JP2019094426A - Cleaning liquid - Google Patents

Cleaning liquid Download PDF

Info

Publication number
JP2019094426A
JP2019094426A JP2017224696A JP2017224696A JP2019094426A JP 2019094426 A JP2019094426 A JP 2019094426A JP 2017224696 A JP2017224696 A JP 2017224696A JP 2017224696 A JP2017224696 A JP 2017224696A JP 2019094426 A JP2019094426 A JP 2019094426A
Authority
JP
Japan
Prior art keywords
liquid
temperature
group
bubble
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017224696A
Other languages
Japanese (ja)
Inventor
隆 井合
Takashi IAI
隆 井合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2017224696A priority Critical patent/JP2019094426A/en
Publication of JP2019094426A publication Critical patent/JP2019094426A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)

Abstract

To provide a cleaning liquid that shows a remarkably good cleaning effect in comparison to conventional cleaning liquids.SOLUTION: A cleaning liquid contains: a static liquid 21 that contains a first microbubble group 15a; and a dynamic liquid 22 that contains a second microbubble group 15b having an average bubble diameter equal to an average bubble diameter of the first microbubble group 15a, has a temperature higher than a room temperature, and is blown to an object to be cleaned W held in the static liquid 21.SELECTED DRAWING: Figure 1

Description

本発明は、液体中に微細気泡群を含有する洗浄液に関する。   The present invention relates to a cleaning solution containing fine bubbles in a liquid.

特許文献1は洗浄液を開示する。洗浄液は、液体に飽和溶解濃度で溶解したナノサイズの気泡を含有する。特許文献1は洗浄効果の向上にあたって液体分子の水素結合の距離に着目する。   Patent Document 1 discloses a cleaning solution. The cleaning solution contains nano-sized air bubbles dissolved in a liquid at a saturation dissolution concentration. Patent Document 1 focuses on the distance of hydrogen bonds of liquid molecules in order to improve the cleaning effect.

特開2011−88979号公報JP, 2011-88979, A

特許文献1は、その他、気泡を崩壊させる外力に着目する。そうした外力には、圧力変化や温度変化、衝撃波、超音波、赤外線、振動が含まれる。気泡の崩壊は洗浄力の向上に貢献すると考えられる。   Patent Document 1 also focuses on an external force that collapses a bubble. Such external forces include pressure changes, temperature changes, shock waves, ultrasonic waves, infrared rays, and vibrations. It is thought that bubble collapse contributes to the improvement of detergency.

本発明は、これまでに比べて飛躍的に良好な洗浄効果を発揮する洗浄液を提供することを目的とする。   An object of the present invention is to provide a cleaning solution which exhibits a dramatically better cleaning effect than before.

本発明の第1側面によれば、第1微細気泡群を含む静的液体と、前記第1微細気泡群の平均気泡径に等しい平均気泡径を有する第2微細気泡群を含み、室温よりも高い温度を有して、前記静的液体中に保持される対象物に向かって噴き出される動的液体とを有する洗浄液が提供される。   According to a first aspect of the present invention, a static liquid including a first group of fine bubbles and a second group of fine bubbles having an average cell diameter equal to the average cell diameter of the first group of fine bubbles are included. There is provided a cleaning liquid having a high temperature and a dynamic liquid sprayed towards an object held in said static liquid.

第1側面によれば、動的液体が対象物に衝突すると、対象物(物体)の表面に固着する物質(例えば汚染体)と物体の表面との境界(界面の輪郭)に第2微細気泡群が作用する。動的液体は室温時よりも高いエネルギーを有することから、第2微細気泡群は効果的に界面で剥離を引き起こす。剥離の進行に伴って輪郭から内側に気体は進入していく。こうして物質は物体の表面から剥離する。物質は物体から分離される。こうした第2微細気泡群を含有する状態で動的液体は噴き出されることから、静的液体中で作り出される動的液体の流れに向かって微細気泡を吹き込む場合に比べて、動的液体は確実に規定量の第2微細気泡群を含有することができる。洗浄液は、これまでに比べて飛躍的に良好な洗浄効果を発揮する。   According to the first aspect, when the dynamic liquid collides with the object, a second microbubble is formed at the boundary (the outline of the interface) between the substance (for example, the contaminant) adhering to the surface of the object (the object) and the surface of the object. The group acts. Since the dynamic liquid has higher energy than at room temperature, the second microbubbles effectively cause exfoliation at the interface. As the exfoliation progresses, gas intrudes inward from the contour. Thus, the substance separates from the surface of the object. The substance is separated from the object. Since the dynamic liquid is ejected in the state of containing the second group of micro bubbles, the dynamic liquid is more reliable than the case of blowing the micro bubbles toward the flow of the dynamic liquid created in the static liquid. The second microbubbles group can be contained in a specified amount. The cleaning solution exhibits a dramatically better cleaning effect than before.

本発明の一実施形態に係る洗浄液製造装置の全体像を示す概念図である。It is a conceptual diagram which shows the whole image of the washing | cleaning-liquid manufacturing apparatus which concerns on one Embodiment of this invention. 分布を示すグラフである。It is a graph which shows distribution. 温度条件および平均気泡径と、残留する切粉の重量との関係を示すグラフである。It is a graph which shows the relationship between a temperature condition and an average bubble diameter, and the weight of the chip | tip which remains. 温度条件および平均気泡径と、溶剤中に回収された油の濃度との関係を示すグラフである。It is a graph which shows the relationship between temperature conditions and an average bubble diameter, and the density | concentration of the oil collect | recovered in the solvent.

以下、添付図面を参照しつつ本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(1)洗浄装置
図1は第実施形態に係る洗浄装置11の全体像を示す。洗浄装置11は第1液槽12aおよび第2液槽12bを備える。第1液槽12aには第1予備洗浄液13aが湛えられる。第2液槽12bには第2予備洗浄液13bが湛えられる。第1液槽12aおよび第2液槽12bには共通に混合槽12cが接続される。混合槽12cには静的液体21が湛えられる。静的液体21は、第1液槽12aから導入される第1予備洗浄液13aと、第2液槽12bから導入される第2予備洗浄液13bとの混合体である。
(1) Cleaning Device FIG. 1 shows an overall image of the cleaning device 11 according to the embodiment. The cleaning device 11 includes a first liquid tank 12a and a second liquid tank 12b. The first preliminary cleaning liquid 13a is contained in the first liquid tank 12a. The second preliminary cleaning liquid 13b is contained in the second liquid tank 12b. A mixing tank 12c is commonly connected to the first liquid tank 12a and the second liquid tank 12b. The static liquid 21 is contained in the mixing tank 12c. The static liquid 21 is a mixture of a first preliminary cleaning solution 13a introduced from the first liquid tank 12a and a second preliminary cleaning solution 13b introduced from the second liquid tank 12b.

第1液槽12aには第1気泡発生装置14が接続される。第1気泡発生装置14は液体中に開口する供給口14aを有する。液体としては、純水のほか、水や有機溶剤を溶媒として電解質、界面活性剤、気体などが溶解している液体が用いられることができる。第1気泡発生装置14は供給口14aから液体中に微細気泡を吹き込む。微細気泡はマイクロバブルおよびナノバブル(=ウルトラファインバブル)を含む。微細気泡は規定値以下の平均径の気泡の集合体であればよい。気泡の径は供給口14aに設置される微細孔の直径に基づき設定されることができる。微細孔の直径は100nm未満に設定される。好ましくは、気泡の径は50nm以下であるとよい。ここでは、第1気泡発生装置14は、第1温度の気体で形成され100nm未満の平均気泡径を有する第1微細気泡群15aを吹き出す。直径100nm未満の気泡濃度は1ミリリットル当たり1x10個以上であることが望まれる。第1微細気泡群15aは混合槽12cに流れ込んで静的液体21中で第2微細気泡群15bを形成する。 A first bubble generator 14 is connected to the first liquid tank 12a. The first bubble generator 14 has a supply port 14a that opens into the liquid. As the liquid, in addition to pure water, a liquid in which water or an organic solvent is used as a solvent, an electrolyte, a surfactant, a gas or the like is dissolved can be used. The first bubble generator 14 blows fine bubbles into the liquid from the supply port 14a. Microbubbles include microbubbles and nanobubbles (= ultrafine bubbles). The microbubbles may be a collection of bubbles having an average diameter smaller than a specified value. The diameter of the air bubbles can be set based on the diameter of the micro holes provided in the supply port 14a. The diameter of the pores is set to less than 100 nm. Preferably, the diameter of the air bubble is 50 nm or less. Here, the first bubble generation device 14 blows out the first micro bubble group 15 a which is formed of gas at the first temperature and has an average bubble diameter of less than 100 nm. It is desirable that the bubble concentration less than 100 nm in diameter is 1 × 10 6 or more per milliliter. The first micro bubble group 15 a flows into the mixing tank 12 c to form a second micro bubble group 15 b in the static liquid 21.

第1気泡発生装置14には気体源16aが接続される。気体源16aは第1気泡発生装置14に気体を供給する。気体は空気や窒素、水素などに限られずいかなる種類の気体であってもよい。気体源16aには第1温度調整装置17aが接続される。第1温度調整装置17aは気体源16aの気体の温度を調整する。こうした温度の調整にあたって気体には第1温度調整装置17aから熱エネルギーが加えられる(あるいは奪われる)。熱エネルギー(プラスであってもマイナスであっても)はいかなる方法で気体に伝達されてもよい。ここでは、気体源16aから第1気泡発生装置14に第1温度の気体が供給される。   A gas source 16 a is connected to the first bubble generator 14. The gas source 16 a supplies a gas to the first bubble generator 14. The gas is not limited to air, nitrogen, hydrogen and the like, and may be any kind of gas. The first temperature control device 17a is connected to the gas source 16a. The first temperature adjusting device 17a adjusts the temperature of the gas of the gas source 16a. In the temperature adjustment, thermal energy is added to (or deprived of) the gas from the first temperature adjustment device 17a. Thermal energy (plus or minus) may be transferred to the gas in any way. Here, the gas of the first temperature is supplied from the gas source 16 a to the first bubble generator 14.

このとき、第1液槽12aに温度調整装置が接続されてもよい。第1予備洗浄液13a中の第1微細気泡群15aと液体との間で熱エネルギーは平衡化される。個々の微細気泡に含まれる気体の温度は第1予備洗浄液13aとして測定される温度に等しいと考えられる。第1予備洗浄液13aの温度が調整されることで第1微細気泡群15aの温度は設定されることができる。こうして温度調整装置の働きで第1予備洗浄液13aの温度は第1温度に維持されればよい。   At this time, a temperature control device may be connected to the first liquid tank 12a. The thermal energy is equilibrated between the first fine bubble group 15a and the liquid in the first preliminary cleaning solution 13a. The temperature of the gas contained in each fine bubble is considered to be equal to the temperature measured as the first preliminary cleaning solution 13a. The temperature of the first micro-bubble group 15a can be set by adjusting the temperature of the first preliminary cleaning liquid 13a. Thus, the temperature of the first preliminary cleaning solution 13a may be maintained at the first temperature by the operation of the temperature control device.

同様に、第2液槽12bには第2気泡発生装置18が接続される。第2気泡発生装置18は液体中に開口する供給口18aを有する。液体としては、水や有機溶剤を溶媒として電解質、界面活性剤、気体などが溶解している液体が用いられることができる。第2気泡発生装置18は供給口18aから液体中に微細気泡を吹き込む。微細気泡はマイクロバブルおよびナノバブルを含む。微細気泡は規定値以下の平均径の気泡の集合体であればよい。気泡の径は供給口18aに設置される微細孔の直径に基づき設定されることができる。微細孔の直径は100nm以上50μm以下に設定される。好ましくは、気泡の径は1000nm(=1μm)以下であるとよい。ここでは、第2気泡発生装置18は、第1温度の気体で形成される第3微細気泡群15cを吹き出す。直径100nm以上50μm以下の気泡濃度は1ミリリットル当たり1x10個以上であることが望まれる。第3微細気泡群15cは混合槽12cに流れ込んで静的液体21中で第4微細気泡群15dを形成する。 Similarly, a second bubble generator 18 is connected to the second liquid tank 12b. The second bubble generator 18 has a supply port 18a that opens into the liquid. As the liquid, a liquid in which water or an organic solvent is used as a solvent, an electrolyte, a surfactant, a gas or the like is dissolved can be used. The second bubble generator 18 blows fine bubbles into the liquid from the supply port 18a. Microbubbles include microbubbles and nanobubbles. The microbubbles may be a collection of bubbles having an average diameter smaller than a specified value. The diameter of the air bubbles can be set based on the diameter of the micro holes provided in the supply port 18a. The diameter of the micropores is set to 100 nm or more and 50 μm or less. Preferably, the diameter of the air bubble is 1000 nm (= 1 μm) or less. Here, the second bubble generator 18 blows out the third micro bubble group 15 c formed of the gas at the first temperature. The bubble concentration of 100 nm or more and 50 μm or less in diameter is desirably 1 × 10 6 or more per 1 ml. The third micro bubble group 15 c flows into the mixing tank 12 c to form a fourth micro bubble group 15 d in the static liquid 21.

第2気泡発生装置18には気体源16bが接続される。気体源16bは第2気泡発生装置18に気体を供給する。気体は空気や窒素、水素などに限られずいかなる種類の気体であってもよい。気体の種類は第1気泡発生装置14のそれと同じでもよく相違してもよい。気体源16bには第2温度調整装置17bが接続される。第2温度調整装置17bは気体源16bの気体の温度を調整する。こうした温度の調整にあたって気体には第2温度調整装置17bから熱エネルギーが加えられる(あるいは奪われる)。熱エネルギー(プラスであってもマイナスであっても)はいかなる方法で気体に伝達されてもよい。ここでは、気体源16bから第2気泡発生装置18に第1温度の気体が供給される。   A gas source 16 b is connected to the second bubble generator 18. The gas source 16 b supplies a gas to the second bubble generator 18. The gas is not limited to air, nitrogen, hydrogen and the like, and may be any kind of gas. The type of gas may be the same as or different from that of the first bubble generator 14. The second temperature control device 17b is connected to the gas source 16b. The second temperature adjusting device 17b adjusts the temperature of the gas of the gas source 16b. In the temperature adjustment, thermal energy is added to (or deprived of) the gas from the second temperature control device 17b. Thermal energy (plus or minus) may be transferred to the gas in any way. Here, the gas of the first temperature is supplied from the gas source 16 b to the second bubble generator 18.

このとき、第2液槽12bに温度調整装置が接続されてもよい。第2予備洗浄液13b中の第3微細気泡群15cと液体との間で熱エネルギーは平衡化される。個々の微細気泡に含まれる気体の温度は第2予備洗浄液13bとして測定される温度に等しいと考えられる。第2予備洗浄液13bの温度が調整されることで第3微細気泡群15cの温度は設定されることができる。こうして温度調整装置の働きで第2予備洗浄液13bの温度は第1温度に維持されればよい。   At this time, a temperature control device may be connected to the second liquid tank 12b. Thermal energy is equilibrated between the third group of micro bubbles 15c and the liquid in the second preliminary cleaning liquid 13b. The temperature of the gas contained in each microbubble is considered to be equal to the temperature measured as the second preliminary cleaning liquid 13b. The temperature of the third micro bubble group 15c can be set by adjusting the temperature of the second preliminary cleaning liquid 13b. Thus, the temperature of the second preliminary cleaning liquid 13b may be maintained at the first temperature by the operation of the temperature control device.

混合槽12cには液流発生装置19が接続される。液流発生装置19は混合槽12c内の液体(以下「静的液体」という)21中に開口する供給口19aを有する。液流発生装置19は供給口19aから静的液体21中に液体を流し込む。流速(流量)は3.0〜30.0L/minに設定される。こうして静的液体21中に液流(以下「動的液体」という)22は生成される。動的液体22は強制的に静的液体21との間に相対移動を生み出す液体を含む。そういった強制的な相対移動はインペラーによる噴流といった形で達成されればよい。   A liquid flow generator 19 is connected to the mixing tank 12c. The liquid flow generating device 19 has a supply port 19a opened in a liquid (hereinafter referred to as "static liquid") 21 in the mixing tank 12c. The liquid flow generating device 19 flows the liquid into the static liquid 21 from the supply port 19a. The flow rate (flow rate) is set to 3.0 to 30.0 L / min. Thus, a liquid flow (hereinafter referred to as "dynamic liquid") 22 is generated in the static liquid 21. The dynamic liquid 22 comprises a liquid which forcibly produces relative movement with the static liquid 21. Such forced relative movement may be achieved in the form of an impeller jet.

液流発生装置19には液体源23が接続される。液体源23は液流発生装置19に液体を供給する。液体は静的液体21と同じ液体であればよい。すなわち、液体源23は混合槽12c内の静的液体21を循環させればよい。液体源23には第3温度調整装置17cが接続される。第3温度調整装置17cは液体源23の液体の温度を調整する。こうした温度の調整にあたって液体には第3温度調整装置17cから熱エネルギーが加えられる。熱エネルギーはいかなる方法で液体に伝達されてもよい。こうして動的液体22の温度は室温よりも高い温度に設定される。ここでは、第3温度調整装置17cの働きで動的液体22の温度は静的液体21の温度よりも高い第2温度に設定される。   A liquid source 23 is connected to the liquid flow generator 19. The liquid source 23 supplies the liquid flow generator 19 with the liquid. The liquid may be the same liquid as the static liquid 21. That is, the liquid source 23 may circulate the static liquid 21 in the mixing tank 12 c. The third temperature control device 17 c is connected to the liquid source 23. The third temperature adjusting device 17 c adjusts the temperature of the liquid of the liquid source 23. In the temperature adjustment, thermal energy is added to the liquid from the third temperature control device 17c. Thermal energy may be transferred to the liquid in any manner. Thus, the temperature of the dynamic liquid 22 is set to a temperature higher than room temperature. Here, the temperature of the dynamic liquid 22 is set to a second temperature higher than the temperature of the static liquid 21 by the operation of the third temperature adjustment device 17 c.

洗浄装置11は、被洗浄物Wを保持する保持具24を有する。保持具24には例えばカゴが用いられる。保持具24は静的液体21中に浸される。保持具24の先端に被洗浄物Wは固定される。被洗浄物Wは静的液体21中で保持される。液流発生装置19の供給口19aは保持具24上の被洗浄物Wに向けられる。こうして被洗浄物Wに向かって液流は生成される。   The cleaning device 11 has a holder 24 for holding the object to be cleaned W. For example, a basket is used for the holder 24. The holder 24 is immersed in the static liquid 21. The object to be cleaned W is fixed to the tip of the holder 24. The object to be cleaned W is held in the static liquid 21. The supply port 19 a of the fluid flow generating device 19 is directed to the object to be cleaned W on the holder 24. Thus, a liquid flow is generated toward the object to be cleaned W.

保持具24には位置決め機構25が接続されてもよい。位置決め機構25は例えば水平面に沿って保持具24の移動を生み出す駆動力を発揮する。こうした保持具24の移動に応じて、被洗浄物W上の目標位置に動的液体22は向けられることができる。広い範囲で洗浄面の洗浄は実現されることができる。その他、保持具24の駆動に代えて、固定される保持具24に対して相対的に混合槽12cが移動してもよい。あるいは、固定される保持具24および混合槽12cに対して供給口19aの向きが変更されてもよい。   The positioning mechanism 25 may be connected to the holder 24. The positioning mechanism 25 exerts a driving force that generates the movement of the holder 24 along, for example, a horizontal surface. In response to the movement of the holder 24, the dynamic liquid 22 can be directed to the target position on the object W to be cleaned. Cleaning of the cleaning surface can be realized over a wide range. In addition, instead of driving the holder 24, the mixing tank 12c may be moved relative to the holder 24 to be fixed. Alternatively, the orientation of the supply port 19a may be changed with respect to the holder 24 and the mixing tank 12c to be fixed.

洗浄装置11が作動すると、第1液槽12aで、第1温度の気体で形成される第1微細気泡群15aを含有する第1予備洗浄液13aが生成され、第2液槽12bで、第2温度の気体で形成される第3微細気泡群15cを含有する第2予備洗浄液13bが生成される。第1予備洗浄液13aおよび第2予備洗浄液13bが混合槽12cで混合される結果、単一の液体中に、第1径の平均気泡径の気体で形成される第2微細気泡群15bと、第2径の平均気泡径の気体で形成される第4微細気泡群15dとを含有する洗浄液は生成される。第2微細気泡群15bと第4微細気泡群15dとの割合は、混合槽12cに流れ込む第1予備洗浄液13aおよび第2予備洗浄液13bの流量に応じて設定されることができる。   When the cleaning device 11 operates, the first preliminary cleaning solution 13a containing the first fine bubble group 15a formed of the gas of the first temperature is generated in the first liquid tank 12a, and the second liquid tank 12b generates the second preliminary cleaning liquid 13a. A second preliminary cleaning solution 13b is generated which contains a third group of microbubbles 15c formed of a gas at a temperature. As a result of mixing the first preliminary cleaning solution 13a and the second preliminary cleaning solution 13b in the mixing tank 12c, a second fine bubble group 15b formed of gas of an average bubble diameter of the first diameter in a single liquid; A cleaning liquid is produced which contains the fourth microbubble group 15d formed of a gas having an average cell diameter of two diameters. The ratio between the second micro bubble group 15b and the fourth micro bubble group 15d can be set according to the flow rate of the first preliminary cleaning solution 13a and the second preliminary cleaning solution 13b flowing into the mixing tank 12c.

混合槽12cには温度調整装置が接続されてもよい。温度調整装置の働きで静的液体21の温度は調整されることができる。静的液体21中の第2微細気泡群15bおよび第4微細気泡群15dと液体との間で熱エネルギーは平衡化される。個々の微細気泡に含まれる気体の温度は静的液体21として測定される温度に等しいと考えられる。こうして混合槽12c内で第2微細気泡群15bおよび第4微細気泡群15dの温度は設定されることができる。   A temperature control device may be connected to the mixing tank 12c. The temperature of the static liquid 21 can be adjusted by the operation of the temperature control device. The thermal energy is equilibrated between the second micro bubble group 15 b and the fourth micro bubble group 15 d in the static liquid 21 and the liquid. The temperature of the gas contained in each microbubble is considered to be equal to the temperature measured as static liquid 21. Thus, the temperatures of the second micro bubble group 15 b and the fourth micro bubble group 15 d can be set in the mixing tank 12 c.

図2に示されるように、第1微細気泡群15aおよび第2微細気泡群15bは第1径D1(=100nm未満)の平均気泡径を有する。第1気泡発生装置14は最大数[個]で第1径D1の微細気泡を噴き出す。気泡径が第1径D1から増大し、あるいは減少するにつれて、気泡の数量[個]は減少する。すなわち、数量分布は第1径D1(=80nm)でピークを示す。その一方で、第3微細気泡群15cおよび第4微細気泡群15dは第2径D2(=100nm以上50μm以下)の平均気泡径を有する。第2気泡発生装置18は最大数で第2径D2の微細気泡を噴き出す。気泡径が第2径D2から増大し、あるいは減少するにつれて、気泡の数量は減少する。すなわち、数量分布は第2径D2(=200nm)でピークを示す。単位体積当たりで第2微細気泡群15bの気泡数[個]は全気泡数の50%以上である。単位体積当たりで第4微細気泡群15dの気泡数[個]は全気泡数の50%以下である。   As shown in FIG. 2, the first micro bubble group 15a and the second micro bubble group 15b have an average cell diameter of the first diameter D1 (= less than 100 nm). The first bubble generation device 14 ejects fine bubbles of the first diameter D1 at the maximum number [pieces]. As the bubble diameter increases or decreases from the first diameter D1, the number of bubbles decreases. That is, the quantity distribution shows a peak at the first diameter D1 (= 80 nm). On the other hand, the third micro bubble group 15 c and the fourth micro bubble group 15 d have an average cell diameter of the second diameter D 2 (= 100 nm or more and 50 μm or less). The second bubble generator 18 ejects fine bubbles of the second diameter D2 at the maximum number. As the bubble diameter increases or decreases from the second diameter D2, the number of bubbles decreases. That is, the quantity distribution shows a peak at the second diameter D2 (= 200 nm). The number of bubbles of the second micro bubble group 15b per unit volume is 50% or more of the total number of bubbles. The number of bubbles in the fourth micro bubble group 15 d per unit volume is 50% or less of the total number of bubbles.

液流発生装置19が動作すると、供給口19aから被洗浄物Wに向かって動的液体22が形成される。動的液体22には静的液体21中の第2微細気泡群15bおよび第4微細気泡群15dが含有される。第2微細気泡群15bおよび第4微細気泡群15dは被洗浄物Wに衝突する。被洗浄物Wの表面と汚染物との境界(界面の輪郭)に第2微細気泡群15bおよび第4微細気泡群15dが接触する。動的液体22は室温時よりも高いエネルギーを有することから、第2微細気泡群15bおよび第4微細気泡群15dは効果的に界面で剥離を引き起こす。剥離の進行に伴って輪郭から内側に微細気泡は進入していく。こうして汚染物は被洗浄物Wの表面から剥離する。汚染物は被洗浄物Wから分離される。こうした第2微細気泡群15bおよび第4微細気泡群15dを含有した状態で動的液体22は液流発生装置19の供給口19aから噴き出されることから、静的液体21中で作り出される動的液体の流れに向かって微細気泡を吹き込む場合に比べて、動的液体22は確実に規定量の第2微細気泡群15bおよび第4微細気泡群15dを含有することができる。洗浄液は、これまでに比べて飛躍的に良好な洗浄効果を発揮する。特に、動的液体22の温度は静的液体21の温度よりも高いことから、温度の異なる微細気泡が次々に界面の輪郭に作用することで、界面の輪郭で温度変化の繰り返し(温度の振動)が生じる。温度の振動は汚染物の剥離を促進する。しかも、第2微細気泡群15bの平均気泡径と第4微細気泡群15dの平均気泡径とは相違することから、個々の気泡に含まれる熱エネルギー量の相違から、大きい平均気泡径の第4微細気泡群15dは被洗浄物Wと汚染物との界面に緩やかな温度変化を生み出し、小さい平均気泡径の第2微細気泡群15bは被洗浄物Wと汚染物との界面に急激な温度変化を生み出す。急激な温度変化は急激な被洗浄物Wの膨張または急激な被洗浄物Wの収縮を引き起こし、汚染物の剥離を助長する。洗浄効果はさらに高まることが確認されている。微細気泡は小さいほど被洗浄物Wの表面と汚染物との境界に入り込みやすく剥離を促進するものの、温度差を有する微細気泡の気泡径が相違することでさらなる洗浄効果の向上が実現されると考えられる。   When the liquid flow generator 19 operates, a dynamic liquid 22 is formed from the supply port 19 a toward the object to be cleaned W. The dynamic liquid 22 contains the second microbubbles 15 b and the fourth microbubbles 15 d in the static liquid 21. The second micro bubble group 15 b and the fourth micro bubble group 15 d collide with the object to be cleaned W. The second micro-bubbles group 15b and the fourth micro-bubbles group 15d are in contact with the boundary between the surface of the object to be cleaned W and the contamination (the contour of the interface). Since the dynamic liquid 22 has higher energy than at room temperature, the second micro bubble group 15 b and the fourth micro bubble group 15 d effectively cause peeling at the interface. As the peeling progresses, fine bubbles inward from the contour. Thus, the contaminants are peeled off from the surface of the object to be cleaned W. Contaminants are separated from the object to be cleaned W. The dynamic liquid 22 is ejected from the supply port 19 a of the liquid flow generating device 19 in the state of containing the second micro bubble group 15 b and the fourth micro bubble group 15 d, and thus the dynamic produced in the static liquid 21. The dynamic liquid 22 can reliably contain a predetermined amount of the second micro bubble group 15 b and the fourth micro bubble group 15 d as compared to the case where the micro bubbles are blown into the liquid flow. The cleaning solution exhibits a dramatically better cleaning effect than before. In particular, since the temperature of the dynamic liquid 22 is higher than the temperature of the static liquid 21, the microbubbles with different temperatures act on the contour of the interface one after another to repeat the temperature change in the contour of the interface (the vibration of the temperature ) Occurs. Temperature oscillations promote the exfoliation of the contaminants. Moreover, since the average cell diameter of the second micro cell group 15b and the average cell diameter of the fourth micro cell group 15d are different, the fourth average cell diameter is large from the difference in the amount of heat energy contained in each cell. The fine bubble group 15d produces a gradual temperature change at the interface between the object to be cleaned W and the contaminant, and the second fine bubble group 15b having a small average bubble diameter has a rapid temperature change at the interface between the object to be cleaned W and the contaminant Produce The rapid temperature change causes a rapid expansion of the object to be cleaned W or a rapid contraction of the object to be cleaned W, which promotes the separation of the contaminants. It has been confirmed that the cleaning effect is further enhanced. The smaller the microbubbles, the easier it is to enter the boundary between the surface of the object to be cleaned W and the contaminants, and promote the separation, but if the bubble diameter of the microbubbles having a temperature difference is different, further improvement of the cleaning effect is realized. Conceivable.

第1液槽12a内の液体や第2液槽12b内の液体の温度は第1温度に設定されればよい。液体が例えば純水または水溶液の場合には、液体の温度は摂氏80度以下に設定されることが望まれる。純水または水溶液の温度が摂氏80度を超えると、気泡は安定的に高い個数密度を維持できない。   The temperature of the liquid in the first liquid tank 12 a and the liquid in the second liquid tank 12 b may be set to the first temperature. When the liquid is, for example, pure water or an aqueous solution, it is desirable that the temperature of the liquid be set to 80 ° C. or less. When the temperature of the pure water or the aqueous solution exceeds 80 ° C., the bubbles can not stably maintain a high number density.

(2)検証
本発明者は洗浄装置11に倣って検証を実施した。検証では、動的液体22の温度条件の影響が観察された。第1液槽12aで第1予備洗浄液13aが生成された。第1予備洗浄液13aの液体には純水が用いられた。第1気泡発生装置14には気体源16aから大気(空気)が供給された。空気の温度(第1温度T1)は調整された。微細気泡の量は1ミリリットル当たり1x10個程度に設定された。純水の温度は第1温度T1に設定された。
(2) Verification The present inventors conducted verification in accordance with the cleaning device 11. In the verification, the influence of the temperature condition of the dynamic liquid 22 was observed. The first preliminary cleaning liquid 13a is generated in the first liquid tank 12a. Pure water was used as the liquid of the first preliminary cleaning solution 13a. The atmosphere (air) was supplied to the first bubble generator 14 from the gas source 16a. The temperature of the air (first temperature T1) was adjusted. The amount of fine bubbles was set to about 1 × 10 6 per milliliter. The temperature of the pure water was set to the first temperature T1.

第2液槽12bで第2予備洗浄液13bが生成された。第2予備洗浄液13bの液体には純水が用いられた。第2気泡発生装置18には気体源16bから大気(空気)が供給された。空気の温度(第1温度T1)は調整された。微細気泡の量は1ミリリットル当たり1x10個程度に設定された。純水の温度は第1温度T1に設定された。 The second preliminary cleaning liquid 13b is generated in the second liquid tank 12b. Pure water was used as the liquid of the second preliminary cleaning liquid 13b. The atmosphere (air) was supplied to the second bubble generator 18 from the gas source 16 b. The temperature of the air (first temperature T1) was adjusted. The amount of fine bubbles was set to about 1 × 10 6 per milliliter. The temperature of the pure water was set to the first temperature T1.

第1予備洗浄液13aおよび第2予備洗浄液13bは混合槽12cに流し込まれた。混合槽12c内に静的液体21は形成された。静的液体21の温度TLは調整された。静的液体21の温度TLには第1予備洗浄液13aおよび第2予備洗浄液の第1温度T1が反映された。静的液体21中の第2微細気泡群15b第4微細気泡群15dの温度は静的液体21の温度TLに等しいと想定された。   The first preliminary washing solution 13a and the second preliminary washing solution 13b were poured into the mixing tank 12c. The static liquid 21 was formed in the mixing tank 12c. The temperature TL of the static liquid 21 was adjusted. The temperature TL of the static liquid 21 reflects the first temperature T1 of the first preliminary cleaning solution 13a and the second preliminary cleaning solution. The temperature of the second microbubble group 15b and the fourth microbubble group 15d in the static liquid 21 was assumed to be equal to the temperature TL of the static liquid 21.

保持具24にはカゴが用いられた。カゴ上に機械部品が被洗浄物Wとして搭載された。機械部品の表面には切削加工時の切粉が油とともに付着していた。10分間の洗浄後、機械部品の表面に残留した切粉の量および油の量を測定した。切粉の量の測定にあたって洗浄後の機械部品には高圧洗浄が施された。そうして洗い流された切粉を濾紙で採取した。電子天秤を用いて、採取した切粉の重量[ミリグラム]を測定した。一方で、油の量の測定にあたって洗浄後の機械部品は溶剤中に浸漬された。溶剤中に溶解した油の濃度[ppm]が測定された。   A basket was used for the holder 24. The machine parts were mounted on the basket as the article W to be cleaned. On the surface of the machine parts, chips at the time of cutting were attached together with the oil. After 10 minutes of cleaning, the amount of chips and oil remaining on the surface of the machine parts was measured. The machine parts after cleaning were subjected to high pressure cleaning to measure the amount of chips. The chips thus washed off were collected with filter paper. The weight [milligram] of the collected chips was measured using an electronic balance. On the other hand, the machine parts after washing were immersed in the solvent to measure the amount of oil. The concentration [ppm] of the oil dissolved in the solvent was measured.

温度条件の観察にあたって、以下の通り、3通りの条件が設定された。

Figure 2019094426
条件1では動的液体22の液体温度TDおよび静的液体21の液体温度TLは等しく室温よりも高い温度に設定された。第1微細気泡群15aの温度および第2微細気泡群15bの温度は等しく液体温度TLに設定された。条件2では、動的液体22の液体温度TDは室温よりも高い温度に設定され、静的液体21の液体温度TLは室温から徐々に上昇した。静的液体21の液体温度TLは変動した。第1微細気泡群15aの温度および第2微細気泡群15bの温度は等しく液体温度TLに設定された。条件3、条件4および条件5では、動的液体22の液体温度TDは室温よりも高い温度に設定され、静的液体21の液体温度TLは室温に設定された。こうして液体温度TDと液体温度TLとの間に温度差が設定された。第1微細気泡群15aの温度および第2微細気泡群15bの温度は等しく液体温度TLに設定された。 Three conditions were set up as follows in observing the temperature conditions.
Figure 2019094426
Under condition 1, the liquid temperature TD of the dynamic liquid 22 and the liquid temperature TL of the static liquid 21 were set to temperatures equal to or higher than room temperature. The temperature of the first micro bubble group 15a and the temperature of the second micro bubble group 15b were set equal to the liquid temperature TL. In condition 2, the liquid temperature TD of the dynamic liquid 22 was set to a temperature higher than room temperature, and the liquid temperature TL of the static liquid 21 gradually rose from room temperature. The liquid temperature TL of the static liquid 21 fluctuated. The temperature of the first micro bubble group 15a and the temperature of the second micro bubble group 15b were set equal to the liquid temperature TL. In conditions 3, 4 and 5, the liquid temperature TD of the dynamic liquid 22 was set to a temperature higher than room temperature, and the liquid temperature TL of the static liquid 21 was set to room temperature. Thus, a temperature difference was set between the liquid temperature TD and the liquid temperature TL. The temperature of the first micro bubble group 15a and the temperature of the second micro bubble group 15b were set equal to the liquid temperature TL.

温度条件の観察にあたって本発明者は比較条件を設定した。比較条件では動的液体22の液体温度TDおよび静的液体21の液体温度TLは等しく室温に設定された。

Figure 2019094426
The inventors set comparative conditions for observing the temperature conditions. Under the comparison conditions, the liquid temperature TD of the dynamic liquid 22 and the liquid temperature TL of the static liquid 21 were equally set to room temperature.
Figure 2019094426

同時に本発明者は第2微細気泡群15bおよび第4微細気泡群15dの気泡径と洗浄効果との関係を観察した。温度条件が等しい条件3、条件4および条件5で気泡径の影響が観察された。すなわち、条件3では第2微細気泡群15bの平均気泡径および第4微細気泡群15dの平均気泡径は等しく設定された。条件4では第2微細気泡群15bの平均気泡径は第4微細気泡群15dの平均気泡径よりも小さく設定された。第2微細気泡群15bおよび第4微細気泡群15dの気泡量は等しく設定された。条件5では第2微細気泡群15bの平均気泡径は第4微細気泡群15dの平均気泡径よりも小さく設定された。第2微細気泡群15bの気泡量は第4微細気泡群15dの気泡量よりも多く設定された。条件1および2並びに比較条件の平均気泡径および気泡量は条件3に等しく設定された。

Figure 2019094426
Figure 2019094426
At the same time, the inventor observed the relationship between the bubble diameter of the second micro bubble group 15 b and the fourth micro bubble group 15 d and the cleaning effect. The effect of bubble diameter was observed under conditions 3, 4 and 5 under equal temperature conditions. That is, under condition 3, the average bubble diameter of the second micro bubble group 15b and the average bubble diameter of the fourth micro bubble group 15d were set equal. Under the condition 4, the average cell diameter of the second micro bubble group 15b is set smaller than the average cell diameter of the fourth micro bubble group 15d. The amount of air bubbles in the second micro air bubble group 15 b and the fourth micro air bubble group 15 d was set equal. Under condition 5, the average cell diameter of the second micro bubble group 15b is set smaller than the average cell diameter of the fourth micro bubble group 15d. The bubble amount of the second micro bubble group 15 b is set to be larger than the bubble amount of the fourth micro bubble group 15 d. Condition 1 and 2 and the average bubble diameter and bubble volume of comparison conditions were set equal to condition 3.
Figure 2019094426
Figure 2019094426

観察の結果、図3に示されるように、条件1〜5では比較条件に比べて切粉の除去は促進されることが確認された。動的液体22の温度が室温よりも高く設定されると、切粉の除去は効果的に実現されることが理解された。特に、条件1と比較条件との比較から明らかなように、動的液体22の液体温度TDおよび静的液体21の液体温度TLが室温よりも高く設定されると、切粉の洗浄効果は高まることが確認された。また、条件3から明らかなように、動的液体22の液体温度TDおよび静的液体21の液体温度TLの間に温度差が設定されると、切粉の洗浄効果は高まることが確認された。また、条件3〜5の比較から明らかなように、第2微細気泡群15bと第4微細気泡群15dとの間で気泡径に大小差が設定されると、切粉の洗浄効果はさらに高まることが確認された。特に、条件5から明らかなように、小さい平均径の第2微細気泡群15bの割合が50%を超えて増えるほど、切粉の洗浄効果は高まることが確認された。   As a result of observation, as shown in FIG. 3, it was confirmed that the removal of chips was promoted under the conditions 1 to 5 as compared with the comparison condition. It has been found that chip removal is effectively realized when the temperature of the dynamic liquid 22 is set higher than room temperature. In particular, as apparent from the comparison between the condition 1 and the comparison condition, when the liquid temperature TD of the dynamic liquid 22 and the liquid temperature TL of the static liquid 21 are set higher than room temperature, the chip cleaning effect is enhanced That was confirmed. Further, as apparent from the condition 3, when the temperature difference is set between the liquid temperature TD of the dynamic liquid 22 and the liquid temperature TL of the static liquid 21, it has been confirmed that the chip cleaning effect is enhanced. . Further, as apparent from the comparison of the conditions 3 to 5, when the difference in cell diameter is set between the second micro bubble group 15b and the fourth micro bubble group 15d, the washing effect of the chips is further enhanced. That was confirmed. In particular, as apparent from the condition 5, it was confirmed that the chip cleaning effect is enhanced as the proportion of the second micro-bubble group 15b having a small average diameter increases beyond 50%.

図4に示されるように、条件1〜5では比較条件に比べて油の除去は促進されることが確認された。動的液体22の温度が室温よりも高く設定されると、油の除去は効果的に実現されることが理解された。特に、条件1と比較条件との比較から明らかなように、動的液体22の液体温度TDおよび静的液体21の液体温度TLが室温よりも高く設定されると、油の除去は促進されることが確認された。また、条件3から明らかなように、動的液体22の液体温度TDおよび静的液体21の液体温度TLの間に温度差が設定されると、油の除去は促進されることが確認された。また、条件3〜5の比較から明らかなように、第2微細気泡群15bと第4微細気泡群15dとの間で気泡径に大小差が設定されると、油の除去は著しく促進されることが確認された。特に、条件5から明らかなように、小さい平均径の第1微細気泡群15aの割合が50%を超えて増えるほど、油の除去は促進されることが確認された。   As shown in FIG. 4, it was confirmed that the removal of oil was promoted under the conditions 1 to 5 as compared with the comparison condition. It has been found that oil removal is effectively realized when the temperature of the dynamic liquid 22 is set higher than room temperature. In particular, oil removal is promoted when the liquid temperature TD of the dynamic liquid 22 and the liquid temperature TL of the static liquid 21 are set higher than room temperature, as is apparent from the comparison between the condition 1 and the comparison condition. That was confirmed. Further, as apparent from the condition 3, it was confirmed that the oil removal is promoted when the temperature difference is set between the liquid temperature TD of the dynamic liquid 22 and the liquid temperature TL of the static liquid 21. . In addition, as apparent from the comparison of conditions 3 to 5, when the difference in cell diameter is set between the second micro bubble group 15b and the fourth micro bubble group 15d, the removal of oil is significantly promoted. That was confirmed. In particular, as apparent from the condition 5, it was confirmed that the removal of oil is promoted as the proportion of the first micro-bubble group 15a having a small average diameter increases to more than 50%.

15a…第1微細気泡群、15b…第2微細気泡群、15c…第3微細気泡群、15d…第4微細気泡群、21…静的液体、22…動的液体、D1…第1径、D2…第2径、W…対象物(被洗浄物)。   15a: first microbubble group 15b: second microbubble group 15c: third microbubble group 15d: fourth microbubble group 21: static liquid 22: dynamic liquid D1: first diameter D2: second diameter, W: object (object to be cleaned).

Claims (5)

第1微細気泡群を含む静的液体と、
前記第1微細気泡群の平均気泡径に等しい平均気泡径を有する第2微細気泡群を含み、室温よりも高い温度を有して、前記静的液体中に保持される対象物に向かって噴き出される動的液体と、
を有することを特徴とする洗浄液。
A static liquid comprising a first group of fine bubbles,
The second microbubbles group having an average cell diameter equal to the average cell diameter of the first microbubbles group, having a temperature higher than room temperature, and squirting toward the object held in the static liquid Dynamic liquid to be dispensed,
A cleaning solution characterized by having:
請求項1に記載の洗浄液において、前記動的液体の温度は前記静的液体の温度よりも高いことを特徴とする洗浄液。   The cleaning liquid according to claim 1, wherein the temperature of the dynamic liquid is higher than the temperature of the static liquid. 請求項2に記載の洗浄液において、
前記静的液体は、前記第1微細気泡群の平均気泡径から相違する平均気泡径を有する第3微細気泡群をさらに含み、
前記動的液体は、前記第3微細気泡群の平均気泡径に等しい平均気泡径を有する第4微細気泡群をさらに含む
ことを特徴とする洗浄液。
In the cleaning liquid according to claim 2,
The static liquid further includes a third microbubble group having an average cell diameter different from an average cell diameter of the first microbubble group,
The cleaning liquid, wherein the dynamic liquid further includes a fourth microbubbles group having an average cell diameter equal to an average cell diameter of the third microbubbles group.
請求項3に記載の洗浄液において、前記第1微細気泡群および前記第2微細気泡群の平均気泡径は100nm未満であって、前記第3微細気泡群および前記第4微細気泡群の平均気泡径は100nm以上50μm以下であることを特徴とする洗浄液。   4. The cleaning liquid according to claim 3, wherein an average cell diameter of the first microbubbles group and the second microbubbles group is less than 100 nm, and an average cell diameter of the third microbubbles group and the fourth microbubbles group. Is 100 nm or more and 50 μm or less. 請求項4に記載の洗浄液において、前記動的液体中の単位体積あたりで前記第2微細気泡群の気泡数は全気泡数の50%以上であることを特徴とする洗浄液。   5. The cleaning solution according to claim 4, wherein the number of bubbles in the second micro bubble group per unit volume in the dynamic liquid is 50% or more of the total number of bubbles.
JP2017224696A 2017-11-22 2017-11-22 Cleaning liquid Pending JP2019094426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224696A JP2019094426A (en) 2017-11-22 2017-11-22 Cleaning liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224696A JP2019094426A (en) 2017-11-22 2017-11-22 Cleaning liquid

Publications (1)

Publication Number Publication Date
JP2019094426A true JP2019094426A (en) 2019-06-20

Family

ID=66970998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224696A Pending JP2019094426A (en) 2017-11-22 2017-11-22 Cleaning liquid

Country Status (1)

Country Link
JP (1) JP2019094426A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119642A (en) * 2006-11-14 2008-05-29 Sharp Manufacturing System Corp Cleaning method and cleaning apparatus
JP2010165825A (en) * 2009-01-15 2010-07-29 Shibaura Mechatronics Corp Substrate treating device and substrate treating method
JP2011218308A (en) * 2010-04-12 2011-11-04 Asupu:Kk Gas-dissolved liquid generating apparatus and method for generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119642A (en) * 2006-11-14 2008-05-29 Sharp Manufacturing System Corp Cleaning method and cleaning apparatus
JP2010165825A (en) * 2009-01-15 2010-07-29 Shibaura Mechatronics Corp Substrate treating device and substrate treating method
JP2011218308A (en) * 2010-04-12 2011-11-04 Asupu:Kk Gas-dissolved liquid generating apparatus and method for generation

Similar Documents

Publication Publication Date Title
JP6653620B2 (en) Cleaning equipment
JP5836973B2 (en) Improved ultrasonic cleaning method and apparatus
US20110088731A1 (en) Semiconductor substrate cleaning method using bubble/chemical mixed cleaning liquid
JP2011088979A (en) Cleaning liquid, cleaning method, and cleaning liquid production device
JPWO2017149654A1 (en) Gas introduction holding device, gas introduction holding method, and gas discharge head
JP6252926B1 (en) Fine bubble cleaning apparatus and fine bubble cleaning method
JP2654874B2 (en) Substrate cleaning method
JP6653692B2 (en) Cleaning equipment
JP2019094426A (en) Cleaning liquid
JP4841604B2 (en) Fine bubble supply device and liquid processing device
JP2018202350A (en) Cleaning fluid
JP2019094393A (en) Cleaning liquid
JP2019094392A (en) Cleaning liquid
JP2019218562A (en) Cleaning liquid
JP6536884B2 (en) Modification method of metal surface using micro and nano bubble and adhesion method of metal and resin
JP2019094394A (en) Cleaning liquid
JP2019214742A (en) Cleaning fluid
CN113019824B (en) Ultrasonic cavitation-based method and device for modifying surfaces of inner wall and outer wall of cavity
JP2010253373A (en) Gas dissolving apparatus
JP2012106189A (en) Device of generating bubble-containing liquid
JPH02293078A (en) Cleaning method with superfine bubble
JP2018015747A (en) Microbubble washing device
JP2007068591A (en) Bathtub apparatus
JP5295649B2 (en) Cleaning method of fuel injection rail or common rail
JP2009112975A (en) Fine bubble generator and fine bubble generating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220216