JP2019087439A - High frequency cable - Google Patents

High frequency cable Download PDF

Info

Publication number
JP2019087439A
JP2019087439A JP2017215492A JP2017215492A JP2019087439A JP 2019087439 A JP2019087439 A JP 2019087439A JP 2017215492 A JP2017215492 A JP 2017215492A JP 2017215492 A JP2017215492 A JP 2017215492A JP 2019087439 A JP2019087439 A JP 2019087439A
Authority
JP
Japan
Prior art keywords
conductor
high frequency
coil
frequency cable
cable according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017215492A
Other languages
Japanese (ja)
Inventor
恭 白方
Yasushi Shirakata
恭 白方
芳雄 青木
Yoshio Aoki
芳雄 青木
中村 彰宏
Akihiro Nakamura
彰宏 中村
淳一朗 二階堂
Junichiro Nikaido
淳一朗 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokowo Co Ltd
Original Assignee
Yokowo Co Ltd
Yokowo Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co Ltd, Yokowo Mfg Co Ltd filed Critical Yokowo Co Ltd
Priority to JP2017215492A priority Critical patent/JP2019087439A/en
Publication of JP2019087439A publication Critical patent/JP2019087439A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)
  • Waveguides (AREA)

Abstract

To provide an inexpensive cable for microwaves and quasi-millimeter waves.SOLUTION: A high frequency cable is formed by surrounding a central conductor 30 with an insulator 20 and an external conductor 10. The external conductor 10 comprises: a first coil 11 wound in a direction substantially orthogonal to a cable central axis in the longitudinal direction; and a second coil 12 wound on the outer side of the first coil 11 along between the conductors of the first coil 11. The second coil 12 is wound so as to shift by approximately 1/2 pitch from the first coil 11.SELECTED DRAWING: Figure 1

Description

本発明は、例えばマイクロ波帯以上の周波数の高周波信号を伝送させるための高周波ケーブルに関する。   The present invention relates to a high frequency cable for transmitting, for example, a high frequency signal of a frequency higher than a microwave band.

高周波信号を伝送させる手段として、中心導体とその周囲の外部導体とが同軸状となる高周波ケーブル(「同軸ケーブル」と呼ばれる場合がある)が広く使用されている。この種の高周波ケーブルの一般的な構造例を図8に示す。従来の一般的な高周波ケーブル8は、断面円形状の中心導体830を絶縁体820で被覆し、さらにその外側を外部導体810とシース840で覆ったものである。外部導体810は、伝送特性の観点からはセミリジッドケーブルのような金属管であることが望ましいが、そのような金属管は可撓性に劣る。そのため、例えば特許文献1に開示された高周波ケーブルは、外部導体810をアルミ箔や銅箔、編み込み銅線(編組線)などの柔軟性のある素材とし、これにより高周波ケーブル8全体の可撓性を向上させている。また、特許文献2に開示されている高周波ケーブルは、外部導体810を波状にコルゲート化して可撓性を向上させている。   As a means for transmitting a high frequency signal, a high frequency cable (sometimes referred to as a "coaxial cable") in which the central conductor and the outer conductor therearound are coaxial is widely used. A general structural example of this type of high frequency cable is shown in FIG. The conventional general high-frequency cable 8 is one in which a central conductor 830 having a circular cross-sectional shape is covered with an insulator 820 and the outer side is covered with an outer conductor 810 and a sheath 840. The outer conductor 810 is preferably a metal tube such as a semi-rigid cable from the point of view of transmission characteristics, but such metal tube is less flexible. Therefore, for example, in the high frequency cable disclosed in Patent Document 1, the outer conductor 810 is made of a flexible material such as aluminum foil, copper foil, braided copper wire (braided wire), etc., whereby the flexibility of the entire high frequency cable 8 is obtained. Improve. Moreover, the high frequency cable currently disclosed by patent document 2 corrugates the outer conductor 810 in a wavelike form, and improves flexibility.

特開2006−221842号公報JP, 2006-221842, A 特開2005−158502号公報JP, 2005-158502, A

高周波ケーブルにおいて良好な伝送特性を得るためには、高周波ケーブルを曲げたときに中心導体と外部導体との距離が変わらないこと、すなわち変形したり潰れたりしないことが重要である。特許文献1に開示された高周波ケーブルは、外部導体が柔らかく、機械的強度及び可撓性は、主に絶縁材料が担っている。そのため、絶縁体の最外形は円形かつ平滑である必要があり、また、絶縁体の誘電率を下げるために発泡材料を使用しなければならないなど、材質や形状などの点で多くの制約があった。   In order to obtain good transmission characteristics in a high frequency cable, it is important that the distance between the central conductor and the outer conductor does not change when the high frequency cable is bent, that is, it does not deform or collapse. In the high frequency cable disclosed in Patent Document 1, the outer conductor is soft, and the mechanical strength and flexibility are mainly borne by the insulating material. Therefore, the outermost shape of the insulator needs to be round and smooth, and there are many limitations in terms of material and shape, such as the need to use a foam material to lower the dielectric constant of the insulator. The

一方、特許文献2記載の高周波ケーブルは、銅テープなどの溶接によってコルゲート構造が形成されており、山部と谷部のピッチが一定に固定されているため、屈曲できる範囲に制約があった。
本発明は、上記の制約を緩和しつつ損失の増加を抑制し、かつ、従来よりも可撓性を高めた簡易な構造の高周波ケーブルを提供することを主たる目的とするものである。
On the other hand, in the high frequency cable described in Patent Document 2, the corrugated structure is formed by welding with copper tape or the like, and the pitch of the peak and the valley is fixed to a certain degree.
The main object of the present invention is to provide a high-frequency cable with a simple structure that suppresses the increase in loss while alleviating the above-mentioned limitations, and has higher flexibility than before.

上記目的を達成する高周波ケーブルは、ケーブル中心軸に沿って設けられる中心導体と、前記中心導体を囲う外部導体とを備えており、前記外部導体は、前記ケーブル中心軸に対して実質的に直交する方向に巻回された第1螺旋導体と、前記第1螺旋導体の外側に当該第1螺旋導体の導体間に沿って巻回された第2螺旋導体とを有することを特徴とする。   A high frequency cable which achieves the above object comprises a central conductor provided along a cable central axis and an outer conductor surrounding the central conductor, the outer conductor being substantially orthogonal to the cable central axis And a second spiral conductor wound along the space between the conductors of the first spiral conductor on the outside of the first spiral conductor.

第1螺旋導体及び第2螺旋導体は、一定以上の機械的強度を有する。そのため、絶縁体の強度や形状に対する制約が少なくなる。また、高周波ケーブル全体を屈曲させた場合、第1螺旋導体の導体間が屈曲の度合いに応じて変わるため屈曲できる範囲を面状のものよりも大きくすることができ、かつ第2螺旋導体が第1螺旋導体の導体間を塞ぐので、伝送時の損失の増加を抑えつつ従来よりも可撓性を高めた簡易な構造の高周波ケーブルを提供することができる。   The first helical conductor and the second helical conductor have a mechanical strength of at least a certain level. Therefore, restrictions on the strength and shape of the insulator are reduced. When the entire high-frequency cable is bent, the distance between the conductors of the first helical conductor changes according to the degree of bending, so that the bendable range can be made larger than that of a planar one, and the second helical conductor (1) Since the space between the conductors of the spiral conductor is closed, it is possible to provide a high-frequency cable with a simple structure in which the flexibility is increased compared to the conventional one while suppressing an increase in loss during transmission.

(a)は本実施形態に係る高周波ケーブルの構造斜視図、(b)は正面断面図。(A) is a structure perspective view of the high frequency cable concerning this embodiment, (b) is front sectional drawing. 高周波ケーブルの長手方向断面図。Longitudinal sectional view of a high frequency cable. 高周波ケーブルの伝送特性図。Transmission characteristics of the high frequency cable. (a)〜(d)は外部導体の変形例を示す部分断面図。(A)-(d) is a fragmentary sectional view which shows the modification of an outer conductor. (a),(b)は中心導体の他の例を示す構造斜視図。(A), (b) is a structural perspective view which shows the other example of a center conductor. (a),(b)は絶縁体の変形例を示す正面断面図。(A), (b) is front sectional drawing which shows the modification of an insulator. (a),(b)は絶縁体の他の変形例を示す正面断面図。(A), (b) is front sectional drawing which shows the other modification of an insulator. 従来の同軸ケーブルの構造斜視図。The structural perspective view of the conventional coaxial cable.

以下、図面を参照して、本発明の高周波ケーブルの実施の形態例を説明する。図1(a)は、本実施形態に係る高周波ケーブルの構造斜視図であり、同(b)は高周波ケーブル1の正面断面図である。この高周波ケーブル1は正面断面が円形状となる同軸ケーブルであり、外部導体10、絶縁体20、中心導体30及びシース40を有する。「円形状」とは円形に限らず、円形とみなされる形状をいう。
なお、本明細書では、高周波ケーブル1の中心軸を「ケーブル中心軸」、ケーブル中心軸の方向を「長手方向」、ケーブル中心軸と直交する面内でケーブル中心軸から離れる方向を「外側」、ケーブル中心軸に近づく方向を「内側」と呼ぶ。
Hereinafter, an embodiment of the high frequency cable of the present invention will be described with reference to the drawings. FIG. 1A is a structural perspective view of a high frequency cable according to the present embodiment, and FIG. 1B is a front cross-sectional view of the high frequency cable 1. The high frequency cable 1 is a coaxial cable whose frontal cross section is circular, and has an outer conductor 10, an insulator 20, a central conductor 30, and a sheath 40. The "circular shape" is not limited to a circular shape, but refers to a shape regarded as a circular shape.
In this specification, the central axis of the high frequency cable 1 is “cable central axis”, the direction of the cable central axis is “longitudinal direction”, and the direction away from the cable central axis in the plane orthogonal to the cable central axis is “outside” The direction approaching the central axis of the cable is called "inside".

中心導体30は、マイクロ波以上の周波数の高周波信号を伝送するものであり、例えば銅などの単線あるいは複線からなる。シース40は、ケーブルへの外傷や浸水等を防ぐためのもので、例えば塩化ビニルや耐熱性ポリエチレンなどで構成することができる。中心導体30及びシース40は、例えば図8に示した従来の高周波ケーブル8の中心導体830及びシース840と同じサイズのものである。   The central conductor 30 transmits a high frequency signal having a frequency of microwaves or higher, and is formed of, for example, a single or multiple wires such as copper. The sheath 40 is for preventing injury to the cable, flooding, and the like, and can be made of, for example, vinyl chloride or heat resistant polyethylene. The central conductor 30 and the sheath 40 are, for example, of the same size as the central conductor 830 and the sheath 840 of the conventional high frequency cable 8 shown in FIG.

外部導体10は、図8に示した従来の高周波ケーブル8の外部導体810と異なり、それ自体で一定以上の機械的強度を有し、かつ曲げやすい構造としたものである。このような構造の一例として、本実施形態では、内側螺旋導体11と外側螺旋導体12の2種類で外部導体10を構成した。各螺旋導体11,12は、1本ないし1本とみなすことができる線状、面状、帯状(面状の一態様)の導体が同じ内径又は外径で螺旋状に巻回されたものをいう。
なお、螺旋状に巻回されてケーブル中心軸に沿って延びるので、巻回方向はケーブル中心軸と直交する面に対して僅かに傾斜を持つが、実質的にはケーブル中心軸と直交する面上となる。螺旋導体として、本実施形態では、ヘリカル状のコイルを用いた場合の例を示す。以下の説明では、便宜上、内側螺旋導体11を第1コイル11、外側螺旋導体12を第2コイル12と呼ぶ。
Unlike the outer conductor 810 of the conventional high frequency cable 8 shown in FIG. 8, the outer conductor 10 itself has a mechanical strength higher than a certain level and is configured to be flexible. As an example of such a structure, in the present embodiment, the outer conductor 10 is configured by two types of the inner spiral conductor 11 and the outer spiral conductor 12. Each of the spiral conductors 11 and 12 may be regarded as one to one linear, planar or strip (one form of planar) conductor spirally wound with the same inner diameter or outer diameter Say.
In addition, since it is spirally wound and extends along the cable center axis, the winding direction has a slight inclination with respect to a plane orthogonal to the cable center axis, but a plane substantially orthogonal to the cable center axis On top. In the present embodiment, an example in the case of using a helical coil is shown as the helical conductor. In the following description, the inner spiral conductor 11 is referred to as a first coil 11 and the outer spiral conductor 12 is referred to as a second coil 12 for convenience.

絶縁体20は、中心導体30を外部導体10の内側すなわち第1コイル11との距離を一定にしながら支持する軟質絶縁材料であり、例えばポリテトラフルオロエチレン(PTFE)で成型したものを用いることができる。本実施形態の絶縁体20は、図8に示した従来の高周波ケーブル8の絶縁体820と異なり、その正面断面を四角形状とし、角部に相当する部分が第1コイル11の内側と接触するようにした。つまり、絶縁体20の表面と第1コイル11の内側との間に空間(空気が存在する隙間)が形成されるようにした。これは、第1コイル11と中心導体30との間の比誘電率をできるだけ小さくするためである。「四角形状」とは四角形に限らず、四角形とみなされる形状(角部に相当する部分の一部又は全部がR状のものを含む)をいう。例えば、矩形、凹四角形、双心四角形、台形、凧形、斜め方形、平行四辺形など四つの辺と四つの角部に相当する部分を持つ形状が四角形状となる。
比誘電率は空気が最も低い(約1.0)ので、空間は広い方がより低損失での伝送が可能となる。
The insulator 20 is a soft insulating material that supports the central conductor 30 while keeping the distance between the inner side of the outer conductor 10, that is, the first coil 11, constant, and it is possible to use, for example, one formed of polytetrafluoroethylene (PTFE) it can. Unlike the insulator 820 of the conventional high-frequency cable 8 shown in FIG. 8, the insulator 20 according to the present embodiment has a square cross section in its front cross section, and a portion corresponding to a corner contacts the inside of the first coil 11. I did it. That is, a space (a gap in which air exists) is formed between the surface of the insulator 20 and the inner side of the first coil 11. This is to reduce the relative dielectric constant between the first coil 11 and the central conductor 30 as much as possible. The “square shape” is not limited to a square shape, and refers to a shape regarded as a square shape (a part or all of a portion corresponding to a corner includes an R shape). For example, the shape having a quadrangle, a concave quadrilateral, a double-centered quadrilateral, a trapezoid, a wedge, a diagonal quadrilateral, a parallelogram, etc., having a portion corresponding to four sides and four corners becomes a quadrilateral.
Since the dielectric constant is the lowest in air (about 1.0), a wider space enables transmission with lower loss.

外部導体10を構成する第1コイル11及び第2コイル12は、それぞれ外力に対して容易につぶれず、引張時に導体間に大きな隙間が生じない部材で製造する。例えばバネ材として使われるような、ヤング率が100GPa以上の硬質の金属材料を用いて第1コイル11及び第2コイル12を製造することが望ましい。このような金属材料としては、例えばステンレス鋼(SUS)、ピアノ線、リン青銅、ベリリウム銅、黄銅、白金、ニッケル、金、白金イリジウム合金、白金タングステン合金、白金ニッケル合金などがある。   The first coil 11 and the second coil 12 constituting the outer conductor 10 are manufactured by a member which does not easily collapse with respect to an external force, and a large gap does not occur between the conductors at the time of tension. For example, it is desirable to manufacture the first coil 11 and the second coil 12 using a hard metal material having a Young's modulus of 100 GPa or more, which is used as a spring material. Examples of such a metal material include stainless steel (SUS), piano wire, phosphor bronze, beryllium copper, brass, platinum, nickel, gold, platinum iridium alloy, platinum tungsten alloy, platinum nickel alloy, and the like.

第1コイル11及び第2コイル12は、中心導体30と共に高周波ケーブル1を構成することから、導電率の大きさが、高周波信号の伝送特性の良否、特に挿入損失の大きさと密接に関連する。そのため、少なくとも純銅の導電率(59.5×10S/m)の50%となる導電率(約30×10S/m)以上を有する金属材料を用いて第1コイル11及び第2コイル12を製造することが望ましい。このような金属材料としては、例えば銀、銅、金、アルミニウム、銅合金などがある。なお、表面に導電率約30×10S/m以上の金属材料でめっきした硬質樹脂材料などを用いても良い。 Since the first coil 11 and the second coil 12 constitute the high frequency cable 1 together with the central conductor 30, the magnitude of the conductivity is closely related to the quality of the transmission characteristics of the high frequency signal, particularly to the magnitude of the insertion loss. Therefore, the first coil 11 and the second coil 11 are made of a metal material having a conductivity (about 30 × 10 6 S / m) or more at least 50% of the conductivity (59.5 × 10 6 S / m) of pure copper. It is desirable to manufacture the coil 12. Examples of such metal materials include silver, copper, gold, aluminum, copper alloys and the like. In addition, you may use the hard resin material etc. which were plated with the metal material whose electric conductivity is about 30 * 10 < 6 > S / m or more on the surface.

図2は、外部導体10の構造を説明するための高周波ケーブル1の長手方向断面図である。便宜上、絶縁体20は省略してある。本実施形態では、一つのサイズ例として、縦0.1mm×横0.3mmの断面四角形状の金属材料を、ケーブル中心軸に対して実質的に直交する方向に巻回して第1コイル11を製造した。外部導体10の内径D1は、例えば0.8mmである。金属材料は、金めっきが施された銅合金を用いた。ピッチ(導体の中心間の距離、以下同じ)P11は、後述する電磁波の漏えいを防止する観点からは導体幅(0.3mm)の2倍以下とするのが望ましい。本実施形態では、撓んでいない状態でのピッチP11を0.35mmとした。   FIG. 2 is a longitudinal sectional view of the high frequency cable 1 for explaining the structure of the outer conductor 10. The insulator 20 is omitted for convenience. In the present embodiment, as one size example, the first coil 11 is formed by winding a metal material having a rectangular shape with a cross section of 0.1 mm long × 0.3 mm wide in a direction substantially orthogonal to the cable central axis. Manufactured. The inner diameter D1 of the outer conductor 10 is, for example, 0.8 mm. The metal material used was a copper alloy plated with gold. The pitch (the distance between the centers of the conductors, the same applies hereinafter) P11 is preferably not more than twice the conductor width (0.3 mm) from the viewpoint of preventing the leakage of the electromagnetic wave described later. In the present embodiment, the pitch P11 in the undeflected state is 0.35 mm.

第2コイル12は、例えば第1コイル11と同じ導体幅のコイルであり、第1コイル11の導体間の外表面に緩く密着しながら巻回される。本例の場合、第2コイル12の内径D2は、1.0mmである。第2コイル12のピッチP12は第1コイル11のピッチP11と同じ0.35mmであるが、第2コイル12は第1コイル11と略1/2ピッチずれて巻回される。これにより第2コイル12は、第1コイル11の導体間の隙間を塞ぐ役割を持つ。「緩く密着」とは、第1コイル11及び第2コイル12自体の付勢力及び消勢力で互いに密着しているが、撓みの程度に応じて密着部位が変位可能である状態をいう。また、「略1/2」とは、厳密に1/2である必要がないという意味あいである。   The second coil 12 is, for example, a coil having the same conductor width as that of the first coil 11, and is wound while loosely in contact with the outer surface between the conductors of the first coil 11. In the case of this example, the inner diameter D2 of the second coil 12 is 1.0 mm. The pitch P12 of the second coil 12 is 0.35 mm, which is the same as the pitch P11 of the first coil 11, but the second coil 12 is wound so as to be offset from the first coil 11 by approximately 1⁄2 pitch. Thereby, the second coil 12 has a role of closing the gap between the conductors of the first coil 11. The term "loosely in close contact" means a state in which the close contact portion is displaceable according to the degree of bending although the close contact is achieved by the biasing force and the deenergizing force of the first coil 11 and the second coil 12 themselves. Also, "approximately 1/2" means that it is not necessary to be exactly 1/2.

高周波ケーブル1が屈曲すると、第1コイル11及び第2コイル12の導体間のピッチP11,P12が変化する。すなわち屈曲した内側のピッチが部分的に狭まり、外側のピッチが部分的に拡がり、導体間に隙間が生じる。このような状態でも、第1コイル11及び第2コイル12のピッチの変化が同じように生じる。そのため、第1コイル11の導体間に生じる隙間は第2コイル12により塞がれたままとなる。つまり、第2コイル12は、撓みの有無に関わらず、第1コイル11の導体間の隙間を塞ぐため、外部導体10から外部への電磁波の漏えいが防止され、低損失での伝送が可能となる。
また、第1コイル11及び第2コイル12は互いに固定されておらずピッチが比較的自由に変化するため、伝送時の損失の低下を抑えつつ屈曲できる範囲を従来の高周波ケーブル8よりも大きくすることができる。
When the high frequency cable 1 is bent, the pitches P11 and P12 between the conductors of the first coil 11 and the second coil 12 change. That is, the bent inner pitch partially narrows, the outer pitch partially widens, and a gap is created between the conductors. Even in such a state, changes in the pitch of the first coil 11 and the second coil 12 occur in the same manner. Therefore, the gap generated between the conductors of the first coil 11 remains blocked by the second coil 12. That is, since the second coil 12 closes the gap between the conductors of the first coil 11 regardless of the presence or absence of bending, leakage of the electromagnetic wave from the outer conductor 10 to the outside is prevented, and transmission with low loss is possible. Become.
In addition, since the first coil 11 and the second coil 12 are not fixed to each other and the pitch changes relatively freely, the range that can be bent while suppressing the loss during transmission is made larger than that of the conventional high frequency cable 8 be able to.

高周波ケーブル1の1cmあたりの伝送特性例を図3に示す。図3において横軸は周波数(GHz)、縦軸は挿入損失(dB/cm)である。例えば80GHzの場合の挿入損失は−0.15dBであり、十分に小さい挿入損失となっている。   An example of the transmission characteristic per 1 cm of the high frequency cable 1 is shown in FIG. In FIG. 3, the horizontal axis is frequency (GHz) and the vertical axis is insertion loss (dB / cm). For example, the insertion loss at 80 GHz is -0.15 dB, which is a sufficiently small insertion loss.

<変形例1>
以上は、第1コイル11と第2コイル12を、同じ断面サイズで共に断面四角形状の金属材料で製作した場合の例であるが、この例に限定されるものではない。例えば、図4(a)の部分断面図に示されるように、同じ径で断面が円形状の金属材料で第1コイル51と第2コイル52を構成しても良い。この例においても第1コイル51のピッチP51とその外側の第2コイル52のピッチP52は、導体径又は導体幅の2倍以下であり、互いに略1/2ピッチずれて巻回されている。あるいは、図4(b)の部分断面図に示されるように、第1コイル61を断面円形状の金属材料とし、その外側の第2コイル62を断面四角形状の金属材料で構成しても良い。第1コイル61のピッチP61とその外側の第2コイル62のピッチP62は、導体径又は導体幅の2倍以下であり、互いに略1/2ピッチずれて巻回されている。あるいは、図4(c)の部分断面図に示されるように、第1コイル71を断面四角形状の金属材料とし、その外側の第2コイル72を断面円形状の金属材料で構成しても良い。この例においても第1コイル71のピッチP71とその外側の第2コイル72のピッチP72は、導体径又は導体幅の2倍以下であり、互いに略1/2ピッチずれて巻回されている。あるいは、図4(d)の部分断面図に示されるように、第1コイル81を導体幅の大きい断面四角形状の金属材料とし、その外側の第2コイル82を導体幅が相対的に小さい断面四角形状の金属材料としても良い。なお、導体幅の大小は逆であっても良い。これらの例の場合、第1コイル81のピッチP81とその外側の第2コイル82のピッチP82は、大きい方の導体幅の2倍以下である。
<Modification 1>
Although the above is an example at the time of producing the 1st coil 11 and the 2nd coil 12 by the metal material of the section square shape with the same section size, it is not limited to this example. For example, as shown in the partial cross-sectional view of FIG. 4A, the first coil 51 and the second coil 52 may be made of a metal material having the same diameter and a circular cross section. Also in this example, the pitch P51 of the first coil 51 and the pitch P52 of the second coil 52 outside the first coil 51 are equal to or less than twice the conductor diameter or the conductor width, and they are wound with an approximately 1/2 pitch deviation. Alternatively, as shown in the partial cross-sectional view of FIG. 4B, the first coil 61 may be made of a metal material having a circular cross section, and the second coil 62 on the outer side may be made of a metal material having a square cross section. . The pitch P61 of the first coil 61 and the pitch P62 of the second coil 62 outside the first coil 61 are equal to or less than twice the conductor diameter or the conductor width, and they are wound so as to be deviated from each other by about 1⁄2 pitch. Alternatively, as shown in the partial cross-sectional view of FIG. 4C, the first coil 71 may be made of a metal material having a square cross section, and the second coil 72 on the outside thereof may be made of a metal material having a circular cross section. . Also in this example, the pitch P71 of the first coil 71 and the pitch P72 of the second coil 72 outside the first coil 71 are equal to or less than twice the conductor diameter or the conductor width, and they are wound with an approximately 1/2 pitch deviation. Alternatively, as shown in the partial cross-sectional view of FIG. 4D, the first coil 81 is made of a metal material having a rectangular cross section with a large conductor width, and the second coil 82 outside thereof is a cross section with a relatively small conductor width. It may be a square metal material. In addition, the magnitude of the conductor width may be reversed. In these examples, the pitch P81 of the first coil 81 and the pitch P82 of the second coil 82 outside the first coil 81 are equal to or less than twice the width of the larger conductor.

なお、第1コイル11,51,61,71,81の外側と第2コイル12,52,62,72,82の内側の少なくとも一方が平面状または曲面状であれば、高周波ケーブル1が屈曲したときに、滑らかに各第1コイル11,51,61,71,81,第2コイル12,52,62,72,82が変位するので、これらの断面形状は任意であって良い。例えば、断面形状が円形状または少なくとも一つの辺が直線状又は曲線状をなすn角形状(nは3以上の自然数)であっても良い。   If at least one of the outside of the first coil 11, 51, 61, 71, 81 and the inside of the second coil 12, 52, 62, 72, 82 is flat or curved, the high frequency cable 1 is bent Sometimes, since the first coils 11, 51, 61, 71, 81 and the second coils 12, 52, 62, 72, 82 are smoothly displaced, their cross-sectional shapes may be arbitrary. For example, the cross-sectional shape may be a circular shape or an n-angular shape (n is a natural number of 3 or more) in which at least one side has a linear shape or a curved shape.

<変形例2>
高周波ケーブル1の中心導体30は、ケーブル中心軸に沿って設けられる銅などの単線あるいは複線として説明してきたが、この例に限定されるものではない。例えば、図5(a)の構造斜視図に示される高周波ケーブル2のように、中心導体30が、三つの導体で構成されるコプレーナ線路301を絶縁体201上に並べたものであっても良い。あるいは、図5(b)の構造斜視図に示される高周波ケーブル3のように、中心導体30が、4本あるいはそれ以上の導体で構成される平衡線路302を絶縁体202上に並べたものであっても良い。各絶縁体201,202は、それぞれ正面断面が、第1コイル11の内側に沿った四角形状(図示の例では矩形状)であり、角部に相当する部分が第1コイル11の内側に当接している。
このように、本発明は、中心導体30,301,302の形状、構造、導体配置及び導体数にかかわらず、外部導体10を有する高周波ケーブル全般に適用が可能である。
<Modification 2>
Although the central conductor 30 of the high frequency cable 1 has been described as a single or double wire such as copper provided along the cable central axis, it is not limited to this example. For example, as in the high-frequency cable 2 shown in the structural perspective view of FIG. 5A, the central conductor 30 may be a coplanar line 301 composed of three conductors arranged on the insulator 201. . Alternatively, as in the high-frequency cable 3 shown in the structural perspective view of FIG. 5 (b), the center conductor 30 is formed by arranging balanced lines 302 composed of four or more conductors on the insulator 202. It may be. Each of the insulators 201 and 202 has a frontal cross section in the form of a square (rectangular in the illustrated example) along the inner side of the first coil 11, and a portion corresponding to a corner portion corresponds to the inner side of the first coil 11. I am in touch.
Thus, the present invention is applicable to all high frequency cables having the outer conductor 10 regardless of the shape, structure, conductor arrangement and number of conductors of the central conductors 30, 301, 302.

<変形例3>
本実施形態では、絶縁体20の正面断面が四角形状である場合の例を説明したが、この例に限定されるものではない。絶縁体20は、その表面と外部導体10の内側との間に、できるだけ体積が大きくなる空間が形成されることが望ましいので、その形状は、例えば図6又は図7に示される形状であっても良い。図6及び図7において、図1(a)、(b)、図5(a),(b)と同じ部品については同じ符号を付してある。
図6(a)は中心導体30を正面断面が略十字形の絶縁体210でモールドした例である。同(b)は同じく中心導体30を中心部に向けて湾曲する正面断面が三角形状の絶縁体220でモールドした例である。三角形状は、図示の形状例のほかに角部に相当する部分の一部または全部がR状をなす形状を含む。いずれの絶縁体210,220も外部導体10の内側との空間が大きくなるので、伝送損失の増加が抑制される。なお、上記のほか、正面断面が星形、蛸足形ないしこれらと類似する形状の絶縁体であっても良い。
<Modification 3>
In the present embodiment, an example in which the front cross section of the insulator 20 has a square shape has been described, but the present invention is not limited to this example. Since it is desirable that a space with the largest possible volume be formed between the surface of the insulator 20 and the inner side of the outer conductor 10, the shape thereof is, for example, the shape shown in FIG. Also good. In FIGS. 6 and 7, the same components as those in FIGS. 1A, 1B, 5A, and 5B are denoted by the same reference numerals.
FIG. 6A shows an example in which the center conductor 30 is molded with an insulator 210 whose front cross section is substantially cruciform. The same (b) is an example similarly molded by the insulator 220 whose front cross section curved toward the central portion of the central conductor 30 is a triangle. The triangular shape includes, in addition to the illustrated shape example, a shape in which part or all of the portion corresponding to the corner has an R shape. Since the space between the insulators 210 and 220 and the inner side of the outer conductor 10 is large, an increase in transmission loss is suppressed. In addition to the above, it may be an insulator whose front cross section is star-shaped, saddle-shaped or similar.

図7(a)は中心導体が図5(a)のコプレーナ線路301の場合の絶縁体201,231,232の例である。また、図7(b)は中心導体が図5(b)の平衡線路302の場合の絶縁体202,241,242の例である。いずれも中心導体(コプレーナ線路301,平衡線路302)を紙面上下方向から挟み込む構造になっている。
なお、図7(a)では、コプレーナ線路301を一つの絶縁体231で支持する構造が示されているが、図7(b)のようにコプレーナ線路301を構成する三つの導体をそれぞれ個別に支持する構造にしても良い。また、図7(b)では平衡線路302を構成する四つの導体を個別に支持する構造が示されているが、図7(a)のように一つで支持する構造にしても良い。また、図7(a),(b)において、紙面下側の絶縁体232,242は、それぞれコプレーナ線路301が設けられた絶縁体201、平衡線路302が設けられた絶縁体202と一体構成であっても良い。その場合の正面断面形状は、任意であって良い。
FIG. 7A shows an example of the insulators 201, 231 and 232 in the case where the central conductor is the coplanar line 301 of FIG. 5A. Moreover, FIG.7 (b) is an example of the insulators 202,241,242 in case the center conductor is the balance line 302 of FIG.5 (b). In either case, the central conductor (coplanar line 301, balanced line 302) is sandwiched from above and below in the drawing.
7 (a) shows a structure in which the coplanar line 301 is supported by one insulator 231, but as shown in FIG. 7 (b), the three conductors constituting the coplanar line 301 are individually individually provided. It may be a supporting structure. Although FIG. 7 (b) shows a structure in which the four conductors constituting the balanced line 302 are individually supported, it may be a single support as shown in FIG. 7 (a). Further, in FIGS. 7A and 7B, the insulators 232 and 242 on the lower side in the drawing are integrally configured with the insulator 201 provided with the coplanar line 301 and the insulator 202 provided with the balanced line 302, respectively. It may be. The front cross-sectional shape in that case may be arbitrary.

Claims (12)

ケーブル中心軸に沿って設けられる中心導体と、
前記中心導体を囲う外部導体とを備えており、
前記外部導体は、前記ケーブル中心軸に対して実質的に直交する方向に巻回された第1螺旋導体と、前記第1螺旋導体の外側に当該第1螺旋導体の導体間に沿って巻回された第2螺旋導体とを有する高周波ケーブル。
A central conductor provided along the cable central axis;
And an outer conductor surrounding the central conductor,
The outer conductor is wound around a first spiral conductor wound in a direction substantially orthogonal to the cable central axis and an outer side of the first spiral conductor along a space between the conductors of the first spiral conductor. High frequency cable having a second helical conductor.
前記中心導体が軟質性の絶縁体を介して前記外部導体に支持されており、前記絶縁体の表面と前記外部導体の内側との間に空間が形成されている、
請求項1に記載の高周波ケーブル。
The central conductor is supported by the outer conductor via a flexible insulator, and a space is formed between the surface of the insulator and the inner side of the outer conductor.
The high frequency cable according to claim 1.
前記中心導体は、略円筒状導体、コプレーナ線路、平衡線路のいずれかである、
請求項1または請求項2に記載の高周波ケーブル。
The central conductor is any of a substantially cylindrical conductor, a coplanar line, and a balanced line.
The high frequency cable according to claim 1 or 2.
前記第2螺旋導体の導体幅が前記第1螺旋導体の導体間の間隙よりも大きい、
請求項1から3のいずれか一項に記載の高周波ケーブル。
The conductor width of the second helical conductor is larger than the gap between the conductors of the first helical conductor
The high frequency cable according to any one of claims 1 to 3.
前記第1螺旋導体の導体幅が前記第2螺旋導体の導体幅よりも大きい、
請求項1から4のいずれか一項に記載の高周波ケーブル。
The conductor width of the first spiral conductor is larger than the conductor width of the second spiral conductor
The high frequency cable according to any one of claims 1 to 4.
前記第1螺旋導体の外側と前記第2螺旋導体の内側の少なくとも一方が平面状または曲面状をなす、請求項1から5のいずれか一項に記載の高周波ケーブル。   The high frequency cable according to any one of claims 1 to 5, wherein at least one of the outer side of the first helical conductor and the inner side of the second helical conductor is flat or curved. 前記第1螺旋導体及び前記第2螺旋導体の断面形状が円形状または少なくとも一つの辺が直線状又は曲線状をなすn角形状(nは3以上の自然数)である、
請求項1から6のいずれか一項に記載の高周波ケーブル。
The first helical conductor and the second helical conductor have a circular cross-sectional shape or an n-angular shape (n is a natural number of 3 or more) in which at least one side is linear or curved.
The high frequency cable according to any one of claims 1 to 6.
前記第1螺旋導体の断面形状と前記第2螺旋導体の断面形状とが同一である、
請求項1から7のいずれか一項に記載の高周波ケーブル。
The cross-sectional shape of the first helical conductor and the cross-sectional shape of the second helical conductor are the same.
The high frequency cable according to any one of claims 1 to 7.
前記第1螺旋導体は、その導体幅の2倍以下のピッチで巻回されており、
前記第2螺旋導体は、前記第1螺旋導体の導体間に略1/2ピッチずれて巻回されている、請求項1から8のいずれか一項に記載の高周波ケーブル。
The first spiral conductor is wound at a pitch not more than twice the width of the conductor,
The high frequency cable according to any one of claims 1 to 8, wherein the second spiral conductor is wound around the conductors of the first spiral conductor with a shift of about 1⁄2 pitch.
前記第2螺旋導体は、前記第1螺旋導体の導体間に緩やかに密着している、
請求項1から9のいずれか一項に記載の高周波ケーブル。
The second spiral conductor is in close contact with the conductors of the first spiral conductor.
The high frequency cable according to any one of claims 1 to 9.
前記第1螺旋導体は、導電率が30×10[S/m]以上の金属材料又はその表面に導電率が30×10[S/m]以上の金属材料のめっきが施された材料で構成されている、請求項1から10のいずれか一項に記載の高周波ケーブル。 The first spiral conductor is a metal material having a conductivity of 30 × 10 6 [S / m] or more, or a metal material having a conductivity of 30 × 10 6 [S / m] or more plated on the surface thereof. The high frequency cable according to any one of claims 1 to 10, wherein 前記第1螺旋導体は、ヤング率が100[GPa]以上の金属材料で構成されている、請求項1から11のいずれか一項に記載の高周波ケーブル。   The high frequency cable according to any one of claims 1 to 11, wherein the first spiral conductor is made of a metal material having a Young's modulus of 100 [GPa] or more.
JP2017215492A 2017-11-08 2017-11-08 High frequency cable Pending JP2019087439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215492A JP2019087439A (en) 2017-11-08 2017-11-08 High frequency cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215492A JP2019087439A (en) 2017-11-08 2017-11-08 High frequency cable

Publications (1)

Publication Number Publication Date
JP2019087439A true JP2019087439A (en) 2019-06-06

Family

ID=66763288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215492A Pending JP2019087439A (en) 2017-11-08 2017-11-08 High frequency cable

Country Status (1)

Country Link
JP (1) JP2019087439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709010A (en) * 2022-04-11 2022-07-05 远东电缆有限公司 Signal transmission line for new energy automobile and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719912U (en) * 1993-09-16 1995-04-07 住友電装株式会社 Shielded cable
WO2015145537A1 (en) * 2014-03-24 2015-10-01 日立金属株式会社 Transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719912U (en) * 1993-09-16 1995-04-07 住友電装株式会社 Shielded cable
WO2015145537A1 (en) * 2014-03-24 2015-10-01 日立金属株式会社 Transmission line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709010A (en) * 2022-04-11 2022-07-05 远东电缆有限公司 Signal transmission line for new energy automobile and preparation method and application thereof
CN114709010B (en) * 2022-04-11 2024-01-30 远东电缆有限公司 Signal transmission line for new energy automobile and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5699872B2 (en) Differential signal transmission cable
RU2584509C2 (en) Waveguide
US3146297A (en) Coaxial cable with helical insulating spacer
US9153361B2 (en) Differential signal transmission cable
JP5129046B2 (en) Electromagnetic wave transmission medium
US3331400A (en) Flexible waveguide
US20140262411A1 (en) Extended curl s-shield
JP2019087439A (en) High frequency cable
US10510467B2 (en) Shielded cable
JP2007318692A (en) Dual sleeve antenna
JP6279805B2 (en) Leaky coaxial cable
US11482349B1 (en) Cable with non-circular ground wires
JP6865106B2 (en) Flexible waveguide
JP5646940B2 (en) Electromagnetic wave transmission medium
JP6413941B2 (en) cable
JP5863156B2 (en) Differential signal transmission cable
US10784022B1 (en) Cable structure
US6653555B2 (en) Bare-wire interconnect
JP2021028897A (en) Small diameter coaxial cable excellent in flexibility
JP6536983B2 (en) Differential signal transmission cable and differential signal transmission collective cable
JP2003123555A (en) Extra fine leakage coaxial cable
CN220272736U (en) Telescopic fish bone signal transmitting line suitable for antenna equipment
JPS6322724Y2 (en)
WO2024011607A1 (en) Connector and elastic contact
JP5874595B2 (en) Differential signal transmission cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111