JP2019090779A - Method of preparing resin embedded with analysis sample - Google Patents

Method of preparing resin embedded with analysis sample Download PDF

Info

Publication number
JP2019090779A
JP2019090779A JP2018069748A JP2018069748A JP2019090779A JP 2019090779 A JP2019090779 A JP 2019090779A JP 2018069748 A JP2018069748 A JP 2018069748A JP 2018069748 A JP2018069748 A JP 2018069748A JP 2019090779 A JP2019090779 A JP 2019090779A
Authority
JP
Japan
Prior art keywords
sample
granular
resin material
particulate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018069748A
Other languages
Japanese (ja)
Other versions
JP7018805B2 (en
Inventor
正和 木村
Masakazu Kimura
正和 木村
昭弘 麻生
Akihiro Aso
昭弘 麻生
木村 昌弘
Masahiro Kimura
昌弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2019090779A publication Critical patent/JP2019090779A/en
Application granted granted Critical
Publication of JP7018805B2 publication Critical patent/JP7018805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method of preparing a resin embedded with an analysis sample, which allows for sufficiently preventing particle aggregation of a granular sample within a resin material to improve dispersion of the granular sample in the resin material when preparing a resin embedded with a sample from the granular sample and granular resin material.SOLUTION: There is provided a method of preparing a resin embedded with a sample, comprising a granular sample immobilized in a resin material, obtained by embedding a target granular sample, comprising particles having non-uniform diameters and containing a plurality of types of single molecules and/or compounds, in the resin material. The method comprises steps of; pouring a granular sample 2 into a container 1 together with a granular resin material 3; rotating the container 4 having the granular sample 2 and the granular resin material 3 therein and, at the same time, revolving the same in a direction that is the same as or opposite to a rotating direction using a planetary centrifugal mixer, thereby mixing the granular sample 2 with the granular resin material 3 in the container 4; pressuring and heating the granular sample 2 and the granular resin material 3 in the container 4 to melt the granular resin material 3; and curing the melted granular resin material.SELECTED DRAWING: Figure 1

Description

この発明は、分析の対象とする微小な粒状試料を、分析に先立ち、樹脂材料に埋め込んで固定して、分析用試料埋込樹脂を作製する方法に関するものであり、特には、樹脂材料中の粒状試料の分散性の向上を図る技術を提案するものである。   The present invention relates to a method for producing a sample embedding resin for analysis by embedding and fixing a fine particulate sample to be analyzed into a resin material prior to analysis, and in particular, to a method in a resin material A technique for improving the dispersibility of particulate samples is proposed.

たとえば、鉱石、スラグ、汚泥、粉塵もしくは、電気電子機器等のリサイクル原料その他の不均一な組成および粒径の粒子からなる粒状試料の元素含有量、粒度分布、単体分離度などを計測して分析するに際しては、その粒状試料を構成する粒子が微小であることから、分析装置にセットする前に、当該粒状試料を樹脂材料に埋め込んで固定して、試料埋込樹脂を得ることが一般に行われている。なお、このような分析装置の一例として、鉱物解析システム(Mineral Liberation Analyzer、MLA)は、SEM−EDSをベースとして鉱石粒子の解析を行うものであり、特に鉱物資源の分野で用いられている。   For example, measure and analyze the elemental content, particle size distribution, single substance separation degree, etc. of granular samples consisting of particles of non-uniform composition and particle size such as ore, slag, sludge, dust or recycled raw materials such as electric and electronic equipment Because the particles that make up the particulate sample are so small, it is common practice to embed and fix the particulate sample in a resin material to obtain a sample-embedded resin before setting it in the analyzer. ing. As an example of such an analyzer, a mineral analysis system (Mineral Liberation Analyzer, MLA) analyzes ore particles based on SEM-EDS, and is used particularly in the field of mineral resources.

かかる試料埋込樹脂では、分析精度を高めるため、粒状試料が樹脂材料中に十分に分散し、分離偏析がない代表組成になっていることが求められる。
それゆえに従来は、試料埋込樹脂を作製する場合、はじめに、粒状試料を液体状樹脂材料と混合させ、それにより得られる混合物に対して、手作業によるかき混ぜや、超音波撹拌機での容器内の攪拌等を十分に行った後、該混合物を大気中で加熱し、そこに含まれる液体状樹脂材料を硬化させることとしていた。
In such a sample-embedded resin, in order to improve analysis accuracy, it is required that the particulate sample be sufficiently dispersed in the resin material and have a representative composition free from separation and segregation.
Therefore, conventionally, when preparing a sample embedding resin, first, a granular sample is mixed with a liquid resin material, and the resulting mixture is manually stirred or in a container with an ultrasonic stirrer. The mixture was heated in the air to cure the liquid resin material contained therein.

ここで、粒状試料は特に鉱石粒子からなるものでは、その粒子の粒径が不均一であり、また多様な金属やその化合物等を含むことから、このような粒状試料を分析の対象とする場合で液体状樹脂材料を用いると、液体状樹脂材料の硬化が完了するまでの間に、液体状樹脂材料中で沈降する粒状試料の各粒子のその沈降速度に差が生じる。そしてこのことは、液体状樹脂材料の硬化後に、樹脂材料中の粒状試料の分散性を低下させ、試料埋込樹脂における粒状試料の分離偏析を生じさせるという問題がある。   Here, when the particulate sample is particularly composed of ore particles, the particle size of the particle is nonuniform, and various particulate metals, compounds thereof and the like are included. When the liquid resin material is used in step (d), a difference occurs in the sedimentation speed of each particle of the granular sample which settles in the liquid resin material until the curing of the liquid resin material is completed. And this has the problem that the dispersibility of the granular sample in a resin material is reduced after hardening of a liquid resin material, and the separation segregation of the granular sample in sample embedding resin arises.

この問題に対し、特許文献1には、「粒状試料が樹脂に包埋されてなる樹脂包埋試料の作製方法であって、前記粒状試料と粒状のペレット用樹脂との混合物を固形化して、ペレット成形体を得る固形化工程と、前記ペレット成形体に含まれる前記ペレット用樹脂を溶融固化させて、固化ペレットを得る溶融固化工程と、を有することを特徴とする樹脂包埋試料の作製方法」が提案されている。そして、これによれば、「試料作製時に、試料に含まれる鉱石粒子の比重差に起因する鉱物の存在状態の偏りを生じさせず、かつ分析試料数が増える等の分析時の負担を軽減できる樹脂包埋試料およびその作製方法を提供することができる」とされている。   In order to solve this problem, Patent Document 1 describes “A method of preparing a resin-embedded sample in which a granular sample is embedded in a resin, and solidifying the mixture of the granular sample and the resin for pelletizing the pellet, A method for producing a resin-embedded sample, comprising: a solidification step for obtaining a pellet molded body; and a melt solidification step for solidifying the resin for pellet contained in the pellet molded body to obtain solidified pellets. Is proposed. And, according to this, “when preparing a sample, it is possible to reduce the burden of analysis such as increase in the number of analysis samples, without causing a bias of the existence state of minerals due to the specific gravity difference of ore particles contained in the sample). It can be said that the resin-embedded sample and the method for producing the same can be provided.

特開2016−50918号公報JP, 2016-50918, A

ところで、樹脂材料中の粒状試料の分散性が低下する他の要因としては、粒状試料の微小な粒子で生じ得る粒子どうしの凝集がある。粒子の凝集が十分に除去されずに樹脂材料中に粒状試料が固定されると、これを分析装置で分析した際に、分析装置が凝集粒子を一個の粒子として誤認することに起因する分析精度の低下が否めない。
特許文献1に記載された方法では、液体状樹脂材料を用いた場合の各粒子の沈降速度の差に起因する分散性の低下は防止できるものの、このような粒子の凝集を抑制することはできないので、分散性向上の観点から更なる改善の余地があるといえる。
By the way, as another factor that the dispersibility of the particulate sample in the resin material is lowered, there is aggregation of particles which can be generated by the fine particles of the particulate sample. When the granular sample is fixed in the resin material without sufficient removal of particle aggregation, the analysis accuracy caused by the analysis device misidentifying the aggregated particles as one particle when this is analyzed by the analysis device I can not deny the decline of
According to the method described in Patent Document 1, although it is possible to prevent the decrease in dispersibility due to the difference in sedimentation velocity of each particle when using a liquid resin material, such aggregation of particles can not be suppressed. Therefore, it can be said that there is room for further improvement from the viewpoint of improving the dispersibility.

この発明は、従来技術が抱えるこのような問題に対処することを課題とするものであり、その目的は、粒状試料および粒状樹脂材料から試料埋込樹脂を作製するに当り、樹脂材料中の粒状試料の粒子の凝集を十分に抑制し、粒状試料の分散性を向上させることのできる分析用試料埋込樹脂の作製方法を提供することにある。   An object of the present invention is to address such problems in the prior art, and it is an object of the present invention to manufacture a sample embedding resin from a granular sample and a granular resin material. It is an object of the present invention to provide a method for producing a sample embedding resin for analysis which can sufficiently suppress the aggregation of particles of a sample and improve the dispersibility of a particulate sample.

発明者は鋭意検討の結果、粒状試料および粒状樹脂材料の攪拌に自転公転撹拌機を用いることとし、その攪拌後に粒状試料および粒状樹脂材料を加圧・加熱することにより、粒子の凝集が効果的に抑制されて、樹脂材料中の粒状試料の分散性を有効に向上でき、分離偏析がない代表組成が得られることを見出した。これは、粒状試料および粒状樹脂材料を投入した容器を自転させながら公転させることで、自転公転撹拌機によって粒状試料および粒状樹脂材料の粒子どうしが混練されて、粒状試料の粒子表面に付着した他の粒子が剥ぎ取られること等によるものと考えられるが、この発明は、このような理論に限定されるものではない。   As a result of intensive investigations, the inventor decided to use a rotation-revolution stirrer for stirring the granular sample and the granular resin material, and after the stirring, pressurizing and heating the granular sample and the granular resin material, the aggregation of the particles was effective. It has been found that the dispersibility of the granular sample in the resin material can be effectively improved, and a representative composition free from segregation and segregation can be obtained. This is because the granular sample and the particles of the granular resin material are kneaded by the rotation and revolution stirrer and the particles adhere to the surface of the particles of the granular sample by revolving the container into which the granular sample and the granular resin material are charged while rotating. It is considered that the particles of P. are exfoliated, etc., but the present invention is not limited to such theory.

かかる知見に基き、この発明の分析用試料埋込樹脂の作製方法は、粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、容器内に、前記粒状試料を粒状樹脂材料とともに投入し、粒状試料および粒状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転とは逆の回転方向に公転させることにより、容器内の粒状試料および粒状樹脂材料を攪拌し、その後、容器内の粒状試料および粒状樹脂材料を加圧するとともに加熱し、当該粒状樹脂材料を溶融させた後に硬化させることにある。   Based on such findings, the method for producing a sample embedding resin for analysis of the present invention comprises embedding a particulate sample to be analyzed consisting of particles having nonuniform particle sizes and containing plural kinds of single substances and / or compounds in a resin material. A method for producing a sample-embedded resin in which the particulate sample is fixed in the resin material, wherein the particulate sample and the particulate resin material are charged into a container, and the container containing the particulate sample and the particulate resin material is prepared. The granular sample and the granular resin material in the container are agitated by revolving in a rotation direction opposite to the rotation while rotating with a rotation-revolution stirrer, and then the granular sample and the granular resin material in the container are pressurized Heating and melting and then curing the particulate resin material.

また、この発明の分析用試料埋込樹脂の作製方法は、粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、容器内に、前記粒状試料を粒状樹脂材料とともに投入し、粒状試料および粒状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転と同じ回転方向に公転させることにより、容器内の粒状試料および粒状樹脂材料を攪拌し、その後、容器内の粒状試料および粒状樹脂材料を加圧するとともに加熱し、当該粒状樹脂材料を溶融させた後に硬化させることにある。   Further, according to the method for producing a sample embedding resin for analysis of the present invention, a particulate sample to be analyzed which is composed of particles having nonuniform particle sizes and which contains plural kinds of single substances and / or compounds is embedded in a resin material A method for producing a sample-embedded resin in which the particulate sample is fixed in a material, wherein the particulate sample and the particulate resin material are charged into a container, and the container containing the particulate sample and the particulate resin material is The granular sample and the granular resin material in the container are agitated by revolving in the same rotational direction as the rotation while rotating with a stirrer, and then the granular sample and the granular resin material in the container are pressurized and heated, It is to cure after melting the granular resin material.

自転公転撹拌機による攪拌時の公転速度は、400rpm〜2000rpmとすることが好ましい。   It is preferable that the revolution speed at the time of stirring by a rotation revolution stirrer be 400 rpm to 2000 rpm.

この発明の分析用試料埋込樹脂の作製方法では、自転公転撹拌機による攪拌の少なくとも終期段階を、真空雰囲気で行うことが好ましい。
また、この発明の分析用試料埋込樹脂の作製方法では、自転公転撹拌機による攪拌の初期段階を、大気雰囲気で行うことが好ましい。
In the method for producing a sample embedding resin for analysis of the present invention, it is preferable to perform at least the final stage of stirring by the rotation and revolution stirrer in a vacuum atmosphere.
Further, in the method for producing a sample embedding resin for analysis of the present invention, it is preferable to carry out the initial stage of stirring by the rotation and revolution stirrer in an air atmosphere.

自転公転撹拌機による攪拌時間は、1分〜30分とすることが効果的である。   It is effective to set the stirring time by the rotation revolution stirrer to 1 minute to 30 minutes.

なお、この発明の分析用試料埋込樹脂の作製方法では、粒状試料および粒状樹脂材料の加圧・加熱を同時に行うことができる。
この場合、粒状試料および粒状樹脂材料の加圧・加熱時間を、10分〜20分とすることが好ましい。
Incidentally, in the method for producing a sample embedding resin for analysis of the present invention, it is possible to simultaneously press and heat the particulate sample and the particulate resin material.
In this case, it is preferable to set the pressure and heating time of the particulate sample and the particulate resin material to 10 minutes to 20 minutes.

この発明の分析用試料埋込樹脂の作製方法では、粒状試料および粒状樹脂材料を加圧する際に、粒状試料および粒状樹脂材料に加える圧力を、7MPa〜35MPa、特に20MPa〜30MPaとすることが好ましい。
また、この発明の分析用試料埋込樹脂の作製方法では、粒状試料および粒状樹脂材料を加熱する際に、粒状試料および粒状樹脂材料の温度を、50℃〜220℃、特に100℃〜200℃まで上昇させることが好ましい。
In the method for producing a sample embedding resin for analysis of the present invention, when pressing the particulate sample and the particulate resin material, the pressure applied to the particulate sample and the particulate resin material is preferably 7 MPa to 35 MPa, particularly 20 MPa to 30 MPa .
Further, in the method for producing a sample embedding resin for analysis of the present invention, when heating the particulate sample and the particulate resin material, the temperature of the particulate sample and the particulate resin material is 50 ° C to 220 ° C, particularly 100 ° C to 200 ° C. It is preferable to raise it.

この発明の分析用試料埋込樹脂の作製方法では、前記粒状試料を構成する粒子を鉱石粒子とすることができる。   In the method for producing a sample embedding resin for analysis of the present invention, particles constituting the particulate sample can be used as ore particles.

この発明の分析用試料埋込樹脂の作製方法では、自転公転撹拌機で自転させる前記容器として、粒状試料および粒状樹脂材料入りの容器が複数個配置されたものを用いることができる。   In the method for producing a sample embedding resin for analysis of the present invention, as the container to be rotated by a rotation and revolution stirrer, a container in which a plurality of containers each containing a granular sample and a granular resin material are disposed can be used.

この発明の分析用試料埋込樹脂の作製方法によれば、粒状試料および粒状樹脂材料入りの容器を、自転公転撹拌機で自転させつつ公転させて攪拌し、その後、容器内の粒状試料および粒状樹脂材料を加圧するとともに加熱して、当該粒状樹脂材料を溶融・硬化させることにより、樹脂材料中の粒状試料の粒子の凝集が十分に抑制され、それにより、樹脂材料中の粒状試料の分散性を向上させることができる。   According to the method of preparing the sample embedding resin for analysis of the present invention, the container containing the granular sample and the granular resin material is revolved and stirred while being rotated by the rotation revolution stirrer, and then the granular sample and the particles in the container are stirred. By pressing and heating the resin material and melting and curing the particulate resin material, the aggregation of the particles of the particulate sample in the resin material is sufficiently suppressed, whereby the dispersibility of the particulate sample in the resin material is achieved. Can be improved.

この発明の一の実施形態で粒状試料および粒状樹脂材料入りの容器を自転させつつ公転させる際の様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode at the time of making it revolve, rotating a container containing a granular sample and a granular resin material by one Embodiment of this invention. 他の実施形態で粒状試料および粒状樹脂材料入りの容器を自転させつつ公転させる際の様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode at the time of making it revolve, rotating a container containing a granular sample and a granular resin material by other embodiment. さらに他の実施形態で粒状試料および粒状樹脂材料入りの容器を複数個配置した容器を自転させつつ公転させる際の様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode at the time of making it revolve, rotating the container which arrange | positioned two or more containers containing a granular sample and a granular resin material by other embodiment.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係る分析用試料埋込樹脂の作製方法では、粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製するに当り、容器内に、前記粒状試料を粒状樹脂材料とともに投入し、次いで、粒状試料および粒状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転とは逆の回転方向に、又は該自転と同じ回転方向に公転させることにより、容器内の粒状試料および粒状樹脂材料を攪拌し、その後、容器内の粒状試料および粒状樹脂材料を加圧するとともに加熱し、当該粒状樹脂材料を溶融させた後に硬化させる。
Hereinafter, embodiments of the present invention will be described in detail.
In the method of preparing a sample embedding resin for analysis according to one embodiment of the present invention, a particulate sample to be analyzed which is composed of particles having nonuniform particle sizes and which contains plural kinds of single substances and / or compounds is embedded in a resin material. In preparing the sample embedding resin in which the particulate sample is fixed in the resin material, the particulate sample is charged together with the particulate resin material into a container, and then the container containing the particulate sample and the particulate resin material The granular sample and the granular resin material in the container are agitated by causing the granular sample and the granular resin material in the container to revolve in the opposite rotation direction to the rotation or the same rotation direction while rotating the rotation with the rotation revolution stirrer. The particulate sample and the particulate resin material are pressurized and heated to melt and then cure the particulate resin material.

(粒状試料)
分析の対象とする粒状試料は、鉱石、スラグ、汚泥、粉塵もしくは、電気電子機器を含むそのリサイクル原料等に対して所定の処理を施すこと等によって、比較的小さい粒子となったものとすることができる。このような粒状試料は通常、組成および粒径の意図的な均一化が行われていないので、組成が異なるとともに粒径も異なる不均一な多種類の粒子からなる。
(Granular sample)
Particulate samples to be analyzed shall be relatively small particles by subjecting ore, slag, sludge, dust or their recycled materials including electric and electronic equipment to predetermined treatment etc. Can. Such granular samples are usually composed of many kinds of nonuniform particles having different compositions and different particle sizes, since intentional equalization of composition and particle size is not performed.

なかでも、鉱石粒子からなる粒状試料を対象とする場合、このような鉱石粒子は銅鉱石を含むことがあり、これには、たとえば、輝銅鉱、銅藍、黄銅鉱、班銅鉱、硫砒銅鉱、ブロシャン銅鉱等が含まれ得る。銅鉱石以外にも黄鉄鉱、磁鉄鉱、ケイ酸塩鉱物、輝水鉛鉱、金粒子等も含まれ得る。なおケイ酸塩鉱物としては、正長石、曹長石、斜長石、白雲母、黒雲母、石英等がある。   Among them, when targeting granular samples consisting of ore particles, such ore particles may include copper ore, and examples of such ore particles include copper ore, copper ore, chalcopyrite, copper ore, arsenopyrite, etc. Broshan copper ore may be included. Besides copper ore, pyrite, magnetite, silicate mineral, molybdenite, gold particles and the like may be included. Examples of silicate minerals include orthoclase, albite, plagioclase, muscovite, biotite and quartz.

スラグからなる粒状試料を対象とする場合、スラグ自体がSiO2、CaO、Al23、FeO及びFe34等を含む複雑な組成を持ち、さらにスラグ中にマット粒子やメタル粒子を含む場合がある。
電気電子機器からなる粒状試料の場合、基板に含まれる樹脂部や回路を構成する金属部、難燃剤部等の様々な組成を持つ粒子が存在する。
汚泥、粉塵に至っては単一の組成となっている場合はまず無い。
When targeting granular samples made of slag, the slag itself has a complicated composition including SiO 2 , CaO, Al 2 O 3 , FeO, Fe 3 O 4 and the like, and further contains matte particles and metal particles in the slag. There is a case.
In the case of a granular sample composed of an electric and electronic device, particles having various compositions such as a resin part contained in a substrate, a metal part constituting a circuit, and a flame retardant part are present.
In the case of sludge and dust, it is unlikely that they have a single composition.

粒状試料を構成する粒子の粒径は、たとえば1μm〜700μm、典型的には20μm〜200μmの範囲で、比較的全体的に分布していて不均一である。なお、粒度分布計で測定できる粒度は、たとえば0.243μm〜2000μmである場合があるが、上述したような粒状試料の粒径はこの範囲で不均一に分布している。   The particle size of the particles constituting the particulate sample is relatively uniformly distributed and nonuniform, for example, in the range of 1 μm to 700 μm, typically 20 μm to 200 μm. In addition, although the particle size which can be measured with a particle size distribution analyzer may be 0.243 micrometers-2000 micrometers, for example, the particle size of the above-mentioned granular sample is distributed unevenly in this range.

(樹脂材料)
上述した粒状試料を埋め込んで固定するための樹脂材料としては、後述する容器への投入の際および攪拌の際に粒状に維持でき、かつその後に、加圧・加熱によって硬化させることができれば様々なものを用いることができるが、たとえば、フェノール樹脂、エポキシ樹脂、アクリル樹脂等を挙げることができる。なかでも、フェノール樹脂は、フィラーがないので好ましい。
粒状樹脂材料の粒子の粒径としては、たとえば数μm〜数百μmである。
(Resin material)
As the resin material for embedding and fixing the above-mentioned granular sample, various materials can be used if they can be maintained in granular form at the time of charging into a container to be described later and at stirring, and can be cured by pressure and heating thereafter. Although a thing can be used, a phenol resin, an epoxy resin, an acrylic resin etc. can be mentioned, for example. Among them, a phenol resin is preferable because it has no filler.
The particle size of the particulate resin material is, for example, several μm to several hundreds μm.

(分析用試料埋込樹脂の作製方法)
上記の粒状試料および樹脂材料にて分析用の試料埋込樹脂を作製するには、はじめに、図1及び2に例示するような底付き円筒状等の所定の容器1に、粒状試料2を粒状樹脂材料3とともに投入する。この実施形態では、容器1には、粒状試料2および粒状樹脂材料3のみを投入することができ、グラファイト等をさらに投入することを要しない。これは、後述するように自転公転撹拌機により粒状樹脂材料3中に粒状試料2の粒子の凝集を十分有効に取り除くことができるからである。但し、他の実施形態では、粒状試料2および粒状樹脂材料3以外のグラファイト等の材料を投入することもある。
(Preparation method of sample embedding resin for analysis)
In order to produce a sample-embedded resin for analysis using the above-mentioned granular sample and resin material, first, the granular sample 2 is granulated in a predetermined container 1 such as a bottomed cylindrical shape as illustrated in FIGS. Charge with resin material 3 In this embodiment, only the granular sample 2 and the granular resin material 3 can be charged into the container 1, and it is not necessary to further charge the graphite or the like. This is because the aggregation of the particles of the granular sample 2 can be sufficiently effectively removed in the granular resin material 3 by the rotation and revolution stirrer as described later. However, in other embodiments, materials such as graphite other than the particulate sample 2 and the particulate resin material 3 may be introduced.

次いで、粒状試料および粒状樹脂材料入りの容器4を、所定の自転公転撹拌機にセットし、当該自転公転撹拌機の機能に基き、図1及び2のそれぞれに矢印で示すように、粒状試料および粒状樹脂材料入りの容器4の自転および公転を同時に行って、容器1内の粒状試料2および粒状樹脂材料3を攪拌する。より詳細には、底付き円筒状の容器1の底部を斜め下側に向けてその中心軸を傾斜させて配置し、その中心軸を自転軸として粒状試料および粒状樹脂材料入りの容器4を自転させるとともに、容器1から距離をおいて自転軸が所定の角度θで傾斜するように公転軸を設定し、その公転軸の周りに粒状試料および粒状樹脂材料入りの容器4を公転させる。   Next, the container 4 containing the granular sample and the granular resin material is set in a predetermined rotation revolution stirrer, and based on the function of the rotation revolution stirrer, as shown by the arrows in each of FIGS. The rotation and revolution of the container 4 containing the granular resin material are simultaneously performed to stir the granular sample 2 and the granular resin material 3 in the container 1. More specifically, the bottom portion of the bottomed cylindrical container 1 is disposed obliquely downward with its central axis inclined, and the central axis is the rotation axis of the container 4 containing the granular sample and the granular resin material. At the same time, the revolution axis is set so that the rotation axis is inclined at a predetermined angle θ at a distance from the container 1, and the container 4 containing the particulate sample and the particulate resin material is revolved around the revolution axis.

これにより、粒状試料2および粒状樹脂材料3の粒子どうしが混練されて、粒状試料2の凝集した粒子の表面に付着している他の粒子が剥ぎ取られるので、粒状試料2の粒子の凝集を効果的に除去することができる。またこの際に、粒状試料2および粒状樹脂材料3が十分に混ぜ合わされるので、容器1内での粒状試料2の偏りが解消される。それらの結果として、作製される試料埋込樹脂における粒状樹脂材料3中の粒状試料2の分散性を大きく高めることができる。   As a result, the particles of the particulate sample 2 and the particulate resin material 3 are kneaded, and the other particles adhering to the surface of the aggregated particles of the particulate sample 2 are peeled off, so that the particles of the particulate sample 2 are aggregated. It can be removed effectively. At this time, since the particulate sample 2 and the particulate resin material 3 are sufficiently mixed, the deviation of the particulate sample 2 in the container 1 is eliminated. As a result, the dispersibility of the particulate sample 2 in the particulate resin material 3 in the sample embedding resin to be produced can be greatly enhanced.

なお、自転公転撹拌機による攪拌に加えて、その前もしくは後に、それ以外の、たとえば手作業等による攪拌を行うことも可能ではあるが、作業工数の低減、作業時間の短縮の観点からは、自転公転撹拌機以外の攪拌は行わないことが好ましい。多くの場合は、自転公転撹拌機による攪拌で十分に分散性の向上を図ることができる。   In addition to the stirring by the rotation / revolution stirrer, it is also possible to perform stirring by, for example, manual work before or after that, but from the viewpoint of reduction of work man-hours and shortening of work time, It is preferable not to perform stirring other than the rotation revolution stirrer. In many cases, the dispersibility can be sufficiently improved by stirring with a rotation revolution stirrer.

自転公転撹拌機としては、粒状試料および粒状樹脂材料入りの容器4のこのような自転および公転を行い得るものであれば特に問わず、たとえば公知のものを用いることができる。自転公転撹拌機での公転と自転は、図1に示すように、互いに逆の回転方向とすることができ、あるいは図2に示すように、互いに同じ回転方向とすることができる。つまり、公転と自転の相対的な回転方向は特に問わず、使用する自転公転撹拌機や、粒状試料2ないし粒状樹脂材料3の状態等に応じて適宜設定することができる。   As the revolution-revolution stirrer, for example, known ones can be used without particular limitation as long as they can perform such rotation and revolution of the container 4 containing the granular sample and the granular resin material. The revolution and rotation in the rotation revolution stirrer can be in mutually opposite rotational directions as shown in FIG. 1 or can be in the same rotational direction as shown in FIG. That is, the relative rotational direction of revolution and rotation is not particularly limited, and can be appropriately set according to the rotation revolution stirrer used, the state of the granular sample 2 to the granular resin material 3, and the like.

また図3に示すように、粒状試料および粒状樹脂材料入りの容器4を複数個配置した容器4aを自転及び公転させることもできる。自転公転撹拌機によってはテーブルとも称され得るこの容器4aも、粒状試料および粒状樹脂材料入りの容器とみなすことができる。この場合、容器4aの中心軸を自転軸として容器4aを自転させるとともに、該自転軸が所定の角度θで傾斜するように公転軸を設定し、その公転軸の周りに容器4aを公転させる。図3に示すところでは、容器4aの中心軸の周囲に、粒状試料および粒状樹脂材料入りの容器4を互いに等間隔で四個配置しているが、容器4a内での粒状試料および粒状樹脂材料入りの容器4の配置態様や個数はこれに限定されるものではない。このように粒状試料および粒状樹脂材料入りの容器4を複数個配置した容器4aを自転及び公転させることにより、一度で複数個の粒状試料および粒状樹脂材料入りの容器4の粒状試料2を分散させることができるので、作業効率を大きく向上させることができる。   Further, as shown in FIG. 3, it is also possible to rotate and revolve a container 4a in which a plurality of containers 4 containing granular samples and granular resin materials are disposed. This container 4a, which may also be referred to as a table by means of a rotation-revolution stirrer, can also be regarded as a container containing a granular sample and a granular resin material. In this case, the container 4a is rotated with the central axis of the container 4a as the rotation axis, and the revolution axis is set so that the rotation axis is inclined at a predetermined angle θ, and the container 4a is revolved around the revolution axis. In the example shown in FIG. 3, four containers 4 containing the granular sample and the granular resin material are arranged at equal intervals from one another around the central axis of the container 4a. However, the granular sample and the granular resin material in the container 4a are The arrangement aspect and the number of containers 4 are not limited to this. Thus, by rotating and revolving the container 4a in which a plurality of containers 4 containing granular samples and granular resin materials are arranged, the plural granular samples and the granular samples 2 of the container 4 containing granular resin materials are dispersed at one time The work efficiency can be greatly improved.

ここで、自転公転撹拌機による攪拌時の公転速度は、400rpm〜2000rpmとすることが好ましい。公転速度が遅すぎる場合、凝集粒ができることが懸念され、この一方で、公転速度が速すぎる場合、摩擦により粒が摩耗するおそれがある。粒状試料2と粒状樹脂材料3の粒径にもよるが、後述するように最初の大気雰囲気下では比較的遅い公転速度とし、粒状試料2と粒状樹脂材料3とがある程度混合した後に、その後の真空雰囲気下ではそれよりも速い公転速度とすることが好適である。この観点から、最初は400rpm〜2000rpmの範囲内の所定の公転速度とし、その後は最初の当該公転速度より速くすることを前提として1000rpm〜2000rpmの範囲内の公転速度とすることが有効である。
またここで、自転公転撹拌機による攪拌時の自転速度は、公転速度に対して0.4〜0.6倍とすることが好適である。自転速度が遅すぎると、凝集粒が存在することが考えられる。一方、自転速度が速すぎると、粒子同士が摩耗して本来の粒度とは異なってしまう懸念がある。
なお、上述した公転速度および自転速度は、自転公転撹拌機で設定可能である。
Here, it is preferable to set the revolution speed at the time of stirring by the rotation revolution stirrer to 400 rpm to 2000 rpm. If the revolution speed is too slow, there is a concern that agglomerated particles may be formed, and on the other hand, if the revolution speed is too fast, there is a risk that the grains will be worn due to friction. Although it depends on the particle size of the granular sample 2 and the granular resin material 3, as described later, the revolution speed is relatively slow in the first air atmosphere, and after the granular sample 2 and the granular resin material 3 are mixed to some extent, Under a vacuum atmosphere, it is preferable to make the revolution speed faster than that. From this point of view, it is effective to set the revolution speed in the range of 400 rpm to 2000 rpm at first, and thereafter set the revolution speed in the range of 1000 rpm to 2000 rpm on the premise that the revolution speed is higher than the first revolution speed.
Here, it is preferable that the rotation speed at the time of stirring by the rotation revolution stirrer be 0.4 to 0.6 times the revolution speed. If the rotation speed is too slow, it is considered that agglomerated particles are present. On the other hand, if the rotation speed is too fast, there is a concern that the particles may be worn away and differ from the original particle size.
In addition, the revolution speed and rotation speed which were mentioned above can be set with a rotation revolution stirrer.

自転公転撹拌機による攪拌時の自転軸の、公転軸に対する角度θは、好ましくは30°〜60°、より好ましくは40°〜50°として、自転軸を公転軸から傾斜させて攪拌を行うことができる。自転軸の傾斜角度θが小さいと、比重の大きいものが容器底部に沈降しやすい状態となり、また傾斜角度θが大きいと容器から樹脂がこぼれ、必要な樹脂量を容器に充填できない状態となる可能性がある。傾斜角度θは、材料の性質に合わせて適宜設定することができる。   The angle θ of the rotation axis during stirring by the rotation rotation stirrer is preferably 30 ° to 60 °, more preferably 40 ° to 50 °, and the rotation axis is inclined from the rotation axis to perform stirring Can. If the inclination angle θ of the rotation shaft is small, the one with a large specific gravity is likely to settle to the bottom of the container, and if the inclination angle θ is large, the resin may spill out of the container and a necessary resin amount can not be filled There is sex. The inclination angle θ can be appropriately set in accordance with the property of the material.

ところで、上述したような自転公転撹拌機による攪拌は、粒状試料および粒状樹脂材料入りの容器4の周囲の雰囲気を真空雰囲気として行うことが、粒子間の隙間を小さくできる点で好適である。   By the way, it is preferable to perform the above-mentioned stirring by the rotation / revolution stirrer with the atmosphere around the container 4 containing the granular sample and the granular resin material as a vacuum atmosphere in that the gap between the particles can be reduced.

但し、攪拌の初期段階から、自転公転撹拌機内の粒状試料および粒状樹脂材料入りの容器4の周囲を真空雰囲気とすれば、容器1の開口の表面近傍に存在する粒状試料2が飛散することが懸念される。これを防止するため、攪拌の初期段階は、大気雰囲気として重力の作用の下で攪拌を行い、その後、真空雰囲気に切り替えてさらに攪拌することが好適である。つまり、攪拌の初期段階は大気雰囲気とし、その後の少なくとも終期段階は真空雰囲気とすることが好ましい。
ここで攪拌の初期段階は、自転公転撹拌機による攪拌の開始時点から、30秒〜60秒が経過したときまでとすることができる。その後に真空雰囲気とする時間は、60秒〜30分とすることができる。
However, if the atmosphere around the container 4 containing the granular sample and the granular resin material in the rotation and revolution stirrer is set to a vacuum atmosphere from the initial stage of stirring, the granular sample 2 existing near the surface of the opening of the container 1 may be scattered I am concerned. In order to prevent this, in the initial stage of stirring, it is preferable to perform stirring under the action of gravity as an air atmosphere, and then switch to a vacuum atmosphere and further stir. That is, it is preferable that the initial stage of stirring be in the air, and at least the final stage thereafter be in the vacuum.
Here, the initial stage of the stirring can be from when the stirring by the rotation and revolution stirrer starts to when 30 seconds to 60 seconds have elapsed. The time for which a vacuum atmosphere is subsequently applied can be 60 seconds to 30 minutes.

自転公転撹拌機による攪拌時間は、上述したように途中で大気雰囲気から真空雰囲気に切り替える場合はそれらの合計の時間として、好ましくは1分〜30分、より好ましくは5分〜15分とすることができる。攪拌時間が短い場合は、粒状樹脂材料3中での粒状試料2の分散が不十分となることが懸念され、この一方で、攪拌時間が長すぎると、粒状樹脂材料3中で粒状試料2の粒子が相互に衝突することに起因する粒子の破壊が生じるおそれがある。   As described above, when switching from the atmospheric atmosphere to a vacuum atmosphere during the stirring time by the revolution revolution stirrer, the total time of those is preferably 1 minute to 30 minutes, more preferably 5 minutes to 15 minutes. Can. If the stirring time is short, there is a concern that the dispersion of the granular sample 2 in the granular resin material 3 will be insufficient. On the other hand, if the stirring time is too long, the granular sample 2 is Destruction of the particles may occur due to the particles colliding with one another.

その後、容器1内の粒状試料2および粒状樹脂材料3を加圧するとともに加熱し、当該粒状樹脂材料を成形しつつ溶融させた後に硬化させる。この時、加圧・加熱するために容器1から粒状試料2および粒状樹脂材料3を取り出す必要があるが、できるだけ混合状態を保持したまま加圧装置に導入する方が望ましいので、例えば、自転公転撹拌機にセットする容器1には、粒状試料2や粒状樹脂材料3を入れる前に予めポリ塩化ビニリデン等のシートを敷いておき、その上に粒状試料2と粒状樹脂材料3を入れたうえで自転公転撹拌機で混合するようにしておいてもよい。そうすると、混合後にポリ塩化ビニリデン等のシートで包んで取り出し、そのまま加圧加熱装置にセットできる。   Thereafter, the particulate sample 2 and the particulate resin material 3 in the container 1 are pressurized and heated, and the particulate resin material is melted while being molded and then cured. At this time, although it is necessary to take out the granular sample 2 and the granular resin material 3 from the container 1 in order to pressurize and heat, it is preferable to introduce the granular sample 2 and the granular resin material 3 while maintaining the mixed state as much as possible. In the container 1 set in the stirrer, a sheet of polyvinylidene chloride or the like is spread in advance before putting the granular sample 2 or the granular resin material 3 and the granular sample 2 and the granular resin material 3 are put thereon You may make it mix by a rotation revolution stirrer. Then, after mixing, the sheet can be wrapped in a sheet of polyvinylidene chloride or the like, taken out, and set as it is in the pressure heating apparatus.

ここでは、たとえば公知の熱間埋込装置を用いることができる。この場合、一般に、粒状試料2および粒状樹脂材料3の加圧と加熱が同時に行われることになるところ、その加熱および加圧の開始から終了までの時間は、好ましくは1分〜30分、より好ましくは10分〜20分とする。この加圧・加熱時間が長すぎると、粒状樹脂材料3が硬化する前の溶融時に、粒状試料2の各粒子の速度の異なる沈降が生じる懸念があり、この一方で、加圧・加熱時間が短すぎると、平面研磨時に試料が剥がれる可能性がある。
但し、たとえば冷間成形および加熱をこの順序で又はこの逆の順序で行って、加圧と加熱を別々にしてもよい。
Here, for example, a known hot embedding device can be used. In this case, generally, pressurization and heating of the granular sample 2 and the granular resin material 3 are performed simultaneously, and the time from the start to the end of the heating and pressurization is preferably 1 minute to 30 minutes, Preferably, it is 10 minutes to 20 minutes. If this pressure / heating time is too long, there is a concern that different speeds of the particles of the granular sample 2 may be caused during melting before the granular resin material 3 is cured, while the pressure / heating time is If the length is too short, the sample may be peeled off during planar polishing.
However, for example, cold forming and heating may be performed in this order or in the reverse order to separate pressurization and heating.

粒状試料2および粒状樹脂材料3を加圧する際に、それらの粒状試料2および粒状樹脂材料3に加える圧力は、7MPa〜35MPaとすることが好ましく、さらに20MPa〜30MPaとすることがより一層好ましい。このときの加圧力が小さすぎると、樹脂材料が十分に成形されず、試料埋込樹脂が作製できないか又はその後の取扱い時や分析時に破壊する懸念がある。一方、加圧力が大きすぎると、粒状試料2の粒子への損傷のおそれがある。   When the granular sample 2 and the granular resin material 3 are pressurized, the pressure applied to the granular sample 2 and the granular resin material 3 is preferably 7 MPa to 35 MPa, and more preferably 20 MPa to 30 MPa. If the pressing force at this time is too small, the resin material may not be molded sufficiently, and there is a concern that the sample embedding resin can not be produced or is broken at the time of subsequent handling or analysis. On the other hand, if the pressing force is too large, there is a possibility that the particles of the particulate sample 2 may be damaged.

粒状試料2および粒状樹脂材料3を加熱する際に、粒状試料2および粒状樹脂材料3は、50℃〜220℃、さらには100℃〜200℃とすることが好適である。この最高到達温度が低すぎると、粒状樹脂材料3の溶融および硬化が有効に行われないことがあり、また高すぎると、試料の性状が変化する可能性がある。
なお粒状試料2および粒状樹脂材料3の温度を上昇させる際には、1℃上昇させる度に加減するといったように細かい調整が望ましい。一般に昇温速度や冷却速度は、粒状試料2および粒状樹脂材料3の種類や体積によって変化させる。
When heating the granular sample 2 and the granular resin material 3, it is preferable to set the granular sample 2 and the granular resin material 3 to 50 ° C. to 220 ° C., and more preferably 100 ° C. to 200 ° C. If the maximum temperature reached is too low, melting and curing of the particulate resin material 3 may not be effectively performed, and if too high, the properties of the sample may change.
In addition, when raising the temperature of the granular sample 2 and the granular resin material 3, it is desirable to make fine adjustments such that the temperature is raised every 1 ° C. In general, the temperature rising rate and the cooling rate are changed according to the type and volume of the particulate sample 2 and the particulate resin material 3.

以上に述べたようにして作製された試料埋込樹脂では、試料埋込樹脂における樹脂材料中に分散した粒状試料の粒子の粒度分布が、埋め込み前の粒状試料の粒度分布とほぼ同一、つまりほぼ同様の傾向となっていることが、粒子どうしの凝集抑制の観点から好適である。
そして、このような試料埋込樹脂は、様々な分析装置を用いた粒状試料の元素含有量、粒度分布、単体分離度などの分析に供することができる。特にここで、粒状試料を構成する粒子を鉱石粒子とした場合、その試料埋込樹脂は、鉱物解析システム(Mineral Liberation Analyzer、MLA)による分析に有効に用いることができる。
In the sample embedding resin produced as described above, the particle size distribution of the particles of the granular sample dispersed in the resin material in the sample embedding resin is substantially the same as the particle size distribution of the granular sample before embedding, that is, substantially The same tendency is preferable from the viewpoint of suppressing aggregation of particles.
And such a sample embedding resin can be used for analysis of the element content of a granular sample, particle size distribution, single separation degree, etc. using various analyzers. In particular, here, when particles constituting the particulate sample are ore particles, the sample embedding resin can be effectively used for analysis by a mineral analysis system (Mineral Liberation Analyzer, MLA).

1 容器
2 粒状試料
3 粒状樹脂材料
4、4a 粒状試料および粒状樹脂材料入りの容器
θ 公転軸に対する自転軸の傾斜角度
1 container 2 granular sample 3 granular resin material 4, 4a container containing granular sample and granular resin material θ inclination angle of rotation axis with respect to revolution axis θ

Claims (12)

粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、
容器内に、前記粒状試料を粒状樹脂材料とともに投入し、粒状試料および粒状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転とは逆の回転方向に公転させることにより、容器内の粒状試料および粒状樹脂材料を攪拌し、その後、容器内の粒状試料および粒状樹脂材料を加圧するとともに加熱し、当該粒状樹脂材料を溶融させた後に硬化させる、分析用試料埋込樹脂の作製方法。
A particulate sample to be analyzed which is composed of particles having nonuniform particle sizes and which contains plural kinds of single particles and / or compounds is embedded in a resin material to prepare a sample embedding resin in which the particulate sample is fixed in the resin material. Method,
The above-mentioned granular sample is put into a container together with a granular resin material, and the container containing the granular sample and the granular resin material is made to rotate in a rotation direction opposite to the rotation while rotating the rotation container with the rotation revolution stirrer. The particulate sample and the particulate resin material in the container are stirred, and then, the particulate sample and the particulate resin material in the container are pressurized and heated to melt and then cure the particulate resin material. Method.
粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、
容器内に、前記粒状試料を粒状樹脂材料とともに投入し、粒状試料および粒状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転と同じ回転方向に公転させることにより、容器内の粒状試料および粒状樹脂材料を攪拌し、その後、容器内の粒状試料および粒状樹脂材料を加圧するとともに加熱し、当該粒状樹脂材料を溶融させた後に硬化させる、分析用試料埋込樹脂の作製方法。
A particulate sample to be analyzed which is composed of particles having nonuniform particle sizes and which contains plural kinds of single particles and / or compounds is embedded in a resin material to prepare a sample embedding resin in which the particulate sample is fixed in the resin material. Method,
In the container, the granular sample is charged together with the granular resin material, and the container containing the granular sample and the granular resin material is rotated in the same rotation direction as the rotation while rotating by the rotation revolution stirrer. A method for producing a sample embedding resin for analysis, which comprises stirring a granular sample and a granular resin material and thereafter pressing and heating the granular sample and the granular resin material in a container to melt and then harden the granular resin material.
自転公転撹拌機による攪拌時の公転速度を、400rpm〜2000rpmとする、請求項1又は2に記載の分析用試料埋込樹脂の作製方法。   The manufacturing method of the sample embedding resin for analysis of Claim 1 or 2 which sets the revolution speed at the time of stirring by a rotation revolution stirrer to 400 rpm-2000 rpm. 自転公転撹拌機による攪拌の少なくとも終期段階を、真空雰囲気で行う、請求項1〜3のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The manufacturing method of the sample embedding resin for analysis as described in any one of Claims 1-3 which performs a vacuum atmosphere at least the final stage of the stirring by a rotation revolution stirrer. 自転公転撹拌機による攪拌の初期段階を、大気雰囲気で行う、請求項1〜4のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The preparation method of the sample embedding resin for analysis as described in any one of Claims 1-4 which performs the initial stage of the stirring by a rotation revolution stirrer in air | atmosphere atmosphere. 自転公転撹拌機による攪拌時間を、1分〜30分とする、請求項1〜5のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The manufacturing method of the sample embedding resin for analysis as described in any one of Claims 1-5 which makes stirring time by a rotation revolution stirrer 1 minute-30 minutes. 粒状試料および粒状樹脂材料の加圧・加熱を同時に行う、請求項1〜6のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The manufacturing method of the sample embedding resin for analysis as described in any one of Claims 1-6 which pressurize and heat a granular sample and a granular resin material simultaneously. 粒状試料および粒状樹脂材料の加圧・加熱時間を、10分〜20分とする、請求項7に記載の分析用試料埋込樹脂の作製方法。   The method for producing a sample embedding resin for analysis according to claim 7, wherein pressing and heating times of the particulate sample and the particulate resin material are 10 minutes to 20 minutes. 粒状試料および粒状樹脂材料を加圧する際に、粒状試料および粒状樹脂材料に加える圧力を、20MPa〜30MPaとする、請求項1〜8のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The preparation of the sample embedding resin for analysis according to any one of claims 1 to 8, wherein the pressure applied to the particulate sample and the particulate resin material is 20 MPa to 30 MPa when the particulate sample and the particulate resin material are pressurized. Method. 粒状試料および粒状樹脂材料を加熱する際に、粒状試料および粒状樹脂材料の温度を、100℃〜200℃まで上昇させる、請求項1〜9のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The sample embedding resin for analysis according to any one of claims 1 to 9, wherein the temperatures of the particulate sample and the particulate resin material are raised to 100 ° C to 200 ° C when the particulate sample and the particulate resin material are heated. How to make 前記粒状試料を構成する粒子を鉱石粒子とする、請求項1〜10のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The method for producing a sample embedding resin for analysis according to any one of claims 1 to 10, wherein particles constituting the particulate sample are ore particles. 自転公転撹拌機で自転させる前記容器として、粒状試料および粒状樹脂材料入りの容器が複数個配置されたものを用いる、請求項1〜11のいずれか一項に記載の分析用試料埋込樹脂の作製方法。   The sample embedding resin for analysis according to any one of claims 1 to 11, wherein a container in which a plurality of containers containing a granular sample and a granular resin material are disposed is used as the container to be rotated by the rotation revolution stirrer. How to make it.
JP2018069748A 2017-11-14 2018-03-30 Method for preparing a sample-embedded resin for analysis Active JP7018805B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017219426 2017-11-14
JP2017219426 2017-11-14

Publications (2)

Publication Number Publication Date
JP2019090779A true JP2019090779A (en) 2019-06-13
JP7018805B2 JP7018805B2 (en) 2022-02-14

Family

ID=66836285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069748A Active JP7018805B2 (en) 2017-11-14 2018-03-30 Method for preparing a sample-embedded resin for analysis

Country Status (1)

Country Link
JP (1) JP7018805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230543A1 (en) 2019-05-13 2020-11-19 住友電気工業株式会社 Tungsten carbide powder and production method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671110A (en) * 1992-08-27 1994-03-15 I K S:Kk Method and apparatus for stirring and defoaming liquid
JPH11104404A (en) * 1997-10-01 1999-04-20 Eme:Kk Method and apparatus for kneading and defoaming
JPH11290668A (en) * 1998-04-13 1999-10-26 Shinkii:Kk Agitation defoaming device
JP2002316031A (en) * 2001-04-18 2002-10-29 I K S:Kk Apparatus for stirring and defoaming for syringe, syringe adapter used therein and method for stirring and defoaming for syringe by using the adapter
JP2005131622A (en) * 2003-10-29 2005-05-26 I K S:Kk Agitating/defoaming method of solvent etc. and its apparatus
JP2010240579A (en) * 2009-04-06 2010-10-28 Mediken Inc Powder agitator
JP2016050918A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2017080645A (en) * 2015-10-23 2017-05-18 株式会社写真化学 Agitation defoaming method and agitation defoaming apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671110A (en) * 1992-08-27 1994-03-15 I K S:Kk Method and apparatus for stirring and defoaming liquid
JPH11104404A (en) * 1997-10-01 1999-04-20 Eme:Kk Method and apparatus for kneading and defoaming
JPH11290668A (en) * 1998-04-13 1999-10-26 Shinkii:Kk Agitation defoaming device
JP2002316031A (en) * 2001-04-18 2002-10-29 I K S:Kk Apparatus for stirring and defoaming for syringe, syringe adapter used therein and method for stirring and defoaming for syringe by using the adapter
JP2005131622A (en) * 2003-10-29 2005-05-26 I K S:Kk Agitating/defoaming method of solvent etc. and its apparatus
JP2010240579A (en) * 2009-04-06 2010-10-28 Mediken Inc Powder agitator
JP2016050918A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2017080645A (en) * 2015-10-23 2017-05-18 株式会社写真化学 Agitation defoaming method and agitation defoaming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230543A1 (en) 2019-05-13 2020-11-19 住友電気工業株式会社 Tungsten carbide powder and production method therefor

Also Published As

Publication number Publication date
JP7018805B2 (en) 2022-02-14

Similar Documents

Publication Publication Date Title
CN103951971B (en) A kind of carbon fiber-reinforced resin dusty material for selective laser sintering
US10605709B2 (en) Mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
TWI523681B (en) Agitating and mixing apparatus and method for manufacturing resin composition for sealing semiconductor
CN105358955B (en) The method and apparatus for being used to prepare tabletting
CN108699623B (en) Method for producing sintered ore
CA3021829C (en) Oxide ore smelting method
JP2019090779A (en) Method of preparing resin embedded with analysis sample
JP4613268B2 (en) Method for producing spherical carbon nanotube aggregate
TWI509081B (en) Method for producing granulation material for sintering
JP2019090778A (en) Method of preparing resin embedded with analysis sample
JP7018741B2 (en) Method for preparing a sample-embedded resin for analysis
JP6985112B2 (en) Sample embedded resin for analysis
JP7018806B2 (en) Method for preparing a sample-embedded resin for analysis
JPH0816795B2 (en) Toner manufacturing method and apparatus
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
CN103642442B (en) High-heat-conduction insulating glue for aluminum substrate and preparation method thereof
JP6020823B2 (en) Method for producing granulated raw material for sintering
EP3882215A1 (en) Particulate material and thermally conductive substance
WO2019188444A1 (en) Powder composed of organic-inorganic composite particles
JPH03158435A (en) Functionally gradient composite material and its manufacture
US20230107924A1 (en) Inorganic filler powder, thermally conductive polymer composition, and method for manufacturing inorganic filler powder
EP3778935B1 (en) Method for producing granulated article, method for producing sintered ore
JP2004273394A (en) Method of manufacturing insulating material
JP2020519704A5 (en)
JP3564534B2 (en) Composite structured / particle dispersed material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R151 Written notification of patent or utility model registration

Ref document number: 7018805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151