gas supply pressure is returned to the first set supply pressure when the difference in gas consumption reaches a second predetermined value.
ガスを供給すべき設備に配管を介して並列的に接続され、同時にガスを供給可能な2以上のガス供給源と、2以上の前記ガス供給源の各々の、前記設備に対するガス供給圧力を制御する制御部と、を備えたガス供給装置におけるガス供給方法であって、
前記制御部は、2以上の前記ガス供給源の各々のガス消費率が、実質的に同一になるように各ガス供給圧力を制御する、ガス供給方法。
The gas supply pressure to the equipment of two or more gas supply sources connected in parallel to the equipment to be supplied with gas and capable of simultaneously supplying gas, and each of the two or more gas supply sources is controlled A control unit, and a gas supply method in a gas supply apparatus comprising:
The control method controls each gas supply pressure such that the gas consumption rate of each of the two or more gas supply sources is substantially the same.
JP2017226785A 2017-11-27 2017-11-27 Gas supply device and gas supply method Active JP6751070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017226785A JP6751070B2 (en) 2017-11-27 2017-11-27 Gas supply device and gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017226785A JP6751070B2 (en) 2017-11-27 2017-11-27 Gas supply device and gas supply method

Publications (2)

Publication Number Publication Date
JP2019095029A true JP2019095029A (en) 2019-06-20
JP6751070B2 JP6751070B2 (en) 2020-09-02

Family

ID=66971337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017226785A Active JP6751070B2 (en) 2017-11-27 2017-11-27 Gas supply device and gas supply method

Country Status (1)

Country Link
JP (1) JP6751070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991538B1 (en) 2021-09-24 2022-01-12 株式会社永産システム開発 Gas cylinder management system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111962B2 (en) * 2007-07-17 2013-01-09 大陽日酸株式会社 Liquefied gas supply method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111962B2 (en) * 2007-07-17 2013-01-09 大陽日酸株式会社 Liquefied gas supply method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991538B1 (en) 2021-09-24 2022-01-12 株式会社永産システム開発 Gas cylinder management system
JP2023047224A (en) * 2021-09-24 2023-04-05 株式会社永産システム開発 Gas cylinder management system

Also Published As

Publication number Publication date
JP6751070B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US10389174B2 (en) Resource management system
Ricker Predictive hybrid control of the supermarket refrigeration benchmark process
CA2922906C (en) Method of demand management and control of fluid pipe networks
EP4174590A3 (en) Combined learned and dynamic control method
JP6334785B2 (en) Power management system, power management method, and control apparatus
JP6122268B2 (en) System for operating packaging equipment
CN102646984B (en) Method for realizing real-time automatic compensation of voltage and reactive power of substation
US20100043421A1 (en) Method for operating a hydraulic system, and hydraulic system
JP2019095029A (en) Gas supply device and gas supply method
JP2006325380A (en) Voltage and reactive power control system, and voltage and reactive power control method
CN104767806A (en) Method, device and system for backup of cloud data central task
US8381756B2 (en) Method for supplying gas
CN108253518B (en) Thermal power plant heat supply network steam supply pressure control method
NO340222B1 (en) Vehicle controlled control device with trimmed accuracy
WO2013163722A1 (en) Control system for allocating steam flow through elements
KR101804685B1 (en) System and method for self-regulation electric power of the gas refill center
US8028726B2 (en) Automatic venting of refillable bulk liquid canisters
CA2260705C (en) Combined process and plant for producing compressed air and at least one air gas
CN103644107A (en) Air pressure control method and system of drilling machine air compressor
KR20130071366A (en) Apparatus and method for supplying liquefied gas
CA3019648C (en) Method for analyzing the compressed-air supply security of a compressed-air system
JP2017026292A (en) Boiler system
JP5244501B2 (en) Voltage reactive power control system
KR20170053907A (en) Supply control apparatus of compressed air based demand prediction and method thereof
JP2018120281A (en) Hydrogen flow rate control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R150 Certificate of patent or registration of utility model

Ref document number: 6751070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250