JP2019087524A - Multicore type insulating electric wire and method for manufacturing the same - Google Patents

Multicore type insulating electric wire and method for manufacturing the same Download PDF

Info

Publication number
JP2019087524A
JP2019087524A JP2018072024A JP2018072024A JP2019087524A JP 2019087524 A JP2019087524 A JP 2019087524A JP 2018072024 A JP2018072024 A JP 2018072024A JP 2018072024 A JP2018072024 A JP 2018072024A JP 2019087524 A JP2019087524 A JP 2019087524A
Authority
JP
Japan
Prior art keywords
conductive wire
resin body
wire
core
core shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018072024A
Other languages
Japanese (ja)
Other versions
JP6405485B1 (en
Inventor
信吾 奥田
Shingo Okuda
信吾 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Electech Inc
Original Assignee
GS Electech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Electech Inc filed Critical GS Electech Inc
Priority to JP2018072024A priority Critical patent/JP6405485B1/en
Application granted granted Critical
Publication of JP6405485B1 publication Critical patent/JP6405485B1/en
Publication of JP2019087524A publication Critical patent/JP2019087524A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a multicore type insulating electric wire which enables high density arrangement of a plurality of conductive wires 13 and contributes to reduction in the number of molding steps and improvement in productivity while securing shape retention of the conductive wires 13, and a method for manufacturing the same.SOLUTION: An insulating core axis 40 forming a core axis structure has a solid shape, and a form including a plurality of crest parts 40a and a plurality of trough parts 40b is produced and prepared (initial step). Arrangement, filling and deformation steps include filling a space part Sp generated between the through parts 40a and conductive wires 13 with a resin body 14. At the same time, an insulating wire body 42 is provided which includes a crest part modification part 42a where the crest part 40b is deformed to the side in a circumferential direction of the core axis 40 to cover both the conductive wires 13 and the resin body 14. Shape retention can be secured such that the whole is tightly bundled and collected while securing the whole flexibility.SELECTED DRAWING: Figure 8

Description

本発明は車両などの電気系統に適用される多芯型絶縁電線に係り、とりわけ、簡素な製法により複数の電導線を絶縁状態に配置した多機能な多芯型絶縁電線およびその製造方法に関する。   The present invention relates to a multicore insulated wire applied to an electric system such as a vehicle, and more particularly to a multi-functional multicore insulated wire in which a plurality of conductive wires are disposed in an insulating state by a simple manufacturing method and a manufacturing method thereof.

例えば、自動車の製造業界では、電装品への電力供給のため、種々の電線が接続用のワイヤーハーネスとして使用されている。この種の電線では、多機能性を発揮させるため、複数の導電線を絶縁状態に配置して押出し被覆したものがある(特許文献1参照)。
この特許文献1は、多芯平角電線の製造方法および製造装置を具体化発明として開示しており、平角導体を被覆する際、クロスヘッド内で平角導体の捩れを防止する押出し被覆構造を達成している。
For example, in the automobile manufacturing industry, various electric wires are used as wire harnesses for connection in order to supply electric power to electrical components. In this type of electric wire, there are some in which a plurality of conductive wires are disposed in an insulating state and extrusion-coated in order to exhibit multifunctionality (see Patent Document 1).
This patent document 1 discloses a manufacturing method and a manufacturing apparatus of a multifilamentary flat electric wire as a specific invention, and achieves an extrusion coating structure for preventing twisting of the flat conductor in the crosshead when coating the flat conductor. ing.

特許文献2に開示された多芯ケーブルでは、複数本の同軸電線のうちで、二対以上の同軸電線対を接触状態に並列し、同軸電線間のクロストークを−40dB以下に抑制している。
特許文献3では、複数本の電線を外被で被覆した多芯ケーブルを開示し、両端部の外被の被覆厚を中間部の被覆厚よりも大きくした厚肉部を形成している。これにより、多芯ケーブルをコネクタに接続する際、厚肉部がストレイン・リリーフとして機能することで接続部分の保護を図っている。
In the multicore cable disclosed in Patent Document 2, among a plurality of coaxial wires, two or more coaxial wire pairs are arranged in parallel in a contact state, and crosstalk between coaxial wires is suppressed to -40 dB or less .
Patent Document 3 discloses a multicore cable in which a plurality of electric wires are covered with a jacket, and a thick portion in which the coating thickness of the jacket at both ends is larger than the coating thickness of the middle portion is formed. Thus, when connecting the multi-core cable to the connector, the thick portion functions as a strain relief to protect the connection portion.

特許文献4の多芯ケーブルでは、抗張力繊維から成る中央層に対して、同軸電線ユニット、複数本の同軸電線、樹脂テープ、遮蔽層および樹脂製の外被を同芯状態に配置している。この積層構造により、耐熱性および耐電圧性を確保しながらも高い柔軟性を確保している。   In the multi-core cable of Patent Document 4, a coaxial wire unit, a plurality of coaxial wires, a resin tape, a shielding layer, and a resin outer jacket are concentrically arranged with respect to a central layer made of tensile strength fibers. This laminated structure ensures high flexibility while securing heat resistance and voltage resistance.

特許文献5の絶縁電線では、エチレン酢酸ビニール樹脂に水酸化マグネシウムを添加した樹脂を用いて押出成形することで、機器への実装性に配慮した絶縁被覆をラミネートとして成型している。絶縁被覆は、後工程でγ線照射により架橋することにより、ハロゲン化合物を含まない難燃性多芯フラット型の絶縁電線を実現している。   In the insulated wire of patent document 5, the insulation coating which considered the mounting property to an apparatus is shape | molded as a laminate by extrusion molding using resin which added magnesium hydroxide to ethylene vinyl acetate resin. The insulation coating realizes a flame-retardant multi-core flat type insulated wire which does not contain a halogen compound by being crosslinked by γ-ray irradiation in a later step.

特開平9−213149号公報Unexamined-Japanese-Patent No. 9-213149 特開2016−207658号公報JP, 2016-207658, A 特開2016−81672号公報JP, 2016-81672, A 特開2006−56706号公報JP, 2006-56706, A 特開2002−260452号公報Japanese Patent Application Laid-Open No. 2002-260452

しかしながら、特許文献1−5のいずれの場合でも、導電体線は樹脂被覆された上で、絶縁体内に埋設状態に成型する必要がある。
このため、導電体線を高密度に配置することが困難となり、また、成型作業が多工程となって時間を要して生産性が低下する虞がある。
However, in any case of Patent Documents 1-5, the conductor wire needs to be resin-coated and then molded in a state of being embedded in the insulator.
For this reason, it becomes difficult to arrange conductor wires at a high density, and there is also a possibility that productivity will decrease due to the time required for forming a large number of molding operations.

本発明は上記事情に鑑みてなされたもので、その目的は、複数の電導線を高密度に配置することができ、また、成型工程の削減により、短時間で成形作業が終了して生産性の向上に寄与する多芯型絶縁電線およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to arrange a plurality of conductive wires at a high density, and to reduce the number of molding steps, thereby completing the molding operation in a short time and productivity. It is an object of the present invention to provide a multi-core type insulated wire which contributes to the improvement of

(請求項1および請求項2について)
絶縁性の芯軸には、芯軸構造として軸方向に沿って形成された形態とし、芯軸の外周縁部には、周方向に沿って起伏する複数の山部と複数の谷部とを連続的に設けている。
谷部のそれぞれに配置されて全体として複数本から成る電導線が設けられている。谷部と電導線との間に生じた空隙部に樹脂体が充填配設されている。山部の側方変形により電導線および樹脂体の双方を覆う山部変形部が設けられている。芯軸を電導線、樹脂体および山部変形部の三者と一緒に被覆する外被層を設けている。
(Regarding claim 1 and claim 2)
The insulating core shaft has a form formed along the axial direction as a core shaft structure, and the outer peripheral edge portion of the core shaft has a plurality of peak portions and a plurality of valley portions which are undulated along the circumferential direction. It is provided continuously.
A plurality of conductive wires are provided in each of the valleys as a whole. A resin body is filled and disposed in a gap formed between the valley and the conductive wire. A peak deformation portion is provided which covers both the conductive wire and the resin body by lateral deformation of the peak. An outer cover layer is provided which covers the core shaft together with the conductive wire, the resin body, and the three parts of the peak portion deformation portion.

請求項1および請求項2では、複数の電導線を各谷部に設けているので、電導線群の高密度配置が可能となる。山部変形部が側方変形により電導線および樹脂体の双方を覆うので、電導線および樹脂体を一体化して強固に纏めあげる。
また、外被層により、芯軸の電導線群を樹脂体と一緒に被覆しているため、全体の柔軟性を確保しながら、電導線群と樹脂体とを緊密に束ねて纏める形状保持性を確保することができる。
さらに、第1電導線、第2電導線および第3電導線の各電導線は、被覆が要らず裸線の状態でよいので、成型工程数の削減により、短時間で成形作業が終了して生産性の向上に貢献することができる。
In the first and second aspects of the present invention, since the plurality of conductive lines are provided in each valley portion, high density arrangement of the conductive line group is possible. Since the peak deformation portion covers both the conductive wire and the resin body by lateral deformation, the conductive wire and the resin body are integrated and firmly fixed.
In addition, since the conductive wire group of the core shaft is covered with the resin body by the outer covering layer, the shape retention property in which the conductive wire group and the resin body are tightly bundled and collected while securing the entire flexibility. Can be secured.
Furthermore, since the conductive wires of the first conductive wire, the second conductive wire and the third conductive wire do not need to be covered and may be in the form of bare wires, the molding operation is completed in a short time by reducing the number of molding steps. It can contribute to the improvement of productivity.

(請求項3および請求項6について)
電導線は、複数本の細線を撚り合わせて形成した撚線から成る。
(Regarding Claim 3 and Claim 6)
The conductive wire is formed of a stranded wire formed by twisting a plurality of thin wires.

請求項3および請求項6では、高電気容量化が図られると共に、屈曲変位に富む高い柔軟性が得られる。   In claims 3 and 6, high electrical capacity can be realized, and high flexibility rich in bending displacement can be obtained.

(請求項4および請求項7について)
外被層と樹脂体とは、これら相互間の移行性を無くすため、同一種類の合成樹脂材料により形成されている。
(Regarding Claim 4 and Claim 7)
The outer covering layer and the resin body are formed of the same kind of synthetic resin material in order to eliminate migration between them.

請求項4および請求項7では、移行性が無いので、外被層と樹脂体との相互間が緊密に接触していても、可塑剤などの添付物が両者の間を移行することがなくなる。この結果、外被層と樹脂体とが剥離することがなく、これら両者間の良好な密着保持性を長期にわたって保持することができる。   In the fourth and seventh aspects of the present invention, since there is no migration, even if the outer covering layer and the resin body are in close contact with each other, the attachment such as a plasticizer does not move between the two. . As a result, the outer covering layer and the resin body do not peel off, and it is possible to maintain good adhesion retention between them for a long time.

(請求項5および請求項8について)
芯軸、外被層および樹脂体の三者は、いずれも難燃性ポリウレタン樹脂から形成している。
(Regarding Claim 5 and Claim 8)
All of the core shaft, the cover layer and the resin body are formed of a flame retardant polyurethane resin.

このため、これら三者を共通の合成樹脂材料を用いてコスト的に有利に型成することができる。   For this reason, it is possible to mold these three components cost-effectively by using a common synthetic resin material.

(a)は第1電導線および第2電導線を芯軸に設ける第1押出成型機を示す縦断面図、(b)は(a)のN1−N1線に沿う横断面図、(c)は(a)のN2−N2線に沿う横断面図である(実施例1)。(A) is a longitudinal cross-sectional view showing a first extrusion molding machine in which the first conductive wire and the second conductive wire are provided on the core shaft, (b) is a cross-sectional view taken along the N1-N1 line of (a), (c) Is a cross-sectional view taken along the N2-N2 line of (a) (Example 1). (d)は第3電導線を芯軸に設ける第2押出成型機を示す縦断面図、(e)は(d)のN3−N3線に沿う横断面図である(実施例1)。(D) is a longitudinal cross-sectional view which shows the 2nd extrusion molding machine which provides a 3rd conductive wire in a core axis, (e) is a cross-sectional view which follows N3-N3 line of (d) (Example 1). (a)は外被層を設ける第3押出成型機を示す縦断面図、(b)は(a)のJ1−J1線に沿う横断面図である(実施例1)。(A) is a longitudinal cross-sectional view which shows the 3rd extrusion molding machine which provides an outer covering layer, (b) is a cross-sectional view which follows the J1-J1 line of (a) (Example 1). (a)−(c)はコーティングした第3電導線を用いる配置工程で絶縁電線体を成型する手順を示す横断面図である(実施例2)。(A)-(c) is a cross-sectional view which shows the procedure which shape | molds an insulated wire body at the arrangement | positioning process using the coated 3rd conductor wire (Example 2). 第1電導線および第2電導線を芯軸に設ける成型ノズルを示す斜視図である(実施例3)。It is a perspective view which shows the shaping | molding nozzle which provides a 1st conductive wire and a 2nd conductive wire in a core axis (Example 3). (a)は第1電導線および第2電導線を芯軸に設ける成型ノズルを示す縦断面図、(b)は外周側に外被層を設ける第4押出成型機を示す縦断面図、(c)は図5のJ2−J2線に沿う横断面図、(d)は(a)のJ3−J3線に沿う横断面図、(e)は(a)のJ4−J4線に沿う横断面図、(f)は(b)のJ5−J5線に沿う横断面図、である(実施例3)。(A) is a longitudinal sectional view showing a molding nozzle provided with a first conductive wire and a second conductive wire on a core axis, (b) is a longitudinal sectional view showing a fourth extrusion molding machine provided with an outer cover layer on the outer peripheral side, c) is a cross-sectional view taken along line J2-J2 in FIG. 5, (d) is a cross-sectional view taken along line J3-J3 in (a), (e) is a cross section taken along line J4-J4 in (a) (F) is a cross-sectional view taken along the line J5-J5 of (b) (Example 3). (a)−(c)は多芯型絶縁電線の成型工程を示す横断面図、(d)は芯軸の構造を示す斜視図である(実施例4)。(A)-(c) is a cross-sectional view which shows the formation process of a multicore type insulated wire, (d) is a perspective view which shows the structure of a core axis (Example 4). (a)は芯軸を押出処理する第5押出成型機を示す横断面図、(b)は(a)のN4−N4線に沿う横断面図、(c)は(a)のN5−N5線に沿う横断面図である(実施例5)。(A) is a cross-sectional view showing a fifth extruder for extruding the core, (b) is a cross-sectional view taken along line N4-N4 of (a), (c) is N5-N5 of (a) It is a cross-sectional view which follows a line (Example 5). 多芯型絶縁電線を示す横断面図である(実施例5)。It is a cross-sectional view which shows a multicore type insulated wire (Example 5). (a)−(c)は多芯型絶縁電線の成型工程を示す横断面図である(実施例6)。(A)-(c) is a cross-sectional view which shows the formation process of a multicore type insulated wire (Example 6).

本発明に係る多芯型絶縁電線では、山部の側方変形により電導線および樹脂体の双方を覆う山部変形部が設けられている。芯軸を電導線、樹脂体および山部変形部の三者と一緒に被覆する外被層を設けている。   In the multicore type insulated wire according to the present invention, a peak portion deformation portion is provided which covers both the conductive wire and the resin body by side deformation of the peak portion. An outer cover layer is provided which covers the core shaft together with the conductive wire, the resin body, and the three parts of the peak deformation portion.

図1ないし図3に基づいて本発明の実施例1を説明する。
本発明に係る多芯型絶縁電線では、例えば、自動車に装備されたABS(アンチロック・ブレーキングシステム)やEPB(エレクトリック・パーキングブレーキ)などの電装品の駆動用のセンサー(図示せず)から制御コンピュータとしての電気制御ユニット(ECU)への信号伝送に有用である。
電源としては、例えば、薄型矩形状の電池を単体の二次電池として左右方向に沿って複数個並列させて重ね合せた電池集合体(セル一列積層体)を用いている。
A first embodiment of the present invention will be described based on FIGS. 1 to 3.
In the multicore insulated wire according to the present invention, for example, from a sensor (not shown) for driving electrical components such as ABS (anti-lock and braking system) and EPB (electric parking brake) installed in a car It is useful for signal transmission to an electrical control unit (ECU) as a control computer.
As a power source, for example, a battery assembly (one-cell stack) in which a plurality of thin rectangular batteries are juxtaposed in parallel in the left-right direction as a single secondary battery is used.

多芯型絶縁電線の成型・製造にあたっては、図1(a)に示す第1押出成型機1を用いる。押出成型機1のポイント2は、円錐台状の筒型を成す押出用の成型ノズル3とクロスヘッド4とを備えた通常の機種である。
成型ノズル3とクロスヘッド4との間に形成された流通路5には、流動推進用のスクリュー6aを内設したスクリューシリンダ6からの絶縁性の溶融樹脂S1(例えば、難燃性ポリウレタン樹脂)を金型7に向かって流動圧送させるようになっている。
成型ノズル3は、通常の場合、ステンレス鋼(SUS)、ダイス鋼あるいはタングステン超合金鋼などから成る金属製であり、テーパ角は、例えば30°−70°の角度範囲内に設定している。成型ノズルとしては、金属製に代わって、セラミック製のものであってもよい。
The first extruder 1 shown in FIG. 1A is used for molding and manufacturing the multicore insulated wire. The point 2 of the extrusion molding machine 1 is a normal model provided with a molding nozzle 3 for extrusion and a crosshead 4 which form a truncated cone cylindrical shape.
Insulating molten resin S1 (for example, flame retardant polyurethane resin) from a screw cylinder 6 in which a screw 6a for flow promotion is provided in a flow passage 5 formed between the molding nozzle 3 and the cross head 4 Is made to flow and feed toward the mold 7.
The forming nozzle 3 is usually made of metal such as stainless steel (SUS), die steel or tungsten superalloy steel, and the taper angle is set within an angle range of, for example, 30 ° -70 °. The molding nozzle may be made of ceramic instead of metal.

金型7は、一例として中空部が略十字筒形状となるように形成されており、金型7には、図1(b)に示すように、一本の第1電導線8および四本の第2電導線9と共に溶融樹脂S1が流通路5から圧送により通過するようになっている。
これにより、図1(c)に示す型抜き後の芯軸10が所定長さの芯軸構造として成型されて用意される(初期工程)。
すなわち、第1電導線8が金型7の中央を通過可能に配設され、第2電導線9が金型7の外周端部内を通過可能に配設されている。
As an example, the mold 7 is formed such that the hollow portion has a substantially cruciform cylindrical shape, and as shown in FIG. 1B, the mold 7 has one first conductive wire 8 and four ones. The molten resin S1 is pressure-passed from the flow passage 5 together with the second conductive wire 9 of FIG.
Thereby, the core shaft 10 after die cutting shown in FIG. 1C is molded and prepared as a core shaft structure of a predetermined length (initial process).
That is, the first conductive wire 8 is disposed to be able to pass through the center of the mold 7, and the second conductive wire 9 is disposed to be able to pass through the inside of the outer peripheral end of the mold 7.

初期工程で処理された芯軸10は、中央部11aを有して軸方向に沿って延出形成された形態の芯軸構造を成す。起伏部10Aは、芯軸10の外周縁部に凹凸状に起伏形成され、電導線のマルチセパレータとして機能する。
この起伏部10Aは、芯軸10の外周縁部を周方向に沿って複数区間に区画するように設けられて、中央部11aの外周囲で起伏する複数(例えば、四箇所)の山部11bと複数(例えば、四箇所)の谷部11cとから成っている。
初期工程と同時に行われる配設工程では、金型7に対する溶融樹脂S1の圧送通過に伴う芯軸10の成型と同時に、芯軸10の中央部に軸方向に沿って第1電導線8が配され、山部11bのそれぞれに第2電導線9が埋設される。
The core shaft 10 processed in the initial step has a central portion 11 a and forms a core shaft structure in a form extending in the axial direction. The uneven portion 10A is unevenly formed on the outer peripheral edge of the core shaft 10 so as to function as a multi-separator of conductive lines.
The relief portion 10A is provided to divide the outer peripheral edge portion of the core shaft 10 into a plurality of sections along the circumferential direction, and a plurality of (for example, four) peak portions 11b are undulated around the outer periphery of the central portion 11a. And a plurality of (for example, four) valleys 11c.
In the disposing step performed simultaneously with the initial step, the first conductive wire 8 is disposed along the axial direction at the central portion of the core shaft 10 simultaneously with the molding of the core shaft 10 accompanying the pressure feed of the molten resin S1 to the mold 7. The second conductive wire 9 is embedded in each of the mountain portions 11 b.

初期工程に続く配設・充填工程では、図2(d)に示すように、第2押出成型機12を用いて、谷部11cのそれぞれに第3電導線13を配置する。これと同時に、図2(e)に示すように、谷部11cと第3電導線13との間に生じる空隙部Spに溶融樹脂S2を注入して樹脂体14(例えば、難燃性ポリウレタン樹脂)で充填する。
この際、第3電導線13は、第1電導線8および第2電導線9の二者と共に電導線群18を構成する。
In the disposition / filling step subsequent to the initial step, as shown in FIG. 2D, the third conductive wire 13 is disposed in each of the valleys 11c using the second extruder 12. At the same time, as shown in FIG. 2 (e), the molten resin S2 is injected into the space Sp created between the valley 11c and the third conductive wire 13 to form the resin body 14 (for example, a flame retardant polyurethane resin). Fill with).
At this time, the third conductive wire 13 constitutes a conductive wire group 18 together with the first conductive wire 8 and the second conductive wire 9.

すなわち、配設・充填工程では、第2押出成型機12の成型ダイス12aとクロスヘッド12bとの間の流通路15に溶融樹脂S2(難燃性ポリウレタン樹脂)を流動圧送させる。
これと同時に、芯軸10および第3電導線13の双方をポイント12cに押出しにより通過させることで、空隙部Spに樹脂体14を充填した絶縁電線体17が成型される。
この押出成型時には、絶縁電線体17がポイント12cの通過に伴う撚合力を受け、支障のない範囲で螺旋状に撚り合うように変形される。
That is, in the disposing and filling process, the molten resin S2 (flame-retardant polyurethane resin) is fluidly pumped in the flow passage 15 between the molding die 12a of the second extrusion molding machine 12 and the crosshead 12b.
At the same time, the core wire 10 and the third conductive wire 13 are both extruded through the point 12c to form the insulated wire body 17 in which the resin body 14 is filled in the space Sp.
At the time of this extrusion molding, the insulated wire body 17 receives a twisting force accompanying the passage of the point 12c, and is deformed so as to twist in a spiral shape within a range where there is no hindrance.

配設・充填工程に続く被覆工程では、図3(a)に示すように、第3押出成型機19を用いて、芯軸10の電導線群18を樹脂体14と一緒に被覆する外被層20(厚み0.3mm−0.5mm)を形成する。
すなわち、被覆工程では、第3押出成型機19のダイス19aとクロスヘッド19bとの間の流通路21に溶融樹脂S3(難燃性ポリウレタン樹脂)を流動圧送させる。
これと同時に、ポイント19cに絶縁電線体17を押出しにより通過させることで、絶縁電線体17に外被層20を被覆成型して多芯型絶縁電線20Aを構成する(図3(b)参照)。
In the coating step subsequent to the disposing and filling step, as shown in FIG. 3A, the third extrusion molding machine 19 is used to coat the conductive wire group 18 of the core shaft 10 together with the resin body 14 A layer 20 (thickness 0.3 mm-0.5 mm) is formed.
That is, in the coating step, the molten resin S3 (flame-retardant polyurethane resin) is flow-pushed through the flow passage 21 between the die 19a of the third extrusion molding machine 19 and the crosshead 19b.
At the same time, the insulated wire body 17 is passed through the points 19c by extrusion, whereby the outer covering layer 20 is coated on the insulated wire body 17 to form the multicore insulated wire 20A (see FIG. 3B). .

ここで、電導線群18の仕様(材料および寸法関係)についての一例を示せば、第1電導線8は、Cu−Sn合金製の細線を複数本撚り合って形成した単一の圧縮撚線を成し、第2電導線9は、Cu−Sn合金製の細線(φ0.08mm)を37本撚り合って形成した圧縮撚線(37/0.08)で四個所に配置している(断面積:0.54平方ミリメータ)。   Here, to give an example of the specification (material and dimensional relationship) of the conductive wire group 18, the first conductive wire 8 is a single compressed stranded wire formed by twisting a plurality of thin wires made of a Cu-Sn alloy. The second conductive wire 9 is arranged at four points by means of a compressed stranded wire (37 / 0.08) formed by twisting 37 thin wires (φ 0.08 mm) made of a Cu-Sn alloy (37 / 0.08). Cross section: 0.54 square millimeters).

第3電導線13は四本から成り、そのうち二本は、Cu−Sn合金製の細線(φ0.08mm)を37本撚り合って形成した圧縮撚線(37/0.08)である。
他の二本は、Cu−Sn合金製の細線(φ0.08mm)を87本撚り合った圧縮撚線(37/0.08)を用意し、この圧縮撚線を更に7本撚り合って形成した圧縮二重撚線(7/85/0.08)である。圧縮二重撚線の断面積は、2.47平方ミリメータである。電導線群18については、とりわけ、愛知県碧南市に所在する専業メーカである三州電線株式会社製の電線を使用することもできる。
電導線群18について敷衍すれば、四本の第2電導線9のそれぞれは、互いに全く異なる径寸法に設定してもよく、また、四本の第3電導線13も、それぞれ互いに全く異なる径寸法に設定してもよい。
なお、電導線群18のうち、第1電導線8と全ての第2電導線9は適用対象や使用状況などの実用的観点から不要と判断する場合には省略してもよい。
The third conductive wire 13 consists of four, and two of them are compressed stranded wires (37 / 0.08) formed by twisting 37 thin wires (φ 0.08 mm) made of a Cu-Sn alloy.
For the other two, prepare a compressed twisted wire (37 / 0.08) in which 87 thin wires (φ 0.08 mm) made of Cu-Sn alloy are twisted and prepare another 7 twisted wires. Compressed double stranded wire (7/85 / 0.08). The cross-sectional area of the compressed double stranded wire is 2.47 square millimeters. As the conductive wire group 18, it is also possible to use a wire manufactured by Sanshu Electric Wire Co., Ltd., which is a specialized manufacturer located in Shonan City, Aichi Prefecture, among others.
If the conductive wire group 18 is extended, each of the four second conductive wires 9 may be set to have completely different diameter dimensions from one another, and the four third conductive wires 13 may also have completely different diameters from one another. It may be set to dimensions.
The first conductive wire 8 and all the second conductive wires 9 in the conductive wire group 18 may be omitted when it is judged unnecessary from the practical viewpoints such as the application object and the use condition.

〔実施例1の効果〕
実施例1では、第1電導線8、第2電導線9および第3電導線13から成る電導線群18を芯軸10の中央部11a、谷部11bおよび山部11cに設けているので、電導線群18の高密度配置が可能となる。
また、外被層20により、芯軸10の電導線群18を樹脂体14と一緒に被覆しているため、全体の柔軟性を確保しながら、電導線群18を樹脂体14と緊密に束ねて纏める形状保持性を確保することができる。
さらに、第1電導線8、第2電導線9および第3電導線13の各電導線は、被覆が要らず裸線の状態でよいので、成型工程数の削減により、短時間で成形作業が終了して生産性の向上に貢献することができる。
[Effect of Example 1]
In the first embodiment, since the conductive wire group 18 including the first conductive wire 8, the second conductive wire 9 and the third conductive wire 13 is provided at the central portion 11a, the valley portion 11b and the peak portion 11c of the core shaft 10, A high density arrangement of conductive lines 18 is possible.
Further, since the conductive wire group 18 of the core shaft 10 is covered together with the resin body 14 by the outer covering layer 20, the conductive wire group 18 is tightly bundled with the resin body 14 while securing the entire flexibility. Thus, it is possible to secure the shape retention that can be gathered.
Furthermore, since the conductive wires of the first conductive wire 8, the second conductive wire 9 and the third conductive wire 13 do not need to be covered and may be in the form of bare wires, the number of molding steps can be reduced, and the molding operation can be performed in a short time. It can end and contribute to the improvement of productivity.

第2電導線9は複数本あって互いに異なる径寸法を有しており、第3電導線13も複数本あって互いに異なる径寸法を有している。このため、第2電導線お9よび第3電導線13において、必要な電気容量に応じた径寸法の電導線を設定することで、通信線としての多機能化を図ることができる。
第1電導線8、第2電導線9および第3電導線13は、それぞれ複数本の細線を撚り合せて形成した圧縮撚線から成っている。このため、電導線群18に高電気容量化が図られると共に、屈曲変位に富む高い柔軟性を確保することができる。
A plurality of second conductive wires 9 have different diameter dimensions, and a plurality of third conductive wires 13 also have different diameter dimensions. For this reason, in the second conductive wire 9 and the third conductive wire 13, by setting the conductive wire of the diameter dimension corresponding to the required electric capacity, it is possible to achieve multifunctionalization as a communication wire.
The first conductive wire 8, the second conductive wire 9 and the third conductive wire 13 are each formed of a compressed stranded wire formed by twisting a plurality of thin wires. Therefore, the conductive wire group 18 can be made to have a high electric capacity, and a high flexibility rich in bending displacement can be secured.

外被層20と樹脂体14とは、これら相互間の移行性を無くすため、同一種類の合成樹脂材料(難燃性ポリウレタン樹脂)により形成されている。このため、外被層20と樹脂体14との相互間が緊密に接触していても、可塑剤などの添付物が両者の間を移行することがなくなる。この結果、外被層20と樹脂体14とが剥離することがなく、これら両者間の良好な密着保持性を長期にわたって保持することができる。   The outer covering layer 20 and the resin body 14 are formed of the same kind of synthetic resin material (flame-retardant polyurethane resin) in order to eliminate migration between them. For this reason, even if the outer cover layer 20 and the resin body 14 are in close contact with each other, the attachment such as a plasticizer does not move between the two. As a result, the outer covering layer 20 and the resin body 14 do not peel off, and it is possible to maintain good adhesion retention between them for a long time.

芯軸10、外被層20および樹脂体14の三者は、いずれも難燃性ポリウレタン樹脂から形成している。このため、これら三者を共通の合成樹脂材料を用いてコスト的に有利に型成することができる。   All of the core shaft 10, the jacket layer 20 and the resin body 14 are formed of a flame retardant polyurethane resin. For this reason, it is possible to mold these three components cost-effectively by using a common synthetic resin material.

図4は本発明の実施例2を示す。この実施例2では、実施例1の多芯型絶縁電線の製造方法において、配設・充填工程の代わりに配置工程を設けている(図4(a)〜図4(c)参照)。
この配置工程では、例えば、難燃性ポリウレタン樹脂の樹脂被覆13aでコーティングした第3電導線13を用意して谷部11cに空隙部Spを余しながら配置する。すなわち、空隙部Spは、溶融樹脂S1による樹脂体14では充填しない。
FIG. 4 shows Example 2 of the present invention. In the second embodiment, in the manufacturing method of the multi-core type insulated wire of the first embodiment, an arrangement step is provided instead of the arrangement / filling step (see FIGS. 4A to 4C).
In this arrangement step, for example, the third conductive wire 13 coated with the resin coating 13a of the flame retardant polyurethane resin is prepared and arranged while leaving the void portion Sp in the valley portion 11c. That is, the void portion Sp is not filled with the resin body 14 of the molten resin S1.

この場合、被覆工程では、外被層20を被覆成型する際の発熱により、第3電導線13の樹脂被覆13aを融解し、融解後の樹脂被覆13aが樹脂体14として空隙部Spを充填する(図4(b)参照)。その後、被覆工程において、芯軸10の電導線群18を樹脂体14と一緒に外被層20で被覆する。このように構成しても、実施例1と同様な効果が得られる。下記に示す実施例3〜6についても同様である。   In this case, in the coating step, the resin coating 13a of the third conductive wire 13 is melted by the heat generated during the coating molding of the outer covering layer 20, and the resin coating 13a after melting fills the void Sp as the resin body 14. (Refer FIG.4 (b)). Thereafter, in the coating step, the conductive wire group 18 of the core shaft 10 is coated with the resin layer 14 with the cover layer 20. Even with this configuration, the same effect as that of the first embodiment can be obtained. The same applies to Examples 3 to 6 shown below.

図5および図6は本発明の実施例3を示す。この実施例3では、図5に示す芯軸31を成型ノズル30に流動通過させることにより絶縁電線体32を成型する。
この場合の芯軸31は、図6(c)に示すように、芯軸31に外接する側縁帯31aを一体に延出形成している。側縁帯31aの幅寸法Wは、芯軸31の外縁部の周長に対応する寸法関係に設定している。
5 and 6 show Embodiment 3 of the present invention. In the third embodiment, the core wire 31 shown in FIG. 5 is allowed to flow through the forming nozzle 30 to form the insulated wire 32.
As shown in FIG. 6C, the core shaft 31 in this case integrally extends and forms a side edge band 31a that is in contact with the core shaft 31. The width dimension W of the side edge band 31 a is set to a size relationship corresponding to the circumferential length of the outer edge portion of the core shaft 31.

芯軸31の中央部には軸方向に沿って単一の第1電導線8を埋設し、側縁帯31aには、複数の第2電導線9を幅方向に沿って等間隔に埋設している。芯軸31の外周縁には、第2電導線9に対応する細溝31bが線長方向に沿って延出形成されている。
斯かる芯軸31を図5および図6(a)に示すように、成型ノズル30に押出しにより通過させる。これにより、図6(d)に示すように、側縁帯31aが側方にカールして芯軸31の外周縁を密着状態に被覆して第2電導線9を細溝31bに緊密に嵌合させて絶縁電線体32を成型する(図6(e)参照)。
A single first conductive wire 8 is embedded in the central portion of the core shaft 31 along the axial direction, and a plurality of second conductive wires 9 are embedded in the side edge band 31a at equal intervals along the width direction. ing. At the outer peripheral edge of the core shaft 31, a narrow groove 31b corresponding to the second conductive wire 9 is formed extending along the line length direction.
As shown in FIGS. 5 and 6 (a), the core shaft 31 is passed through the molding nozzle 30 by extrusion. Thereby, as shown in FIG. 6 (d), the side edge band 31a is curled to the side to cover the outer peripheral edge of the core shaft 31 in a close contact state, and the second conductive wire 9 is tightly fitted in the narrow groove 31b. They are combined to form the insulated wire 32 (see FIG. 6 (e)).

成型ノズル30を通過後の絶縁電線体32は、図6(b)に示すように、第4押出成型機35で押出処理を受ける。第4押出成型機35は、成型ノズル35aとクロスヘッド35bを有するポイント35cを備えている。成型ノズル35aとクロスヘッド35bとの間に形成された流通路35dには、スクリューシリンダ6のスクリュー6aからの溶融樹脂S4を流動圧送させるようになっている。   The insulated wire 32 after passing through the molding nozzle 30 is subjected to an extrusion process by the fourth extruder 35, as shown in FIG. 6 (b). The fourth extruder 35 includes a point 35c having a molding nozzle 35a and a crosshead 35b. The molten resin S4 from the screw 6a of the screw cylinder 6 is fluidly fed to a flow passage 35d formed between the molding nozzle 35a and the cross head 35b.

多芯型絶縁電線33Aの成型・製造にあたっては、図6(b)に示すように、絶縁電線体32を押出しによりポイント35cに通過させると同時に溶融樹脂S4を流通路35dに流動圧送させる。これにより、溶融樹脂S4が流通路35dから絶縁電線体32の外表面を覆う外被層33を形成して多芯型絶縁電線33Aを成型する(図6(f)参照)。   In molding and manufacturing the multicore insulated wire 33A, as shown in FIG. 6 (b), the insulated wire body 32 is extruded and passes through the point 35c and, at the same time, the molten resin S4 is flowed and pumped through the flow passage 35d. Thereby, the molten resin S4 forms the outer covering layer 33 covering the outer surface of the insulated wire 32 from the flow passage 35d, and the multicore insulated wire 33A is molded (see FIG. 6 (f)).

図7は本発明の実施例4を示す。この実施例4が実施例3と異なるところは、二つの側縁帯31e、31fを芯軸31の上下の対向側から外接状態で互いに反対側に延出成形したことである(図7(a)、(d)参照)。側縁帯31e、31fは、いずれも複数本の第2電導線9を埋設している。   FIG. 7 shows Example 4 of the present invention. The difference of the fourth embodiment from the third embodiment is that the two side edge bands 31e and 31f are formed by extending and forming two side edge bands 31e and 31f in the circumscribed state from the upper and lower sides of the core shaft 31 (FIG. ) And (d)). Each of the side edge bands 31e and 31f has a plurality of second conductive lines 9 embedded therein.

芯軸31を実施例3と同様の成型ノズルに通過させることにより、側縁帯31e、31fが芯軸31の外周縁を密着状態に被覆すると共に、第2電導線9を細溝31bに緊密に嵌合させて絶縁電線体32を成型する(図7(b)参照)。
実施例3と同様の第4押出成型機35におけるポイント35cに絶縁電線体32を通過させると同時に溶融樹脂S4を流通路35dに流動圧送させる。これにより、被覆工程として、図7(c)に示すように、溶融樹脂S4が絶縁電線体32の外表面に外被層33を成型して多芯型絶縁電線33Aを構成する。
By passing the core shaft 31 through the same forming nozzle as that of the third embodiment, the side edge bands 31e, 31f cover the outer peripheral edge of the core shaft 31 in a close contact state, and the second conductive wire 9 is tightly attached to the narrow groove 31b. And the insulated wire body 32 is shape | molded (refer FIG.7 (b)).
At the same time as passing the insulated wire body 32 to the point 35c in the fourth extrusion molding machine 35 similar to the third embodiment, the molten resin S4 is fluidly pumped to the flow path 35d. As a result, as shown in FIG. 7C, in the covering step, the molten resin S4 forms the outer covering layer 33 on the outer surface of the insulated wire 32 to form the multicore insulated wire 33A.

図8および図9は本発明の実施例5を示す。この実施例5が実施例1と異なるところは、中央孔11aは省かれ、第1電導線8は配設せず、かつ山部11bの第2電導線9を省略したことである。   8 and 9 show Embodiment 5 of the present invention. The fifth embodiment is different from the first embodiment in that the central hole 11a is omitted, the first conductive wire 8 is not provided, and the second conductive wire 9 of the peak portion 11b is omitted.

このため、図8(b)に示すように、芯軸構造を成す絶縁性の芯軸40は中実状であり、複数の山部40aと複数の谷部40bとを備えた形態を作製用意する(初期工程)。
この場合、芯軸40は、図8(a)に示すように、第5押出成型機41で押出処理を受ける。第5押出成型機41は、成型ノズル41aとクロスヘッド41bを有するポイント41cを備えている。成型ノズル41aとクロスヘッド41bとの間に形成された流通路41dには、スクリューシリンダ6からのスクリュー6aによる溶融樹脂S5を流動圧送させるようになっている。
For this reason, as shown in FIG. 8 (b), the insulating core shaft 40 having a core shaft structure is solid, and a mode having a plurality of peak portions 40a and a plurality of valley portions 40b is prepared and prepared. (Initial process).
In this case, as shown in FIG. 8A, the core shaft 40 is subjected to an extrusion process by the fifth extruder 41. The fifth extrusion molding machine 41 includes a point 41c having a molding nozzle 41a and a cross head 41b. In the flow passage 41d formed between the molding nozzle 41a and the cross head 41b, the molten resin S5 is screwed and fed by the screw 6a from the screw cylinder 6.

多芯型絶縁電線40Bの成型・製造時には、先ず、実施例1の第3電導線と同様に用意した電導線13を谷部40aに配置し、この状態の芯軸40を第5押出成型機41のポイント41cに通過させると同時に溶融樹脂S5を流通路41dに流動圧送させる。
これにより、谷部40aと電導線13との間に生じた空隙部Spを樹脂体14で充填する(図8(c)参照)。これと同時に、山部40bが芯軸40の周方向に側方へ変形されて電導線13および樹脂体14の双方を覆う山部変形部42aを備えた絶縁電線体42が設けられる(配設・充填・変形工程)。
At the time of molding and manufacturing of the multicore insulated wire 40B, first, the conductive wire 13 prepared in the same manner as the third conductive wire of Example 1 is disposed in the valley portion 40a, and the core shaft 40 in this state is a fifth extrusion molding machine At the same time as passing through the point 41c of 41, the molten resin S5 is fluidly pumped to the flow passage 41d.
As a result, the space Sp formed between the valley 40a and the conductive wire 13 is filled with the resin body 14 (see FIG. 8C). At the same time, the insulated wire body 42 is provided with the ridge portion deformation portion 42a in which the ridge portion 40b is laterally deformed in the circumferential direction of the core shaft 40 to cover both the conductive wire 13 and the resin body 14 (arrangement・ Filling and deformation process).

次いで、実施例3(図6(b)参照)と同様の第4押出成型機35におけるポイント35cに絶縁電線体42を通過させると同時に溶融樹脂S4を流通路35dに流動圧送させる。
これにより、溶融樹脂S4が、図9に示すように、絶縁電線体42の外表面に外被層43を成型して、芯軸40、電導線13および樹脂体14を一体的に覆う多芯型絶縁電線40Bを構成する(被覆工程)。
この場合および後述する実施例6でも、実施例2と同様に、樹脂体14の充填に代わって、電導線13をコーティングした樹脂被覆を融解して使用する配置工程を設けてもよい。
Next, the insulated wire body 42 is allowed to pass through the point 35c of the fourth extruder 35 similar to that of the third embodiment (see FIG. 6B) and, at the same time, the molten resin S4 is flowed and pumped through the flow passage 35d.
As a result, as shown in FIG. 9, the molten resin S4 forms the outer cover layer 43 on the outer surface of the insulated wire 42, and integrally covers the core shaft 40, the conductive wire 13 and the resin body 14 The mold insulated wire 40B is configured (coating step).
In this case and also in Example 6 to be described later, as in Example 2, in place of the filling of the resin body 14, a disposition step may be provided in which the resin coating coated with the conductive wire 13 is melted and used.

図10は本発明の実施例6を示す。この実施例6が実施例5と異なるところは、中実状の芯軸40の横断面を星型あるいはヒトデ型(各辺が内方に凸となる曲線を成す四辺形)として、その外周縁部に起伏する山部40bと谷部40aを形成したことである(図10(a)の初期工程参照)。   FIG. 10 shows Example 6 of the present invention. The sixth embodiment differs from the fifth embodiment in that the cross section of the solid core shaft 40 is in the shape of a star or starfish (a quadrilateral in which each side forms a curve convex inward). The ridges 40b and the valleys 40a are formed on the upper and lower sides (refer to the initial step of FIG. 10A).

多芯型絶縁電線40Bの成型・製造時には、図8(a)の実施例5と同様に、谷部40aに電導線13を配置した状態で、実施例5と同様の第5押出成型機41で押出処理を受けた後、図10(b)に示すように、配設・充填・変形工程で山部変形部44を備えた絶縁電線体45が設けられる。
溶融樹脂S4が、図10(c)に示すように、絶縁電線体45の外表面に外被層46を成型して、芯軸40、電導線13および樹脂体14を一体的に覆う多芯型絶縁電線40Bを構成する(被覆工程)。
At the time of molding and manufacturing of the multi-core type insulated wire 40B, the fifth extrusion molding machine 41 similar to the fifth embodiment is performed in a state where the conductive wire 13 is disposed in the valley portion 40a similarly to the fifth embodiment of FIG. After being subjected to the extrusion process, as shown in FIG. 10 (b), the insulated wire body 45 provided with the peak portion deformation portion 44 is provided in the arrangement / filling / deformation step.
As shown in FIG. 10 (c), the molten resin S4 forms a cover layer 46 on the outer surface of the insulated wire 45, and covers the core shaft 40, the conductive wire 13 and the resin body 14 integrally. The mold insulated wire 40B is configured (coating step).

〔変形例〕
(a)芯軸10は、中空部が略十字筒形状の金型7により、マルチセパレータとして四箇所ずつの山部11bおよび谷部11cを形成したが、芯軸10には、所定形状の金型7を用いて、三箇所あるいは四箇所以上の山部11bおよび谷部11cを複数個として設けてもよい。
実施例5、6の芯軸40についても上記と同様である。
(b)芯軸10(40)、樹脂体14および外被層20(33、43、46)の材質として、共通の難燃性ポリウレタン樹脂を用いたが、通常のポリウレタン樹脂、高純度のポリエチレン(PE)、エチレン・ビニール・アセテート共重合体(エチレン酢酸ビニール共重合体:EVA)、熱可塑性加硫物あるいはテトラフルオロエチレン・プロピレン系フッ素ゴムなどの合成樹脂材料を用いてもよい。
[Modification]
(A) The core shaft 10 has four ridges 11 b and four valleys 11 c as multi-separators formed by the mold 7 having a hollow cylinder shaped substantially in the shape of a cross cylinder. Three or four or more peak portions 11 b and valley portions 11 c may be provided as a plurality using the mold 7.
The core shafts 40 of the fifth and sixth embodiments are the same as above.
(B) Although the common flame retardant polyurethane resin was used as the material of the core shaft 10 (40), the resin body 14 and the outer covering layer 20 (33, 43, 46), a normal polyurethane resin, high purity polyethylene You may use synthetic resin materials, such as (PE), ethylene vinyl acetate copolymer (ethylene vinyl acetate copolymer: EVA), a thermoplastic vulcanizate, or a tetrafluoroethylene propylene-based fluororubber.

(c)また、芯軸10(40)、樹脂体14および外被層20(33、43、46)の材質としては、上記合成樹脂材料に代わって、塩素化ポリオレフィン、EPDM(エチレン・プロピレン・ジエン・メチレンゴム)でもよく、あるいはポリアミド(PA)、ポリエステル、ポリイミド、ポリアミドイミド、ポリアセタール、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)あるいはシンジオタクチックポリスチレン(SPS)などのエンジニアリングプラスチック材料を用いてもよい。 (C) Further, as materials of the core shaft 10 (40), the resin body 14 and the outer covering layer 20 (33, 43, 46), chlorinated polyolefin, EPDM (ethylene, propylene, Diene, methylene rubber) may be used, or polyamide (PA), polyester, polyimide, polyamideimide, polyacetal, polycarbonate (PC), polyphenylene ether (PPE), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytetrafluoroethylene Engineering plastic materials such as ethylene (PTFE) or syndiotactic polystyrene (SPS) may be used.

本発明に係る多芯型絶縁電線では、外被層により、複数の電導線を樹脂体と一緒に被覆しているため、全体の柔軟性を確保しながら、全体を緊密に束ねて纏める形状保持性を確保することができる。これらの有用性に着目した関連事業からの需要が喚起され、関連部品の流通を介して機械産業に貢献することができる。   In the multicore insulated wire according to the present invention, since the plurality of conductive wires are covered together with the resin body by the jacket layer, the shape is maintained tightly bundled all together while securing the entire flexibility. It is possible to secure the sex. The demand from related businesses focusing on the usefulness can be aroused, and the distribution of related parts can contribute to the machine industry.

1 金型
8 第1電導線
9 第2電導線
10 軸芯
10a 軸芯の外周縁部
11a 中央部
11b 山部
11c 谷部
13 第3電導線
13a 第3電導線の樹脂被覆
14 樹脂体
17 絶縁電線体
18 電導線群
20 外被層
20A、33A 多芯型絶縁電線
S1〜S5 溶融樹脂
Sp 空隙部
DESCRIPTION OF SYMBOLS 1 mold 8 1st conductor wire 9 2nd conductor wire 10 axial core 10a outer peripheral edge portion of axial core 11a central portion 11b peak portion 11c valley portion 13 third conductive wire 13a resin coating of third conductive wire 14 resin body 17 insulation Electric wire 18 Conducted wire group 20 Outer cover layer
20A, 33A multi-core type insulated wire S1 to S5 molten resin Sp void

(請求項1および請求項2について)
絶縁性の芯軸には、芯軸構造として軸方向に沿って形成された形態とし、芯軸の外周縁部には、周方向に沿って起伏する複数の山部と複数の谷部とを連続的に設けている。
谷部のそれぞれに配置されて全体として複数本から成る電導線が設けられている。谷部と電導線との間に生じた空隙部に樹脂体が充填配設されている。山部の側方変形により電導線および樹脂体の双方を覆う山部変形部が設けられている。芯軸を電導線、樹脂体および山部変形部の三者と一緒に被覆する外被層を設けている。また、芯軸、外被層および樹脂体の三者は、いずれも難燃性ポリウレタン樹脂から形成している。
(Regarding claim 1 and claim 2)
The insulating core shaft has a form formed along the axial direction as a core shaft structure, and the outer peripheral edge portion of the core shaft has a plurality of peak portions and a plurality of valley portions which are undulated along the circumferential direction. It is provided continuously.
A plurality of conductive wires are provided in each of the valleys as a whole. A resin body is filled and disposed in a gap formed between the valley and the conductive wire. A peak deformation portion is provided which covers both the conductive wire and the resin body by lateral deformation of the peak. An outer cover layer is provided which covers the core shaft together with the conductive wire, the resin body, and the three parts of the peak portion deformation portion. Further, all of the core shaft, the cover layer and the resin body are formed of a flame retardant polyurethane resin.

請求項1および請求項2では、複数の電導線を各谷部に設けているので、電導線群の高密度配置が可能となる。山部変形部が側方変形により電導線および樹脂体の双方を覆うので、電導線および樹脂体を一体化して強固に纏めあげる。
また、外被層により、芯軸の電導線群を樹脂体と一緒に被覆しているため、全体の柔軟性を確保しながら、電導線群と樹脂体とを緊密に束ねて纏める形状保持性を確保することができる。
さらに、第1電導線、第2電導線および第3電導線の各電導線は、被覆が要らず裸線の状態でよいので、成型工程数の削減により、短時間で成形作業が終了して生産性の向上に貢献することができる。
加えて、芯軸、外被層および樹脂体の三者は、いずれも難燃性ポリウレタン樹脂から形成されているため、これら三者を共通の合成樹脂材料を用いてコスト的に有利に型成することができる。
In the first and second aspects of the present invention, since the plurality of conductive lines are provided in each valley portion, high density arrangement of the conductive line group is possible. Since the peak deformation portion covers both the conductive wire and the resin body by lateral deformation, the conductive wire and the resin body are integrated and firmly fixed.
In addition, since the conductive wire group of the core shaft is covered with the resin body by the outer covering layer, the shape retention property in which the conductive wire group and the resin body are tightly bundled and collected while securing the entire flexibility. Can be secured.
Furthermore, since the conductive wires of the first conductive wire, the second conductive wire and the third conductive wire do not need to be covered and may be in the form of bare wires, the molding operation is completed in a short time by reducing the number of molding steps. It can contribute to the improvement of productivity.
In addition, since all of the core shaft, the cover layer, and the resin body are formed of the flame-retardant polyurethane resin, these three members can be molded in a cost-effective manner using a common synthetic resin material. can do.

(請求項3および請求項について)
電導線は、複数本の細線を撚り合わせて形成した撚線から成る。
(Regarding Claim 3 and Claim 5 )
The conductive wire is formed of a stranded wire formed by twisting a plurality of thin wires.

請求項3および請求項では、高電気容量化が図られると共に、屈曲変位に富む高い柔軟性が得られる。 According to claims 3 and 5 , high electric capacity can be realized, and high flexibility rich in bending displacement can be obtained.

(請求項4および請求項について)
外被層と樹脂体とは、これら相互間の移行性を無くすため、同一種類の合成樹脂材料により形成されている。
(Regarding Claim 4 and Claim 6 )
The outer covering layer and the resin body are formed of the same kind of synthetic resin material in order to eliminate migration between them.

請求項4および請求項では、移行性が無いので、外被層と樹脂体との相互間が緊密に接触していても、可塑剤などの添付物が両者の間を移行することがなくなる。この結果、外被層と樹脂体とが剥離することがなく、これら両者間の良好な密着保持性を長期にわたって保持することができる。 In the fourth and sixth aspects of the invention, since there is no migration, even if the outer covering layer and the resin body are in close contact with each other, the attachment such as a plasticizer does not move between the two. . As a result, the outer covering layer and the resin body do not peel off, and it is possible to maintain good adhesion retention between them for a long time.

Claims (8)

軸方向に沿って延出形成された絶縁性の芯軸を有し、前記芯軸の外周縁部を周方向に複数区間に区画するように、前記外周縁部に沿って複数の山部と複数の谷部とを連続的に形成した芯軸構造と、
前記谷部のそれぞれに配置されて全体として複数本から成る電導線と、
前記谷部と前記電導線との間に生じた空隙部に充填配設された樹脂体と、
前記山部の側方変形により前記電導線および前記樹脂体の双方を覆う山部変形部と、
前記芯軸を前記電導線、前記樹脂体および前記山部変形部の三者と一緒に被覆する外被層とを具備したことを特徴とする多芯型絶縁電線。
A plurality of ridges are provided along the outer peripheral edge so as to have an insulating core axis formed extending in the axial direction, and to divide the outer peripheral edge of the core axis into a plurality of sections in the circumferential direction Core shaft structure in which a plurality of valleys are continuously formed,
A plurality of conductive lines disposed in each of the valleys as a whole;
A resin body filled and disposed in an air gap formed between the valley and the conductive wire;
A ridge deformation portion covering both the conductive wire and the resin body by lateral deformation of the ridge;
A multi-core insulated wire comprising: an outer cover layer covering the core shaft together with the conductive wire, the resin body, and the ridge deformation portion.
軸方向に沿って延出形成された絶縁性の芯軸を有し、前記芯軸の外周縁部を周方向に複数区間に区画するように、前記外周縁部に沿って起伏する複数の山部と複数の谷部とを連続的に形成した芯軸構造を用意する初期工程と、
電導線を用意して前記谷部に配置し、かつ前記谷部と前記電導線との間に生じた空隙部を樹脂体で充填する共に、前記電導線および前記樹脂体の双方を覆う山部変形部を設けるために、前記山部を前記芯軸の周方向に側方変形させる配設・充填・変形工程と、
前記芯軸を前記電導線、前記樹脂体および前記山部変形部の三者と一体的に被覆する外被層を形成する被覆工程とを具備したことを特徴とする多芯型絶縁電線の製造方法。
A plurality of mountains having insulating core axes formed extending in the axial direction, and undulating along the outer peripheral edge so as to divide the outer peripheral edge of the core axis into a plurality of sections in the circumferential direction An initial step of preparing a core shaft structure in which a portion and a plurality of valleys are continuously formed;
A conductive wire is prepared and disposed in the valley, and a gap formed between the valley and the conductive wire is filled with a resin body, and a peak which covers both the conductive wire and the resin body An arrangement / filling / deformation step of laterally deforming the peak portion in the circumferential direction of the core shaft to provide a deformation portion;
Manufacturing a multi-core type insulated wire characterized in comprising a covering step of forming an outer covering layer integrally covering the core shaft with the conductive wire, the resin body and the ridge portion deformation portion. Method.
前記電導線は、複数本の細線を撚り合わせて形成した撚線から成ることを特徴とする請求項1に記載の多芯型絶縁電線。   The multifilamentary insulated wire according to claim 1, wherein the conductive wire comprises a stranded wire formed by twisting a plurality of thin wires. 前記外被層と前記樹脂体とは、これら相互間の移行性を無くすため、同一種類の合成樹脂材料により形成されていることを特徴とする請求項1に記載の多芯型絶縁電線。   The multicore insulated wire according to claim 1, wherein the outer covering layer and the resin body are formed of the same kind of synthetic resin material in order to eliminate the mutual migration between them. 前記芯軸、前記外被層および前記樹脂体の三者は、いずれも難燃性ポリウレタン樹脂から成ることを特徴とする請求項1に記載の多芯型絶縁電線。   The multicore insulated wire according to claim 1, wherein all of the core shaft, the outer cover layer and the resin body are made of a flame retardant polyurethane resin. 前記電導線は、複数本の細線を撚り合わせて形成した撚線から成ることを特徴とする請求項2に記載の多芯型絶縁電線の製造方法。   The method according to claim 2, wherein the conductive wire comprises a stranded wire formed by twisting a plurality of thin wires. 前記外被層と前記樹脂体とは、これら相互間の移行性を無くすため、同一種類の合成樹脂材料により形成されていることを特徴とする請求項2に記載の多芯型絶縁電線の製造方法。   3. The multicore insulated wire according to claim 2, wherein the outer covering layer and the resin body are formed of the same kind of synthetic resin material in order to eliminate migration between them. Method. 前記芯軸、前記外被層および前記樹脂体の三者は、いずれも難燃性ポリウレタン樹脂から成ることを特徴とする請求項2に記載の多芯型絶縁電線の製造方法。   The method for manufacturing a multi-core insulated wire according to claim 2, wherein all of the core shaft, the outer cover layer and the resin body are made of a flame retardant polyurethane resin.
JP2018072024A 2018-04-04 2018-04-04 Multi-core insulated wire and manufacturing method thereof Active JP6405485B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072024A JP6405485B1 (en) 2018-04-04 2018-04-04 Multi-core insulated wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072024A JP6405485B1 (en) 2018-04-04 2018-04-04 Multi-core insulated wire and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017215159A Division JP6377829B1 (en) 2017-11-08 2017-11-08 Multi-core insulated wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP6405485B1 JP6405485B1 (en) 2018-10-17
JP2019087524A true JP2019087524A (en) 2019-06-06

Family

ID=63855128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072024A Active JP6405485B1 (en) 2018-04-04 2018-04-04 Multi-core insulated wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6405485B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633755B (en) * 2018-12-26 2020-12-18 华北科技学院 Cable combined high-density electrical method instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126283U (en) * 1976-03-22 1977-09-26
WO2005013291A1 (en) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Limited Nonhalogenated flame resistant cable
US7098405B2 (en) * 2001-08-25 2006-08-29 Glew Charles A High performance support-separator for communications cables

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126283U (en) * 1976-03-22 1977-09-26
US7098405B2 (en) * 2001-08-25 2006-08-29 Glew Charles A High performance support-separator for communications cables
WO2005013291A1 (en) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Limited Nonhalogenated flame resistant cable

Also Published As

Publication number Publication date
JP6405485B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
US9496071B2 (en) Shield wire
CN111788639B (en) Electric wire conductor, covered electric wire, wire harness, and method for manufacturing electric wire conductor
JP5896869B2 (en) Stranded conductor
JP6896500B2 (en) Composite cable
JP2012243550A (en) High voltage electric wire and manufacturing method of high voltage electric wire
JP5114867B2 (en) Electric cable
JP2018101627A (en) Method for manufacturing wiring material, wiring material, and wiring structure
KR20090074799A (en) Electrical control cable and associated manufacturing process
JP4700078B2 (en) Stranded conductor
JP6089141B1 (en) Composite wire
CN105359363A (en) Wire harness
US11501898B2 (en) Wire harness and method of manufacturing wire harness
JP4821983B2 (en) Electric cable
JP6405485B1 (en) Multi-core insulated wire and manufacturing method thereof
JP4984626B2 (en) Electric cable
US20160137146A1 (en) Shielded wire and wire harness
CN111048245B (en) Automobile communication cable
JP6377829B1 (en) Multi-core insulated wire and manufacturing method thereof
US10074460B2 (en) Multifunctional cable
US11183319B2 (en) Wire harness and method of manufacturing wire harness
US11521764B2 (en) Wire harness and method of manufacturing wire harness
JP2021157968A (en) Flat electric wire and method for manufacturing the same, flat electric wire comprising terminal and wire harness
JP7219871B2 (en) composite cable
JPH11242915A (en) Parallel multicore cable
JP2020191291A (en) Flat electric cable, wire harness and manufacturing method of flat electric cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180409

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180914

R150 Certificate of patent or registration of utility model

Ref document number: 6405485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250