JP2019086778A - Optical wavelength conversion component, light-emitting device, and method for manufacturing optical wavelength conversion component - Google Patents

Optical wavelength conversion component, light-emitting device, and method for manufacturing optical wavelength conversion component Download PDF

Info

Publication number
JP2019086778A
JP2019086778A JP2018209815A JP2018209815A JP2019086778A JP 2019086778 A JP2019086778 A JP 2019086778A JP 2018209815 A JP2018209815 A JP 2018209815A JP 2018209815 A JP2018209815 A JP 2018209815A JP 2019086778 A JP2019086778 A JP 2019086778A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light wavelength
conversion member
light
metal frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018209815A
Other languages
Japanese (ja)
Other versions
JP7188984B2 (en
Inventor
朋来 村田
Tomoki Murata
朋来 村田
洋介 八谷
Yosuke Yatsuya
洋介 八谷
竜一 荒川
Ryuichi Arakawa
竜一 荒川
智雄 田中
Tomoo Tanaka
智雄 田中
吉本 修
Osamu Yoshimoto
修 吉本
祐介 勝
Yusuke Katsu
祐介 勝
経之 伊藤
Tsuneyuki Ito
経之 伊藤
翔平 高久
Shohei Takahisa
翔平 高久
光岡 健
Takeshi Mitsuoka
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JP2019086778A publication Critical patent/JP2019086778A/en
Application granted granted Critical
Publication of JP7188984B2 publication Critical patent/JP7188984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

To provide an optical wavelength conversion component configured to prevent color change of light emitted from the optical wavelength conversion component, a light-emitting device, and a method for manufacturing the optical wavelength conversion component.SOLUTION: An optical wavelength conversion member 11 of an optical wavelength conversion component 9 is fixed to a metal frame 13 in direct contact with the metal frame 13 having high thermal conductivity. An inside surface of the optical wavelength conversion member 11 protrudes from a surface in a penetration direction of the metal frame 13, thereby preventing color change of light emitted from the optical wavelength conversion component 9. Therefore, an inside surface of the optical wavelength conversion member 11 protrudes in a penetration direction of the metal frame 13, thereby preventing light emitted from the optical wavelength conversion component 9 from being reflected on a plastically deformed part of the metal frame 13 even when the metal frame 13 is plastically deformed due to a temperature change. Accordingly, a color change of the light emitted from the optical wavelength conversion component 9 can be prevented.SELECTED DRAWING: Figure 1

Description

本開示は、例えばヘッドランプや照明やプロジェクター等の各種光学機器に用いられるような、光の波長の変換が可能な光波長変換部材を備えた光波長変換部品、及び光波長変換部品を備えた発光装置、並びに光波長変換部品の製造方法に関するものである。   The present disclosure includes an optical wavelength conversion component including an optical wavelength conversion member capable of converting the wavelength of light, such as used for various optical devices such as a headlamp and illumination and a projector, and an optical wavelength conversion component. The present invention relates to a light emitting device and a method of manufacturing a light wavelength conversion component.

従来、ヘッドランプや各種照明機器などでは、発光ダイオード(LED:Light Emitting Diode)や半導体レーザー(LD:Laser Diode)の青色光を、光波長変換部材である蛍光体によって波長変換することにより、白色を得ている装置が主流となっている。   Conventionally, in headlamps and various lighting devices, white light is obtained by wavelength-converting blue light of a light emitting diode (LED: Light Emitting Diode) or a semiconductor laser (LD: Laser Diode) using a phosphor as a light wavelength conversion member. Devices that are gaining in popularity are the mainstream.

この蛍光体としては、樹脂系やガラス系などが知られているが、近年、光源の高出力化が進められており、蛍光体には、より高い耐久性が求められるようになったことから、セラミックス蛍光体に注目が集まっている。   Resin and glass are known as the phosphors, but in recent years, the output of light sources has been increased, and the phosphors are required to have higher durability. Attention has been focused on ceramic phosphors.

また、上述した蛍光体は、例えば基板上に配置されるとともに、樹脂やガラスによって基板等に固定されていた(特許文献1参照)。なお、以下では、基板等に蛍光体が固定された部品を光波長変換部品と称し、光波長変換部品とLD等の発光素子とを備えた装置を、発光装置と称する。   Moreover, while the fluorescent substance mentioned above was arrange | positioned, for example on a board | substrate, it was being fixed to the board | substrate etc. with resin or glass (refer patent document 1). Hereinafter, a component in which a phosphor is fixed to a substrate or the like is referred to as a light wavelength conversion component, and a device including the light wavelength conversion component and a light emitting element such as an LD is referred to as a light emitting device.

国際公開第2009/069671号International Publication No. 2009/069671

ところで、上述した従来技術では、下記のような問題があり、その改善が求められていた。
具体的には、従来では、蛍光体は熱伝導率の低い樹脂やガラスで基板等に固定されているので、例えば蛍光体にレーザー光を照射して光波長変換を行う際に、蛍光体が高温になると、その熱を十分に外部に放出(即ち放熱)できないことがある。その場合には、いわゆる蛍光体の温度消光によって、発光強度が低下してしまう。
By the way, in the above-mentioned prior art, there are the following problems, and their improvement has been demanded.
Specifically, conventionally, a phosphor is fixed to a substrate or the like by a resin or glass having a low thermal conductivity, so that, for example, when irradiating a phosphor with a laser beam to perform light wavelength conversion, the phosphor When the temperature is high, the heat may not be sufficiently released (i.e., dissipated) to the outside. In such a case, so-called temperature quenching of the phosphor reduces the emission intensity.

この対策として、本願発明者等は、熱伝導率の高い金属枠を使用して蛍光体を固定する研究を行っているが、その際に、蛍光体から出力される光(即ち外部に照射される光)の変色が発生するという問題に直面にした。   As a measure against this, the inventors of the present invention have been studying to fix the phosphor using a metal frame with high thermal conductivity, but at that time, light emitted from the phosphor (ie, irradiated to the outside) Faced with the problem of discoloration of the

例えば、セラミック製の蛍光体と金属枠とでは熱膨張率が異なるので、蛍光体を金属枠の貫通孔に嵌めて固定した光波長変換部品においては、発光開始時や発光停止時(即ち消灯直後)では、金属枠の膨張や収縮に伴う問題が生じることがある。つまり、金属枠は膨張と収縮を繰り返すことによって塑性変形を生じ、その結果として、光波長変換部材から照射される光の変色が生じることがある。   For example, since the coefficient of thermal expansion is different between the ceramic phosphor and the metal frame, the light wavelength conversion component in which the phosphor is inserted into and fixed to the through hole of the metal frame is light emission start time or light emission stop time May cause problems with expansion and contraction of the metal frame. That is, the metal frame may be plastically deformed by repeated expansion and contraction, and as a result, discoloration of light emitted from the light wavelength conversion member may occur.

詳しくは、発光開始時における熱の伝わり方は、発光素子からの入射光を受けた蛍光体では、最初は温度が上昇し、その後、熱は周囲の金属枠に伝播する。しかし、熱の伝播には時間がかかるために、蛍光体が比較的高温、金属枠が比較的低温といった状況が生じる。同様に、発光停止時における熱の伝わり方も、金属枠が冷めやすい特性であるのに対して蛍光体が冷めにくいことで、蛍光体が比較的高温、金属枠が比較的低温といった状況が生じる。   Specifically, how heat is transmitted at the start of light emission is that, in the phosphor that has received incident light from the light emitting element, the temperature rises initially, and then the heat is transmitted to the surrounding metal frame. However, since the propagation of heat takes time, a situation occurs in which the phosphor has a relatively high temperature and the metal frame has a relatively low temperature. Similarly, the heat transfer when light emission is stopped is that the metal frame is easy to cool, whereas the phosphor is hard to cool, resulting in a relatively high temperature of the phosphor and a relatively low temperature of the metal frame. .

そして、蛍光体が比較的高温、金属枠が比較的低温といった状況では、蛍光体の体積膨張が大きいのに対し、金属枠の膨張が小さく、結果として、金属枠が蛍光体の膨張に伴う応力に耐え切れず、塑性変形する。   And, in a situation where the phosphor is at a relatively high temperature and the metal frame is at a relatively low temperature, the volume expansion of the phosphor is large while the expansion of the metal frame is small, and as a result, the stress of the metal frame caused by the expansion of the phosphor Can not withstand plastic deformation.

その塑性変形は、温度が高く軟化している金属枠の貫通孔側で起こりやすく、蛍光体に接する箇所が金属枠の厚み方向に膨張し、光の出射面(即ち発光面)あるいは入射面よりも盛り上がった形態に変形する。この金属枠の盛り上がった部分は、蛍光体の入射光や出射光を反射し易いが、そこで反射された光は、通常は波長が長く変化しており、結果として、発光装置から出る光の変色が起こるという問題があった。   The plastic deformation is likely to occur on the through hole side of the metal frame which is high in temperature and softened, and the portion in contact with the phosphor expands in the thickness direction of the metal frame, and the light emission surface (ie light emission surface) or incident surface Also transform into a raised form. The raised portion of this metal frame is likely to reflect the incident light or emitted light of the phosphor, but the light reflected there is usually a long wavelength change, and as a result, the color change of the light emitted from the light emitting device Was a problem.

つまり、金属枠に塑性変形が発生すると、発光装置(詳しくは光波長変換部品)から出る光の色度が、本来の目的とする色度から変化するという問題があった。
本開示は、前記課題に鑑みてなされたものであり、その目的は、光波長変換部品から出射される光の変色を抑制できる光波長変換部品及び発光装置並びに光波長変換部品の製造方法を提供することにある。
That is, when plastic deformation occurs in the metal frame, there is a problem that the chromaticity of light emitted from the light emitting device (specifically, the light wavelength conversion component) changes from the original intended chromaticity.
The present disclosure has been made in view of the above problems, and an object thereof is to provide a light wavelength conversion component, a light emitting device, and a method of manufacturing the light wavelength conversion component capable of suppressing the color change of light emitted from the light wavelength conversion component. It is to do.

(1)本開示の第1局面は、光の波長を変換し、一方の表面と他方の表面を有する光波長変換部材と、光波長変換部材を囲み貫通孔を有する枠状の金属枠と、を備えた光波長変換部品に関するものである。   (1) A first aspect of the present disclosure converts a light wavelength, and includes a light wavelength conversion member having one surface and the other surface, and a frame-like metal frame having a through hole and surrounding the light wavelength conversion member, The present invention relates to an optical wavelength conversion component provided with

この光波長変換部品は、金属枠に固定されているとともに、光波長変換部材自身の一方の表面と他方の表面とが、それぞれ貫通孔の貫通方向の一方の側と他方の側となるように配置されている。さらに、光波長変換部材の一方の表面及び他方の表面のうち、少なくともどちらかの表面が、金属枠の貫通方向における表面より突出している。   The light wavelength conversion component is fixed to the metal frame, and one surface and the other surface of the light wavelength conversion member itself are respectively on one side and the other side in the penetration direction of the through hole. It is arranged. Furthermore, at least one of the one surface and the other surface of the light wavelength conversion member protrudes from the surface in the penetration direction of the metal frame.

本第1局面では、光波長変換部材の一方の表面及び他方の表面のうち、少なくともどちらかの表面が、金属枠の貫通方向における表面より突出しているので、発光装置(詳しくは光波長変換部品)から出る光の変色を抑制できる。つまり、光波長変換部品から外部に照射される光の色度が、本来の目的とする色度から変化することを抑制できるという顕著な効果を奏する。   In the first aspect, since at least one of the one surface and the other surface of the light wavelength conversion member protrudes from the surface in the penetration direction of the metal frame, the light emitting device (more specifically, the light wavelength conversion component) Color change of light emitted from) can be suppressed. That is, it is possible to suppress the change of the chromaticity of the light emitted from the light wavelength conversion component to the outside from the original target chromaticity, which is remarkable.

詳しくは、金属枠と波長変換部材との熱膨張率が異なり、温度変化が繰り返し発生することにより、金属枠が塑性変形した場合でも、光波長変換部材の一方の表面及び他方の表面のうち、少なくともどちらかの表面が(両方でもよい)、金属枠の貫通方向における表面より突出しているので、光波長変換部品から出た光が金属枠に当たって反射するという現象が発生しにくくなっている。これにより、金属枠にて反射した反射光と光波長変換部材から出る出射光とが混合しにくくなっているので、結果として、光波長変換部品から出る光の変色を抑制できる。   Specifically, the coefficient of thermal expansion of the metal frame and that of the wavelength conversion member are different, and even if the metal frame is plastically deformed due to repeated occurrence of temperature change, one of the surfaces of the light wavelength conversion member and the other surface Since at least one of the surfaces (or both) may protrude from the surface in the penetration direction of the metal frame, the phenomenon that light emitted from the light wavelength conversion component strikes the metal frame and is less likely to occur. As a result, it is difficult to mix the reflected light reflected by the metal frame and the light emitted from the light wavelength conversion member, and as a result, it is possible to suppress the color change of the light emitted from the light wavelength conversion component.

なお、色度とは、国際照明委員会(CIE)のXYZ表色形を使用した色度図により求められる色度である。
(2)本開示の第2局面では、光波長変換部材は、貫通孔において、金属枠に直接に接触していてもよい。
Here, the chromaticity is a chromaticity obtained by a chromaticity diagram using the XYZ color form of the International Commission on Illumination (CIE).
(2) In the second aspect of the present disclosure, the light wavelength conversion member may be in direct contact with the metal frame in the through hole.

本第2局面では、光波長変換部材は、金属枠に直接に接触した状態で金属枠に固定されているので、光波長変換部材の温度が上昇しにくいという効果がある。つまり、金属枠の熱伝導率は、上述した従来の樹脂やガラスの熱伝導率より高いので、光波長変換部材の温度が上昇した場合でも、その熱は金属枠側に容易に伝達される(即ち放熱される)。よって、光波長変換部材の温度が過度に上昇することを抑制できるので、好適に温度消光を抑制できる。   In the second aspect, the light wavelength conversion member is fixed to the metal frame in direct contact with the metal frame, so that the temperature of the light wavelength conversion member is hardly increased. That is, since the thermal conductivity of the metal frame is higher than the thermal conductivity of the above-described conventional resin or glass, even when the temperature of the light wavelength conversion member rises, the heat is easily transmitted to the metal frame ( That is, it dissipates heat). Therefore, since it can suppress that the temperature of a light wavelength conversion member rises too much, temperature quenching can be suppressed suitably.

(3)本開示の第3局面では、光波長変換部材の金属枠の貫通孔を形成する内周面に接する側面は、光波長変換部材の一方の表面に対して傾斜していてもよい。
このように、光波長変換部材の側面が一方の表面に対して傾斜していることで、光波長変換部材の側面と金属枠の内周面との接触面積が大きくなる。従って、光波長変換部材から金属枠への放熱性が向上する。また、光波長変換部材と金属枠との接合性が向上する。
(3) In the third aspect of the present disclosure, the side surface in contact with the inner circumferential surface forming the through hole of the metal frame of the light wavelength conversion member may be inclined with respect to one surface of the light wavelength conversion member.
Thus, when the side surface of the light wavelength conversion member is inclined with respect to one surface, the contact area between the side surface of the light wavelength conversion member and the inner circumferential surface of the metal frame is increased. Therefore, the heat dissipation from the light wavelength conversion member to the metal frame is improved. In addition, the bondability between the light wavelength conversion member and the metal frame is improved.

(4)本開示の第4局面では、光波長変換部材の側面は、光波長変換部材の一方の表面に対して、テーパ形状であってもよい。
この構成によって、光波長変換部材の側面(即ち全周における側面)における放熱性のムラが少なくなり、光波長変換部材の温度がより均一になる。
(4) In the fourth aspect of the present disclosure, the side surface of the light wavelength conversion member may be tapered with respect to one surface of the light wavelength conversion member.
With this configuration, the heat radiation non-uniformity on the side surface (that is, the side surface on the entire circumference) of the light wavelength conversion member is reduced, and the temperature of the light wavelength conversion member becomes more uniform.

なお、ここでテーパ形状とは、光波長変換部材の厚み方向に沿って、すなわち、光波長変換部材の一方の表面側から他方の表面側に向けて、または、他方の表面側から一方の表面側に向けて、径方向の寸法が小さくなっている(即ち先細りになっている)形状を示している。   Here, the tapered shape means along the thickness direction of the light wavelength conversion member, that is, from one surface side of the light wavelength conversion member to the other surface side, or one surface from the other surface side. Towards the side, the radial dimension has shown a decreasing (i.e. tapering) shape.

(5)本開示の第5局面では、光波長変換部材の一方の表面と、光波長変換部材の金属枠の貫通孔を形成する内周面に接する側面と、の間の角度は、80°以上100°以下の範囲であってもよい。   (5) In the fifth aspect of the present disclosure, the angle between one surface of the light wavelength conversion member and the side surface in contact with the inner circumferential surface forming the through hole of the metal frame of the light wavelength conversion member is 80 °. It may be in the range of not less than 100 °.

後述する実験例から明らかなように、一方の表面と側面との間の角度(即ち一方の表面に対する側面の傾斜の角度)が80°未満や100°を超える場合には、光波長変換部材の端部(即ちエッジ部)が割れやすくなるので、80°以上100°以下の範囲が好適である。   As apparent from the experimental examples described later, when the angle between one surface and the side surface (that is, the angle of inclination of the side surface with respect to one surface) is less than 80.degree. Or more than 100.degree. A range of 80 ° or more and 100 ° or less is preferable because the end portion (that is, the edge portion) is easily broken.

ここで、エッジ部とは、光波長変換部材を厚み方向に破断した場合に、側面と一方の表面又は他方の表面とのなす角の部分である。なお、エッジ部は、一方の表面側と他方の表面側の両方にあるが、割れ易いのは、エッジ部における角度(エッジ角)が鋭角の部分である。   Here, the edge portion is a portion of an angle formed by the side surface and one surface or the other surface when the light wavelength conversion member is broken in the thickness direction. Although the edge portion is present on both the one surface side and the other surface side, it is a portion where the angle (edge angle) at the edge portion is an acute angle that is easily broken.

(6)本開示の第6局面では、光波長変換部材の一方の表面と光波長変換部材の側面との間の角度は、85°以上95°以下の範囲であってもよい。
後述する実験例から明らかなように、一方の表面と側面との間の角度(即ち一方の表面に対する側面の傾斜の角度)が85°以上95°以下の範囲にある場合には、光波長変換部品として総合的に優れた性能を有するので、この範囲が好適である。
(6) In the sixth aspect of the present disclosure, the angle between one surface of the light wavelength conversion member and the side surface of the light wavelength conversion member may be in the range of 85 ° to 95 °.
As apparent from the experimental examples described later, when the angle between one surface and the side surface (that is, the angle of inclination of the side surface to one surface) is in the range of 85 ° to 95 °, the light wavelength conversion is performed. This range is preferable because it has overall excellent performance as a part.

詳しくは、後述するように、他の条件が同じ場合に、一方の表面と側面との間の角度(以下、「発光側エッジ角」と称することがある)が小さくなるほど、一方の表面の面積(例えば発光面積)が増加するので、発光強度が増加する。   Specifically, as described later, when the other conditions are the same, the smaller the angle between one surface and the side surface (hereinafter sometimes referred to as “light emitting side edge angle”), the area of one surface Since (for example, light emitting area) is increased, light emission intensity is increased.

また、発光側エッジ角が大きくなるほど、固定強度が増加する。なお、この場合の固定強度は、一方の表面と反対側の他方の表面側から一方の表面側に力を加えた場合の固定強度である。   In addition, the fixed intensity increases as the light emitting side edge angle increases. In addition, fixing strength in this case is fixing strength at the time of applying force to one surface side from the other surface side on the opposite side to one surface.

従って、これらのことから、総合的に、上述した角度の範囲が好適である。
(7)本開示の第7局面では、金属枠を構成する材料が、Al(アルミニウム)、Cu(銅)、Ni(ニッケル)、Fe(鉄)のうち少なくとも1種の金属、または、少なくとも1種の金属を含む金属複合体又は合金であってもよい。
Therefore, from these things, the range of the angle described above is generally preferable.
(7) In the seventh aspect of the present disclosure, the material forming the metal frame is at least one metal selected from Al (aluminum), Cu (copper), Ni (nickel), Fe (iron), or at least one of them. It may be a metal complex or alloy containing a metal of the kind.

本第7局面では、金属枠を構成する好適な材料を例示している。
なお、金属枠の材料としては、光波長変換部品の使用温度範囲において、光波長変換部材の熱伝導率よりも熱伝導率が大きな材料が用いられる。また、金属枠の材料としては、使用温度範囲において、光波長変換部材の熱膨張率よりも熱膨張率が大きな材料が用いられる。
The seventh aspect exemplifies a suitable material constituting the metal frame.
In addition, as a material of a metal frame, the material whose thermal conductivity is larger than the thermal conductivity of a light wavelength conversion member is used in the use temperature range of a light wavelength conversion component. Moreover, as a material of a metal frame, the material whose thermal expansion coefficient is larger than the thermal expansion coefficient of a light wavelength conversion member in an operating temperature range is used.

なお、前記金属としては、前記金属の各単体(Al、Cu、Ni、Fe)のいずれかを用いることができる。また、前記金属のうち少なくとも1種を含む金属複合体や前記金属のうち少なくとも1種を含む合金としては、例えば銅タングステン(Cu−W)、銅モリブデン(Cu−Mo)、真鍮、ベリリウム銅合金、銅クロム合金、銅ジルコニウム合金、銅鉄合金、アルミニウム合金、ステンレス鋼等を用いることができる。   In addition, as said metal, either of each single-piece | unit (Al, Cu, Ni, Fe) of the said metal can be used. Moreover, as a metal complex including at least one of the metals or an alloy including at least one of the metals, for example, copper tungsten (Cu-W), copper molybdenum (Cu-Mo), brass, beryllium copper alloy Copper-chromium alloy, copper-zirconium alloy, copper-iron alloy, aluminum alloy, stainless steel and the like can be used.

(8)本開示の第8局面では、金属枠を構成する材料が、Al又はAl合金であってもよい。
金属枠を構成する材料が、Al又はAl合金である場合には、後述するように光波長変換部品を製造する際に、その製造が容易である(即ち潰し易い)という効果がある。また、光波長変換部材から照射される光がAl又はAl合金に当たった場合でも、その反射光の波長が変化しにくいので、結果として、光波長変換部品から出力される光の色度が変化しにくいという利点がある。さらに、熱伝導率が高いという効果もある。
(8) In the eighth aspect of the present disclosure, the material forming the metal frame may be Al or an Al alloy.
In the case where the material forming the metal frame is Al or an Al alloy, there is an effect that the manufacture is easy (that is, it is easy to be crushed) when manufacturing the light wavelength conversion component as described later. In addition, even when light emitted from the light wavelength conversion member hits Al or an Al alloy, the wavelength of the reflected light hardly changes, and as a result, the chromaticity of the light output from the light wavelength conversion component changes. It has the advantage of being difficult to do. Furthermore, there is also an effect that the thermal conductivity is high.

なお、Al合金とは、Alを主成分とする合金である。なお、主成分とは、最も含有量(例えば体積%)多い成分のことである。
(9)本開示の第9局面は、前記第1〜第8局面のいずれかに記載の光波長変換部品と、光波長変換部材に光を照射する発光素子と、を備えた発光装置である。
In addition, Al alloy is an alloy which has Al as a main component. Here, the main component is a component having the highest content (for example, volume%).
(9) A ninth aspect of the present disclosure is a light emitting device including the light wavelength conversion component according to any one of the first to eighth aspects, and a light emitting element for emitting light to the light wavelength conversion member. .

本第9局面では、発光素子から光波長変換部材にて光を照射することにより、光波長変換部材にて波長が変換された光(即ち蛍光)を、外部等に照射することができる。
この発光装置は、前記光波長変換部品を備えているので、上述した光波長変換部品による効果を発揮できる。
In the ninth aspect, by irradiating light from the light emitting element with the light wavelength conversion member, light (that is, fluorescence) whose wavelength is converted by the light wavelength conversion member can be irradiated to the outside and the like.
Since the light emitting device includes the light wavelength conversion component, it is possible to exhibit the effects of the light wavelength conversion component described above.

なお、発光装置の発光素子としては、例えばLEDやLDなどの公知の素子を用いることができる。
(10)本開示の第10局面では、光波長変換部材は、発光素子側にて、金属枠の表面より突出していてもよい。
As a light emitting element of the light emitting device, for example, a known element such as an LED or an LD can be used.
(10) In the tenth aspect of the present disclosure, the light wavelength conversion member may protrude from the surface of the metal frame on the light emitting element side.

これにより、光波長変換部材の表面に接触するように発光素子を配置することが容易にできるので、発光素子から光波長変換部材に対して効率良く光を入射させることができる。
(11)本開示の第11局面は、前記第1〜第8局面のいずれかに記載の光波長変換部品を製造する光波長変換部品の製造方法に関するものである。
Thus, the light emitting element can be easily disposed to be in contact with the surface of the light wavelength conversion member, so that light can be efficiently incident on the light wavelength conversion member from the light emitting element.
(11) An eleventh aspect of the present disclosure relates to a method of manufacturing a light wavelength conversion component for manufacturing the light wavelength conversion component according to any of the first to eighth aspects.

この光波長変換部品の製造方法は、金属枠の貫通孔の開口部と対向する位置に光波長変換部材を配置するとともに、金属枠の内周部(即ち貫通孔側の部分)と重なるように光波長変換部材の外周部を配置する工程と、光波長変換部材を金属枠の貫通孔に押し込むことにより、光波長変換部材の外周部にて金属枠の内周部を潰す工程と、を有している。   In the method of manufacturing the light wavelength conversion component, the light wavelength conversion member is disposed at a position facing the opening of the through hole of the metal frame, and the light wavelength conversion member overlaps the inner periphery of the metal frame (that is, the portion on the through hole side). The process of disposing the outer periphery of the light wavelength conversion member, and the process of crushing the inner periphery of the metal frame at the outer periphery of the light wavelength conversion member by pushing the light wavelength conversion member into the through hole of the metal frame doing.

つまり、本第11局面では、光波長変換部材を金属枠の貫通孔に押し込むことにより、光波長変換部材を金属枠に固定することができる。また、その際には、光波長変換部材の外周部にて金属枠の内周部を潰すようにする。   That is, in the eleventh aspect, the light wavelength conversion member can be fixed to the metal frame by pushing the light wavelength conversion member into the through hole of the metal frame. At this time, the inner peripheral portion of the metal frame is crushed at the outer peripheral portion of the light wavelength conversion member.

従って、本第11局面では、簡易な方法で光波長変換部品を製造することができるという効果を奏する。
なお、本第11局面では、光波長変換部材の材料としては、金属枠を潰すことができるように、金属枠よりは硬い材料を用いる。例えば光波長変換部材としては、セラミック製の部材を用いることができる。
Therefore, in the eleventh aspect, the light wavelength conversion component can be manufactured by a simple method.
In the eleventh aspect, as the material of the light wavelength conversion member, a material harder than the metal frame is used so that the metal frame can be crushed. For example, as the light wavelength conversion member, a ceramic member can be used.

(12)本開示の第12局面では、光波長変換部材の外周部にて金属枠の内周部を潰した後に、更に光波長変換部材を金属枠の貫通孔に押し込んで金属枠を貫いてもよい。
本第12局面では、光波長変換部材を金属枠の貫通孔に押し込んで金属枠を貫くことにより、光波長変換部材の押し込む側の表面を、金属枠の貫通方向における表面よりも突出されることができる。これにより、上述した構成の光波長変換部品を容易に製造することができる。
(12) In the twelfth aspect of the present disclosure, after the inner periphery of the metal frame is crushed at the outer periphery of the light wavelength conversion member, the light wavelength conversion member is further pushed into the through hole of the metal frame to pierce the metal frame It is also good.
In the twelfth aspect, by pushing the light wavelength conversion member into the through hole of the metal frame and penetrating the metal frame, the surface on the pushing side of the light wavelength conversion member is protruded from the surface in the penetration direction of the metal frame Can. Thereby, the light wavelength conversion component of the above-mentioned configuration can be easily manufactured.

<以下に、本開示の各構成について説明する>
・前記「光波長変換部材」として、セラミック製の部材(即ちセラミックス焼結体)を採用できる。
Hereinafter, each configuration of the present disclosure will be described.
A member made of ceramic (that is, a ceramic sintered body) can be adopted as the "light wavelength conversion member".

このセラミックス焼結体としては、例えば、Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子との体積が最も多い(即ち主成分とする)多結晶体であるセラミックス焼結体を採用できる。 As this ceramic sintered body, for example, a polycrystalline body having the largest volume between Al 2 O 3 crystal particles and crystal particles of the component represented by the chemical formula A 3 B 5 O 12 : Ce (ie, main component) The ceramic sintered body which is

このセラミックス焼結体としては、A12中のAとBは下記元素群から選択される少なくとも1種の元素であるものを採用できる。
A:Sc、Y、ランタノイド(Ceは除く)
B:Al、Ga
なお、「A12:Ce」とは、A12中の元素Aの一部にCeが固溶置換していることを示しており、このような構造を有することにより、同化合物は蛍光特性を示すようになる。
As this ceramic sintered body, those in which A and B in A 3 B 5 O 12 are at least one element selected from the following element group can be adopted.
A: Sc, Y, lanthanoid (except for Ce)
B: Al, Ga
Incidentally, "A 3 B 5 O 12: Ce" means, Ce part of the element A in A 3 B 5 O 12 has indicated that the solid solution substitution, having such a structure As a result, the compound exhibits fluorescence characteristics.

・前記金属枠の硬度としては、15〜400Hvの範囲を採用できる。
・前記光波長変換部材が金属枠より突出する寸法としては、例えば10〜30μmの範囲を採用できる。
As the hardness of the metal frame, a range of 15 to 400 Hv can be adopted.
-As a dimension which the said optical wavelength conversion member protrudes from a metal frame, the range of 10-30 micrometers is employable, for example.

第1実施形態の光波長変換部品を備えた発光装置を厚み方向に破断した断面図である。It is sectional drawing which fractured | ruptured the light-emitting device provided with the light wavelength conversion component of 1st Embodiment in the thickness direction. 図2Aは第1実施形態の光波長変換部品の平面図、図2BはそのA−A断面図である。FIG. 2A is a plan view of the light wavelength conversion component of the first embodiment, and FIG. 2B is a cross-sectional view taken along the line A-A. 第1実施形態の光波長変換部品の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the light wavelength conversion component of 1st Embodiment. 図4Aは第2実施形態の光波長変換部品を備えた発光装置を厚み方向に破断した断面図、図4Bは第3実施形態の光波長変換部品を備えた発光装置を厚み方向に破断した断面図、図4Cは第4実施形態の光波長変換部品を備えた発光装置を厚み方向に破断した断面図である。FIG. 4A is a cross-sectional view of the light-emitting device including the light wavelength conversion component of the second embodiment cut in the thickness direction, and FIG. 4B is a cross-sectional view of the light-emitting device including the light wavelength conversion component of the third embodiment in the thickness direction FIG. 4C is a cross-sectional view of the light emitting device including the light wavelength conversion component of the fourth embodiment cut in the thickness direction. 図5Aは第5実施形態の光波長変換部品を厚み方向に破断した断面図、図5Bはその変形例の光波長変換部品を厚み方向に破断した断面図である。FIG. 5A is a cross-sectional view in which the light wavelength conversion component of the fifth embodiment is broken in the thickness direction, and FIG. 5B is a cross-sectional view in which the light wavelength conversion component of the modification is broken in the thickness direction. 図6Aは第6実施形態の光波長変換部品を軸線に沿って破断した断面図、図6Bは第7実施形態の光波長変換部品を軸線に沿って破断した断面図である。6A is a cross-sectional view of the light wavelength conversion component of the sixth embodiment taken along the axis, and FIG. 6B is a cross-sectional view of the light wavelength conversion component of the seventh embodiment taken along the axis. 図7Aは第7実施形態の光波長変換部品を厚み方向に破断した断面図、図7Bは第7実施形態の光波長変換部品を備えた発光装置の一部を厚み方向に破断した断面図である。7A is a cross-sectional view in which the light wavelength conversion component of the seventh embodiment is broken in the thickness direction, and FIG. 7B is a cross-sectional view in which a part of the light emitting device provided with the light wavelength conversion component of the seventh embodiment is broken in the thickness direction. is there. 図8Aは第8実施形態の発光装置を厚み方向に破断した断面図、図8Bはその光波長変換部材の平面図、図8Cはその変形例の発光装置を厚み方向に破断した断面図である。8A is a sectional view of the light emitting device of the eighth embodiment cut in the thickness direction, FIG. 8B is a plan view of the light wavelength conversion member, and FIG. 8C is a sectional view of the light emitting device of the modification in the thickness direction. . 実験例4の実験条件や実験結果を示す説明図である。It is explanatory drawing which shows the experimental condition of Experimental example 4, and an experimental result. 実験例5の実験方法を示す説明図である。FIG. 18 is an explanatory view showing an experimental method of Experimental Example 5. 実験例5の実験条件や実験結果を示す説明図である。It is explanatory drawing which shows the experimental condition of Experimental example 5, and an experimental result. 実験例6の実験条件や実験結果を示す説明図である。It is explanatory drawing which shows the experimental condition of Experimental example 6, and an experimental result. 実験例7の実験条件や実験結果を示す説明図である。It is explanatory drawing which shows the experimental condition of Experimental example 7, and an experimental result. 図14Aは応用例の光波長変換部品を厚み方向に破断した断面図、図14Bは他の応用例の光波長変換部品を厚み方向に破断した断面図、図14Cは更に他の応用例の光波長変換部品を厚み方向に破断した断面図である。FIG. 14A is a cross-sectional view in which the light wavelength conversion component of the application example is broken in the thickness direction, FIG. 14B is a cross-sectional view in which the light wavelength conversion component of another application is broken in the thickness direction, and FIG. It is sectional drawing which fractured | ruptured the wavelength conversion components in the thickness direction.

次に、本開示の光波長変換部品、発光装置、光波長変換部品の製造方法の実施形態について説明する。
[1.第1実施形態]
[1−1.発光装置]
まず、第1実施形態の光波長変換部品を備えた発光装置について説明する。
Next, embodiments of a light wavelength conversion component, a light emitting device, and a method of manufacturing the light wavelength conversion component according to the present disclosure will be described.
[1. First embodiment]
[1-1. Light emitting device]
First, a light emitting device provided with the light wavelength conversion component of the first embodiment will be described.

図1に示すように、本第1実施形態の発光装置1は、例えばアルミナ等の箱状のセラミック製のパッケージ(容器)3と、容器3の内部に配置された例えばLD等の発光素子5と、容器3の開口部7を覆うように配置された板状の光波長変換部品9とを備えている。   As shown in FIG. 1, the light emitting device 1 according to the first embodiment includes a box-shaped ceramic package (container) 3 such as alumina, and a light emitting element 5 such as an LD disposed inside the container 3. And a plate-like light wavelength conversion component 9 arranged to cover the opening 7 of the container 3.

また、光波長変換部品9は、後に詳述するように、光の波長を変換する光波長変換部材11と、光波長変換部材11を保持する金属枠13とから構成されている。なお、金属枠13の外周部15は、容器3の開口側の枠状の端面17に接合されている。   The light wavelength conversion component 9 is composed of a light wavelength conversion member 11 for converting the wavelength of light and a metal frame 13 for holding the light wavelength conversion member 11, as will be described in detail later. The outer peripheral portion 15 of the metal frame 13 is joined to the frame-like end surface 17 on the opening side of the container 3.

この発光装置1では、発光素子5から図1の矢印方向に放射された光(L)は、光波長変換部材11を透過するとともに、その光の一部は光波長変換部材11の内部で波長変換されて発光する。つまり、光波長変換部材11では、発光素子5から放射(即ち照射)される光の波長とは異なる波長の蛍光を発する。なお、Lの矢印の向きは、発光素子5から照射される光の向きである(以下同様)。   In the light emitting device 1, the light (L) emitted from the light emitting element 5 in the direction of the arrow in FIG. 1 passes through the light wavelength conversion member 11 and a part of the light is wavelength inside the light wavelength conversion member 11 It is converted and emits light. That is, the light wavelength conversion member 11 emits fluorescence of a wavelength different from the wavelength of the light emitted (that is, irradiated) from the light emitting element 5. The direction of the arrow L is the direction of light emitted from the light emitting element 5 (the same applies to the following).

例えば、LDから照射される青色光が、光波長変換部材11によって波長変換されることにより、全体として白色光が光波長変換部材11から外部(例えば図1の上方)に照射される。
[1−2.光波長変換部品]
次に、光波長変換部品9について説明する。
For example, the blue light emitted from the LD is wavelength-converted by the light wavelength conversion member 11, so that white light as a whole is irradiated from the light wavelength conversion member 11 to the outside (for example, the upper side in FIG. 1).
[1-2. Optical wavelength conversion parts]
Next, the light wavelength conversion component 9 will be described.

図2に示すように、本第1実施形態の光波長変換部品9は、セラミック製の板状の光波長変換部材11と、光波長変換部材11の周囲を囲んで保持する板状の金属枠13とから構成されている。以下、詳細に説明する。   As shown in FIG. 2, the light wavelength conversion component 9 according to the first embodiment includes a plate-like light wavelength conversion member 11 made of ceramic and a plate-like metal frame that surrounds and holds the light wavelength conversion member 11. It consists of 13 and. The details will be described below.

<光波長変換部材>
光波長変換部材11は、平面視で(即ち図2(b)の上下方向である板厚方向から見た場合)、矩形状(例えば正方形)の部材である。
<Light wavelength conversion member>
The light wavelength conversion member 11 is a member having a rectangular shape (for example, a square) in a plan view (that is, when viewed from the thickness direction which is the vertical direction in FIG. 2B).

なお、光波長変換部材11の寸法としては、例えば縦1.0mm×横1.0mm×厚み0.18mmを採用できる。
この光波長変換部材11は、例えば、Al結晶粒子と、化学式A12:Ceで表される成分の結晶粒子(即ちA12:Ce結晶粒子)と、を主成分とする多結晶体であるセラミックス焼結体から構成されている。
In addition, as a dimension of the light wavelength conversion member 11, for example, length 1.0 mm × width 1.0 mm × thickness 0.18 mm can be adopted.
The light wavelength conversion member 11 includes, for example, Al 2 O 3 crystal particles and crystal particles of a component represented by a chemical formula A 3 B 5 O 12 : Ce (ie, A 3 B 5 O 12 : Ce crystal particles). It is composed of a ceramic sintered body which is a polycrystal having as its main component.

なお、化学式A12:CeのA、Bは、化学式A12:Ceで示される物質を構成する各元素(但し異なる元素)を示しており、Oは酸素、Ceはセリウムである。
この光波長変換部材11としては、セラミックス焼結体全体におけるA12:Ceの割合が、セラミックス焼結体の3〜70体積%のものを採用できる。
The chemical formula A 3 B 5 O 12: Ce of A, B has the formula A 3 B 5 O 12: shows the element (where different elements) constituting the substance represented by Ce, O is oxygen, Ce Is cerium.
As the optical wavelength conversion member 11, A 3 B 5 O 12 in the entire ceramic sintered body: ratio of Ce is can be adopted as the 3 to 70% by volume of the ceramic sintered body.

また、このセラミックス焼結体は、下記元素群から選択される少なくとも1種の元素から構成されているA12:Ceで表されるガーネット構造を有している。
A:Sc、Y、ランタノイド(Ceは除く)
B:Al、Ga
さらに、セラミックス焼結体は、A12:Ce中のCeの濃度が、元素Aに対して5mol%以下(但し0を含まず)である。
Further, this ceramic sintered body has a garnet structure represented by A 3 B 5 O 12 : Ce composed of at least one element selected from the following element group.
A: Sc, Y, lanthanoid (except for Ce)
B: Al, Ga
Furthermore, in the ceramic sintered body, the concentration of Ce in A 3 B 5 O 12 : Ce is 5 mol% or less (excluding 0) with respect to the element A.

なお、上述したセラミックス焼結体としては、例えば、セラミックス焼結体中のYAG(YAl12)の割合が30体積%、Ce濃度がYAG中のYに対して0.3mol%の焼結体を採用できる。 As the above-described ceramic sintered body, for example, the ratio of YAG (Y 3 Al 5 O 12 ) in the ceramic sintered body is 30% by volume, and the Ce concentration is 0.3 mol% with respect to Y in YAG. A sintered body can be adopted.

<金属枠>
金属枠13は、平面視で、四角枠状の板材であり、その中央に、板厚方向に貫通する矩形状(例えば正方形)の貫通孔19が形成されている。
<Metal frame>
The metal frame 13 is a rectangular frame-shaped plate member in a plan view, and a rectangular (for example, square) through hole 19 penetrating in the thickness direction is formed at the center of the metal frame 13.

この金属枠13は、例えばAl等の金属からなり、その硬度(例えばビッカース硬度)は光波長変換部材11よりも低い。つまり、金属枠13は、光波長変換部材11よりも柔らかい材料からなる。また、25℃〜300℃の範囲では、金属枠13の熱膨張率は、光波長変換部材11の熱膨張率よりも大きい。   The metal frame 13 is made of, for example, a metal such as Al, and its hardness (for example, Vickers hardness) is lower than that of the light wavelength conversion member 11. That is, the metal frame 13 is made of a material softer than the light wavelength conversion member 11. In the range of 25 ° C. to 300 ° C., the thermal expansion coefficient of the metal frame 13 is larger than the thermal expansion coefficient of the light wavelength conversion member 11.

なお、金属枠13の外径寸法は、例えば縦10mm×横10mm×厚み0.15mmである。
また、貫通孔19は、平面視で、金属枠13の外周形状と相似であり、貫通孔19の周囲を囲む部分(即ち金属枠13の枠部14)の幅は同じ寸法である。つまり、平面視で、貫通孔19の中心(重心)は、金属枠13の中心(重心)と一致している。なお、貫通孔19の寸法は、例えば縦1.0mm×横1.0mmである。
The outer diameter of the metal frame 13 is, for example, 10 mm long × 10 mm wide × 0.15 mm thick.
The through hole 19 is similar to the outer peripheral shape of the metal frame 13 in plan view, and the width of the part surrounding the through hole 19 (that is, the frame 14 of the metal frame 13) is the same size. That is, the center (center of gravity) of the through hole 19 coincides with the center (center of gravity) of the metal frame 13 in plan view. The dimensions of the through holes 19 are, for example, 1.0 mm in length × 1.0 mm in width.

<光波長変換部品>
そして、光波長変換部品9においては、光波長変換部材11は、金属枠13の貫通孔19に配置されており、光波長変換部材11の厚み方向の一方の表面(例えば図2Bの上方の外面11a)と他方の表面(例えば図2Bの下方の内面11b)とが外部(即ち貫通孔19の外側)に露出している。
<Light wavelength conversion parts>
In the light wavelength conversion component 9, the light wavelength conversion member 11 is disposed in the through hole 19 of the metal frame 13, and one surface of the light wavelength conversion member 11 in the thickness direction (for example, the outer surface in the upper part of FIG. 2B). 11a) and the other surface (e.g., the lower inner surface 11b of FIG. 2B) are exposed to the outside (i.e., the outside of the through hole 19).

なお、外面11aが、光が光波長変換部材11から外部に照射される出射面(即ち発光面)であり、内面11bが、光が発光素子5側から光波長変換部材11に入射する入射面(即ち受光面)である。   Note that the outer surface 11 a is an emission surface (that is, a light emitting surface) on which light is irradiated from the light wavelength conversion member 11 to the outside, and the inner surface 11 b is an incident surface on which light enters the light wavelength conversion member 11 from the light emitting element 5 side. (Ie, the light receiving surface).

特に本第1実施形態では、光波長変換部材11の内面11bは、金属枠13の貫通孔19の貫通方向(図2Bの上下方向:金属枠13の厚み方向)において、金属枠13の内面13b(図2Bの下方の面)より下方に突出している。つまり、図1における発光素子5側に突出している。   In particular, in the first embodiment, the inner surface 11b of the light wavelength conversion member 11 is the inner surface 13b of the metal frame 13 in the penetrating direction of the through holes 19 of the metal frame 13 (vertical direction in FIG. 2B: thickness direction of the metal frame 13). It protrudes below (the lower surface of FIG. 2B). That is, it protrudes to the light emitting element 5 side in FIG.

すなわち、光波長変換部材11の殆どが金属枠13の貫通孔19内に配置されており、一部が貫通孔19外に突出している。
なお、光波長変換部材11の内面11bが、金属枠13の内面13bより突出している寸法は、例えば20〜30μmの範囲である。
That is, most of the light wavelength conversion member 11 is disposed in the through hole 19 of the metal frame 13, and a part thereof protrudes outside the through hole 19.
In addition, the dimension which the inner surface 11b of the light wavelength conversion member 11 protrudes from the inner surface 13b of the metal frame 13 is the range of 20-30 micrometers, for example.

また、光波長変換部材11の側面11c、即ち外面11aの外周と内面11bの外周とを繋ぐ帯状の側面11cは、金属枠13の貫通孔19の内周面19aに直接に接触している。
[1−3.光波長変換部品の製造方法]
次に、光波長変換部品9の製造方法について説明する。
The side surface 11 c of the light wavelength conversion member 11, that is, a strip-like side surface 11 c connecting the outer periphery of the outer surface 11 a and the outer periphery of the inner surface 11 b is in direct contact with the inner peripheral surface 19 a of the through hole 19 of the metal frame 13.
[1-3. Method of manufacturing light wavelength conversion component]
Next, a method of manufacturing the light wavelength conversion component 9 will be described.

図3Aに示すように、まず、基台21上に、貫通孔19を有する金属枠13を配置した。なお、図示しないが、貫通孔19は、矩形状の例えばAlからなる金属板の中央を、プレス機によって打ち抜くことによって形成した。   As shown in FIG. 3A, first, the metal frame 13 having the through holes 19 was disposed on the base 21. Although not shown, the through holes 19 were formed by punching out the center of a rectangular metal plate made of, for example, Al with a press.

次に、金属枠13の貫通孔19の開口部23と対向する位置(図3Aの上方)に、光波長変換部材11を配置した。このとき、金属枠13の貫通孔19に沿った内周部25の全周(即ち四角枠状の全周部分)と重なるように、光波長変換部材11の外周部27の全周(即ち矩形の外周の全周部分)を配置した。   Next, the light wavelength conversion member 11 was disposed at a position facing the opening 23 of the through hole 19 of the metal frame 13 (upper side in FIG. 3A). At this time, the entire periphery (i.e., a rectangle) of the outer peripheral portion 27 of the light wavelength conversion member 11 is overlapped with the entire periphery (i.e., the entire periphery of the square frame) of the inner periphery 25 along the through hole 19 of the metal frame 13. All around part of the outer circumference of

なお、この段階では、貫通孔19の内径は、後述する押し込み後の内径(即ち光波長変換部品9における貫通孔19の内径)よりも小さく、例えば、平面視で、縦0.97mm×横0.97mmの正方形である。   At this stage, the inner diameter of the through hole 19 is smaller than the inner diameter after pressing (that is, the inner diameter of the through hole 19 in the light wavelength conversion component 9) described later. It is a square of .97 mm.

次に、図3Bに示すように、プレス機29にて、光波長変換部材11を金属枠13の貫通孔19に押し込んだ。その際には、光波長変換部材11の外周部27にて金属枠113の内周部25を潰した。   Next, as shown in FIG. 3B, the light wavelength conversion member 11 was pushed into the through hole 19 of the metal frame 13 by the press 29. At that time, the inner peripheral portion 25 of the metal frame 113 was crushed at the outer peripheral portion 27 of the light wavelength conversion member 11.

次に、図3Cに示すように、他の基台22上に、枠体28を配置し、枠体28の上に、光波長変換部材11を押し込んだ状態の金属枠13を配置した。なお、平面視で、枠体28の貫通孔30の範囲内に光波長変換部材11が位置するようにした。   Next, as shown in FIG. 3C, the frame 28 was disposed on the other base 22, and the metal frame 13 in a state in which the light wavelength conversion member 11 was pressed was disposed on the frame 28. The light wavelength conversion member 11 is positioned within the range of the through hole 30 of the frame 28 in plan view.

そして、この状態で、更に、プレス機29にて、光波長変換部材11を金属枠13の貫通孔19に押し込んで、光波長変換部材11の内面11bが金属枠13を貫くようにした。つまり、光波長変換部材11の内面11bが金属枠13の内面13bより下方に突出するようにした。   Then, in this state, the light wavelength conversion member 11 is further pushed into the through hole 19 of the metal frame 13 by the press 29 so that the inner surface 11 b of the light wavelength conversion member 11 penetrates the metal frame 13. That is, the inner surface 11 b of the light wavelength conversion member 11 protrudes downward from the inner surface 13 b of the metal frame 13.

なお、光波長変換部材11の外面11aと金属枠13の外面13aとは、同一平面となるようにした。
これにより、本第1実施形態の光波長変換部品9を得た。
[1−4.効果]
次に、本第1実施形態の効果を説明する。
The outer surface 11 a of the light wavelength conversion member 11 and the outer surface 13 a of the metal frame 13 were made flush with each other.
Thus, the light wavelength conversion component 9 of the first embodiment is obtained.
[1-4. effect]
Next, the effect of the first embodiment will be described.

(1)本第1実施形態では、光波長変換部材11は、熱伝導率の高い金属枠13に直接に接触した状態で金属枠13に固定されているので、光波長変換部材11の温度が上昇しにくいという効果がある。よって、光波長変換部材11の温度が過度に上昇することを抑制できるので、好適に温度消光を抑制できる。   (1) In the first embodiment, since the light wavelength conversion member 11 is fixed to the metal frame 13 in direct contact with the metal frame 13 having high thermal conductivity, the temperature of the light wavelength conversion member 11 is There is an effect that it is difficult to rise. Therefore, since it can suppress that the temperature of the light wavelength conversion member 11 rises excessively, temperature quenching can be suppressed suitably.

(2)本第1実施形態では、光波長変換部材11の内面11bが、金属枠13の貫通方向における表面(即ち内面13b)より突出しているので、発光装置1(詳しくは光波長変換部品9)から出る光の変色を抑制できる。   (2) In the first embodiment, since the inner surface 11b of the light wavelength conversion member 11 protrudes from the surface (that is, the inner surface 13b) in the penetration direction of the metal frame 13, the light emitting device 1 (specifically, the light wavelength conversion component 9) Color change of light emitted from) can be suppressed.

つまり、本第1実施形態では、光波長変換部材11の内面11bが、金属枠13の内面13bより貫通孔19の貫通方向に突出していることにより、金属枠13が温度の変化によって塑性変形している場合でも、光波長変換部品11から出た光が金属枠13の塑性変形した部分に当たって反射する現象が発生しにくくなっている。   That is, in the first embodiment, the inner surface 11b of the light wavelength conversion member 11 protrudes from the inner surface 13b of the metal frame 13 in the penetrating direction of the through hole 19, so that the metal frame 13 is plastically deformed due to the temperature change. Even in this case, the phenomenon in which the light emitted from the light wavelength conversion component 11 strikes the plastically deformed portion of the metal frame 13 and is less likely to occur.

これにより、金属枠13にて反射した反射光と光波長変換部材11から照射された出射光とが混合しにくくなっているので、結果として、光波長変換部品9から出る光の変色を抑制できる。すなわち、光波長変換部品9から出る光の色度が、本来の目的とする色度から変化することを抑制できるという顕著な効果を奏する。   As a result, it is difficult to mix the reflected light reflected by the metal frame 13 and the emitted light emitted from the light wavelength conversion member 11, and as a result, it is possible to suppress the color change of the light emitted from the light wavelength conversion component 9. . That is, it is possible to suppress the change in the chromaticity of the light emitted from the light wavelength conversion component 9 from the originally intended chromaticity, which exhibits a remarkable effect.

(3)本第1実施形態では、金属枠13を構成する材料として、例えばAl(又はAl合金)を用いるので、光波長変換部品9を製造する際に、その製造が容易である(即ち潰し易い)という効果がある。   (3) In the first embodiment, for example, Al (or an Al alloy) is used as a material for forming the metal frame 13. Therefore, when manufacturing the light wavelength conversion component 9, its manufacture is easy (that is, crushing) Easily).

また、光波長変換部材11から照射される光が金属枠13に当たった場合でも、その反射光の波長が変化しにくいので、結果として、光波長変換部品9から出力される光の色度が変化しにくいという利点がある。さらに、熱伝導率が高いという効果もある。   In addition, even when the light emitted from the light wavelength conversion member 11 hits the metal frame 13, the wavelength of the reflected light hardly changes, and as a result, the chromaticity of the light output from the light wavelength conversion component 9 It has the advantage of being hard to change. Furthermore, there is also an effect that the thermal conductivity is high.

(4)本第1実施形態の発光装置1は、前記光波長変換部品9を備えているので、上述した光波長変換部品9による効果を発揮できる。
(5)本第1実施形態の光波長変換部品9の製造方法では、光波長変換部材11を金属枠13の貫通孔19に押し込むことにより、光波長変換部材11の外周部27にて金属枠13の内周部25を潰して、光波長変換部材11を金属枠13に容易に固定することができる。
(4) Since the light emitting device 1 of the first embodiment includes the light wavelength conversion component 9, the effect of the light wavelength conversion component 9 described above can be exhibited.
(5) In the method of manufacturing the light wavelength conversion component 9 according to the first embodiment, the light wavelength conversion member 11 is pushed into the through hole 19 of the metal frame 13 to make the metal frame at the outer peripheral portion 27 of the light wavelength conversion member 11 The light wavelength conversion member 11 can be easily fixed to the metal frame 13 by crushing the inner peripheral portion 25 of 13.

さらに、光波長変換部材11の外周部27にて金属枠13の内周部25を潰した後に、光波長変換部材11を金属枠13の貫通孔19に押し込んで金属枠13を貫くことにより、光波長変換部材11の内面11bを金属枠13の内面13bより突出させることができる。   Furthermore, after the inner circumferential portion 25 of the metal frame 13 is crushed by the outer circumferential portion 27 of the light wavelength conversion member 11, the light wavelength conversion member 11 is pushed into the through hole 19 of the metal frame 13 to pierce the metal frame 13. The inner surface 11 b of the light wavelength conversion member 11 can be protruded from the inner surface 13 b of the metal frame 13.

なお、光波長変換部材11を金属枠13の貫通孔19に押し込んで金属枠13を貫くことにより、上述した押し潰す際に発生した貫通孔19の周囲のバリを除去することができる。   In addition, by pushing the light wavelength conversion member 11 into the through hole 19 of the metal frame 13 and penetrating the metal frame 13, it is possible to remove the burr around the through hole 19 generated at the time of crushing described above.

これにより、本第1実施形態の光波長変換部品9を容易に製造することができる。
[2.第2実施形態]
次に、第2実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同じ構成については、同じ番号を用いて説明する。
Thereby, the light wavelength conversion component 9 of the first embodiment can be easily manufactured.
[2. Second embodiment]
Next, a second embodiment will be described, but the description of the same contents as in the first embodiment will be omitted or simplified. In addition, about the same structure as 1st Embodiment, it demonstrates using the same number.

図4Aに示すように、本第2実施形態の発光装置31は、第1実施形態と同様に、容器3と、容器3の内部に配置された発光素子5と、容器3の開口部7を覆うように配置された光波長変換部品9とを備えている。   As shown in FIG. 4A, the light emitting device 31 according to the second embodiment includes the container 3, the light emitting element 5 disposed inside the container 3, and the opening 7 of the container 3 as in the first embodiment. And a light wavelength conversion component 9 disposed so as to cover it.

また、光波長変換部品9は、光波長変換部材11と金属枠13とから構成されている。光波長変換部材11は貫通孔19に配置され、光波長変換部材11の内面11bは金属枠13の内面13bより発光素子5側(図4Aの下方)に突出している。   Further, the light wavelength conversion component 9 is configured of the light wavelength conversion member 11 and the metal frame 13. The light wavelength conversion member 11 is disposed in the through hole 19, and the inner surface 11 b of the light wavelength conversion member 11 protrudes from the inner surface 13 b of the metal frame 13 toward the light emitting element 5 (downward in FIG. 4A).

本第2実施形態では、発光素子5の上面5aは光波長変換部材11の内面11bに密着し、発光素子5の下面5bは容器3の底面3aに密着している。
本第2実施形態は、第1実施形態と同様な効果を奏する。また、本第2実施形態では、発光素子5は光波長変換部材11の内面11bに密着するように配置されているので、発光素子5から照射された光は、光波長変換部材11側に効率よく供給される。よって、光波長変換部材11の発光強度が高いという利点がある。
[3.第3実施形態]
次に、第3実施形態について説明するが、第2実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第2実施形態と同じ構成については、同じ番号を用いて説明する。
In the second embodiment, the upper surface 5 a of the light emitting element 5 is in close contact with the inner surface 11 b of the light wavelength conversion member 11, and the lower surface 5 b of the light emitting element 5 is in close contact with the bottom 3 a of the container 3.
The second embodiment exhibits the same effect as the first embodiment. Further, in the second embodiment, since the light emitting element 5 is disposed in close contact with the inner surface 11b of the light wavelength conversion member 11, the light emitted from the light emitting element 5 has an efficiency on the light wavelength conversion member 11 side. Well supplied. Accordingly, there is an advantage that the emission intensity of the light wavelength conversion member 11 is high.
[3. Third embodiment]
Next, a third embodiment will be described, but the description of the same contents as those of the second embodiment will be omitted or simplified. In addition, about the same structure as 2nd Embodiment, it demonstrates using the same number.

図4Bに示すように、本第3実施形態の発光装置41は、基本的には第2実施形態と同様であるが、光波長変換部品43において、光波長変換部材11の突出方向が、第2実施形態とは逆である。   As shown in FIG. 4B, the light emitting device 41 of the third embodiment is basically the same as the second embodiment, but in the light wavelength conversion component 43, the projecting direction of the light wavelength conversion member 11 is The opposite to the second embodiment.

つまり、本第3実施形態では、光波長変換部材11の外面11aは金属枠13の外面13aより発光素子5と反対側(図4Bの上方)に突出している。
本第3実施形態は、第2実施形態と同様な効果を奏する。
[4.第4実施形態]
次に、第4実施形態について説明するが、第3実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第3実施形態と同じ構成については、同じ番号を用いて説明する。
That is, in the third embodiment, the outer surface 11 a of the light wavelength conversion member 11 protrudes from the outer surface 13 a of the metal frame 13 to the side opposite to the light emitting element 5 (upper side in FIG. 4B).
The third embodiment has the same effect as the second embodiment.
[4. Fourth embodiment]
Next, a fourth embodiment will be described, but the description of the same contents as those of the third embodiment will be omitted or simplified. In addition, about the same structure as 3rd Embodiment, it demonstrates using the same number.

図4Cに示すように、本第4実施形態の発光装置51は、基本的には第3実施形態と同様であるが、光波長変換部品53において、光波長変換部材11の突出方向が、第3実施形態とは異なっている。   As shown in FIG. 4C, the light emitting device 51 of the fourth embodiment is basically the same as the third embodiment, but in the light wavelength conversion component 53, the projecting direction of the light wavelength conversion member 11 is the same as the third embodiment. It differs from the three embodiments.

つまり、本第4実施形態では、光波長変換部材11の外面11aは金属枠13の外面13aより発光素子5と反対側(図4Cの上方)に突出し、且つ、光波長変換部材11の内面11bは金属枠13の内面13bより発光素子5側(図4Cの下方)に突出している。   That is, in the fourth embodiment, the outer surface 11 a of the light wavelength conversion member 11 protrudes from the outer surface 13 a of the metal frame 13 on the opposite side to the light emitting element 5 (upper side in FIG. 4C), and the inner surface 11 b of the light wavelength conversion member 11 Are projected from the inner surface 13b of the metal frame 13 to the light emitting element 5 side (downward in FIG. 4C).

本第4実施形態は、第3実施形態と同様な効果を奏する。
[5.第5実施形態]
次に、第5実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同じ構成については、同じ番号を用いて説明する。
The fourth embodiment has the same effect as the third embodiment.
[5. Fifth embodiment]
Next, a fifth embodiment will be described, but the description of the same contents as those of the first embodiment will be omitted or simplified. In addition, about the same structure as 1st Embodiment, it demonstrates using the same number.

図5Aに示すように、本第5実施形態の光波長変換部品61は、四角枠状の金属枠13の貫通孔19に、第1実施形態と同様な光波長変換部材11を嵌め込んだものである。そして、光波長変換部材11の外面11aは、金属枠13の外面13aより図5Aの上方に、即ち発光素子5(図1参照)と反対側に突出している。   As shown in FIG. 5A, the light wavelength conversion component 61 of the fifth embodiment is obtained by inserting the light wavelength conversion member 11 similar to that of the first embodiment into the through hole 19 of the square frame-shaped metal frame 13. It is. The outer surface 11a of the light wavelength conversion member 11 protrudes above the outer surface 13a of the metal frame 13 in FIG. 5A, that is, on the opposite side to the light emitting element 5 (see FIG. 1).

また、本第5実施形態では、金属枠13の貫通孔19側の開口端、即ち光波長変換部材11が突出する側と反対側(図5Aの下方)の開口端には、光波長変換部材11の外周部27と重なる重なり部63が設けられている。   In the fifth embodiment, the light wavelength conversion member is provided at the opening end on the through hole 19 side of the metal frame 13, that is, the opening end on the opposite side (downward in FIG. 5A) to the side where the light wavelength conversion member 11 protrudes. An overlapping portion 63 overlapping the outer peripheral portion 27 of 11 is provided.

この重なり部63とは、平面視で、光波長変換部材11の外周部27と金属枠13の内周部25とが重なる部分であり、貫通孔19の内周に沿って四角枠状に形成されている。
なお、発光素子5からは、光波長変換部材11の内面11b(即ち重なり部63がある側の面)に、光が照射される。
The overlapping portion 63 is a portion where the outer peripheral portion 27 of the light wavelength conversion member 11 and the inner peripheral portion 25 of the metal frame 13 overlap in a plan view, and is formed in a rectangular frame along the inner periphery of the through hole 19. It is done.
Light is emitted from the light emitting element 5 to the inner surface 11 b of the light wavelength conversion member 11 (that is, the surface on the side where the overlapping portion 63 is present).

本第5実施形態は、第1実施形態と同様な効果を奏する。また、本第5実施形態では、金属枠13の内周部25には、光波長変換部材11の外周部27と重なる重なり部63が形成されている。よって、金属枠13と光波長変換部材11との熱膨張率が異なっている場合に、温度変化があっても、金属枠13と光波長変換部材11との間に隙間が生じにくい。   The fifth embodiment has the same effect as the first embodiment. In the fifth embodiment, an overlapping portion 63 overlapping the outer peripheral portion 27 of the light wavelength conversion member 11 is formed on the inner peripheral portion 25 of the metal frame 13. Therefore, when the thermal expansion coefficients of the metal frame 13 and the light wavelength conversion member 11 are different, a gap is unlikely to be generated between the metal frame 13 and the light wavelength conversion member 11 even if there is a temperature change.

そのため、発光素子5から光波長変換部材11に光を照射して、光波長変換させる場合に、温度変化が生じても、金属枠13と光波長変換部材11との間の隙間から光が漏れにくい。その結果、本来の目的とする色度の光が得られ易いという顕著な効果を奏する。   Therefore, when the light wavelength conversion member 11 is irradiated with light from the light emitting element 5 to convert the light wavelength, light leaks from the gap between the metal frame 13 and the light wavelength conversion member 11 even if a temperature change occurs. Hateful. As a result, there is a remarkable effect that light of the original intended chromaticity can be easily obtained.

図5Bは、第5実施形態の変形例であり、この変形例の光波長変換部品71は、第5実施形態の光波長変換部品61とは、上下が逆である。
つまり、光波長変換部材11の内面11bが、金属枠13の内面13bより図5Bの下方に、即ち発光素子5側に突出している。なお、重なり部63は、外面11a側(図5Bの上方)に設けられている。
FIG. 5B is a modification of the fifth embodiment, and the light wavelength conversion component 71 of this modification is upside down from the light wavelength conversion component 61 of the fifth embodiment.
That is, the inner surface 11b of the light wavelength conversion member 11 protrudes from the inner surface 13b of the metal frame 13 downward in FIG. 5B, that is, the light emitting element 5 side. The overlapping portion 63 is provided on the outer surface 11a side (upper side in FIG. 5B).

そして、発光素子5からは、光波長変換部材11の内面11b(即ち重なり部63がない側の面)に対して、光が照射される。
この変形例は、前記第5実施形態と同様な効果を奏する。
[6.第6実施形態]
次に、第6実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同じ構成については、同じ番号を用いて説明する。
Then, light is emitted from the light emitting element 5 to the inner surface 11 b of the light wavelength conversion member 11 (that is, the surface on the side where the overlapping portion 63 is not present).
This modification has the same effect as that of the fifth embodiment.
[6. Sixth embodiment]
A sixth embodiment will now be described, but the description of the same contents as those of the first embodiment will be omitted or simplified. In addition, about the same structure as 1st Embodiment, it demonstrates using the same number.

図6Aに示すように、本第6実施形態の光波長変換部品81は、第1実施形態と同様な光波長変換部材11が、筒状の金属枠83の先端側(図6Aの上方)の板状部85に固定されたものである。   As shown in FIG. 6A, in the light wavelength conversion component 81 of the sixth embodiment, the light wavelength conversion member 11 similar to that of the first embodiment is on the tip side (upper side of FIG. 6A) of the cylindrical metal frame 83. It is fixed to the plate-like portion 85.

詳しくは、金属枠83は、四角形の筒状の筒状部87と、筒状部87の先端側を覆う板状部85とから一体に構成されており、この板状部85の(第1実施形態と同様な)貫通孔19に光波長変換部材11が固定されている。   Specifically, the metal frame 83 is integrally formed of a rectangular cylindrical tubular portion 87 and a plate-like portion 85 covering the distal end side of the cylindrical portion 87. The light wavelength conversion member 11 is fixed to the through hole 19 (similar to the embodiment).

本第6実施形態では、光波長変換部材11の内面11bが、板状部85の内面85aより、図6Aの下方、即ち発光素子5側(図1参照)に突出している。
本第6実施形態は、第1実施形態と同様な効果を奏する。
[7.第7実施形態]
次に、第7実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同じ構成については、同じ番号を用いて説明する。
In the sixth embodiment, the inner surface 11b of the light wavelength conversion member 11 protrudes from the inner surface 85a of the plate-like portion 85 downward in FIG. 6A, that is, toward the light emitting element 5 (see FIG. 1).
The sixth embodiment has the same effect as the first embodiment.
[7. Seventh embodiment]
A seventh embodiment will now be described, but the description of the same contents as those of the first embodiment will be omitted or simplified. In addition, about the same structure as 1st Embodiment, it demonstrates using the same number.

図6Bに示すように、本第7実施形態の光波長変換部品91は、第1実施形態と同様な光波長変換部材11が、筒状の金属枠93の先端側(図6Bの上方)に固定されたものである。   As shown in FIG. 6B, in the light wavelength conversion component 91 of the seventh embodiment, the light wavelength conversion member 11 similar to that of the first embodiment is located on the tip side of the cylindrical metal frame 93 (upper side of FIG. 6B). It is fixed.

詳しくは、金属枠93は、四角形の筒状であり、その軸方向に設けられた貫通孔95の先端側の開口部97を覆うように、光波長変換部材11が固定されている。
本第7実施形態では、貫通孔95は、後端側より先端側の内径が大きくなっており、内径が異なる段差部分が重なり部99を構成している。なお、この重なり部99とは、前記第5実施形態と同様に、軸方向から見た場合に、光波長変換部材11の外周部27と金属枠93の内周部25とが重なる部分である。
Specifically, the metal frame 93 has a rectangular cylindrical shape, and the light wavelength conversion member 11 is fixed so as to cover the opening 97 at the tip end of the through hole 95 provided in the axial direction.
In the seventh embodiment, the inner diameter of the through hole 95 on the front end side is larger than that on the rear end side, and the step portion having a different inner diameter constitutes the overlapping portion 99. The overlapping portion 99 is a portion where the outer peripheral portion 27 of the light wavelength conversion member 11 and the inner peripheral portion 25 of the metal frame 93 overlap when viewed from the axial direction as in the fifth embodiment. .

本第7実施形態は、第1実施形態と同様な効果を奏する。また、重なり部99により、 前記第5実施形態と同様な効果を奏する。
[8.第8実施形態]
次に、第8実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同じ構成については、同じ番号を用いて説明する。
The seventh embodiment has the same effect as the first embodiment. Further, the overlapping portion 99 achieves the same effect as that of the fifth embodiment.
[8. Eighth embodiment]
Next, an eighth embodiment will be described, but the description of the same contents as those of the first embodiment will be omitted or simplified. In addition, about the same structure as 1st Embodiment, it demonstrates using the same number.

図7Aに示すように、本第8実施形態の光波長変換部品101は、平面視で四角枠状の金属枠13の貫通孔19に、光波長変換部材11と発光素子5とが配置されたものである。
つまり、貫通孔19内において、図7Aの上方より、光波長変換部材11と発光素子5とが積層されている。また、光波長変換部材11と発光素子5との側面は、貫通孔19の内周面に接触している。なお、金属枠13の厚みは、光波長変換部材11と発光素子5とを収容できる程度の厚みとされている。
As shown in FIG. 7A, in the light wavelength conversion component 101 of the eighth embodiment, the light wavelength conversion member 11 and the light emitting element 5 are disposed in the through holes 19 of the metal frame 13 having a quadrangular frame shape in plan view. It is a thing.
That is, in the through hole 19, the light wavelength conversion member 11 and the light emitting element 5 are stacked from the upper side of FIG. 7A. The side surfaces of the light wavelength conversion member 11 and the light emitting element 5 are in contact with the inner peripheral surface of the through hole 19. The thickness of the metal frame 13 is set to a thickness that can accommodate the light wavelength conversion member 11 and the light emitting element 5.

また、光波長変換部材11の外面11aは、金属枠13の外面13aより、図7Aの上方、即ち発光素子5と反対側に突出している。
本第8実施形態は、第1実施形態と同様な効果を奏する。また、本第8実施形態では、発光素子5は、貫通孔19内にて、光波長変換部材11の内面11bに密着するように配置されているので、発光素子5から照射された光は、光波長変換部材11側に一層効率よく供給される。よって、光波長変換部材11の発光強度が高いという利点がある。
[9.第9実施形態]
次に、第9実施形態について説明するが、第5実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第5実施形態と同じ構成については、同じ番号を用いて説明する。
Further, the outer surface 11 a of the light wavelength conversion member 11 protrudes from the outer surface 13 a of the metal frame 13 to the upper side of FIG. 7A, that is, the opposite side to the light emitting element 5.
The eighth embodiment exhibits the same effect as the first embodiment. Further, in the eighth embodiment, since the light emitting element 5 is disposed in the through hole 19 so as to be in close contact with the inner surface 11 b of the light wavelength conversion member 11, the light emitted from the light emitting element 5 is The light wavelength conversion member 11 is more efficiently supplied. Accordingly, there is an advantage that the emission intensity of the light wavelength conversion member 11 is high.
[9. Ninth Embodiment]
Next, a ninth embodiment will be described, but the description of the same contents as those of the fifth embodiment will be omitted or simplified. In addition, about the same structure as 5th Embodiment, it demonstrates using the same number.

図7Bに示すように、本第9実施形態の発光装置111では、平面視で四角枠状の金属枠13の貫通孔19に光波長変換部材11が配置され、その光波長変換部材11の内側面11bに密着して発光素子5が配置されている。   As shown in FIG. 7B, in the light emitting device 111 according to the ninth embodiment, the light wavelength conversion member 11 is disposed in the through hole 19 of the metal frame 13 having a quadrangular frame shape in plan view. The light emitting element 5 is disposed in close contact with the side surface 11 b.

また、金属枠13には、第5実施形態と同様に重なり部63が設けられており、この重なり部63の内周側に発光素子5が配置されている。
なお、金属枠13の外周の発光素子5側には、筒状部113が接合されている。
Further, an overlapping portion 63 is provided in the metal frame 13 as in the fifth embodiment, and the light emitting element 5 is disposed on the inner peripheral side of the overlapping portion 63.
A cylindrical portion 113 is joined to the light emitting element 5 side of the outer periphery of the metal frame 13.

本第9実施形態は、第1実施形態と同様な効果を奏する。また、光波長変換部材11と発光素子5とが密着しているので、前記第8実施形態と同様な効果を奏する。さらに、重なり部63を有するので、前記第5実施形態と同様な効果を奏する。
[10.第10実施形態]
次に、第10実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同じ構成については、同じ番号を用いて説明する。
[10−1.発光装置の構成]
図8Aに示すように、本第8実施形態の発光装置121では、箱状の基台123の底面123a上に発光素子5(例えばLED)が配置され、その発光素子5を覆うように、金属枠125及び光波長変換部材127からなる光波長変換部品129が配置されている。なお、この光波長変換部材127は第1実施形態とは形状が異なるが、材料は同じである。
The ninth embodiment exhibits the same effect as the first embodiment. In addition, since the light wavelength conversion member 11 and the light emitting element 5 are in close contact with each other, the same effect as that of the eighth embodiment can be obtained. Furthermore, since the overlapping portion 63 is provided, the same effect as that of the fifth embodiment can be obtained.
[10. Tenth embodiment]
Next, a tenth embodiment will be described, but the description of the same contents as those of the first embodiment will be omitted or simplified. In addition, about the same structure as 1st Embodiment, it demonstrates using the same number.
10-1. Configuration of light emitting device]
As shown in FIG. 8A, in the light emitting device 121 according to the eighth embodiment, the light emitting element 5 (for example, an LED) is disposed on the bottom surface 123a of the box-like base 123, and metal is coated to cover the light emitting element 5. A light wavelength conversion component 129 composed of the frame 125 and the light wavelength conversion member 127 is disposed. The light wavelength conversion member 127 is different in shape from the first embodiment, but the material is the same.

詳しくは、金属枠125は、第1実施形態とほぼ同様に、平面視(図8Aの上下方向から見た場合)で四角枠状の板材であり、光波長変換部材127は、金属枠125の平面視で正方形の貫通孔131に固定されている。   In more detail, the metal frame 125 is a rectangular frame-shaped plate member in plan view (when viewed from the vertical direction in FIG. 8A) substantially the same as the first embodiment, and the light wavelength conversion member 127 is of the metal frame 125. It is being fixed to the square through-hole 131 by planar view.

特に本第10実施形態では、光波長変換部材127の形状は、第3実施形態とは異なり、その側面126はテーパ形状となっている。つまり、側面126は外面(即ち発光面である一方の表面)127aに対して、所定の角度(発光側エッジ角)θの範囲内で傾斜している。   In particular, in the tenth embodiment, the shape of the light wavelength conversion member 127 is different from that of the third embodiment, and the side surface 126 is tapered. That is, the side surface 126 is inclined with respect to the outer surface (that is, one surface which is a light emitting surface) 127a within a range of a predetermined angle (light emitting side edge angle) θ.

詳しくは、光波長変換部材127は、図8Bに示すように、平面視が正方形の板材であり、その四方の側面126a、126b、126c、126d(126と総称する)は、図8Aに示すように、光波長変換部材127の発光面127aに対して、所定角度(即ち発光側エッジ角)θで傾斜している。   Specifically, as shown in FIG. 8B, the light wavelength conversion member 127 is a plate material having a square plan view, and its four side faces 126a, 126b, 126c, 126d (collectively referred to as 126) are shown in FIG. 8A. The light wavelength conversion member 127 is inclined at a predetermined angle (that is, the light emission side edge angle) θ with respect to the light emitting surface 127 a of the light wavelength conversion member 127.

なお、発光面127aは、光波長変換部材127の厚み方向の一方の表面(発光素子5が配置される他方の表面と反対側の表面)である。
ここでは、全ての側面126は、発光面127aに対して同様な角度で傾斜している。つまり、光波長変換部材127の側面126の形状は、発光面127aに対して同様な角度で傾斜するいわゆるテーパ形状となっている。
The light emitting surface 127 a is one surface in the thickness direction of the light wavelength conversion member 127 (the surface opposite to the other surface on which the light emitting element 5 is disposed).
Here, all the side surfaces 126 are inclined at the same angle with respect to the light emitting surface 127a. That is, the shape of the side surface 126 of the light wavelength conversion member 127 is a so-called tapered shape which is inclined at the same angle with respect to the light emitting surface 127a.

前記発光側エッジ角θは、例えば75°〜105°の範囲である。なお、図8Aは、発光側エッジ角θが鋭角の場合を例示している。なお、発光側エッジ角θが90°の場合には、発光面127aに対して側面126は傾斜していない。   The light emitting side edge angle θ is, for example, in the range of 75 ° to 105 °. FIG. 8A exemplifies the case where the light emitting side edge angle θ is an acute angle. When the light emitting side edge angle θ is 90 °, the side surface 126 is not inclined with respect to the light emitting surface 127 a.

一方、光波長変換部材127が嵌めこまれる貫通孔131を形成する内周面131a(即ち側面126と接する内周面131a)は、光波長変換部材127の側面126の形状と一致するように、側面126と同様な角度(即ち発光側エッジ角θ)で傾斜している。つまり、貫通孔131を形成する内周面131aの形状も光波長変換部材127の側面126と同様なテーパ形状となっている。   On the other hand, the inner peripheral surface 131a (that is, the inner peripheral surface 131a in contact with the side surface 126) forming the through hole 131 into which the light wavelength conversion member 127 is fitted matches the shape of the side surface 126 of the light wavelength conversion member 127. It is inclined at the same angle as the side surface 126 (ie, the light emitting side edge angle θ). That is, the shape of the inner circumferential surface 131 a forming the through hole 131 also has the same tapered shape as the side surface 126 of the light wavelength conversion member 127.

また、光波長変換部材127の発光面127aは、第3実施形態と同様に、金属枠125の外面125a(図8Aの上方の面)より外側(図8A)の上方に、例えば10〜30μmの範囲で突出している。   The light emitting surface 127a of the light wavelength conversion member 127 is, for example, 10 to 30 μm above the outer side (FIG. 8A) than the outer surface 125a (upper surface of FIG. 8A) of the metal frame 125 as in the third embodiment. Protruding in the range.

光波長変換部材127の受光面127bと発光素子5の発光側の表面5aとは、平面視で同じ形状であり、受光面127bと発光側の表面5aとは密着している。なお、光波長変換部材127の受光面127bと金属枠125の内面125b(図8Aの下方の面)とは、同一平面上にある。
[10−2.光波長変換部品の製造方法]
本第10実施形態の光波長変換部品129を製造する方法は、基本的には第1実施形態と同様である。
The light receiving surface 127b of the light wavelength conversion member 127 and the surface 5a on the light emitting side of the light emitting element 5 have the same shape in plan view, and the light receiving surface 127b and the surface 5a on the light emitting side are in close contact. The light receiving surface 127b of the light wavelength conversion member 127 and the inner surface 125b of the metal frame 125 (the lower surface in FIG. 8A) are on the same plane.
10-2. Method of manufacturing light wavelength conversion component]
The method of manufacturing the light wavelength conversion component 129 of the tenth embodiment is basically the same as that of the first embodiment.

具体的には、金属枠125に、光波長変換部材127の外径よりも若干小径の貫通孔131を開けておき、この貫通孔131に、図8Aの上方より光波長変換部材127を圧入する。   Specifically, a through hole 131 having a diameter slightly smaller than the outer diameter of the light wavelength conversion member 127 is opened in the metal frame 125, and the light wavelength conversion member 127 is pressed into the through hole 131 from the upper side of FIG. 8A. .

つまり、光波長変換部材127の外径の小さな受光面127b側を貫通孔131側にして、光波長変換部材127を貫通孔131に圧入する。
また、この方法とは別に、金属枠125に、光波長変換部材127の外形形状に合ったテーパ形状の貫通孔131を空けておき、この貫通孔131に光波長変換部材127を嵌め込んで、接着剤等によって、金属枠125に接合してもよい。
[10−3.効果]
本第10実施形態は、第1実施形態と同様な効果を奏する。また、本第10実施形態は、第1実施形態に比べて、光波長変換部材127の側面126が金属枠125と接する面積が広いので、光波長変換部材127から金属枠125への放熱性がさらに優れるという効果がある。
That is, the light wavelength conversion member 127 is press-fit into the through hole 131 with the small light receiving surface 127 b of the light wavelength conversion member 127 being the through hole 131 side.
Further, separately from this method, a tapered through hole 131 conforming to the outer shape of the light wavelength conversion member 127 is opened in the metal frame 125, and the light wavelength conversion member 127 is fitted into the through hole 131, The metal frame 125 may be bonded by an adhesive or the like.
10-3. effect]
The tenth embodiment has the same effect as the first embodiment. Further, in the tenth embodiment, since the area in which the side surface 126 of the light wavelength conversion member 127 is in contact with the metal frame 125 is larger than that in the first embodiment, the heat dissipation from the light wavelength conversion member 127 to the metal frame 125 is There is an effect of being further excellent.

また、光波長変換部材127と金属枠125とを、圧入や接着剤等によって接合する場合には、接触する面積が広くなるので、接合性に優れるという効果がある。
さらに、本第10実施形態では、光波長変換部材127の側面126はテーパ形状であるので、全周のおける放熱性のムラが少なくなり、光波長変換部材127の温度がより均一になる。
In addition, when the light wavelength conversion member 127 and the metal frame 125 are joined by press-fitting, an adhesive, or the like, the contact area is wide, so that there is an effect that the joining property is excellent.
Furthermore, in the tenth embodiment, since the side surface 126 of the light wavelength conversion member 127 is tapered, the heat radiation nonuniformity over the entire circumference decreases, and the temperature of the light wavelength conversion member 127 becomes more uniform.

さらに、本第10実施形態では、発光側エッジ角θが鋭角であるので、発光面127aの面積(発光面積)が広く、発光強度が高いという効果がある。
[10−4.変形例]
また、図8Cは、発光側エッジ角θが鈍角の場合の変形例を示している。
Further, in the tenth embodiment, since the light emitting side edge angle θ is an acute angle, there is an effect that the area (light emitting area) of the light emitting surface 127a is wide and the light emission intensity is high.
10-4. Modified example]
Moreover, FIG. 8C has shown the modification in case the light emission side edge angle (theta) is an obtuse angle.

この場合には、光波長変換部材127の外径の小さな先端側、即ち、発光側エッジ角θが鈍角の発光面127a側が、金属枠125の外面125aより外側(図8Cの上方)に突出している。   In this case, the tip end side of the light wavelength conversion member 127 having a small outer diameter, that is, the light emitting surface 127a side where the light emitting side edge angle θ has an obtuse angle protrudes outward (upper in FIG. 8C) from the outer surface 125a of the metal frame 125 There is.

このような変形例においても、上述のように、光波長変換部材107から金属枠105への放熱性がさらに優れるという効果がある。
さらに、発光側エッジ角θが鈍角であるので、受光面127b側から発光面127a側に向けて、光波長変換部材127に外力が加わった際に、光波長変換部材127が金属枠125から脱落することが抑制される。つまり、光波長変換部材127が金属枠125に固定されている際の固定強度が向上するという利点がある。
[11.実験例]
次に、本開示の効果を確認するために行った実験例について説明する。
Also in such a modification, as described above, the heat dissipation from the light wavelength conversion member 107 to the metal frame 105 is further excellent.
Further, since the light emitting side edge angle θ is an obtuse angle, when an external force is applied to the light wavelength converting member 127 from the light receiving surface 127 b side toward the light emitting surface 127 a, the light wavelength converting member 127 falls off the metal frame 125 Being suppressed. That is, there is an advantage that the fixing strength when the light wavelength conversion member 127 is fixed to the metal frame 125 is improved.
[11. Experimental example]
Next, experimental examples performed to confirm the effects of the present disclosure will be described.

<実験例1>
本実験例1は、本開示例と(本開示例ではない)比較例とについて、光波長変換部材に対してレーザー光を照射した場合の色度の変化を調べたものである。
Experimental Example 1
In the present experimental example, the change in chromaticity when the light wavelength conversion member is irradiated with the laser light is examined for the present disclosure example and the comparative example (not the present disclosure example).

なお、色度とは、国際照明委員会(CIE)のXYZ表色形を使用した色度図により求められる色度である。
本開示例の試料としては、以下のように、第1実施形態と同様な光波長変換部品を用いた。
Here, the chromaticity is a chromaticity obtained by a chromaticity diagram using the XYZ color form of the International Commission on Illumination (CIE).
As a sample of the present disclosure example, an optical wavelength conversion component similar to that of the first embodiment was used as follows.

光波長変換部材(即ち蛍光体)としては、第1実施形態と同様に、セラミックス焼結体からなる四角状の板材を用いた。この光波長変換部材の寸法は、縦1mm×横1mm×厚み0.22mmである。   As the light wavelength conversion member (that is, the fluorescent substance), a square plate material made of a ceramic sintered body was used as in the first embodiment. The dimensions of this light wavelength conversion member are 1 mm long × 1 mm wide × 0.22 mm thick.

なお、光波長変換部材としては、セラミックス焼結体中のYAG(Y3Al5O12)の割合が30体積%、Ce濃度がYAG中のYに対して0.3mol%である光波長変換部材を用いた(以下他の実験例も同様)。   As the light wavelength conversion member, a light wavelength conversion member in which the ratio of YAG (Y3Al5O12) in the ceramic sintered body is 30% by volume and the Ce concentration is 0.3 mol% with respect to Y in YAG ( The same applies to the other experimental examples below).

金属枠としては、第1実施形態と同様に、Alからなる四角枠状の板材を用いた。この金属枠の寸法は、外径が縦10mm×横10mm×厚み0.2mm、貫通孔の内径は縦1mm×横1mmである。   As a metal frame, the square-frame-shaped board | plate material which consists of Al was used similarly to 1st Embodiment. As for the dimensions of this metal frame, the outer diameter is 10 mm long × 10 mm wide × 0.2 mm thick, and the inner diameter of the through hole is 1 mm long × 1 mm wide.

本開示例では、光波長変換部材の外側面は、金属枠の外側面より20μm突出している。
本実験例1では、試料の光波長変換部材に対して、レーザー光を照射した。詳しくは、出力3W(出力密度:30W/mm)のレーザー装置を用い、レーザー光を1000回繰り返して照射した。つまり、光波長変換部材の発光・消灯を繰り返して実施した。
In the present disclosure, the outer side surface of the light wavelength conversion member protrudes 20 μm from the outer side surface of the metal frame.
In the present experimental example 1, the laser light was irradiated to the light wavelength conversion member of the sample. Specifically, laser light was repeatedly irradiated 1000 times using a laser device with an output of 3 W (power density: 30 W / mm 2 ). That is, light emission and light extinction of the light wavelength conversion member were repeated and implemented.

なお、レーザー装置としては、波長465nmの青色LD光を発生させる装置を用い、レーザー光の一回の照射時間は10分とした。
そして、各試料から出力される光の色度を、色彩照度計により測定した。
As a laser device, a device for generating blue LD light having a wavelength of 465 nm was used, and one irradiation time of the laser light was 10 minutes.
And the chromaticity of the light output from each sample was measured with a color light meter.

その結果、本開示例の光波長変換部品(即ち光波長変換部材の外側面が金属枠の外側面より突出しているもの)では、色度の変化率は1%未満であった。
なお、本実験例1では、光波長変換部材に同様にレーザー光を照射した場合の色度を基準として、その基準より変化した色度の割合(即ち、基準である光波長変換部材単体にレーザー光を照射したときに光波長変換部材単体から発せられる光の色度に対する、光波長変換部品にレーザー光を照射したときに光波長変換部品から発せられる光の色度の変化の割合)を色度の変化率としている。
As a result, in the light wavelength conversion component of the present disclosure example (that is, the one in which the outer side surface of the light wavelength conversion member protrudes from the outer side surface of the metal frame), the chromaticity change rate was less than 1%.
In this Experimental Example 1, the ratio of the chromaticity changed from the reference based on the chromaticity when the light wavelength conversion member is similarly irradiated with the laser light (that is, the laser in the light wavelength conversion member alone serving as the reference) The ratio of the change in chromaticity of light emitted from the light wavelength conversion component when the light wavelength conversion component is irradiated with laser light relative to the chromaticity of light emitted from the light wavelength conversion member alone when the light is irradiated Rate of change.

また、比較例1として、金属枠と光波長変換部材との厚みが同じ光波長変換部品を作製し、前記と同様にしてレーザー光を照射して、色度の変化率を求めた。
その結果、比較例1の場合には、色度の変化率は5%と大きかった。
Further, as Comparative Example 1, a light wavelength conversion component having the same thickness as that of the metal frame and the light wavelength conversion member was manufactured, and the laser light was irradiated in the same manner as described above to determine the change rate of chromaticity.
As a result, in the case of Comparative Example 1, the rate of change of chromaticity was as large as 5%.

さらに、比較例2として、金属枠の厚みが光波長変換部材の厚みより大きな(即ち金属枠が光波長変換部材よりも20μm厚い)光波長変換部品を作製し、前記と同様にしてレーザー光を照射して、色度の変化率を求めた。   Furthermore, as Comparative Example 2, a light wavelength conversion component is produced in which the thickness of the metal frame is larger than the thickness of the light wavelength conversion member (that is, the metal frame is 20 μm thicker than the light wavelength conversion member). Irradiation was performed to determine the rate of change of chromaticity.

その結果、比較例2の場合には、色度の変化率は10%と大きかった。
この実験結果から、本開示例の場合には、比較例1、2に比べて、色度の変化が小さく好適であることが分かる。
As a result, in the case of Comparative Example 2, the rate of change of chromaticity was as large as 10%.
From this experimental result, it is understood that, in the case of the present disclosure example, the change in chromaticity is smaller than that in Comparative Examples 1 and 2, which is preferable.

<実験例2>
本実験例2は、本開示例と比較例とについて、光波長変換部材の温度消光による発光強度の変化を調べたものである。
<Experimental Example 2>
In the present experimental example 2, changes in emission intensity due to temperature quenching of the light wavelength conversion member were examined for the present disclosure example and the comparative example.

本開示例の試料としては、下記のように、第1実施形態と同様な光波長変換部品を用いた。
光波長変換部材としては、第1実施形態と同様に、セラミックス焼結体からなる四角状の板材を用いた。この光波長変換部材の寸法は、縦1mm×横1mm×厚み0.22mmである。
As a sample of the present disclosure example, an optical wavelength conversion component similar to that of the first embodiment was used as described below.
As the light wavelength conversion member, as in the first embodiment, a rectangular plate material made of a ceramic sintered body was used. The dimensions of this light wavelength conversion member are 1 mm long × 1 mm wide × 0.22 mm thick.

金属枠としては、第1実施形態と同様に、Alからなる四角枠状の板材を用いた。この金属枠の寸法は、外径が縦10mm×横10mm×厚み0.2mm、貫通孔の内径は縦1mm×横1mmである。   As a metal frame, the square-frame-shaped board | plate material which consists of Al was used similarly to 1st Embodiment. As for the dimensions of this metal frame, the outer diameter is 10 mm long × 10 mm wide × 0.2 mm thick, and the inner diameter of the through hole is 1 mm long × 1 mm wide.

本開示例では、光波長変換部材の外側面は、金属枠の外側面より20μm突出している。
本実験例2では、試料の光波長変換部材に対して、レーザー光を照射して、発光強度を測定した。
In the present disclosure, the outer side surface of the light wavelength conversion member protrudes 20 μm from the outer side surface of the metal frame.
In Experimental Example 2, the light wavelength conversion member of the sample was irradiated with laser light to measure the light emission intensity.

詳しくは、レーザー光を照射するレーザー装置として、波長465nmの青色LD光を発生させる装置を用い、その出力を5W(従って出力密度:50W/mm)として、1分間レーザー光を照射した。そして、光波長変換部材の反対側から出力された光をレンズによって集光し、パワーセンサーによりその発光強度を測定した。 Specifically, as a laser device for emitting a laser beam, a device for generating a blue LD beam with a wavelength of 465 nm was used, and the output was 5 W (that is, the output density: 50 W / mm 2 ). Then, the light output from the opposite side of the light wavelength conversion member was collected by a lens, and the light emission intensity was measured by a power sensor.

また、比較例として、金属枠がない光波長変換部材に対して、前記と同様にしてレーザー光を照射し、発光強度を測定した。
この実験結果では、本開示例の場合の発光強度を100%とした場合、比較例では、発光強度は75%であった。
Further, as a comparative example, the light wavelength conversion member having no metal frame was irradiated with laser light in the same manner as described above, and the light emission intensity was measured.
In this experimental result, when the light emission intensity in the case of the present disclosure example is 100%, in the comparative example, the light emission intensity is 75%.

この実験結果から、本開示例の場合には、比較例に比べて、温度消光が生じにくいことが分かる。
<実験例3>
本実験例3は、本開示例と比較例とについて、光波長変換部品から出力される光の色度の変化を調べたものである。
From this experimental result, it is understood that temperature quenching is less likely to occur in the case of the present disclosure than in the comparative example.
<Experimental Example 3>
In the present experimental example 3, changes in the chromaticity of light output from the light wavelength conversion component are investigated for the present disclosure example and the comparative example.

前記第1、2、4実施形態と同様な形状の本開示例の光波長変換部品に対して、前記実験例2と同様にして、レーザー光を照射した。その結果、本開示例では、発光時には金属枠が膨張したが、いずれも、金属枠の厚み方向の表面が、光波長変換部材の厚み方向の表面(即ち突出した部分)よりも盛り上がることはなかった。   A laser beam was irradiated to the light wavelength conversion component of the present disclosure example having the same shape as that of the first, second, and fourth embodiments in the same manner as the experimental example 2. As a result, in the present disclosure example, the metal frame expands at the time of light emission, but none of the surfaces in the thickness direction of the metal frame swells more than the surface in the thickness direction of the light wavelength conversion member (that is, the protruding portion). The

一方、光波長変換部材の厚み方向の両表面が、それぞれ金属枠の両表面と同じ平面上にある比較例の場合には、発光時には金属枠が膨張し、金属枠の厚み方向の表面が、光波長変換部材の厚み方向の表面よりも盛り上がった。   On the other hand, in the case of the comparative example in which both surfaces in the thickness direction of the light wavelength conversion member are on the same plane as both surfaces of the metal frame, the metal frame expands during light emission, and the surface in the thickness direction of the metal frame It swelled more than the surface of the thickness direction of a light wavelength conversion member.

そして、色度に関しては、本開示例では、比較例に比べて色度の変化率が小さく、好適であった。
<実験例4>
本実験例4は、本開示例の試料について、発光側エッジ角θが異なる光波長変換部材の温度消光を調べたものである。
And in regard to the chromaticity, in the present disclosure example, the rate of change of the chromaticity is smaller than that in the comparative example, which is preferable.
<Experimental Example 4>
In the present experimental example 4, temperature quenching of light wavelength conversion members having different light emission side edge angles θ was examined for the sample of the present disclosure example.

本実験例4では、図9に示すように、光波長変換部材(141)としては、第1実施形態と同様な材料のセラミックス焼結体からなる四角状の板材を用いた。この光波長変換部材の寸法は、縦1mm×横1mm×厚み0.22mmである。なお、縦横の寸法は、発光素子(143)に接する側(即ち受光面)の寸法であり、受光面の形状や寸法は各試料同じである(以下同様)。   In Experimental Example 4, as shown in FIG. 9, a square plate material made of a ceramic sintered body of the same material as that of the first embodiment was used as the light wavelength conversion member (141). The dimensions of this light wavelength conversion member are 1 mm long × 1 mm wide × 0.22 mm thick. The vertical and horizontal dimensions are those of the side (that is, the light receiving surface) in contact with the light emitting element (143), and the shape and dimensions of the light receiving surface are the same for each sample (the same applies hereinafter).

金属枠(145)としては、第1実施形態と同様に、Alからなる四角枠状の板材を用いた。この金属枠の寸法は、外径が縦10mm×横10mm×厚み0.20mmである。
本実験例4では、前記第1実施形態と同様な材料のセラミックス焼結体からなる四角状の板材と前記第1実施形態と同様なAlからなる四角枠状の板材とに対して、本開示例の試料として、第10実施形態と同様な光波長変換部品の試料を作製した。つまり、図9に示すように、エッジ角度θ(即ち発光側エッジ角θ)を、105°から75°の範囲で、5°毎に変更した7種の試料(No.5〜11)を作製した。
As the metal frame (145), as in the first embodiment, a square frame-shaped plate made of Al was used. The dimensions of the metal frame are 10 mm in length × 10 mm in width × 0.20 mm in thickness.
In Experimental Example 4, the present disclosure is applied to a square plate material made of a ceramic sintered body of the same material as that of the first embodiment and a square frame material made of Al similar to the first embodiment. The sample of the light wavelength conversion component similar to 10th Embodiment was produced as a sample of an example. That is, as shown in FIG. 9, seven types of samples (No. 5 to 11) in which the edge angle θ (that is, the light emitting side edge angle θ) is changed every 5 ° in the range of 105 ° to 75 ° did.

そして、実験例4の各試料の光波長変換部材に対して、レーザー光を照射した。詳しくは、レーザー光を照射するレーザー装置の出力(従って出力密度)を徐々に増加させて、温度消光が生じたレーザー装置の出力を求めた。   And the laser beam was irradiated with respect to the light wavelength conversion member of each sample of Experimental example 4. FIG. Specifically, the output (and hence the output density) of the laser device for emitting the laser light was gradually increased to obtain the output of the laser device in which the temperature quenching occurred.

なお、レーザー装置としては、波長465nmの青色LD光を発生させる装置を用い、レーザー装置の出力を0.5Wから始めて、0.1Wずつ段階的に増加させた。各段階におけるレーザー装置の出力の保持時間は5分間とした。   In addition, as a laser apparatus, the output of the laser apparatus was made to increase in steps by 0.1 W at 0.5 W using the apparatus which generate | occur | produces blue LD light of wavelength 465 nm. The holding time of the output of the laser device in each step was 5 minutes.

その結果を、図9のレーザー出力の欄に示す。なお、図9に示すレーザー出力[W]の数値は、それぞれの試料において、温度消光することなく光波長変換部材が発光することできたレーザー出力である。図9から明らかなように、発光側エッジ角θが90°から小さくなるほど又は大きくなるほど、光波長変換部材から金属枠への放熱性が向上し、温度消光が生じにくいという効果を得ることができる。   The results are shown in the column of laser output in FIG. The numerical value of the laser output [W] shown in FIG. 9 is the laser output which the light wavelength conversion member was able to emit light without temperature quenching in each sample. As is clear from FIG. 9, the heat dissipation from the light wavelength conversion member to the metal frame is improved as the light emitting side edge angle θ becomes smaller or larger than 90 °, and the effect that temperature quenching is less likely to occur can be obtained. .

<実験例5>
本実験例5は、実験例4と同様な試料(No.5〜11)を用いて、エッジ部の強度を調べたものである。
Experimental Example 5
In the present experimental example 5, using the same samples (Nos. 5 to 11) as the experimental example 4, the strength of the edge portion was examined.

具体的には、図10に示すように、光波長変換部材(151)が突出する側を下にして、基体(153)上に光波長変換部品(155)を載置し、プレス機によって、光波長変換部材の発光素子の配置側(上側)から光波長変換部材を下方に押圧し、金属枠(157)から光波長変換部材を打ち抜いた。   Specifically, as shown in FIG. 10, the light wavelength conversion component (155) is placed on the base (153) with the light wavelength conversion member (151) protruding side down, and the press, The light wavelength conversion member was pressed downward from the disposition side (upper side) of the light emission elements of the light wavelength conversion member, and the light wavelength conversion member was punched out of the metal frame (157).

そして、打ち抜いた際に、各試料のエッジ部(詳しくはエッジ部のうち角度が90°以下のエッジ部)に欠けが生じたかどうかを調べた。具体的には、各試料毎に実験に用いる試料を100個ずつ用意して打ち抜きを行い、100個中に何個の欠けが生じたかを調べた。   Then, it was examined whether or not chipping occurred in the edge portion of each sample (specifically, the edge portion having an angle of 90 ° or less among the edge portions) when punched. Specifically, for each sample, 100 samples were prepared for each experiment and punched out, and it was checked how many chips occurred in 100 samples.

その結果を、図11に示す。なお、図11では、100個中欠けが3個未満の場合を「○」で示し、3〜5個の場合を「△」で示している。
図11から明らかなように、発光側エッジ角θが100°〜80°の場合は、エッジ部の欠けが少なく好適である。つまり、光波長変換部材の強度が大きく好適である。
The results are shown in FIG. In addition, in FIG. 11, the case where less than 3 pieces of 100 out of 100 pieces is shown by "(circle)", and the case of 3-5 pieces is shown by "(triangle | delta)."
As apparent from FIG. 11, when the light emitting side edge angle θ is 100 ° to 80 °, the chipping of the edge portion is small, which is preferable. That is, the intensity of the light wavelength conversion member is large and preferable.

<実験例6>
本実験例6は、実験例4と同様な試料(No.5〜11)を用いて、光波長変換部材の発光強度を調べたものである。
Experimental Example 6
In the present experimental example 6, using the same samples (Nos. 5 to 11) as the experimental example 4, the emission intensity of the light wavelength conversion member was examined.

具体的には、各試料の光波長変換部材に対して、レーザー光を照射した。詳しくは、レーザー光を照射するレーザー装置の出力を一定(例えば3W)とし、各試料から出力される光の強度(発光強度)を求めた。詳しくは、出力された光をレンズによって集光し、パワーセンサーによりその発光強度を測定した。   Specifically, laser light was irradiated to the light wavelength conversion member of each sample. Specifically, the output (laser intensity) of the light output from each sample was determined by setting the output of the laser device for emitting the laser light constant (for example, 3 W). Specifically, the output light was collected by a lens, and the emission intensity was measured by a power sensor.

その結果を、図12に示す。なお、図12では、各試料の発光強度は、発光側エッジ角θが90°の光波長変換部品における発光強度を100%とし、それに対する割合で示している。   The results are shown in FIG. In FIG. 12, the light emission intensity of each sample is shown as a ratio to the light emission intensity of the light wavelength conversion component having a light emission side edge angle θ of 90 ° as 100%.

図12から明らかなように、受光面の面積が同じ場合には、発光側エッジ角θが小さくなるほど、発光強度が大きくなるという効果を得ることができる。
<実験例7>
本実験例7は、実験例4と同様な試料(No.5〜11)を用いて、光波長変換部材の固定強度を調べたものである。
As apparent from FIG. 12, in the case where the area of the light receiving surface is the same, it is possible to obtain an effect that the light emission intensity becomes larger as the light emission side edge angle θ becomes smaller.
Experimental Example 7
In the present experimental example 7, using the same samples (Nos. 5 to 11) as the experimental example 4, the fixing strength of the light wavelength conversion member was examined.

具体的には、前記実験例5と同様に、プレス機によって、光波長変換部材を金属枠から打ち抜いた。そして、各試料を打ち抜いた際の最大強度(最大圧力)を調べた。
その結果を、図13に示す。図13から明らかなように、発光側エッジ角θが大きくなるほど、最大圧力(従って固定強度)が大きくなるという効果を得ることができる。
Specifically, the light wavelength conversion member was punched out of the metal frame by a press machine as in the above-mentioned experimental example 5. And the maximum strength (maximum pressure) at the time of punching out each sample was investigated.
The results are shown in FIG. As apparent from FIG. 13, the effect of increasing the maximum pressure (and hence the fixed strength) can be obtained as the light emitting side edge angle θ increases.

従って、上述した実験例4〜7の実験結果を総合的に判断すると、受光面の面積が同じ場合には、発光側エッジ角θが85°〜95°の範囲が総合的最も好ましいことが分かる。
つまり、この範囲であれば、エッジ部強度、発光強度、固定強度が大きいので、好適である。
[12.他の実施形態]
本開示は前記実施形態になんら限定されるものではなく、本開示を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
Therefore, when the experimental results of the above-described Experimental Examples 4 to 7 are comprehensively judged, it is understood that the range of the light emitting side edge angle θ of 85 ° to 95 ° is comprehensively most preferable when the area of the light receiving surface is the same. .
That is, if it is this range, since edge intensity, luminescence intensity, and fixed intensity are large, it is suitable.
[12. Other embodiments]
It is needless to say that the present disclosure is not limited to the above embodiment at all, and can be implemented in various aspects without departing from the present disclosure.

(1)光波長変換部品や発光装置の用途としては、蛍光体、光波長変換機器、ヘッドランプ、照明、プロジェクター等の光学機器など、各種の用途が挙げられる。
(2)光波長変換部材としては、前記セラミックス焼結体に限らず、金属枠よりも硬度が大きな各種のセラミックス焼結体を採用できる。
(1) Examples of applications of light wavelength conversion components and light emitting devices include various applications such as phosphors, light wavelength conversion devices, headlamps, illuminations, optical devices such as projectors, and the like.
(2) The light wavelength conversion member is not limited to the above-described ceramic sintered body, and various ceramic sintered bodies having hardness greater than that of a metal frame can be adopted.

(3)金属枠としては、前記AlやAl合金に限らず、光波長変換部材よりも熱伝導率が高く、光波長変換部材よりも硬度の低い各種の材料を採用できる。
(4)金属枠の光波長変換部材を支持した光波長変換部品の構成としては、前記各実施形態の構成に限らず、各種の構成が挙げられる。
(3) The metal frame is not limited to the Al or Al alloy, and various materials having higher thermal conductivity than the light wavelength conversion member and lower hardness than the light wavelength conversion member can be adopted.
(4) As a structure of the light wavelength conversion component which supported the light wavelength conversion member of a metal frame, not only the structure of said each embodiment but various structures are mentioned.

例えば、図14A及び図14Bに、応用例の光波長変形部品161、171を示すように、光波長変換部材11が固定された金属枠13の外周に、例えば金属製の別の枠部材163、173を、接合等によって一体化して固定してもよい。   For example, as shown in FIGS. 14A and 14B, as the light wavelength deformation parts 161 and 171 of the application example, another frame member 163 made of metal, for example, is provided on the outer periphery of the metal frame 13 to which the light wavelength conversion member 11 is fixed. 173 may be integrated and fixed by bonding or the like.

なお、光波長変形部品161の光波長変換部材11の突出方向は、図14Aの上方であり、光波長変形部品171の光波長変換部材11の突出方向は、図14Bの下方である。
また、例えば、図14Cに、更に他の応用例の光波長変形部品181を例示するように、金属枠13と、金属枠13の貫通孔19に配置した光波長変換部材11とを、ろう材等を用いて接合することにより、一体に固定してもよい。
The projecting direction of the light wavelength conversion member 11 of the light wavelength deformable component 161 is the upper side of FIG. 14A, and the projecting direction of the light wavelength conversion member 11 of the light wavelength deformable component 171 is the lower side of FIG. 14B.
Further, for example, as illustrated in FIG. 14C, the light wavelength deformation component 181 of the other application example, the metal frame 13 and the light wavelength conversion member 11 disposed in the through hole 19 of the metal frame 13 You may fix integrally by joining using etc.

なお、光波長変形部品181の光波長変換部材11の突出方向は、図14Cの下方である。
(5)また、上述の第10実施形態とその変形例では、一方の表面である発光面127a側が金属枠125の外面125aよりも突出している形態において、光波長変換部材127の側面126が傾斜している形態を示したが、光波長変換部材127の他方の表面である受光面127b側が金属枠125の内面125bよりも突出している形態において、光波長変換部材127の側面126が傾斜している形態としてもよい。この形態においても、上記と同様な効果を得ることができる。
In addition, the protrusion direction of the light wavelength conversion member 11 of the light wavelength deformation | transformation component 181 is the downward direction of FIG. 14C.
(5) In the above-described tenth embodiment and its modification, the side surface 126 of the light wavelength conversion member 127 is inclined in a mode in which the light emitting surface 127a side which is one surface protrudes from the outer surface 125a of the metal frame 125. In the embodiment in which the light receiving surface 127b side which is the other surface of the light wavelength conversion member 127 protrudes more than the inner surface 125b of the metal frame 125, the side surface 126 of the light wavelength conversion member 127 is inclined. It is good also as a form. Also in this embodiment, the same effect as described above can be obtained.

さらに、光波長変換部材127の一方の表面である発光面127a側、および、他方の表面である受光面127b側の両方が、金属枠125の外面125a、および、内面125bよりも突出している形態において、光波長変換部材127の側面126が傾斜している形態としてもよい。   Furthermore, a mode in which both the light emitting surface 127 a side which is one surface of the light wavelength conversion member 127 and the light receiving surface 127 b side which is the other surface protrude from the outer surface 125 a and the inner surface 125 b of the metal frame 125. In the above, the side surface 126 of the light wavelength conversion member 127 may be inclined.

(6)なお、上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を、省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。   (6) Note that the function possessed by one component in each of the above embodiments may be shared by a plurality of components, or the function possessed by a plurality of components may be exhibited by one component. In addition, part of the configuration of each of the above embodiments may be omitted. In addition, at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other embodiments. In addition, all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.

1、31、41、51、111、121…発光装置
5、143…発光素子
9、43、53、61、71、81、91、101、121、129、131、161、171、181…光波長変換部品
11、127、141…光波長変換部材
13、83、93、125、145…金属枠
19、95、131…貫通孔
23、97…開口部
25…内周部
27…外周部
1, 31, 41, 51, 111, 121 ... light emitting device 5, 143 ... light emitting element 9, 43, 53, 61, 71, 81, 91, 101, 121, 129, 131, 161, 171, 181 ... light wavelength Converting parts 11, 127, 141 Light wavelength converting members 13, 83, 93, 125, 145 Metal frames 19, 95, 131 Through holes 23, 97 Openings 25 Inner circumferential portion 27 Outer circumferential portion

Claims (12)

光の波長を変換し、一方の表面と他方の表面を有する光波長変換部材と、
前記光波長変換部材を囲み貫通孔を有する枠状の金属枠と、
を備えた光波長変換部品であって、
前記光波長変換部材は、前記金属枠に固定されているとともに、前記光波長変換部材自身の前記一方の表面と前記他方の表面とが、それぞれ前記貫通孔の貫通方向の一方の側と他方の側となるように配置されており、
更に、前記光波長変換部材の前記一方の表面及び前記他方の表面のうち、少なくともどちらかの表面が、前記金属枠の前記貫通方向における表面より突出している、
光波長変換部品。
A light wavelength conversion member that converts the wavelength of light and has one surface and the other surface;
A frame-like metal frame that surrounds the light wavelength conversion member and has a through hole;
A light wavelength conversion component comprising
The light wavelength conversion member is fixed to the metal frame, and the one surface and the other surface of the light wavelength conversion member itself are respectively one side and the other side in the penetration direction of the through hole. Are arranged to be on the side,
Furthermore, at least one of the one surface and the other surface of the light wavelength conversion member protrudes from the surface in the penetration direction of the metal frame.
Light wavelength conversion parts.
前記光波長変換部材は、前記貫通孔において、前記金属枠に直接に接触している、
請求項1に記載の光波長変換部品。
The light wavelength conversion member is in direct contact with the metal frame in the through hole.
The light wavelength conversion component according to claim 1.
前記光波長変換部材の前記金属枠の前記貫通孔を形成する内周面に接する側面は、前記光波長変換部材の前記一方の表面に対して傾斜している、
請求項1又は2に記載の光波長変換部品。
The side surface in contact with the inner circumferential surface of the metal frame of the light wavelength conversion member forming the through hole is inclined with respect to the one surface of the light wavelength conversion member.
The light wavelength conversion component according to claim 1.
前記光波長変換部材の前記側面は、前記光波長変換部材の前記一方の表面に対して、テーパ形状である、
請求項3に記載の光波長変換部品。
The side surface of the light wavelength conversion member is tapered with respect to the one surface of the light wavelength conversion member.
The light wavelength conversion component according to claim 3.
前記光波長変換部材の前記一方の表面と、前記光波長変換部材の前記金属枠の前記貫通孔を形成する内周面に接する側面と、の間の角度は、80°以上100°以下の範囲である、
請求項1〜4のいずれか1項に記載の光波長変換部品。
The angle between the one surface of the light wavelength conversion member and the side surface in contact with the inner circumferential surface of the metal frame of the light wavelength conversion member forming the through hole is in the range of 80 ° to 100 °. Is
The light wavelength conversion component according to any one of claims 1 to 4.
前記光波長変換部材の前記一方の表面と、前記光波長変換部材の前記側面と、の間の角度は、85°以上95°以下の範囲である、
請求項5に記載の光波長変換部品。
The angle between the one surface of the light wavelength conversion member and the side surface of the light wavelength conversion member is in the range of 85 ° to 95 °.
The light wavelength conversion component according to claim 5.
前記金属枠を構成する材料が、Al、Cu、Ni、Feのうち少なくとも1種の金属、または、前記少なくとも1種の金属を含む金属複合体又は合金である、
請求項1〜6のいずれか1項に記載の光波長変換部品。
The material constituting the metal frame is at least one metal of Al, Cu, Ni, Fe, or a metal complex or alloy containing the at least one metal.
The light wavelength conversion component according to any one of claims 1 to 6.
前記金属枠を構成する材料が、Al又はAl合金である、
請求項7に記載の光波長変換部品。
The material constituting the metal frame is Al or an Al alloy,
The light wavelength conversion component according to claim 7.
前記請求項1〜8のいずれか1項に記載の光波長変換部品と、前記光波長変換部材に光を照射する発光素子と、を備えた、
発光装置。
The light wavelength conversion component according to any one of claims 1 to 8 and a light emitting element for irradiating the light wavelength conversion member with light,
Light emitting device.
前記光波長変換部材は、前記発光素子側にて、前記金属枠の表面より突出している、
請求項9に記載の発光装置。
The light wavelength conversion member protrudes from the surface of the metal frame on the light emitting element side.
A light emitting device according to claim 9.
前記請求項1〜8のいずれか1項に記載の光波長変換部品を製造する光波長変換部品の製造方法であって、
前記金属枠の前記貫通孔の開口部と対向する位置に前記光波長変換部材を配置するとともに、前記金属枠の内周部と重なるように前記光波長変換部材の外周部を配置する工程と、
前記光波長変換部材を前記金属枠の前記貫通孔に押し込むことにより、前記光波長変換部材の前記外周部にて前記金属枠の前記内周部を潰す工程と、
を有する、光波長変換部品の製造方法。
A method for producing an optical wavelength conversion component, comprising the steps of: producing an optical wavelength conversion component according to any one of claims 1 to 8;
Disposing the light wavelength conversion member at a position facing the opening of the through hole of the metal frame, and disposing the outer peripheral portion of the light wavelength conversion member so as to overlap the inner circumferential portion of the metal frame;
Crushing the inner peripheral portion of the metal frame at the outer peripheral portion of the light wavelength conversion member by pushing the light wavelength conversion member into the through hole of the metal frame;
A method of manufacturing an optical wavelength conversion component, comprising:
前記光波長変換部材の外周部にて前記金属枠の内周部を潰した後に、更に前記光波長変換部材を前記金属枠の前記貫通孔に押し込んで前記金属枠を貫く工程、
を有する、請求項11に記載の光波長変換部品の製造方法。
After crushing the inner peripheral portion of the metal frame at the outer peripheral portion of the light wavelength conversion member, further pushing the light wavelength conversion member into the through hole of the metal frame and penetrating the metal frame;
The manufacturing method of the light wavelength conversion component of Claim 11 which has these.
JP2018209815A 2017-11-09 2018-11-07 Method for manufacturing optical wavelength conversion component Active JP7188984B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017216367 2017-11-09
JP2017216367 2017-11-09

Publications (2)

Publication Number Publication Date
JP2019086778A true JP2019086778A (en) 2019-06-06
JP7188984B2 JP7188984B2 (en) 2022-12-13

Family

ID=66763035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209815A Active JP7188984B2 (en) 2017-11-09 2018-11-07 Method for manufacturing optical wavelength conversion component

Country Status (1)

Country Link
JP (1) JP7188984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764754A1 (en) * 2019-07-12 2021-01-13 Marelli Automotive Lighting Reutlingen (Germany) GmbH Circuit carrier plate and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153617A (en) * 2006-11-21 2008-07-03 Nichia Chem Ind Ltd Semiconductor light-emitting device
JP2008235744A (en) * 2007-03-23 2008-10-02 Nichia Corp Semiconductor laser device
JP2008282984A (en) * 2007-05-10 2008-11-20 Nichia Corp Semiconductor light-emitting device
JP2017183302A (en) * 2016-03-28 2017-10-05 シチズン時計株式会社 Light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153617A (en) * 2006-11-21 2008-07-03 Nichia Chem Ind Ltd Semiconductor light-emitting device
JP2008235744A (en) * 2007-03-23 2008-10-02 Nichia Corp Semiconductor laser device
JP2008282984A (en) * 2007-05-10 2008-11-20 Nichia Corp Semiconductor light-emitting device
JP2017183302A (en) * 2016-03-28 2017-10-05 シチズン時計株式会社 Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764754A1 (en) * 2019-07-12 2021-01-13 Marelli Automotive Lighting Reutlingen (Germany) GmbH Circuit carrier plate and method for producing same

Also Published As

Publication number Publication date
JP7188984B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
US9685759B2 (en) Semiconductor laser device
JP5287275B2 (en) Light emitting device
CN108141009B (en) Light source device and light projector
JP5219331B2 (en) Method for manufacturing solid element device
JP5687413B2 (en) Light emitting diode and backlight unit having the same
JP5083205B2 (en) Light emitting device
WO2011132599A1 (en) Light-emitting device
KR20090026196A (en) Efficient emitting led package and method for efficiently emitting light
US20140160782A1 (en) Light emitting device and vehicle lamp
JP6565755B2 (en) Light emitting device
JP2007165803A (en) Light emitting device
JP2007005483A (en) Semiconductor light emitting device
JP2011181510A (en) Manufacturing method of light-emitting device using light-emitting diode
JP2014137973A (en) Light source device
JP2009283653A (en) Light-emitting device and production method therefor
JP6737760B2 (en) Light emitting device and lid used therefor
JP2016058624A (en) Light-emitting device
JP2007042687A (en) Light emitting diode device
JP2006019745A (en) Light emitting semiconductor chip and beam shaping element
JP2008147289A (en) Optical component and light-emitting device using the same
JP2019086778A (en) Optical wavelength conversion component, light-emitting device, and method for manufacturing optical wavelength conversion component
WO2018198949A1 (en) Wavelength converting element, light-emitting device, and illumination device
JP2008107405A (en) Optical component and light emitting device using the same
JP7221653B2 (en) Method for manufacturing optical wavelength conversion component and light emitting device
JP2007042679A (en) Light emitting diode device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221201

R150 Certificate of patent or registration of utility model

Ref document number: 7188984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150