JP2019087312A - Cathode active material, cathode and lithium secondary battery - Google Patents

Cathode active material, cathode and lithium secondary battery Download PDF

Info

Publication number
JP2019087312A
JP2019087312A JP2017211971A JP2017211971A JP2019087312A JP 2019087312 A JP2019087312 A JP 2019087312A JP 2017211971 A JP2017211971 A JP 2017211971A JP 2017211971 A JP2017211971 A JP 2017211971A JP 2019087312 A JP2019087312 A JP 2019087312A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
lithium
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017211971A
Other languages
Japanese (ja)
Other versions
JP6998176B2 (en
Inventor
嘉也 牧村
Yoshinari Makimura
嘉也 牧村
啓太 二井谷
Keita Niitani
啓太 二井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2017211971A priority Critical patent/JP6998176B2/en
Publication of JP2019087312A publication Critical patent/JP2019087312A/en
Application granted granted Critical
Publication of JP6998176B2 publication Critical patent/JP6998176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To raise a low-temperature output of a battery.SOLUTION: A lithium secondary battery 10 comprises: a cathode sheet 13 having a cathode active material 12 formed on a current collector 11; an anode sheet 18 having an anode active material 17 formed on a surface of a current collector 14; a separator 19 provided between the cathode sheet 13 and the anode sheet 18; and a nonaqueous electrolyte 20 which fills between the cathode sheet 13 and the anode sheet 18. The lithium secondary battery 10 includes the cathode active material 12. As to the cathode active material, the value of dQ/dV [AhgV] representing the ratio of a difference between a capacity Q when a capacity per composite oxide in charge/discharge at a rate of 0.1 C under a 20°C-temperature environment with an evaluation cell including a working electrode including a composite oxide having a spinel structure including Li, Mn and M (where M represents one or more of Co and Ni) and a counter electrode of lithium metal is q [mAhg] and a capacity when the capacity is q+5 [mAhg] to a difference of a voltage V satisfies -3<dQ/dV<3 in a whole electric potential range used in the charge/discharge.SELECTED DRAWING: Figure 1

Description

本明細書で開示する発明は、正極活物質、正極及びリチウム二次電池に関する。   The invention disclosed herein relates to a positive electrode active material, a positive electrode and a lithium secondary battery.

従来、Li、Mn及び遷移金属を含むスピネル型の複合酸化物を二次電池の正極活物質として用いることが知られている。例えば、特許文献1では、Li1+xMn2-y-zNiyz4-d(式中、x、y、z、dは、−0.3<x<0.3、0<y<0.5、0<z<0.3、−0.2<d<0.2を満たす。Mは、Ni、Mn、Cr、Fe、Co及びCu以外の遷移金属など。)が開示されている。この正極活物質では、リチウム基準で4.5V以上の電圧領域において、dQ/dV曲線から得られる2つのピークの電圧差が30mV以上である。こうしたものでは、MnイオンとNiイオンの結晶学的な個別サイトへの配列の秩序性が低い結晶構造であることによって、サイクル特性がより優れるとされている。また、例えば、特許文献2では、LiNi0.5Mn1.54などのリチウム金属基準での開回路電圧が4.3V以上の高電位正極活物質と、Li3PO4などの無機リン酸化合物とを含有する正極活物質が開示されている。この正極活物質では、無機リン酸化合物により、正極活物質からの遷移金属の溶出に起因する容量劣化の抑制と、リン酸塩皮膜による抵抗増加の抑制とを両立できるとされている。 Conventionally, it is known to use a spinel complex oxide containing Li, Mn and a transition metal as a positive electrode active material of a secondary battery. For example, in Patent Document 1, Li 1 + x Mn 2-yz Ni y M z O 4-d (wherein, x, y, z, d are −0.3 <x <0.3, 0 <y <0.5, 0 <z <0.3, -0.2 <d <0.2 is satisfied, and M is a transition metal other than Ni, Mn, Cr, Fe, Co and Cu. ing. In this positive electrode active material, the voltage difference between the two peaks obtained from the dQ / dV curve is 30 mV or more in a voltage region of 4.5 V or more based on lithium. In such a thing, it is supposed that the cycle characteristic is more excellent by the crystal structure in which the order of the arrangement | positioning to the crystallographic separate site of Mn ion and Ni ion is low. Further, for example, in Patent Document 2, and LiNi 0.5 Mn 1.5 O 4 high potential positive electrode active material open circuit voltage of lithium metal reference is more than 4.3V, such as an inorganic phosphoric acid compounds such as Li 3 PO 4 The positive electrode active material to contain is disclosed. In this positive electrode active material, it is said that the inorganic phosphoric acid compound can simultaneously suppress the capacity deterioration due to the elution of the transition metal from the positive electrode active material and the suppression of the resistance increase by the phosphate film.

国際公開第2015/174225号パンフレットInternational Publication No. 2015/174225 brochure 特開2016−62644号公報JP, 2016-62644, A

ところで、例えば、車載用電池などにおいては、−30℃程度の低温で使用した場合にも高い出力特性が維持されることが求められる。しかしながら、上述した特許文献1,2では、低温出力特性について検討されておらず、低温出力をより高めることが望まれていた。   By the way, for example, in a vehicle-mounted battery or the like, high output characteristics are required to be maintained even when used at a low temperature of about -30.degree. However, in the patent documents 1 and 2 mentioned above, it is not examined about a low temperature output characteristic, but to raise a low temperature output more was desired.

本明細書で開示する発明はこのような課題を解決するためになされたものであり、電池の低温出力をより高めることを主目的とする。   The invention disclosed herein has been made to solve such problems, and has as its main object to further increase the low-temperature output of the battery.

上述した目的を達成するために、本発明者らは、Li、Mn及びM(但し、MはCo及びNiのうちの1以上)を含むスピネル型構造を有する複合酸化物であって、この複合酸化物を備えた作用極とリチウム金属の対極とを備えた評価セルを用いた20℃の温度環境下0.1Cのレートでの充放電において、複合酸化物あたりの容量がq[mAhg-1]のときとq+5[mAhg-1]のときとの、容量Qの差分の電圧Vの差分に対する比を示すdQ/dV[Ahg-1-1]の値が、充放電に用いる電位範囲の全範囲で−3<dQ/dV<3を満たす複合酸化物を正極活物質に用いたところ、電池の低温出力がより高まることを見いだし、本明細書で開示する発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors are a composite oxide having a spinel structure including Li, Mn and M (wherein M is one or more of Co and Ni), and the composite The capacity per complex oxide is q [mAhg -1 in charge and discharge at a rate of 0.1C in a temperature environment of 20 ° C using an evaluation cell equipped with a working electrode with oxide and a counter electrode of lithium metal. The value of dQ / dV [Ahg -1 V -1 ], which indicates the ratio of the difference of the capacity Q to the difference of the voltage V between the time of q + 5 [mAhg -1 ] and the time of q + 5 [mAhg -1 ] When a composite oxide satisfying -3 <dQ / dV <3 in the entire range was used as a positive electrode active material, it was found that the low temperature output of the battery was further enhanced, and the invention disclosed in the present specification was completed.

即ち、本開示の正極活物質は、
Li、Mn及びM(但し、MはCo及びNiのうちの1以上)を含むスピネル型構造を有する複合酸化物であって、
上述した複合酸化物を備えた作用極とリチウム金属の対極とを備えた評価セルを用いた20℃の温度環境下0.1Cのレートでの充放電において、複合酸化物あたりの容量がq[mAhg-1]のときとq+5[mAhg-1]のときとの、容量Qの差分の電圧Vの差分に対する比を示す、下記式(1)から算出されるdQ/dV[Ahg-1-1]の値が、充放電に用いる電位範囲の全範囲で−3<dQ/dV<3を満たすものである。
dQ/dV=(Q(q+5)−Q(q))/(V(q+5)−V(q))・・・式(1)
That is, the positive electrode active material of the present disclosure is
A composite oxide having a spinel structure including Li, Mn and M (wherein M is one or more of Co and Ni),
In charge and discharge at a rate of 0.1 C in a temperature environment of 20 ° C. using an evaluation cell provided with a working electrode provided with the above-described composite oxide and a lithium metal counter electrode, the capacity per composite oxide is q [ mAhg -1] between time and q + 5 of [mAhg -1] when the capacity Q shows the ratio differential voltage V of the difference, dQ / dV [Ahg -1 V to be calculated from the following equation (1) - The value of 1 ] satisfies -3 <dQ / dV <3 in the whole range of the potential range used for charge and discharge.
dQ / dV = (Q (q + 5) -Q (q)) / (V (q + 5) -V (q)) Formula (1)

本開示の正極は、上述した正極活物質を含有するものである。   The positive electrode of the present disclosure contains the above-described positive electrode active material.

本開示のリチウム二次電池は、
上述した正極活物質を含有する正極と、
負極活物質を含有する負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたものである。
The lithium secondary battery of the present disclosure is
A positive electrode containing the above-described positive electrode active material,
A negative electrode containing a negative electrode active material,
An ion conducting medium interposed between the positive electrode and the negative electrode for conducting lithium ions;
Is provided.

本明細書で開示する発明では、電池の低温出力をより高めることができる。こうした効果が得られる理由は、以下のように推察される。例えば、本開示の正極活物質は、電圧Vを横軸にとり上述したdQ/dVを縦軸にとったdQ/dV曲線において−3<dQ/dV<3を満たす低いピークを有するが、こうしたものでは、単一相の複合酸化物が連続的に組成を変化させることで充放電する、すなわち、一相反応で充放電すると考えられる。一方、dQ/dVがdQ/dV<−3や3<dQ/dVとなるようなシャープなピークを有するものでは、二つの相の複合酸化物がその比率を変化させることで充放電する、すなわち二相共存反応などで充放電すると考えられる。そして、二相共存反応などでは、リチウムイオンの相境界拡散が反応の律速になると考えられるが、相境界拡散の速度はリチウムイオン輸送の速度よりも遅い。一方、一相反応では、こうした相境界拡散がなく、相境界拡散よりも速いリチウムイオン輸送の律速となるため、出力を高めることができると考えられる。   The invention disclosed herein can further enhance the low temperature output of the battery. The reason why such effects can be obtained is presumed as follows. For example, although the positive electrode active material of the present disclosure has a low peak satisfying -3 <dQ / dV <3 in the dQ / dV curve in which the voltage V is taken along the horizontal axis and the aforementioned dQ / dV is taken along the vertical axis, In this case, it is considered that the single phase complex oxide is charged and discharged by continuously changing the composition, that is, charged and discharged in a single phase reaction. On the other hand, in the case of sharp peaks such that dQ / dV is dQ / dV <-3 or 3 <dQ / dV, the composite oxide of two phases is charged / discharged by changing the ratio, that is, It is considered that charge and discharge are caused by two-phase coexistence reaction and the like. And in two phase coexistence reaction etc., although phase boundary diffusion of lithium ion is considered to be rate-limiting of reaction, the speed of phase boundary diffusion is slower than the speed of lithium ion transport. On the other hand, in the one-phase reaction, there is no such phase boundary diffusion, and since it becomes rate-limiting of lithium ion transport faster than the phase boundary diffusion, it is considered that the output can be increased.

リチウム二次電池10の一例を示す模式図。FIG. 2 is a schematic view showing an example of a lithium secondary battery 10; 実験例1の二極式評価セルの充放電曲線。Charge-discharge curve of the bipolar evaluation cell of Experimental example 1. 実験例2の二極式評価セルの充放電曲線。Charge-discharge curve of the bipolar evaluation cell of Experimental example 2. 実験例3の二極式評価セルの充放電曲線。Charge-discharge curve of the bipolar evaluation cell of Experimental example 3. 実験例4の二極式評価セルの充放電曲線。Charge-discharge curve of the bipolar evaluation cell of Experimental example 4. 実験例1の二極式評価セルのdQ/dV曲線。DQ / dV curve of the bipolar evaluation cell of Experimental example 1. FIG. 実験例2の二極式評価セルのdQ/dV曲線。DQ / dV curve of the bipolar evaluation cell of Experimental example 2. FIG. 実験例3の二極式評価セルのdQ/dV曲線。DQ / dV curve of the bipolar evaluation cell of Experimental example 3. FIG. 実験例4の二極式評価セルのdQ/dV曲線。DQ / dV curve of the bipolar evaluation cell of Experimental example 4;

本開示の正極活物質は、Li、Mn及びM(但し、MはCo及びNiのうちの1以上)を含むスピネル型構造を有する複合酸化物である。この正極活物質は、上述した複合酸化物を備えた作用極とリチウム金属の対極とを備えた評価セルを用いた20℃の温度環境下0.1Cのレートでの充放電において、複合酸化物あたりの容量がq[mAhg-1]のときとq+5[mAhg-1]のときとの、容量Qの差分の電圧Vの差分に対する比を示す、下記式(1)から算出されるdQ/dV[Ahg-1-1]の値が、充放電に用いる電位範囲の全範囲で−3<dQ/dV<3を満たす。なお、dQ/dVは、充電時には正の値を示し、放電時には負の値を示す。充放電に用いる電位範囲は、例えばリチウム基準で3V以上の電位範囲、より詳しくは3V以上5V以下の電位範囲とすることができる。
dQ/dV=(Q(q+5)−Q(q))/(V(q+5)−V(q))・・・式(1)
The positive electrode active material of the present disclosure is a composite oxide having a spinel structure including Li, Mn and M (wherein M is one or more of Co and Ni). This positive electrode active material is a composite oxide in charge and discharge at a rate of 0.1 C in a temperature environment of 20 ° C. using an evaluation cell provided with a working electrode provided with the above composite oxide and a counter electrode of lithium metal. DQ / dV calculated from the following equation (1), which indicates the ratio of the voltage V to the difference of the capacity Q when the capacity of the terminal is q [mAhg -1 ] and q + 5 [mAhg -1 ] The value of [Ahg −1 V −1 ] satisfies −3 <dQ / dV <3 in the entire range of the potential range used for charge and discharge. In addition, dQ / dV shows a positive value at the time of charge, and shows a negative value at the time of discharge. The potential range used for charge and discharge can be, for example, a potential range of 3 V or more based on lithium, more specifically, a potential range of 3 V or more and 5 V or less.
dQ / dV = (Q (q + 5) -Q (q)) / (V (q + 5) -V (q)) Formula (1)

dQ/dV曲線において、dQ/dVが−3<dQ/dV<3を満たさないシャープなピークは、二つの相の複合酸化物がその比率を変化させることで充放電する、すなわち二相共存反応などで充放電する活物質で確認されることが多い。一方、本開示の正極活物質が示すような、dQ/dVが−3<dQ/dV<3を満たす小さなピークは、単一相の複合酸化物が連続的に組成を変化させることで充放電する、すなわち、一相反応で充放電する活物質で確認されることが多い。なお、こうしたdQ/dV曲線と反応の種類との関係は、例えばT. Ohzuku, A. Ueda, J. Electrochem. Soc., 144, 2780-2785に記載されている。   In the dQ / dV curve, sharp peaks for which dQ / dV does not satisfy -3 <dQ / dV <3 are charged / discharged by changing the ratio of the composite oxide of two phases, that is, two-phase coexistence reaction In many cases, it is confirmed by an active material that charges and discharges. On the other hand, as shown by the positive electrode active material of the present disclosure, a small peak with dQ / dV satisfying -3 <dQ / dV <3 indicates that the single-phase composite oxide continuously changes the composition to charge and discharge. In other words, it is often confirmed with an active material that charges and discharges in a one-phase reaction. The relationship between the dQ / dV curve and the type of reaction is described, for example, in T. Ohzuku, A. Ueda, J. Electrochem. Soc., 144, 2780-2785.

正極活物質は、格子定数が8.20Å以上であることが好ましい。格子定数が8.20Å以上であれば、MがNiの場合でも、低温出力特性をより高めることができる。格子定数の上限は特に限定されないが、例えば、8.26Å以下などとしてもよい。   The positive electrode active material preferably has a lattice constant of 8.20 Å or more. If the lattice constant is 8.20 Å or more, the low temperature output characteristics can be further enhanced even when M is Ni. The upper limit of the lattice constant is not particularly limited, but may be, for example, 8.26 Å or less.

正極活物質は、リチウムのモル数MOL(Li)と遷移金属元素Me(MeはM及びMn)の総モル数MOL(Me)との比であるMOL(Li)/MOL(Me)の値が0.90以上1.00以下であることが好ましく、0.95以上0.99以下であることがより好ましい。こうしたものでは、低温出力特性をより高めることができる。また、正極活物質は、Mのモル数MOL(M)とMnのモル数MOL(Mn)との比であるMOL(M)/MOL(Mn)の値が3/17〜7/13であることが好ましく、1/3であることがより好ましい。   The positive electrode active material has a value of MOL (Li) / MOL (Me) which is a ratio of the number of moles of lithium MOL (Li) to the total number of moles of transition metal element Me (Me is M and Mn) MOL (Me) It is preferable that it is 0.90 or more and 1.00 or less, and it is more preferable that it is 0.95 or more and 0.99 or less. In such a thing, a low temperature output characteristic can be raised more. In addition, in the positive electrode active material, the value of MOL (M) / MOL (Mn), which is the ratio of the number of moles of M M (M) of M to the number of moles M L (Mn), is 3/17 to 7/13. Is preferable, and 1/3 is more preferable.

正極活物質は、基本組成式LixyMn2-yz(但し、x,y,zは、0.9≦x≦1、0<y≦1、3.7≦z≦4.0を満たす。)で表されるものとしてもよい。このうち、xは0.95≦x≦0.99を満たすことが好ましく、zは3.80≦z≦3.85を満たすことが好ましい。こうしたものでは、MがNiの場合でも、低温出力特性をより高めることができる。また、yは0.3≦y≦0.7を満たすことが好ましく、0.45≦y≦0.55を満たすことがより好ましい。「基本組成式」とは、元素の一部を他の元素(例えばAlやMgなど)で置換してもよい趣旨である。正極活物質は、例えば、LiCoMnO4や、Li0.95Ni0.5Mn1.53.80などとしてもよい。 The positive electrode active material has a basic composition formula Li x M y Mn 2-y O z (where x, y and z are 0.9 ≦ x ≦ 1, 0 <y ≦ 1, 3.7 ≦ z ≦ 4. It may be expressed by satisfying 0). Among these, x preferably satisfies 0.95 ≦ x ≦ 0.99, and z preferably satisfies 3.80 ≦ z ≦ 3.85. In such a case, even when M is Ni, the low temperature output characteristics can be further enhanced. In addition, y preferably satisfies 0.3 ≦ y ≦ 0.7, and more preferably 0.45 ≦ y ≦ 0.55. The term "basic composition formula" is intended to mean that part of the elements may be replaced with another element (for example, Al or Mg). The positive electrode active material may be, for example, LiCoMnO 4 , Li 0.95 Ni 0.5 Mn 1.5 O 3.80 , or the like.

正極活物質の組成は、以下のように同定することができる。まず、正極活物質について、誘導結合プラズマ発光分光分析(ICP−AES)を用いて組成分析を行い、正極活物質中のリチウム量及び遷移金属量を求める。次に、ヨウ素を用いた酸化還元滴定により、遷移金属元素Meの平均酸化数を求める。こうして求めたリチウム量、遷移金属量、遷移金属の平均酸化数、及び、リチウムの酸化数1から、電荷のバランスがとれるように酸素の量を決定する。   The composition of the positive electrode active material can be identified as follows. First, composition analysis is performed on the positive electrode active material using inductively coupled plasma emission spectroscopy (ICP-AES) to determine the amount of lithium and the amount of transition metal in the positive electrode active material. Next, the average oxidation number of the transition metal element Me is determined by redox titration using iodine. From the amount of lithium thus determined, the amount of transition metal, the average oxidation number of the transition metal, and the oxidation number 1 of lithium, the amount of oxygen is determined so as to balance the charge.

ヨウ素を用いた酸化還元滴定について、以下に説明する。正極活物質を酸性水溶液に溶解させヨウ素カリウム溶液と混合させた場合には、正極活物質中の2価よりも高いニッケル、コバルト、マンガンは、Ni2+、Co2+、Mn2+に還元されると共に、還元量と等量のI-が酸化されてI2が生成する。ここで生成されたI2量は、デンプン溶液を指示薬としてチオ硫酸ナトリウム標準溶液(Na223)で滴定することで同定される。滴定は以下の順に実施するものとする。
(1)200mLの三角フラスコにボールフィルタを入れ、窒素ガスを3L/分で5分間置換する。
(2)三角フラスコ中にKI(100g/L)溶液10mLと、HCl(塩酸[試薬特級]と蒸留水とを体積比で1:1に混合したもの)に20mL加える。
(3)正極活物質100mgを±0.1mgで量り取る。
(4)正極活物質を三角フラスコに移し入れ、栓をして回転子で撹拌しながら70℃で加熱して溶解させる。
(5)流水で三角フラスコを冷却後、残存酸素を除いた蒸留水を80mL加える。
(6)0.05mol/Lのチオ硫酸ナトリウムで溶液が褐色から薄い黄色になるまで素早く滴定する。
(7)デンプン溶液を0.5mL加えて紫色に呈色させる。
(8)続けて0.05mol/Lのチオ硫酸ナトリウムで滴定し、紫色が消えたところを終点とし、下記式(2)〜(4)に基づいて遷移金属イオンの平均酸化数を算出する。
Men++(n−2)I- → Me2++1/2(n−2)I2 ・・・式(2)
2+2S23 → 2I-+S46 2- ・・・式(3)
平均酸化数=I2(mol)/Me(mol)+2 ・・・式(4)
The redox titration using iodine is described below. When the positive electrode active material is dissolved in an acidic aqueous solution and mixed with a potassium iodide solution, nickel, cobalt, and manganese higher than the divalent in the positive electrode active material are reduced to Ni 2+ , Co 2+ , and Mn 2+ . while being, reduced amount with an equal volume of I - is oxidized I 2 generates. The generated I 2 amount is identified by titration with sodium thiosulfate standard solution of starch solution as an indicator (Na 2 S 2 O 3) . The titration should be performed in the following order.
(1) Put a ball filter into a 200 mL Erlenmeyer flask and replace nitrogen gas with 3 L / min for 5 minutes.
(2) Add 10 mL of KI (100 g / L) solution and 20 mL of HCl (a mixture of hydrochloric acid [reagent grade] and distilled water in a volume ratio of 1: 1) in an Erlenmeyer flask.
(3) Weigh out 100 mg of the positive electrode active material at ± 0.1 mg.
(4) The positive electrode active material is transferred into an Erlenmeyer flask, sealed, and dissolved by heating at 70 ° C. while stirring with a rotor.
(5) After cooling the Erlenmeyer flask with running water, add 80 mL of distilled water from which residual oxygen has been removed.
(6) Titrate quickly with a 0.05 mol / L sodium thiosulfate solution until the solution turns brown to pale yellow.
(7) Add 0.5 mL of starch solution to make it purple.
(8) Subsequently, titration is performed with 0.05 mol / L sodium thiosulfate, and the point where purple color disappears is used as an end point, and the average oxidation number of transition metal ions is calculated based on the following formulas (2) to (4).
Me n + + (n-2 ) I - → Me 2+ +1/2 (n-2) I 2 ··· formula (2)
I 2 + 2S 2 O 3 → 2I - + S 4 O 6 2- ··· formula (3)
Average oxidation number = I 2 (mol) / Me (mol) + 2 ... Formula (4)

正極活物質は、表面にリン酸リチウムが被覆されていてもよい。こうしたものでは、低温出力をより高めることができる。リン酸リチウムの被覆量は特に限定されないが、正極活物質のモル数に対してリンの量が5mol%以上40mol%以下となる範囲で正極活物質表面にリン酸リチウムを被覆させることがより好ましい。   The surface of the positive electrode active material may be coated with lithium phosphate. In such a thing, low temperature output can be raised more. Although the coating amount of lithium phosphate is not particularly limited, it is more preferable to coat the surface of the positive electrode active material with lithium phosphate in the range where the amount of phosphorus is 5 mol% or more and 40 mol% or less based on the number of moles of the positive electrode active material. .

次に、正極活物質の製造方法について説明する。この製造方法では、(1)原料調製工程、(2)焼成工程を含むものとしてもよい。なお、予め調製した原料を用意し、原料調製工程を省略してもよい。また、リン酸リチウム被覆工程を省略してもよい。また、本開示の正極活物質は、こうした製造方法で得られたものに限定されない。   Next, a method of manufacturing a positive electrode active material will be described. The manufacturing method may include (1) a raw material preparation step and (2) a baking step. In addition, the raw material prepared beforehand may be prepared and a raw material preparation process may be abbreviate | omitted. Also, the lithium phosphate coating step may be omitted. Moreover, the positive electrode active material of this indication is not limited to what was obtained by such a manufacturing method.

(1)原料調製工程
この工程では、正極活物質の原料を調製する。原料は、上述した正極活物質の所望の組成に応じて加える物質及びその量を選択すればよい。原料組成は、例えば、基本組成式LixyMn2-yz(但し、MはCo及びNiのうちの1以上であり、x,y,zは、0.9≦x≦1、0<y≦1、3.7≦z≦4.0を満たす。)の正極活物質が得られるように、Li、M及びMnを混合すればよい。このとき、原料中のリチウムのモル数Mol(Li)と遷移金属元素Me(MeはM及びMn)の総モル数Mol(Me)との比であるMol(Li)/Mol(Me)の値が0.90以上1.00以下となるように混合することが好ましく、0.95以上0.99以下となるように混合することがより好ましい。また、原料中のMのモル数Mol(M)とMnのモル数Mol(Mn)との比であるMol(M)/Mol(Mn)の値が3/17〜7/13であることが好ましく、1/3であることがより好ましい。遷移金属の原料は、共沈法によって合成することが好ましい。金属元素を原子レベルで均一に混合させることができ、より好適な性能が得られるからである。共沈法では、遷移金属イオンを一粒子中に共存させた前駆体を作製し、これにリチウム塩を混合するものとしてもよい。共沈法により金属イオンが均一に分布した前駆体を得る際、水溶液中に不活性ガスを通気させることにより溶存酸素を除去することが好ましい。前駆体およびリチウム塩は、水酸化物、炭酸塩、クエン酸塩などとしてもよく、原子レベルで元素が均一に混合した難溶性塩が好ましい。錯化剤を用いれば、より高密度の前駆体を作製することも可能である。前駆体の原料は、塩基性水溶液を用いて前駆体を形成できるものであればよいが、溶解度の高い金属塩が好ましい。例えば、ニッケル源として、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル、水酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル等を用いることができる。コバルト源として、硫酸コバルト、硝酸コバルト、酢酸コバルト、水酸化コバルト、炭酸コバルト、塩基性炭酸コバルト等を用いることができる。また、マンガン源として、硫酸マンガン、硝酸マンガン、酢酸マンガン、酸化マンガン、炭酸マンガン等を用いることができる。前駆体と混合するリチウム塩としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることができる。
(1) Raw material preparation process At this process, the raw material of a positive electrode active material is prepared. As the raw material, the substance to be added and the amount thereof may be selected according to the desired composition of the positive electrode active material described above. The raw material composition is, for example, a basic composition formula Li x M y Mn 2-y O z (where M is one or more of Co and Ni, x, y and z are 0.9 ≦ x ≦ 1, Li, M and Mn may be mixed so as to obtain a positive electrode active material of 0 <y ≦ 1, 3.7 ≦ z ≦ 4.0. At this time, the value of Mol (Li) / Mol (Me), which is the ratio of the number of moles of lithium Mol (Li) in the raw material to the total number of moles Mol (Me) of the transition metal element Me (Me is M and Mn). It is preferable to mix so that it may be 0.90 or more and 1.00 or less, and it is more preferable to mix so that it may be 0.95 or more and 0.99 or less. In addition, the value of Mol (M) / Mol (Mn), which is the ratio of the number of moles of M (M) to the number of moles of Mn (M) in the raw material, is 3/17 to 7/13. Preferably, 1/3 is more preferred. The raw material of the transition metal is preferably synthesized by coprecipitation method. This is because metallic elements can be uniformly mixed at the atomic level, and more preferable performance can be obtained. In the coprecipitation method, a precursor in which transition metal ions are allowed to coexist in one particle may be prepared and mixed with a lithium salt. When obtaining a precursor in which metal ions are uniformly distributed by coprecipitation method, it is preferable to remove dissolved oxygen by bubbling an inert gas into an aqueous solution. The precursor and the lithium salt may be hydroxides, carbonates, citrates or the like, and sparingly soluble salts in which elements are uniformly mixed at the atomic level are preferable. With complexing agents, it is also possible to make higher density precursors. The raw material of the precursor may be any material that can form a precursor using a basic aqueous solution, but metal salts having high solubility are preferable. For example, nickel sulfate, nickel nitrate, nickel acetate, nickel hydroxide, nickel carbonate, basic nickel carbonate and the like can be used as a nickel source. As a cobalt source, cobalt sulfate, cobalt nitrate, cobalt acetate, cobalt hydroxide, cobalt carbonate, basic cobalt carbonate and the like can be used. Further, as a manganese source, manganese sulfate, manganese nitrate, manganese acetate, manganese oxide, manganese carbonate or the like can be used. As a lithium salt to be mixed with the precursor, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate or the like can be used.

(2)焼成工程
この工程では、上記得られた原料を焼成処理する。焼成処理では、原料を700℃以上1100℃以下、好ましくは700℃以上900℃以下、より好ましくは750℃以上850℃以下の温度範囲で焼成する。900℃以下で焼成した場合には、焼成によるLiの消失がほとんどなく、原料のMol(Li)/Mol(Me)が焼成後にも維持される。焼成時間は、例えば、5時間以上24時間以下の範囲としてもよい。焼成雰囲気は、空気雰囲気などの酸化性雰囲気でもアルゴン雰囲気などの不活性雰囲気でもよいが、不活性雰囲気が好ましい。不活性雰囲気で焼成すれば、例えば900℃以下のような低温でも、結晶構造中に酸素欠損を生じさせることができると考えられる。また、不活性雰囲気で焼成すれば、遷移金属イオンの平均酸化数をより好ましい範囲とし、格子定数をより好ましい範囲とすることができると考えられる。このような処理を経て、本開示の正極活物質を得ることができる。
(2) Firing Step In this step, the raw material obtained above is fired. In the firing treatment, the raw material is fired at a temperature range of 700 ° C. to 1100 ° C., preferably 700 ° C. to 900 ° C., more preferably 750 ° C. to 850 ° C. When the firing is performed at 900 ° C. or less, there is almost no loss of Li due to the firing, and the raw material Mol (Li) / Mol (Me) is maintained after the firing. The firing time may be, for example, in the range of 5 hours to 24 hours. The firing atmosphere may be an oxidizing atmosphere such as an air atmosphere or an inert atmosphere such as an argon atmosphere, but an inert atmosphere is preferable. If firing is performed in an inert atmosphere, it is considered that oxygen deficiency can be generated in the crystal structure even at a low temperature such as 900 ° C. or less. In addition, it is considered that when firing is performed in an inert atmosphere, the average oxidation number of transition metal ions can be set to a more preferable range, and the lattice constant can be set to a more preferable range. Through such processing, the positive electrode active material of the present disclosure can be obtained.

次に、本開示の正極について説明する。この正極は、上述した正極活物質を含有する。この正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質は、上述した正極活物質である。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。集電体の厚さは、例えば1〜500μmのものが用いられる。   Next, the positive electrode of the present disclosure will be described. This positive electrode contains the positive electrode active material described above. This positive electrode is prepared, for example, by mixing a positive electrode active material, a conductive material, and a binder, adding a suitable solvent to form a paste-like positive electrode mixture, and coating and drying it on the surface of the current collector. It may be compressed to increase the electrode density. The positive electrode active material is the positive electrode active material described above. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the cell performance of the positive electrode, and, for example, graphite such as natural graphite (flaky graphite, scaly graphite) or artificial graphite, acetylene black, carbon black It is possible to use one or a mixture of two or more of ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold and the like). Among these, carbon black and acetylene black are preferable as the conductive material from the viewpoint of electron conductivity and coatability. The binder plays a role of holding the active material particles and the conductive material particles, and is, for example, a fluorine-containing resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluororubber, or polypropylene. A thermoplastic resin such as polyethylene, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR) or the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of a cellulose based or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. As the current collector, aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, etc., aluminum, copper, etc. for the purpose of improving adhesion, conductivity and oxidation resistance The surface of the above may be treated with carbon, nickel, titanium, silver or the like. The thickness of the current collector is, for example, 1 to 500 μm.

次に、本開示のリチウム二次電池について説明する。このリチウム二次電池は、リチウムイオンを吸蔵、放出する上述した正極活物質を含有する正極と、リチウムイオンを吸蔵、放出する負極活物質を含有する負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えている。このリチウム二次電池において、正極は、上述した正極活物質を含有するものであり、例えば上述した正極を用いることができる。   Next, the lithium secondary battery of the present disclosure will be described. The lithium secondary battery includes a positive electrode containing the above-described positive electrode active material which occludes and releases lithium ions, a negative electrode containing the negative electrode active material which occludes and releases lithium ions, and the positive electrode and the negative electrode. And an ion conducting medium for conducting lithium ions. In this lithium secondary battery, the positive electrode contains the above-described positive electrode active material, and for example, the above-described positive electrode can be used.

負極は、例えば負極活物質と結着材とを混合し、適当な溶剤を加えてペースト状の負極合材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、例えば、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、リチウムチタン複合酸化物、導電性ポリマーなどが挙げられるが、このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時における不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   The negative electrode is, for example, a mixture of a negative electrode active material and a binder, and an appropriate solvent added to form a paste-like negative electrode mixture, which is coated and dried on the surface of the current collector, and the electrode density is adjusted if necessary. It may be compressed to increase. Examples of negative electrode active materials include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials capable of absorbing and desorbing lithium ions, lithium titanium composite oxides, conductive polymers and the like, among which carbon Quality materials are preferable in terms of safety. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, carbon fibers and the like. Among them, graphites such as artificial graphite and natural graphite have an operating potential close to that of metal lithium and can be charged and discharged at a high operating voltage, and when self-discharge is used when lithium salt is used as an electrolyte salt, And since irreversible capacity at the time of charge can be decreased, it is desirable. As the conductive material, the binder, the solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. In the current collector of the negative electrode, in addition to copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., adhesion, conductivity and reduction resistance are improved. For the purpose, for example, one obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. For these, it is also possible to oxidize the surface. The shape of the current collector can be the same as that of the positive electrode.

イオン伝導媒体は、リチウムを含む支持塩と、非水系の溶媒とを含む非水電解液としてもよい。非水系の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。   The ion conductive medium may be a non-aqueous electrolyte containing a lithium-containing support salt and a non-aqueous solvent. The non-aqueous solvent includes carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Linear carbonates such as -butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyl lactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate; ethers such as dimethoxyethane, ethoxymethoxyethane and diethoxyethane; nitriles such as acetonitrile and benzonitrile; Examples include furans such as orchid, methyltetrahydrofuran and the like, sulfolanes such as sulfolane and tetramethyl sulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, a combination of cyclic carbonates and linear carbonates is preferred. According to this combination, not only the cycle characteristics representing the battery characteristics in repetition of charge and discharge are excellent, but also the viscosity of the electrolytic solution, the electric capacity of the obtained battery, the battery output and the like can be balanced. it can.

支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN( CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、イオン伝導媒体中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。支持塩を溶解する濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。 The supporting salt is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 LiCl, LiF, LiBr, LiI, LiAlCl 4 and the like. Among them, inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 and LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 It is preferred from the viewpoint of the electrical properties to use one or more selected salts in combination. The concentration of the supporting salt in the ion conductive medium is preferably 0.1 mol / L to 5 mol / L, and more preferably 0.5 mol / L to 2 mol / L. When the concentration at which the supporting salt is dissolved is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 5 mol / L or less, the electrolytic solution can be made more stable.

また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、フッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと非水系電解液とを組み合わせて用いることもできる。また、イオン伝導媒体としては、イオン伝導性ポリマーのほか、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Also, instead of the liquid ion conducting medium, a solid ion conducting polymer can be used as the ion conducting medium. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, vinylidene fluoride and the like and a support salt can be used. Furthermore, the ion conductive polymer and the non-aqueous electrolyte can be used in combination. In addition to the ion conductive polymer, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound with an organic binder can be used as the ion conductive medium.

このリチウム二次電池は、正極と負極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery may include a separator between the positive electrode and the negative electrode. The separator is not particularly limited as long as it has a composition that can withstand the use range of the lithium secondary battery, but, for example, polymer nonwoven fabrics such as polypropylene nonwoven fabrics and polyphenylene sulfide nonwoven fabrics, and thin fine particles of olefin resins such as polyethylene and polypropylene A porous membrane is mentioned. These may be used alone or in combination of two or more.

このリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。このリチウム二次電池は、携帯端末、携帯電子機器、小型電力貯蔵装置、電気自動車、ハイブリッド電気自動車等に適用してもよい。図1は、本開示のリチウム二次電池10の一例を示す模式図である。このリチウム二次電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす非水電解液20と、を備えたものである。このリチウム二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。このリチウム二次電池10は、Li、Mn及びM(但し、MはCo及びNiのうちの1以上)を含むスピネル型構造を有する複合酸化物であって、この複合酸化物を備えた作用極とリチウム金属の対極とを備えた評価セルを用いた20℃の温度環境下0.1Cのレートでの充放電において、複合酸化物あたりの容量がq[mAhg-1]のときとq+5[mAhg-1]のときとの、容量Qの差分の電圧Vの差分に対する比を示すdQ/dV[Ahg-1-1]の値が、充放電に用いる電位範囲の全範囲で−3<dQ/dV<3を満たす正極活物質12を備えている。 The shape of the lithium secondary battery is not particularly limited, and examples thereof include coin type, button type, sheet type, laminated type, cylindrical type, flat type, and square type. In addition, the present invention may be applied to a large one used for an electric car or the like. The lithium secondary battery may be applied to portable terminals, portable electronic devices, compact power storage devices, electric vehicles, hybrid electric vehicles and the like. FIG. 1 is a schematic view showing an example of the lithium secondary battery 10 of the present disclosure. The lithium secondary battery 10 includes a positive electrode sheet 13 having a positive electrode active material 12 formed on a current collector 11, a negative electrode sheet 18 having a negative electrode active material 17 formed on the surface of a current collector 14, a positive electrode sheet 13 and a negative electrode sheet. And a non-aqueous electrolytic solution 20 filled between the positive electrode sheet 13 and the negative electrode sheet 18. In this lithium secondary battery 10, the separator 19 is sandwiched between the positive electrode sheet 13 and the negative electrode sheet 18, and these are wound and inserted into the cylindrical case 22, and the positive electrode terminal 24 connected to the positive electrode sheet 13 and the negative electrode sheet It is formed by arranging the connected negative electrode terminal 26. The lithium secondary battery 10 is a composite oxide having a spinel structure including Li, Mn and M (where M is one or more of Co and Ni), and a working electrode comprising the composite oxide Charge and discharge at a rate of 0.1 C in a temperature environment of 20 ° C. using an evaluation cell equipped with a metal and a counter electrode of lithium metal, and the capacity per complex oxide is q [mAh g −1 ] and q + 5 [mAh g The value of dQ / dV [Ahg -1 V -1 ], which indicates the ratio of the difference in capacitance Q to the difference in voltage V from that of -1 , is -3 <dQ in the entire range of potentials used for charging and discharging The positive electrode active material 12 satisfying / dV <3 is provided.

以上詳述した正極活物質、正極及びリチウム二次電池では、低温での出力特性をより高めることができる。こうした効果が得られる理由は、以下のように推察される。例えば、この正極活物質は、充放電に用いる電位範囲の全範囲で(例えば正極活物質として使用するリチウム基準で3V以上の電位領域において)一相反応で充放電するため、リチウムイオンの相境界拡散が反応の律速になる二相共存反応とは異なり、相境界拡散がないと考えられる。このため、相境界拡散よりも速いリチウムイオン輸送が反応の律速となり、出力が高まると推察される。   In the positive electrode active material, the positive electrode, and the lithium secondary battery described in detail above, the output characteristics at low temperatures can be further enhanced. The reason why such effects can be obtained is presumed as follows. For example, since this positive electrode active material charges and discharges in a single phase reaction (for example, in a potential region of 3 V or more based on lithium used as a positive electrode active material) in the entire range of potential range used for charge and discharge Unlike the two-phase co-reaction where diffusion is the rate-limiting reaction, it is thought that there is no phase boundary diffusion. For this reason, it is assumed that lithium ion transport faster than phase boundary diffusion becomes reaction rate-limiting and the output increases.

また、本開示の正極活物質において、表面にリン酸リチウムが被覆されているものとした場合、低温出力特性をさらに高めることができる。こうした効果が得られる理由は、例えば、リチウムイオンの固体内輸送と、活物質粒子表面での電気化学反応がリン酸リチウムの存在により促進されるためと推察される。特に、一相反応で充放電すると推察される本開示の正極活物質では、充放電時に全体として連続的に格子定数が変化するため、充放電時に被膜に歪みが生じにくく、被覆の効果がより顕著になると推察される。二相共存反応で充放電する正極活物質では、充放電時に格子定数の大きな相と小さな相との比率が変化するため、体積の変動が大きく被膜に歪みが生じやすいが、本開示の正極活物質では、被膜に歪みが生じにくいと推察される。   Further, in the positive electrode active material of the present disclosure, when the surface is coated with lithium phosphate, the low temperature output characteristics can be further enhanced. The reason why such an effect is obtained is presumed to be because, for example, the intrasolid transport of lithium ions and the electrochemical reaction on the surface of active material particles are promoted by the presence of lithium phosphate. In particular, in the case of the positive electrode active material of the present disclosure which is supposed to be charged / discharged in a one-phase reaction, the lattice constant changes continuously as a whole during charge / discharge. It is guessed to be remarkable. In the positive electrode active material that is charged and discharged in the two-phase coexistence reaction, the ratio of the large phase to the small phase of the lattice constant changes during charge and discharge, so that the volume fluctuation is large and the film is likely to be distorted. It is presumed that the substance is less likely to cause distortion in the film.

なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It is needless to say that the present disclosure is not limited to the above-described embodiment at all, and may be implemented in various aspects within the technical scope of the present disclosure.

以下には、本開示のリチウム二次電池を具体的に作製した例を実施例として説明する。なお、実験例3〜9が実施例に相当し、実験例1,2,10が比較例に相当する。   Below, the example which produced the lithium secondary battery of this indication concretely is demonstrated as an Example. Experimental Examples 3 to 9 correspond to Examples, and Experimental Examples 1, 2 and 10 correspond to Comparative Examples.

(正極活物質の合成)
[実験例1]
(1)原料調製工程
あらかじめ不活性ガスを通気させて溶存酸素を取り除いたイオン交換水に、硫酸ニッケルと硫酸マンガンとをNi、Mnの各元素が0.25:0.75のモル比になるように溶解させ、これら金属元素の合計モル濃度が2mol/Lとなるように混合水溶液を調整した。一方、同様に溶存酸素を取り除いたイオン交換水を用いて2mol/L水酸化ナトリウム水溶液、0.352mol/Lアンモニア水をそれぞれ調整した。溶存酸素を取り除いたイオン交換水を槽内温度50℃に設定された反応槽に入れ、800rpmで撹拌させた状態で、そこに水酸化ナトリウム水溶液を滴下して液温25℃を基準としたときにpHが12となるように調整した。反応槽に混合水溶液、水酸化ナトリウム水溶液、アンモニア水をpH12に制御しつつ加え、共沈生成物の複合水酸化物を得た。水酸化ナトリウム水溶液のみ適宜加えてpHを12に保ち、2時間撹拌を継続した。その後、60℃で12時間静止することで複合水酸化物を粒子成長させた。反応終了後、複合水酸化物をろ過、水洗して取り出し、120℃のオーブン内で一晩乾燥させて複合水酸化物の粉末試料を得た。得られた複合水酸化物粉末(前駆体)と水酸化リチウム粉末(リチウム塩)とを、Mol(Li)/Mol(Me)の値が1.05となるように混合した。この混合粉末を6MPaの圧力で直径2cm、厚さ5mm程度のペレットに加圧成型した。
(Synthesis of positive electrode active material)
[Experimental Example 1]
(1) Raw material preparation step In the ion-exchanged water from which dissolved oxygen has been removed by bubbling an inert gas in advance, nickel sulfate and manganese sulfate each have a molar ratio of Ni and Mn of 0.25: 0.75. The mixed aqueous solution was adjusted so that the total molar concentration of these metal elements was 2 mol / L. On the other hand, 2 mol / L sodium hydroxide aqueous solution and 0.352 mol / L ammonia water were respectively adjusted using ion exchange water from which dissolved oxygen was removed similarly. When ion-exchanged water from which dissolved oxygen has been removed is placed in a reaction tank set to a tank temperature of 50 ° C and stirred at 800 rpm, a sodium hydroxide aqueous solution is added dropwise thereto and the liquid temperature is based on 25 ° C The pH was adjusted to 12. A mixed aqueous solution, an aqueous solution of sodium hydroxide and aqueous ammonia were added to the reaction vessel while controlling the pH to 12 to obtain a composite hydroxide of the coprecipitated product. The aqueous solution of sodium hydroxide alone was appropriately added to keep the pH at 12, and stirring was continued for 2 hours. Thereafter, the composite hydroxide was allowed to grow in particles by resting at 60 ° C. for 12 hours. After completion of the reaction, the composite hydroxide was filtered, washed with water and taken out, and dried overnight in an oven at 120 ° C. to obtain a powder sample of the composite hydroxide. The obtained composite hydroxide powder (precursor) and lithium hydroxide powder (lithium salt) were mixed so that the value of Mol (Li) / Mol (Me) would be 1.05. The mixed powder was pressure-molded at a pressure of 6 MPa into pellets having a diameter of 2 cm and a thickness of about 5 mm.

(2)焼成工程
ペレットを、空気雰囲気の電気炉中1000℃の温度まで10℃/minで昇温し、1000℃で12時間焼成後、自然放冷で700℃まで冷却させ、その温度で72時間アニールさせた。焼成後ヒーターの電源を切り、自然放冷した。約8時間後、炉内温度が100℃以下になっていることを確認してペレットを取り出した。こうして、高結晶性の正極活物質を合成した。これを実験例1の正極活物質とした。
(2) Firing step The pellet is heated at a temperature of 1000 ° C. at 10 ° C./min in an electric furnace in an air atmosphere, fired at 1000 ° C. for 12 hours, allowed to naturally cool, and cooled down to 700 ° C. Annealed for time. After firing, the heater was turned off and allowed to cool naturally. After about 8 hours, it was confirmed that the temperature in the furnace became 100 ° C. or less, and the pellet was taken out. Thus, a highly crystalline positive electrode active material was synthesized. This was used as the positive electrode active material of Experimental Example 1.

[実験例2]
実験例1の焼成工程において、ペレットをアルゴン雰囲気の電気炉中1000℃の温度まで10℃/minで昇温し、1000℃で12時間焼成後自然放冷することで正極活物質を合成した。それ以外は実験例1と同様とした。
[Experimental Example 2]
In the firing step of Experimental Example 1, the temperature of the pellet was raised at 10 ° C./min to a temperature of 1000 ° C. in an electric furnace under an argon atmosphere, fired at 1000 ° C. for 12 hours, and naturally cooled to synthesize a positive electrode active material. The other conditions were the same as in Experimental Example 1.

[実験例3]
実験例1の原料調製工程において、硫酸ニッケルに代えて硫酸コバルトを用い、硫酸コバルトと硫酸マンガンとをCo、Mnの各元素が0.5:0.5のモル比になるようにイオン交換水に溶解させた。それ以外は実験例1と同様とした。
[Experimental Example 3]
In the raw material preparation step of Experimental example 1, cobalt sulfate is used instead of nickel sulfate, and cobalt sulfate and manganese sulfate are ion-exchanged water so that each element of Co and Mn has a molar ratio of 0.5: 0.5. It was dissolved in The other conditions were the same as in Experimental Example 1.

[実験例4]
実験例1の原料調製工程において、前駆体とリチウム塩とをMol(Li)/Mol(Me)の値が0.95となるように混合した。また、焼成工程において、ペレットをアルゴン雰囲気の電気炉中850℃の温度まで10℃/minで昇温し、850℃で16時間焼成後自然放冷することで正極活物質を合成した。それ以外は実験例1と同様とした。
[Experimental Example 4]
In the raw material preparation step of Experimental example 1, the precursor and the lithium salt were mixed so that the value of Mol (Li) / Mol (Me) would be 0.95. Further, in the firing step, the temperature of the pellet was raised at 10 ° C./min to a temperature of 850 ° C. in an electric furnace under an argon atmosphere, and firing was carried out at 850 ° C. for 16 hours, followed by natural cooling to synthesize a positive electrode active material. The other conditions were the same as in Experimental Example 1.

[実験例5]
実験例4の原料調製工程において、前駆体とリチウム塩とをMol(Li)/Mol(Me)の値が0.97となるように混合した。また、焼成工程において、焼成条件を800℃12時間とした。それ以外は実験例4と同様とした。
[Experimental Example 5]
In the raw material preparation step of Experimental example 4, the precursor and the lithium salt were mixed so that the value of Mol (Li) / Mol (Me) would be 0.97. In the firing step, the firing conditions were set to 800 ° C. for 12 hours. The other conditions were the same as in Experimental Example 4.

[実験例6]
実験例4の原料調製工程において、前駆体とリチウム塩とをMol(Li)/Mol(Me)の値が0.99となるように混合した。また、焼成工程において、焼成条件を750℃12時間とした。それ以外は実験例4と同様とした。
[Experimental Example 6]
In the raw material preparation step of Experimental example 4, the precursor and the lithium salt were mixed such that the value of Mol (Li) / Mol (Me) was 0.99. In the firing step, the firing conditions were set to 750 ° C. for 12 hours. The other conditions were the same as in Experimental Example 4.

[実験例7]
実験例4の正極活物質に、以下のようにリン酸リチウムを被覆した。10gの正極活物質(ペレットを解砕したもの)を含んだ1Lのイオン交換水に、水酸化リチウムを0.48g、NH42PO4を0.44g、3対1のモル比となるように溶解させた。この水溶液を50℃で24時間撹拌させ、ロータリーエバポレータで乾燥させたあと空気中450℃で加熱処理を施した。正極活物質表面のリン量の定量をICP−AESで行ったところ、リン酸リチウムの被覆量は正極活物質のモル数に対して6mol%であった。
[Experimental Example 7]
Lithium phosphate was coated on the positive electrode active material of Experimental Example 4 as follows. 0.48 g of lithium hydroxide, 0.44 g of NH 4 H 2 PO 4 in 1 L of ion-exchanged water containing 10 g of a positive electrode active material (the pellet is crushed), a molar ratio of 3 to 1 As it was dissolved. The aqueous solution was allowed to stir at 50 ° C. for 24 hours, dried by a rotary evaporator, and then heat-treated at 450 ° C. in air. The amount of phosphorus on the surface of the positive electrode active material was quantified by ICP-AES. The amount of lithium phosphate coated was 6 mol% with respect to the number of moles of the positive electrode active material.

[実験例8]
実験例7のリン酸リチウムを被覆する工程において、水酸化リチウムを1.79g、NH42PO4を1.64gとした。それ以外は実験例7と同様とした。リン酸リチウムの被覆量は正極活物質のモル数に対して19mol%であった。
[Experimental Example 8]
In the lithium phosphate-coating step of Experimental Example 7, 1.79 g of lithium hydroxide and 1.64 g of NH 4 H 2 PO 4 were used. The other conditions were the same as in Experimental Example 7. The coating amount of lithium phosphate was 19 mol% with respect to the number of moles of the positive electrode active material.

[実験例9]
実験例7のリン酸リチウムを被覆する工程において、水酸化リチウムを2.76g、NH42PO4を2.52gとした。それ以外は実験例7と同様とした。リン酸リチウムの被覆量は正極活物質のモル数に対して39mol%であった。
[Experimental Example 9]
In the lithium phosphate-coating step of Experimental Example 7, 2.76 g of lithium hydroxide and 2.52 g of NH 4 H 2 PO 4 were used. The other conditions were the same as in Experimental Example 7. The coating amount of lithium phosphate was 39 mol% with respect to the number of moles of the positive electrode active material.

[実験例10]
実験例1の正極活物質に、実験例8と同様にリン酸リチウムを被覆した。リン酸リチウムの被覆量は正極活物質のモル数に対して18mol%であった。
[Experimental Example 10]
Lithium phosphate was coated on the positive electrode active material of Experimental Example 1 as in Experimental Example 8. The coating amount of lithium phosphate was 18 mol% with respect to the number of moles of the positive electrode active material.

(正極活物質の化学組成の同定)
正極活物質の化学組成は、以下のように同定した。まず、正極活物質について、ICP−AESを用いて組成分析を行い、正極活物質中のリチウム量及び遷移金属量を求めた。次に、ヨウ素を用いた酸化還元滴定により、遷移金属元素Meの平均酸化数を求めた。こうして求めたリチウム量、遷移金属量、遷移金属の平均酸化数、及び、リチウムの酸化数1から、電荷のバランスがとれるように酸素の量を決定した。
(Identification of chemical composition of positive electrode active material)
The chemical composition of the positive electrode active material was identified as follows. First, composition analysis was performed on the positive electrode active material using ICP-AES to determine the amount of lithium and the amount of transition metal in the positive electrode active material. Next, the average oxidation number of the transition metal element Me was determined by redox titration using iodine. From the amount of lithium, the amount of transition metal, the average oxidation number of transition metals, and the oxidation number of lithium 1 thus determined, the amount of oxygen was determined so as to balance the charge.

ヨウ素を用いた酸化還元滴定は、以下の順に実施した。
(1)200mLの三角フラスコにボールフィルタを入れ、窒素ガスを3L/分で5分間置換した。
(2)三角フラスコ中にKI(100g/L)溶液10mLと、HCl(塩酸[試薬特級]と蒸留水とを体積比で1:1に混合したもの)に20mL加えた。
(3)正極活物質100mgを±0.1mgで量り取った。
(4)正極活物質を三角フラスコに移し入れ、栓をして回転子で撹拌しながら70℃で加熱して溶解させた。
(5)流水で三角フラスコを冷却後、残存酸素を除いた蒸留水を80mL加えた。
(6)0.05mol/Lのチオ硫酸ナトリウムで溶液が褐色から薄い黄色になるまで素早く滴定した。
(7)デンプン溶液を0.5mL加えて紫色に呈色させた。
(8)続けて0.05mol/Lのチオ硫酸ナトリウムで滴定し、紫色が消えたところを終点とし、下記式(2)〜(4)に基づいて遷移金属イオンの平均酸化数を算出した。
Men++(n−2)I- → Me2++1/2(n−2)I2 ・・・式(2)
2+2S23 → 2I-+S46 2- ・・・式(3)
平均酸化数=I2(mol)/Me(mol)+2 ・・・式(4)
The redox titration using iodine was performed in the following order.
(1) A ball filter was placed in a 200 mL Erlenmeyer flask, and nitrogen gas was replaced with 3 L / min for 5 minutes.
(2) 20 mL of 10 mL of KI (100 g / L) solution and 20 mL of HCl (a mixture of hydrochloric acid (reagent grade) and distilled water in a volume ratio of 1: 1) were added to an Erlenmeyer flask.
(3) 100 mg of the positive electrode active material was weighed at ± 0.1 mg.
(4) The positive electrode active material was transferred into an Erlenmeyer flask, sealed, and dissolved by heating at 70 ° C. while stirring with a rotor.
(5) After cooling the Erlenmeyer flask with running water, 80 mL of distilled water from which residual oxygen was removed was added.
(6) The solution was quickly titrated with 0.05 mol / L sodium thiosulfate until it turned brown to pale yellow.
(7) 0.5 mL of starch solution was added to make it purple.
(8) Subsequently, titration was performed with 0.05 mol / L sodium thiosulfate, and the point at which purple color disappeared disappeared was an end point, and the average oxidation number of transition metal ions was calculated based on the following formulas (2) to (4).
Me n + + (n-2 ) I - → Me 2+ +1/2 (n-2) I 2 ··· formula (2)
I 2 + 2S 2 O 3 → 2I - + S 4 O 6 2- ··· formula (3)
Average oxidation number = I 2 (mol) / Me (mol) + 2 ... Formula (4)

(X線回折測定)
得られた正極活物質について、粉末X線回折測定を行った。測定は放射線としてCuKα線(波長1.54051Å)を使用したX線回折装置(UltimaIV、リガク)を用いて行った。X線の単色化にはグラファイトの単結晶モノクロメーターを用い、印加電圧を40kV、電流40mAに設定して測定を行った。また、測定は5°/minの走査速度で行い10°から100°(2θ)の角度範囲で記録した。構造解析ソフト(Rietan−FP)を用いて分析したところ、正極活物質は、空間群Fd3mの立方晶であることがわかった。また、空間群Fd3mの立方晶で指数付けし、最小二乗法で格子定数を算出したところ、8.168Åであった。
(X-ray diffraction measurement)
Powder X-ray diffraction measurement was performed on the obtained positive electrode active material. The measurement was performed using an X-ray diffractometer (Ultima IV, Rigaku) using CuKα radiation (wavelength 1.54051 Å) as radiation. Measurement was performed using a single crystal monochromator of graphite and setting an applied voltage to 40 kV and a current of 40 mA for monochromating X-rays. Also, the measurement was performed at a scanning speed of 5 ° / min, and recording was performed in an angle range of 10 ° to 100 ° (2θ). As a result of analysis using structural analysis software (Rietan-FP), it was found that the positive electrode active material is a cubic crystal of space group Fd3m. Further, it was indexed with cubic crystals of space group Fd 3 m, and the lattice constant was calculated by the least squares method to be 8.168 Å.

(塗工電極の作製)
得られた正極活物質を85質量%、導電材としてカーボンブラックを10質量%、結着材としてポリフッ化ビニリデンを5質量%含む正極合材に、分散材としてN−メチル−2−ピロリドンを適量添加、分散することでスラリー状合材とした。このスラリー状合材を15μm厚のアルミニウム箔集電体に均一に塗布し、加熱乾燥させて塗布シートを作製した。その後塗布シートをロールプレスに通して高密度化させて、塗工電極を作製した。
(Production of coated electrode)
A positive electrode mixture containing 85% by mass of the obtained positive electrode active material, 10% by mass of carbon black as a conductive material, and 5% by mass of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersing agent A slurry-like mixture was obtained by adding and dispersing. The slurry-like mixture was uniformly applied to a 15 μm thick aluminum foil current collector, and dried by heating to prepare a coated sheet. Thereafter, the coated sheet was passed through a roll press to densify it to produce a coated electrode.

(二極式評価セルの作製)
上記手法で作製した塗工電極を2.05cm2の面積に打ち抜いて円盤状の電極を準備した。この電極を作用極とし、リチウム金属箔(厚み300μm)を対極として、両電極の間に非水電解液を含浸させたポリエチレン製セパレータを挟んで二極式評価セルを作製した。非水電解液には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を30/40/30の体積比で混合した混合溶媒に、LiPF6を1Mの濃度で溶解させたものを用いた。
(Preparation of bipolar evaluation cell)
The coated electrode produced by the above method was punched into an area of 2.05 cm 2 to prepare a disk-shaped electrode. Using this electrode as a working electrode and a lithium metal foil (thickness 300 μm) as a counter electrode, a bipolar separator was made to sandwich a polyethylene separator impregnated with a non-aqueous electrolyte between both electrodes, to prepare a bipolar evaluation cell. Dissolve LiPF 6 at a concentration of 1 M in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed in a volume ratio of 30/40/30 in the non-aqueous electrolytic solution. Used.

(充放電試験)
上記二極式評価セルを用い、20℃の温度環境下、0.1Cのレートで5.0−3.0Vの範囲で充放電試験を行った。そして、複合酸化物あたり5[mAhg-1]の容量間隔で、下記(1)に基づいてdQ/dVの値を算出した。そして、dQ/dVの最大値(dQ/dV)max、および最小値(dQ/dV)minを求めた。なお、dQ/dVは、充電時には正の値を示し、放電時には負の値を示した。
dQ/dV=(Q(q+5)−Q(q))/(V(q+5)−V(q))・・・式(1)
(Charge and discharge test)
Using the bipolar evaluation cell, a charge / discharge test was performed at a rate of 0.1 C in a range of 5.0 to 3.0 V under a temperature environment of 20 ° C. Then, the value of dQ / dV was calculated based on the following (1) at a capacity interval of 5 [mAh g −1 ] per composite oxide. Then, the maximum value (dQ / dV) max and the minimum value (dQ / dV) min of dQ / dV were determined. In addition, dQ / dV showed a positive value at the time of charge, and showed a negative value at the time of discharge.
dQ / dV = (Q (q + 5) -Q (q)) / (V (q + 5) -V (q)) Formula (1)

(リチウムイオン二次電池の作製)
上記手法で作製した塗工電極を120mm幅×100mm長の形状に切り出して正極シートとした。一方、負極活物質として黒鉛を用い、活物質を95質量%、結着剤としてポリフッ化ビニリデンを5質量%混合し、正極と同様にスラリー状合材とした。このスラリー状合材を10 μm厚の銅箔集電体に均一に塗布し、加熱乾燥させて塗布シートを作製した。その後塗布シートをロールプレスに通して高密度化させ、122mm幅×102mm長の形状に切り出して負極シートとした。得られた正極シートと負極シートを25μm厚のポリエチレン製セパレータを挟んで対向させ、積層型電極体を作製した。この電極体をアルミラミネート型袋に封入し、非水電解液を含侵させた後に密閉してリチウム二次電池を作製した。非水電解液には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を30/40/30の体積比で混合した混合溶媒に、LiPF6を1Mの濃度で溶解させたものを用いた。
(Preparation of lithium ion secondary battery)
The coated electrode produced by the said method was cut out in the shape of 120 mm width x 100 mm length, and it was set as the positive electrode sheet. On the other hand, graphite was used as the negative electrode active material, 95% by mass of the active material, and 5% by mass of polyvinylidene fluoride as the binder were mixed to form a slurry-like mixture in the same manner as the positive electrode. The slurry-like mixture was uniformly applied to a 10 μm thick copper foil current collector, and dried by heating to prepare a coated sheet. Thereafter, the coated sheet was passed through a roll press to densify it, and cut into a shape of 122 mm wide × 102 mm long to obtain a negative electrode sheet. The obtained positive electrode sheet and the negative electrode sheet were opposed to each other with a 25 μm-thick polyethylene separator interposed therebetween to prepare a laminated electrode body. The electrode body was sealed in an aluminum laminate type bag, impregnated with a non-aqueous electrolyte, and sealed to prepare a lithium secondary battery. Dissolve LiPF 6 at a concentration of 1 M in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed in a volume ratio of 30/40/30 in the non-aqueous electrolytic solution. Used.

(低温出力特性試験)
上記リチウムイオン二次電池を用い、−30℃において電池容量の70%(SOC=70%)に調整した後に、種々の電流値で電流を流し、2秒後の電池電圧を測定した。流した電流と電圧を直線補間し、2秒後の電圧が3.0Vになる時の電流値を求め、その電流と電圧の積から出力パワーを求めた。
(Low temperature output characteristics test)
After adjusting to 70% (SOC = 70%) of the battery capacity at -30 ° C using the above lithium ion secondary battery, current was applied at various current values, and the battery voltage after 2 seconds was measured. The flowed current and voltage were linearly interpolated, the current value when the voltage after 2 seconds became 3.0 V was determined, and the output power was determined from the product of the current and the voltage.

(実験結果)
実験例1〜4の充放電曲線を図2〜5に、dQ/dV曲線を図6〜9に示した。また、実験例1〜10について、化学組成、格子定数、(dQ/dV)max、(dQ/dV)min、低温出力特性を表1に示した。なお、表1において、低温出力特性は、実験例1の出力パワーの値を1として規格化した出力パワーの値とした。
(Experimental result)
The charge / discharge curves of Experimental Examples 1 to 4 are shown in FIGS. 2 to 5 and the dQ / dV curves are shown on FIGS. The chemical composition, lattice constant, (dQ / dV) max, (dQ / dV) min, and low-temperature output characteristics are shown in Table 1 for Experimental Examples 1 to 10. In Table 1, the low-temperature output characteristic is a value of the output power normalized with the value of the output power of Experimental Example 1 as one.

実験例1では、図6に示すように、二相共存反応に特徴的な、−3<dQ/dV<3を満たさないシャープなピークが確認され、充放電した全電位範囲において二相共存反応で充放電したと推察された。正極活物質の格子定数は8.168Åであり、格子定数は8.20Åを下回っていた。実験例1では、低温出力特性が特に低かった。   In Experimental Example 1, as shown in FIG. 6, a sharp peak not satisfying -3 <dQ / dV <3 which is characteristic of two-phase coexistence reaction is confirmed, and two-phase coexistence reaction in the whole potential range charged and discharged. It was guessed that the battery was charged and discharged. The lattice constant of the positive electrode active material was 8.168 Å, and the lattice constant was less than 8.20 Å. In the experimental example 1, the low temperature output characteristics were particularly low.

実験例2では、図7に示すように、4.65V付近には一相反応に特徴的な−3<dQ/dV<3を満たす比較的ブロードなピークが確認されたものの、4.75V付近にはこの関係を満たさない二相共存反応に特徴的なシャープなピークが確認された。つまり、この材料は低電位側では一相反応で充放電したものの、高電位側では二相共存反応で充放電したと推察された。正極活物質の格子定数は8.192Åであり、8.20Åを下回っていた。実験例2の低温出力特性は、実験例1の結果に類似していた。   In Experimental Example 2, as shown in FIG. 7, although a relatively broad peak satisfying -3 <dQ / dV <3 characteristic of one-phase reaction was confirmed around 4.65V, around 4.75V. A sharp peak characteristic of a two-phase coexistence reaction not satisfying this relationship was confirmed in. That is, it was speculated that this material was charged and discharged in a one-phase reaction on the low potential side, but was charged and discharged in a two-phase coexistence reaction on the high potential side. The lattice constant of the positive electrode active material was 8.192 Å, which was less than 8.20 Å. The low temperature output characteristics of Experimental Example 2 were similar to the results of Experimental Example 1.

実験例3では、図8に示すように、一相反応に特徴的な−3<dQ/dV<3を満たす比較的ブロードなピークが確認された。つまり、この材料は充放電した全電位範囲において一相反応で充放電したと推察された。実験例3では、格子定数は8.20Åを下回っているものの、比較的良好な低温出力特性を示した。   In Experimental Example 3, as shown in FIG. 8, a relatively broad peak satisfying -3 <dQ / dV <3 characteristic of one-phase reaction was confirmed. That is, it was inferred that this material was charged and discharged in a one-phase reaction in the entire potential range of charge and discharge. In Experimental Example 3, although the lattice constant was less than 8.20 Å, relatively good low temperature output characteristics were exhibited.

実験例4では、図9に示すように、一相反応に特徴的な−3<dQ/dV<3を満たすブロードなピークが確認された。実験例5,6でも同様であり、実験例4に類似した充放電曲線およびdQ/dV曲線が得られた。つまり、これらの材料は充放電した全電位範囲において一相反応で充放電したと推察された。さらに、実験例4〜6では、格子定数は8.20Åを上回っており、良好な低温出力特性を示した。   In Experimental Example 4, as shown in FIG. 9, a broad peak satisfying -3 <dQ / dV <3 characteristic of one-phase reaction was confirmed. The same charge-discharge curve and dQ / dV curve as in Experimental Example 4 were obtained in Experimental Examples 5 and 6 as well. That is, it was inferred that these materials were charged and discharged in a one-phase reaction in the entire potential range of charge and discharge. Furthermore, in Experimental Examples 4 to 6, the lattice constant exceeded 8.20 Å, and showed good low temperature output characteristics.

表面にリン酸リチウムを被覆させた実験例7〜9では、同一化学組成の実験例4〜6よりも、低温出力特性が向上した。このことから、−3<dQ/dV<3を満たし、格子定数が8.20Å以上である正極活物質にリン酸リチウムを被覆させることで、低温出力特性をより高めることができることがわかった。なお、実験例7〜9において、充放電曲線およびdQ/dV曲線は実験例4に類似していた。   In Experimental Examples 7 to 9 in which lithium phosphate was coated on the surface, the low-temperature output characteristics were improved as compared with Experimental Examples 4 to 6 of the same chemical composition. From this, it was found that low temperature output characteristics can be further enhanced by covering lithium phosphate with a positive electrode active material that satisfies −3 <dQ / dV <3 and has a lattice constant of 8.20 Å or more. In Experimental Examples 7 to 9, the charge / discharge curve and the dQ / dV curve were similar to those of Experimental Example 4.

表面にリン酸リチウムを被覆させた実験例10では、同一化学組成の実験例1よりも、低温出力特性が向上した。しかし、実験例3〜9よりは低温出力特性が低かった。このことから、二相共存反応で充放電する正極活物質にリン酸リチウムを被覆させた場合、性能は若干向上するものの、実験例7〜9ほどの性能向上効果が得られないことがわかった。   In Experimental Example 10 in which lithium phosphate was coated on the surface, the low temperature output characteristics were improved more than Experimental Example 1 of the same chemical composition. However, the low temperature output characteristics were lower than those of Experimental Examples 3 to 9. From this, when lithium phosphate was coated on the positive electrode active material to be charged and discharged in the two-phase coexistence reaction, it was found that although the performance was slightly improved, the performance improvement effect as in Experimental Examples 7 to 9 was not obtained. .

以上より、Li、Mn及びMを含むスピネル型構造を有する複合酸化物であって、dQ/dV曲線において、充放電に用いる電位範囲の全範囲でdQ/dV[Ahg-1-1]の値が−3<dQ/dV<3を満たす正極活物質を用いた電池では、低温での出力特性をより高めることができることがわかった。また、こうした正極活物質表面にリン酸リチウムを被覆すると、低温出力特性をさらに高められることがわかった。なお、本開示は上述した実施例に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 From the above, it is a complex oxide having a spinel structure including Li, Mn and M, and in the dQ / dV curve, dQ / dV [Ahg −1 V −1 ] in the entire range of potentials used for charge and discharge. It was found that, in a battery using a positive electrode active material having a value of -3 <dQ / dV <3, the output characteristics at low temperature can be further enhanced. Moreover, it was found that when the surface of such a positive electrode active material is coated with lithium phosphate, the low temperature output characteristics can be further enhanced. It is needless to say that the present disclosure is not limited to the above-described embodiment at all, and may be implemented in various modes within the technical scope of the present disclosure.

本開示は、例えば、電池産業の分野に利用可能である。   The present disclosure is applicable, for example, to the field of battery industry.

10 リチウム二次電池、11 集電体、12 正極活物質、13 正極シート、14 集電体、17 負極活物質、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子。   DESCRIPTION OF SYMBOLS 10 lithium secondary battery, 11 current collector, 12 positive electrode active material, 13 positive electrode sheet, 14 current collector, 17 negative electrode active material, 18 negative electrode sheet, 19 separator, 20 non-aqueous electrolyte solution, 22 cylindrical case, 24 positive electrode terminal , 26 negative terminal.

Claims (6)

Li、Mn及びM(但し、MはCo及びNiのうちの1以上)を含むスピネル型構造を有する複合酸化物であって、
前記複合酸化物を備えた作用極とリチウム金属の対極とを備えた評価セルを用いた20℃の温度環境下0.1Cのレートでの充放電において、前記複合酸化物あたりの容量がq[mAhg-1]のときとq+5[mAhg-1]のときとの、容量Qの差分の電圧Vの差分に対する比を示す、下記式(1)から算出されるdQ/dV[Ahg-1-1]の値が、充放電に用いる電位範囲の全範囲で−3<dQ/dV<3を満たす、
正極活物質。
dQ/dV=(Q(q+5)−Q(q))/(V(q+5)−V(q))・・・式(1)
A composite oxide having a spinel structure including Li, Mn and M (wherein M is one or more of Co and Ni),
In charge and discharge at a rate of 0.1 C in a temperature environment of 20 ° C. using an evaluation cell provided with a working electrode provided with the composite oxide and a counter electrode of lithium metal, the capacity per composite oxide is q [ mAhg -1] between time and q + 5 of [mAhg -1] when the capacity Q shows the ratio differential voltage V of the difference, dQ / dV [Ahg -1 V to be calculated from the following equation (1) - 1 ] satisfies -3 <dQ / dV <3 in the whole range of the potential range used for charge and discharge,
Positive electrode active material.
dQ / dV = (Q (q + 5) -Q (q)) / (V (q + 5) -V (q)) Formula (1)
格子定数が8.20Å以上である、請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the lattice constant is 8.20 Å or more. 基本組成式LixyMn2-yz(但し、x,y,zは、0.9≦x≦1、0<y≦1、3.7≦z≦4.0を満たす。)で表される、請求項1又は2に記載の正極活物質。 Basic composition formula Li x M y Mn 2-y O z (however, x, y, z satisfy 0.9 ≦ x ≦ 1, 0 <y ≦ 1, 3.7 ≦ z ≦ 4.0) The positive electrode active material of Claim 1 or 2 represented by these. 表面にリン酸リチウムが被覆されている、請求項1〜3のいずれか1項に記載の正極活物質。   The positive electrode active material according to any one of claims 1 to 3, wherein lithium phosphate is coated on the surface. 請求項1〜4のいずれか1項に記載の正極活物質を含有する、正極。   The positive electrode containing the positive electrode active material of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の正極活物質を含有する正極と、
負極活物質を含有する負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えた、リチウム二次電池。
The positive electrode containing the positive electrode active material of any one of Claims 1-4,
A negative electrode containing a negative electrode active material,
An ion conducting medium interposed between the positive electrode and the negative electrode for conducting lithium ions;
Equipped with a lithium secondary battery.
JP2017211971A 2017-11-01 2017-11-01 Positive electrode active material, positive electrode and lithium secondary battery Active JP6998176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211971A JP6998176B2 (en) 2017-11-01 2017-11-01 Positive electrode active material, positive electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211971A JP6998176B2 (en) 2017-11-01 2017-11-01 Positive electrode active material, positive electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2019087312A true JP2019087312A (en) 2019-06-06
JP6998176B2 JP6998176B2 (en) 2022-01-18

Family

ID=66763498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211971A Active JP6998176B2 (en) 2017-11-01 2017-11-01 Positive electrode active material, positive electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6998176B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100434A (en) * 1998-09-21 2000-04-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2011187193A (en) * 2010-03-05 2011-09-22 Hitachi Ltd Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
WO2016140352A1 (en) * 2015-03-04 2016-09-09 日揮触媒化成株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery, positive electrode and non-aqueous electrolyte secondary battery
JP2016170942A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Method of manufacturing positive electrode active material for solid battery
JP2018129286A (en) * 2017-02-07 2018-08-16 株式会社豊田中央研究所 Active material, lithium secondary battery and method of producing active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100434A (en) * 1998-09-21 2000-04-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2011187193A (en) * 2010-03-05 2011-09-22 Hitachi Ltd Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
WO2016140352A1 (en) * 2015-03-04 2016-09-09 日揮触媒化成株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery, positive electrode and non-aqueous electrolyte secondary battery
JP2016170942A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Method of manufacturing positive electrode active material for solid battery
JP2018129286A (en) * 2017-02-07 2018-08-16 株式会社豊田中央研究所 Active material, lithium secondary battery and method of producing active material

Also Published As

Publication number Publication date
JP6998176B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP6952247B2 (en) Positive electrode active material and battery
JP5441328B2 (en) Cathode active material and lithium battery employing the same
WO2018092359A1 (en) Positive electrode active material for batteries, and battery
WO2017013848A1 (en) Positive electrode active material and battery
US11482700B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
WO2018163518A1 (en) Positive electrode active material, and cell
EP3633773A1 (en) Positive electrode active substance and battery
EP3618152A1 (en) Positive electrode active material and battery
JP2018085324A (en) Cathode active material for battery, and battery using cathode active material
WO2013024621A1 (en) Lithium-ion cell
JP2009176583A (en) Lithium secondary battery
WO2009142283A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
KR101115416B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery including same
JP4458232B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020003595A1 (en) Nonaqueous electrolyte secondary battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP2021073666A (en) Cathode active material and cell
EP3352262B1 (en) Positive electrode active material and battery
WO2015045254A1 (en) Lithium-titanium compound oxide
KR20160012558A (en) Composite positive electrode active electrode material for lithium secondary battery and lithium secondary battery comprising positive electrode including the positive electrode active material
KR20150133552A (en) Composite precursor and preparing method thereof
WO2016132963A1 (en) Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP5445912B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
KR101466448B1 (en) Method for preparing lithium metal oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150