JP2019086236A - Refrigerator desiccant and dryer - Google Patents

Refrigerator desiccant and dryer Download PDF

Info

Publication number
JP2019086236A
JP2019086236A JP2017215604A JP2017215604A JP2019086236A JP 2019086236 A JP2019086236 A JP 2019086236A JP 2017215604 A JP2017215604 A JP 2017215604A JP 2017215604 A JP2017215604 A JP 2017215604A JP 2019086236 A JP2019086236 A JP 2019086236A
Authority
JP
Japan
Prior art keywords
desiccant
refrigerant
standard sieve
particle size
dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017215604A
Other languages
Japanese (ja)
Inventor
淳二 武田
Junji Takeda
淳二 武田
杉田 修一
Shuichi Sugita
修一 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Showa KK
Original Assignee
Union Showa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Showa KK filed Critical Union Showa KK
Priority to JP2017215604A priority Critical patent/JP2019086236A/en
Publication of JP2019086236A publication Critical patent/JP2019086236A/en
Pending legal-status Critical Current

Links

Abstract

To provide a refrigerant desiccant having improved wear resistance, and to provide a dryer containing the refrigerant desiccant.SOLUTION: A granular refrigerant desiccant adsorbs water content contained in refrigerant for a refrigeration cycle system. The refrigerant desiccant has an average grain size of 0.6 to 2.5 mm and a grain size range of 0.55 mm or less. A dryer includes the refrigerant desiccant and a bag body for storing the refrigerant desiccant.SELECTED DRAWING: None

Description

本発明は、冷凍サイクルシステムの冷媒中の水分を吸着する冷媒用乾燥剤及びその乾燥剤を含むドライヤに関し、特に、車両用の冷凍サイクルシステムの冷媒中の水分を吸着する冷媒用乾燥剤及びその乾燥剤を含むドライヤに関する。   The present invention relates to a desiccant for a refrigerant that adsorbs water in a refrigerant of a refrigeration cycle system and a dryer including the desiccant, and more particularly to a desiccant for a refrigerant that adsorbs water in a refrigerant of a refrigeration cycle system for a vehicle The present invention relates to a dryer containing a desiccant.

冷凍サイクルシステムは、コンプレッサー、コンデンサ、膨張弁およびエバポレータを中空管で連結して構成される。冷凍サイクルシステム中に水分が含まれていると、膨張弁の細孔で凍結して冷媒の流れを阻害する、または冷凍装置の機能部品を腐食させるおそれがある。このため、多くの冷凍サイクルシステム中には、袋体に冷媒用乾燥剤を充填したドライヤを、レシーバータンクあるいはヘッダタンクと呼ばれる金属容器等の中に配置し、冷媒中の水分を吸着除去している(例えば、特許文献1〜5参照)。冷媒用乾燥剤として、主に、冷媒を吸着せず水分のみを吸着できる合成ゼオライト、アルミナゲル、シリカゲル等が用いられている。   The refrigeration cycle system is configured by connecting a compressor, a condenser, an expansion valve, and an evaporator by hollow tubes. If water is contained in the refrigeration cycle system, it may freeze at the pores of the expansion valve to inhibit the flow of the refrigerant or corrode functional parts of the refrigeration system. For this reason, in many refrigeration cycle systems, a dryer in which a bag body is filled with a desiccant for refrigerant is disposed in a metal container or the like called a receiver tank or a header tank to adsorb and remove moisture in the refrigerant. (For example, refer patent documents 1-5). As the desiccant for the refrigerant, synthetic zeolite, alumina gel, silica gel or the like which can adsorb only water without adsorbing the refrigerant is mainly used.

特開2015−114000号公報JP, 2015-114000, A 特開2005−114353号公報JP 2005-114353 A 特開2000−283605号公報JP, 2000-283605, A 特開2001−263869号公報JP 2001-263869 A 特開2000−213830号公報JP 2000-213830 A

しかしながら、袋体に冷媒用乾燥剤を充填したドライヤの場合、周囲の機器等により発生する振動等によって冷媒用乾燥剤同士が擦れ合って冷媒用乾燥剤が摩耗し、これにより発生した粉塵が袋体の通気性や通液性を悪くしたり、または、袋体から漏れ出してコンプレッサーの摺動面を損傷したり、膨張弁の細孔を閉塞させたりする恐れがある。そこで、本発明は、耐摩耗性を改善した冷媒用乾燥剤及びその冷媒用乾燥剤を含むドライヤを提供することを目的とする。   However, in the case of the dryer in which the bag body is filled with the refrigerant desiccant, the refrigerant desiccant rubs against each other due to vibration or the like generated by the surrounding equipment, etc., and the refrigerant desiccant wears. There is a risk of deteriorating the air permeability and liquid permeability of the body, or of leaking from the bag body to damage the sliding surface of the compressor, or block the pores of the expansion valve. Then, this invention aims at providing the dryer containing the desiccant for refrigerant | coolants which improved abrasion resistance, and the desiccant for refrigerant | coolant for the refrigerant | coolant.

袋体に冷媒用乾燥剤を充填したドライヤが使用される前は、冷凍サイクルシステムの冷媒液溜め容器内に冷媒用乾燥剤をそのまま充填していた。このため、冷媒用乾燥剤を充填するときに生ずる圧縮応力によって冷媒用乾燥剤が割れてしまうことを防ぐために、冷媒用乾燥剤に対して一定以上の機械的強度を要求していた。そして、袋体に冷媒用乾燥剤を充填して冷媒用乾燥剤を使用する場合も、冷凍サイクルシステムの冷媒液溜め容器内に冷媒用乾燥剤をそのまま充填していたときに要求されていた機械的強度を満たす冷媒用乾燥剤を使用していた。しかし、本発明者らは上記従来の課題を解決すべく鋭意検討した結果、袋体に冷媒用乾燥剤を充填したドライヤに冷媒用乾燥剤を使用する場合、粒度とその範囲をコントロールすることによって、冷凍サイクルシステムの冷媒液溜め容器内に冷媒用乾燥剤をそのまま充填していたときに要求されていたレベルまでは、冷媒用乾燥剤の機械的強度を向上させる必要がないことを見出した。さらに、過剰であった機械的強度を最適量の機械的強度にすることによって、冷媒用乾燥剤の耐摩耗性をさらに改善できることを見出し、本発明を完成させた。   Before the dryer in which the bag body is filled with the refrigerant desiccant is used, the refrigerant desiccant is filled in the refrigerant liquid storage container of the refrigeration cycle system as it is. For this reason, in order to prevent the refrigerant desiccant from cracking due to compression stress generated when the refrigerant desiccant is filled, the refrigerant desiccant is required to have a mechanical strength of a certain level or more. And, even when the bag body is filled with the refrigerant desiccant and the refrigerant desiccant is used, the machine is required when the refrigerant desiccant is filled in the refrigerant liquid storage container of the refrigeration cycle system as it is. Used a refrigerant desiccant that meets the target strength. However, as a result of intensive studies to solve the above-mentioned conventional problems, the present inventors control the particle size and the range thereof when using the desiccant for refrigerant in the dryer in which the bag body is filled with the desiccant for refrigerant. It has been found that it is not necessary to improve the mechanical strength of the desiccant for refrigerant to the level required when the refrigerant desiccant for the refrigerant cycle was filled as it was in the refrigerant liquid storage container of the refrigeration cycle system. Furthermore, the inventors found that the abrasion resistance of the refrigerant desiccant can be further improved by making the mechanical strength that is excessive into an optimal amount of mechanical strength, and completed the present invention.

本発明は、下記[1]〜[9]を要旨とする。
[1]冷凍サイクルシステムの冷媒中の水分を吸着する粒状の冷媒用乾燥剤であって、平均粒径が0.6〜2.5mmであり、粒径の範囲が0.55mm以下である冷媒用乾燥剤。
[2]粒径の範囲が0.40mm以下である上記[1]に記載の冷媒用乾燥剤。
[3]平均粒径が0.6〜2.3mmである上記[1]または[2]に記載の冷媒用乾燥剤。
[4]粒径の範囲が0.10mm以上である上記[1]〜[3]のいずれか1つに記載の冷媒用乾燥剤。
[5]平均粒径が0.7〜2.2mmであり、粒径の範囲が0.25〜0.51mmである上記[1]に記載の冷媒用乾燥剤。
[6]合成ゼオライトの造粒物である上記[1]〜[5]のいずれか1つに記載の冷媒用乾燥剤。
[7]合成ゼオライトが、3A型合成ゼオライトまたは4A型合成ゼオライトである上記[6]に記載の冷媒用乾燥剤
[8]冷凍サイクルシステムが車両用の冷凍サイクルシステムである上記1〜7のいずれか1項に記載の冷媒用乾燥剤。
[9]上記[1]〜[8]のいずれか1つに記載の冷媒用乾燥剤と、冷媒用乾燥剤を収容する袋体とを含むドライヤ。
This indication makes the following [1]-[9] a summary.
[1] A granular desiccant for a refrigerant which adsorbs moisture in the refrigerant of a refrigeration cycle system, the refrigerant having an average particle diameter of 0.6 to 2.5 mm and a particle diameter range of 0.55 mm or less For desiccant.
[2] The desiccant for refrigerant according to the above [1], wherein the range of the particle size is 0.40 mm or less.
[3] The desiccant for refrigerant | coolant as described in said [1] or [2] whose average particle diameter is 0.6-2.3 mm.
[4] The desiccant for a refrigerant according to any one of the above [1] to [3], wherein the range of the particle size is 0.10 mm or more.
[5] The desiccant for a refrigerant according to the above [1], which has an average particle diameter of 0.7 to 2.2 mm and a particle diameter range of 0.25 to 0.51 mm.
[6] The desiccant for a refrigerant according to any one of the above [1] to [5], which is a granulated product of synthetic zeolite.
[7] The desiccant for refrigerant according to the above [6], wherein the synthetic zeolite is 3A type synthetic zeolite or 4A type synthetic zeolite [8] any one of the above 1 to 7 wherein the refrigeration cycle system is a refrigeration cycle system for vehicles The desiccant for refrigerant | coolant of any one of-.
[9] A dryer comprising the refrigerant desiccant according to any one of the above [1] to [8], and a bag containing the refrigerant desiccant.

本発明によれば、耐摩耗性を改善した冷媒用乾燥剤及びその冷媒用乾燥剤を含むドライヤを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dryer containing the desiccant for refrigerant | coolants which improved abrasion resistance, and the desiccant for refrigerant | coolant can be provided.

平均粒径と摩耗減少量の関係を示すグラフである。It is a graph which shows the relationship between an average particle diameter and wear reduction amount.

[冷媒用乾燥剤]
本発明は、冷凍サイクルシステムの冷媒中の水分を吸着する粒状の冷媒用乾燥剤であって、平均粒径が0.6〜2.5mmであり、粒径の範囲が0.4mm以下である。以下、本発明の冷媒用乾燥剤を詳細に説明する。
(冷凍サイクルシステム)
本発明の冷媒用乾燥剤は、冷凍サイクルシステムの冷媒中の水分を吸着するものである。上述したように冷凍サイクルシステムは、例えば、コンプレッサー、コンデンサ、膨張弁及びエバポレータを中空管で連結して構成され、蒸発、圧縮、凝縮及び膨張の一連の工程を行う。冷凍サイクルシステムには、例えば、冷媒液を一時貯蔵するレシーバータンクあるいはヘッダタンクと呼ばれる金属容器が設けられる。その中に、本発明の冷媒用乾燥剤を袋体に充填して作製されたドライヤを配置することにより、本発明の冷媒用乾燥剤が冷媒中の水分を吸着し、冷媒から水分が除去される。また、中空管の途中にレシーバタンクを設けることによって、本発明の冷媒用乾燥剤に冷媒中の水分を吸着させるようにしてもよい。
[Drier for refrigerant]
The present invention is a particulate refrigerant desiccant for adsorbing moisture in refrigerant in a refrigeration cycle system, having an average particle diameter of 0.6 to 2.5 mm and a particle diameter range of 0.4 mm or less . Hereinafter, the desiccant for refrigerant | coolant of this invention is demonstrated in detail.
(Refrigeration cycle system)
The desiccant for refrigerant | coolant of this invention adsorb | sucks the water | moisture content in the refrigerant | coolant of a refrigerating cycle system. As described above, the refrigeration cycle system is configured, for example, by connecting a compressor, a condenser, an expansion valve, and an evaporator by hollow tubes, and performs a series of steps of evaporation, compression, condensation, and expansion. The refrigeration cycle system is provided with, for example, a metal container called a receiver tank or a header tank for temporarily storing the refrigerant liquid. The desiccant for refrigerant of the present invention adsorbs the moisture in the refrigerant, and the moisture is removed from the refrigerant by disposing the drier manufactured by filling the desiccant for refrigerant of the present invention in the bag. Ru. Further, by providing a receiver tank in the middle of the hollow tube, the refrigerant desiccant of the present invention may be made to adsorb the moisture in the refrigerant.

本発明の冷媒用乾燥剤は、耐摩耗性が良好であるので、振動が起こりやすい用途に対して、より好適に用いられる。例えば、本発明の冷媒用乾燥剤は、車両用の冷凍サイクルシステムに特に好適に用いることができる。車両用の冷凍サイクルシステムでは、車両自体の振動も冷媒用乾燥剤に加わるので、車両用の冷凍サイクルシステムに用いる冷媒用乾燥剤には優れた耐摩耗性が要求される。このため、耐摩耗性に優れた本発明の冷媒用乾燥剤は、冷凍サイクルシステムの用途の中でも、特に車両用の冷凍サイクルシステムの用途に好適である。   Since the refrigerant desiccant of the present invention has good abrasion resistance, it is more suitably used for applications in which vibration tends to occur. For example, the refrigerant desiccant of the present invention can be particularly suitably used in a refrigeration cycle system for vehicles. In a vehicle refrigeration cycle system, vibration of the vehicle itself is also added to the refrigerant desiccant, so that the refrigerant desiccant used in the vehicle refrigeration cycle system is required to have excellent wear resistance. For this reason, the desiccant for refrigerant | coolant of this invention excellent in abrasion resistance is suitable for the use of the refrigerating cycle system especially for vehicles among the uses of a refrigerating cycle system.

(形状)
本発明の冷媒用乾燥剤は、粒状の乾燥剤である。本発明の冷媒用乾燥剤は、例えば転動造粒法によって作製される。具体的には、例えば次のようにして本発明の冷媒用乾燥剤を作製することができる。原料に水及びバインダを加えた後、混練機を用いて混練し、転動式造粒機に投入して、球形化する。その後、得られた球形物を乾燥し、焼成して、本発明の冷媒用乾燥剤が得られる。
(shape)
The desiccant for refrigerant | coolant of this invention is a granular desiccant. The desiccant for refrigerant | coolant of this invention is produced by the rolling granulation method, for example. Specifically, for example, the refrigerant desiccant of the present invention can be produced as follows. After water and a binder are added to the raw material, the mixture is kneaded using a kneader, charged into a rolling granulator, and made into a sphere. Thereafter, the obtained spheres are dried and fired to obtain the refrigerant desiccant of the present invention.

(平均粒径)
本発明の冷媒用乾燥剤の平均粒径は、0.6〜2.5mmであり、好ましくは0.6〜2.3mmであり、より好ましくは0.7〜2.2mmである。冷媒用乾燥剤の平均粒径が0.6mm未満であると、冷媒用乾燥剤の製造の際、冷媒用乾燥剤に付着するダスト(粉塵)が増え、冷媒用乾燥剤を充填するときに発生するダスト量が多くなる。また、冷媒用乾燥剤の平均粒径が0.6mm未満であると、冷媒用乾燥剤の機械的強度が低くなりすぎてしまう。さらに、冷媒用乾燥剤の平均粒径が0.6mm未満であると、静電気の影響を受け、冷媒用乾燥剤を収容する袋体の袋とじ部分における冷媒用乾燥剤の噛み込みが多くなる。なお、冷媒用乾燥剤を収容する袋体の袋とじ部分における冷媒用乾燥剤の噛み込みを避けるために充填速度を遅くすると、冷媒用乾燥剤の吸着水分量が増え、冷媒用乾燥剤の有効水分吸着能力が低下し、冷媒用乾燥剤を袋体に収容して作製したドライヤの水分除去効果が小さくなる。また、冷媒用乾燥剤の平均粒径が0.6mm未満であると、冷媒用乾燥剤を収容する袋体として不織布を用いた場合、不織布の隙間から冷媒用乾燥剤が漏れ出る場合がある。一方、冷媒用乾燥剤の平均粒径が2.5mmよりも大きいと、冷媒用乾燥剤の耐摩耗性が悪くなる。
(Average particle size)
The average particle diameter of the desiccant for refrigerant | coolant of this invention is 0.6-2.5 mm, Preferably it is 0.6-2.3 mm, More preferably, it is 0.7-2.2 mm. When the average particle size of the desiccant for refrigerant is less than 0.6 mm, dust (dust) attached to the desiccant for refrigerant increases during the production of the refrigerant desiccant, and it occurs when the refrigerant desiccant is filled Amount of dust to be In addition, when the average particle size of the refrigerant desiccant is less than 0.6 mm, the mechanical strength of the refrigerant desiccant becomes too low. Furthermore, when the average particle diameter of the refrigerant desiccant is less than 0.6 mm, the refrigerant desiccant is affected by static electricity, and biting of the refrigerant desiccant in the bag portion of the bag containing the refrigerant desiccant increases. In addition, if the filling speed is reduced to avoid the biting of the refrigerant desiccant in the bag binding portion of the bag containing the refrigerant desiccant, the amount of adsorbed water of the refrigerant desiccant increases, and the effectiveness of the refrigerant desiccant is increased. The water adsorption capacity decreases, and the water removal effect of the dryer manufactured by storing the refrigerant desiccant in the bag decreases. When the average particle diameter of the refrigerant desiccant is less than 0.6 mm, when the nonwoven fabric is used as a bag containing the refrigerant desiccant, the refrigerant desiccant may leak from the gap of the nonwoven fabric. On the other hand, when the average particle diameter of the refrigerant desiccant is larger than 2.5 mm, the abrasion resistance of the refrigerant desiccant is deteriorated.

なお、冷凍サイクルシステムの冷媒液溜め容器内に冷媒用乾燥剤をそのまま充填する場合は、冷媒用乾燥剤を充填するときに生ずる圧縮応力によって冷媒用乾燥剤が割れてしまうことを防ぐための機械的強度を確保するために、冷媒用乾燥剤の平均粒径を2.5mmよりも大きくする必要があった。しかし、上述したように、本発明者らは、袋体に冷媒用乾燥剤を充填したドライヤに冷媒用乾燥剤を使用する場合、冷凍サイクルシステムの冷媒液溜め容器内に冷媒用乾燥剤をそのまま充填していたときに要求されていた機械的強度まで冷媒用乾燥剤の機械的強度を向上させる必要がないことを見出したため、冷媒用乾燥剤の平均粒径を、2.5mm以下とすることができた。   When the refrigerant desiccant is filled in the refrigerant liquid storage container of the refrigeration cycle system as it is, a machine for preventing the refrigerant desiccant from cracking due to compression stress generated when the refrigerant desiccant is filled. In order to ensure the target strength, it is necessary to make the average particle size of the refrigerant desiccant larger than 2.5 mm. However, as described above, when using the desiccant for refrigerant in the dryer in which the bag body is filled with the desiccant for refrigerant, as described above, the desiccant for refrigerant in the refrigerant liquid storage container of the refrigeration cycle system is left as it is The average particle diameter of the refrigerant desiccant should be 2.5 mm or less, because it was found that there was no need to improve the mechanical strength of the refrigerant desiccant to the mechanical strength required when it was being filled. It was possible.

(粒径の範囲)
本発明の冷媒用乾燥剤の粒径の範囲は、0.55mm以下であり、好ましくは0.40mm以下であり、より好ましくは0.30mm以下である。冷媒用乾燥剤の粒径の範囲が0.55mmよりも大きいと、冷媒用乾燥剤の耐摩耗性が悪くなる。なお、冷媒用乾燥剤の粒径の範囲とは、冷媒用乾燥剤の粒径の最大値を冷媒用乾燥剤の粒径の最小値で引き算した値である。また、本発明の冷媒用乾燥剤の粒径の範囲の下限値は、特に限定されないが、例えば、好ましくは0.10mmであり、より好ましくは0.20mmである。
(Range of particle size)
The range of the particle size of the desiccant for a refrigerant of the present invention is 0.55 mm or less, preferably 0.40 mm or less, and more preferably 0.30 mm or less. When the range of the particle size of the desiccant for refrigerant is larger than 0.55 mm, the abrasion resistance of the desiccant for refrigerant becomes worse. The range of the particle size of the desiccant for refrigerant is a value obtained by subtracting the maximum value of the particle size of the desiccant for refrigerant by the minimum value of the particle size of the desiccant for refrigerant. The lower limit of the range of the particle size of the refrigerant desiccant of the present invention is not particularly limited, but is preferably 0.10 mm, more preferably 0.20 mm.

冷媒用乾燥剤の耐摩耗性をさらに改善するという観点から、本発明の冷媒用乾燥剤の平均粒径は好ましくは1.0〜2.0mmであり、より好ましくは1.2〜1.7mmである。また、冷媒用乾燥剤の機械的強度をより高くするという観点から、本発明の冷媒用乾燥剤の冷媒用乾燥剤の平均粒径は好ましくは2.0〜2.5mmである。   From the viewpoint of further improving the abrasion resistance of the refrigerant desiccant, the average particle diameter of the refrigerant desiccant of the present invention is preferably 1.0 to 2.0 mm, more preferably 1.2 to 1.7 mm. It is. Further, from the viewpoint of further increasing the mechanical strength of the desiccant for refrigerant, the average particle diameter of the desiccant for refrigerant of the desiccant for refrigerant of the present invention is preferably 2.0 to 2.5 mm.

上述したように、本発明の冷媒用乾燥剤は、転動式造粒法等の造粒法により作製することができる。本造粒法を使用すれば、造粒物の粒径を容易に制御できるとともに、形状や粒径の比較的そろった造粒物を作製することができる。したがって、上述の平均粒径や粒径の範囲を有する冷媒用乾燥剤を造粒法等の方法によって作製することは可能である。また、冷媒用乾燥剤を篩などで分級することによって、上述の平均粒径や粒径の範囲を有する冷媒用乾燥剤を作製してもよい。   As mentioned above, the desiccant for refrigerant | coolant of this invention can be produced by granulation methods, such as a rolling granulation method. By using the present granulation method, it is possible to easily control the particle size of the granulated product and to produce a granulated product having a relatively uniform shape and particle size. Therefore, it is possible to produce the desiccant for refrigerant | coolant which has the above-mentioned average particle diameter and the range of particle diameter by methods, such as the granulation method. Moreover, you may produce the desiccant for refrigerant | coolants which has the range of the above-mentioned average particle diameter or a particle size by classifying the desiccant for refrigerant | coolants with a sieve etc.

なお、市販されているビーズ形状の乾燥剤の粒径の範囲は、例えば、4×8のサイズのもの(4〜8Mesh(Mesh:ASTM規格))では約2.4mmであり、8×12のサイズのもの(8〜12Mesh(Mesh:ASTM規格))では約0.7mmであり、16×30のもの(16〜30Mesh(Mesh:ASTM規格))では約0.6mmである。したがって、本発明の冷媒用乾燥剤の粒径の範囲は、市販されているものに比べると極めて狭いといえる。   The particle size of the commercially available bead-shaped desiccant is, for example, about 2.4 mm for 4 × 8 size (4 to 8 Mesh (Mesh: ASTM standard)), and 8 × 12 The size (about 8 to 12 mesh (Mesh: ASTM standard)) is about 0.7 mm, and the size of 16 × 30 (16 to 30 mesh (Mesh: ASTM standard)) is about 0.6 mm. Therefore, it can be said that the range of the particle size of the desiccant for refrigerants of the present invention is extremely narrow as compared to those commercially available.

(水分吸着能力)
本発明の冷媒用乾燥剤における60℃の温度及び50ppmの水分濃度の環境下における水分吸着能力は、好ましくは10g/100g以上であり、より好ましくは14g/100g以上であり、さらに好ましくは15g/100g以上である。冷媒用乾燥剤の水分吸着能力が10g/100g以上であると、冷媒から水分を十分に除去することができる。なお、60℃の温度及び50ppmの水分濃度の環境下における水分吸着能力は、以下のように測定する。
耐熱密閉容器の中に冷媒と冷媒用乾燥剤を入れ、さらに冷媒に対して50質量ppmの水分を入れ、60℃で2週間程度保持する。保持終了後、60℃に加温した乾燥機の中で別のカラムに冷媒を分取する。分取した冷媒の重量(W1)を測定した後、この冷媒を全てカールフィッシャー装置に導入し、水分量(W2)を測定する。そして、式(1)より冷媒の水分量を計算する。
式(1):冷媒の水分量(ppm)=W2/W1×1,000,000
次に冷媒用乾燥剤の重量(W3)を測定した後、冷媒用乾燥剤を水分気化装置で600℃まで加熱することで冷媒用乾燥剤に吸着した水分を脱着し、窒素ガスとともに水分を捕集する。
これらを全てカールフィッシャー装置に導入し、水分量(W4)を測定する。そして、式(2)より冷媒用乾燥剤の水分量を計算する。そして、この冷媒用乾燥剤の水分量を冷媒用乾燥剤の水分吸着能力とする。
式(2): 乾燥剤の水分量(g/100g)=W4/(W3−W4)×100
(Water adsorption capacity)
The water adsorption capacity of the desiccant for a refrigerant of the present invention at a temperature of 60 ° C. and a water concentration of 50 ppm is preferably 10 g / 100 g or more, more preferably 14 g / 100 g or more, and still more preferably 15 g / g. It is 100g or more. When the water adsorption capacity of the refrigerant desiccant is 10 g / 100 g or more, water can be sufficiently removed from the refrigerant. The water adsorption capacity under the environment of a temperature of 60 ° C. and a water concentration of 50 ppm is measured as follows.
The refrigerant and the desiccant for refrigerant are placed in a heat-resistant closed container, and 50 mass ppm of water is further added to the refrigerant, and kept at 60 ° C. for about 2 weeks. After the holding, the refrigerant is separated into another column in a dryer heated to 60 ° C. After measuring the weight (W1) of the separated refrigerant, all the refrigerant is introduced into the Karl Fischer apparatus, and the water content (W2) is measured. Then, the moisture content of the refrigerant is calculated from equation (1).
Formula (1): Moisture content of refrigerant (ppm) = W2 / W1 × 1,000,000
Next, the weight (W3) of the refrigerant desiccant is measured, and the refrigerant desiccant is heated to 600 ° C. by the water vaporizer to desorb the water adsorbed to the refrigerant desiccant, thereby capturing the water together with the nitrogen gas. Collect.
All of them are introduced into a Karl Fischer apparatus, and the water content (W4) is measured. And the moisture content of the desiccant for refrigerant | coolants is calculated from Formula (2). And let the moisture content of this desiccant for refrigerant | coolant be the moisture adsorption capacity of the desiccant for refrigerant | coolant.
Formula (2): Moisture content of desiccant (g / 100 g) = W4 / (W3-W4) × 100

(冷媒用乾燥剤の材質)
本発明の冷媒用乾燥剤は、好ましくは親水性の合成ゼオライトの造粒物である。上記合成ゼオライトの細孔径は、対象とする冷媒の有効分子半径よりも小さいことが望ましく、その中でより水分吸着容量が高いゼオライトが好ましい。よって、有効分子半径が0.4nm未満の冷媒に対しては3A型合成ゼオライトが好ましく、0.4nm以上0.9nm未満の冷媒に対しては4A型合成ゼオライトが好ましく、0.9nm以上の冷媒に対しては13X型合成ゼオライトが好ましい。なお、3A型合成ゼオライトは、交換カチオンとしてKを有する立方晶系の合成ゼオライトであり、細孔径が約0.3nmである。一方、4A型合成ゼオライトは、交換カチオンとしてNaを有する立方晶系の合成ゼオライトであり、細孔径が約0.4nmである。13X型合成ゼオライトは、交換カチオンとしてNaを有する立方晶系の合成ゼオライトであり、細孔径が約0.9nmである。
(Material of desiccant for refrigerant)
The desiccant for a refrigerant of the present invention is preferably a granulated product of a hydrophilic synthetic zeolite. The pore diameter of the synthetic zeolite is desirably smaller than the effective molecular radius of the target refrigerant, and among them, zeolite having a higher water adsorption capacity is preferable. Therefore, 3A-type synthetic zeolite is preferable for refrigerants having an effective molecular radius of less than 0.4 nm, and 4A-type synthetic zeolite is preferable for refrigerants of 0.4 nm or more and less than 0.9 nm, and 0.9 nm or more For these, 13X type synthetic zeolite is preferred. The 3A-type synthetic zeolite is a cubic synthetic zeolite having K + as an exchange cation, and has a pore diameter of about 0.3 nm. On the other hand, 4A-type synthetic zeolite is a cubic synthetic zeolite having Na + as an exchange cation, and has a pore diameter of about 0.4 nm. The 13X-type synthetic zeolite is a cubic synthetic zeolite having Na + as an exchange cation, and has a pore size of about 0.9 nm.

(冷媒)
本発明の冷媒用乾燥剤が使用される冷媒は、例えば、ハイドロフルオロカーボンであり、ハイドロフルオロカーボンとしては、例えば、1,1,1,2−テトラフルオロエタン(R134a)、ジフルオロメタン(R32)、ペンタフルオロエタン(R125)、1,1,1−トリフルオロエタン(R143a)等が挙げられる。
(Refrigerant)
The refrigerant in which the refrigerant desiccant of the present invention is used is, for example, a hydrofluorocarbon, and as the hydrofluorocarbon, for example, 1,1,1,2-tetrafluoroethane (R134a), difluoromethane (R32), penta Fluoroethane (R125), 1,1,1-trifluoroethane (R143a), etc. are mentioned.

[ドライヤ]
本発明のドライヤは、本発明の冷媒用乾燥剤と、冷媒用乾燥剤を収容する袋体とを含む。これにより、ドライヤが外部から振動を受けても、ドライヤに含まれる冷媒用乾燥剤が摩耗することにより、発生した粉塵が袋体の通気性や通液性を悪くしたり、または、袋体から漏れ出してコンプレッサーの摺動面を損傷したり、膨張弁の細孔を閉塞させたりすることを抑制することができる。
[Dryer]
The dryer of the present invention includes the desiccant for refrigerant of the present invention and a bag containing the desiccant for refrigerant. As a result, even if the dryer receives vibration from the outside, the generated desiccant deteriorates the air permeability and liquid permeability of the bag body by abrasion of the refrigerant desiccant contained in the dryer, or from the bag body It is possible to prevent leakage and damage to the sliding surface of the compressor or blocking the pores of the expansion valve.

本発明のドライヤに用いる袋体としては、例えば、通液性及び通気性を有する、金網の袋、パンチメタルの袋、合成樹脂製のフェルト材の袋、合成樹脂製のメッシュ材の袋、不織布の袋及び織布の袋等が挙げられる。本発明のドライヤに用いる好ましい袋体は、不織布の袋である。   As a bag body used for the dryer of the present invention, for example, a bag of metal mesh, a bag of punched metal, a bag of felt made of synthetic resin, a bag of mesh made of synthetic resin, non-woven fabric having liquid permeability and air permeability. And bags of woven fabric and the like. A preferred bag for use in the dryer of the present invention is a non-woven bag.

以下、実施例に基づいて本発明を説明するが、本発明は実施例により制限されるものではない。   Hereinafter, the present invention will be described based on examples, but the present invention is not limited by the examples.

[実施例及び比較例の乾燥剤の評価]
実施例及び比較例の乾燥剤に対して以下の評価を実施した。
[Evaluation of Desiccant of Examples and Comparative Examples]
The following evaluation was implemented with respect to the desiccant of an Example and a comparative example.

(平均粒径)
試験用篩をロータップ試験機にセットし、採取した乾燥剤を篩い分けした。そして、各篩の網上残留分をパーセントで算出した。目開きの小さい篩から各篩の網上残留分を積算し、積算したパーセントが50質量%となる篩の目開きを平均粒径とした。
(Average particle size)
The test sieve was set in a low tap tester, and the collected desiccant was sieved. And the remnant amount on the net of each sieve was calculated in percentage. The residual on the net of each sieve was integrated from the sieve with a small aperture, and the mesh diameter of the sieve which the integrated percentage becomes 50 mass% was made into the average particle diameter.

(粒径の範囲)
実施例及び比較例の乾燥剤調製に使用した標準篩の目開きの範囲を、粒径の範囲とした。
(Range of particle size)
The range of the openings of the standard sieves used for the preparation of the desiccant of the examples and comparative examples was taken as the range of the particle size.

(ダスト値)
一定量(500ml)の乾燥剤を秤量し、光錯乱法ダストメーターにて試料投入口より試料を投入し、ブランクとの透過度の差をダスト値とした。
(Dust value)
A fixed amount (500 ml) of the desiccant was weighed, a sample was introduced from the sample inlet with a light scattering dust meter, and the difference in transmittance from the blank was taken as the dust value.

(摩耗減少量)
飽和吸湿させた実施例1〜5及び比較例1〜5の乾燥剤を秤量した(W5(g))。次にガラス瓶にサンプルを充填し、イオン交換水をガラス瓶の首まで注ぎ、液が漏れないようにしっかり蓋をした。そのガラス瓶を振とう機にセットし振とうした。なお、振とうの回転数は700±30rpm、振動時間は30分とした。
振とう後、ガラス瓶を取り外し、水と一緒にサンプルを7μm目開きのろ紙フィルターを通して濾過、洗浄し、乾燥剤より発生した摩耗粉を含む濾液を予め秤量したビーカー(W6(g))に採取した。次に200℃の乾燥器で恒量になるまで、濾液を蒸発乾固した。ビーカーをデシケーター中で室温まで冷却した後、再度秤量した(W7(g))。
次式(3)により摩耗減少量を算出した。
式(3): 摩耗減少量(wt%)= {(W7−W6)/W5}×100
なお、乾燥剤の摩耗減少量が小さいほど、その乾燥剤は摩耗していないことになるので、乾燥剤の摩耗減少量が小さいほど、その乾燥剤の耐摩耗性は高いことになる。
(Amount of wear reduction)
The desiccants of Examples 1 to 5 and Comparative Examples 1 to 5 saturated with moisture absorption were weighed (W5 (g)). Next, the glass bottle was filled with the sample, ion exchange water was poured to the neck of the glass bottle, and the lid was tightly closed so that the liquid would not leak. The glass bottle was set in a shaker and shaken. The rotation speed of shaking was 700 ± 30 rpm, and the vibration time was 30 minutes.
After shaking, the glass bottle was removed, the sample was washed with water through a 7 μm filter paper filter, washed, and the filtrate containing the abrasion powder generated from the desiccant was collected in a pre-weighed beaker (W6 (g)) . The filtrate was then evaporated to dryness to constant weight in a dryer at 200 ° C. After the beaker was cooled to room temperature in a desiccator, it was weighed again (W7 (g)).
The amount of wear reduction was calculated by the following equation (3).
Formula (3): Wear reduction amount (wt%) = {(W7-W6) / W5} x 100
The smaller the amount of decrease in the abrasion loss of the desiccant, the less the abrasion of the desiccant is. Therefore, the smaller the reduction in the amount of abrasion of the desiccant, the higher the abrasion resistance of the desiccant.

(機械的強度)
飽和吸湿させた実施例1〜5及び比較例1〜5の乾燥剤をそれぞれ25粒選び、木屋式強度計にて機械的強度を測定した。1kg/秒の速度で荷重を掛け、乾燥剤が割れた荷重を記録した。
(Mechanical strength)
Twenty-five grains of each of the desiccants of Examples 1 to 5 and Comparative Examples 1 to 5 which had been saturated with moisture absorption were selected, and the mechanical strength was measured with a Kiya type intensity meter. The load was applied at a rate of 1 kg / s and the load at which the desiccant broke was recorded.

[実施例及び比較例の乾燥剤の作製]
実施例1〜5の乾燥剤及び比較例1〜5の乾燥剤を以下のようにして用意した。
[Preparation of Desiccant of Examples and Comparative Examples]
The desiccant of Examples 1-5 and the desiccant of Comparative Examples 1-5 were prepared as follows.

(実施例1)
標準篩#16(目開き1.19mm)及び標準篩#12(目開き1.70mm)を用いて、市販されているビーズ形状の3A型合成ゼオライトを篩分し、標準篩#16と標準篩#12との間の3A型合成ゼオライトを500g用意した。この3A型合成ゼオライトを実施例1の乾燥剤とした。
(実施例2)
標準篩#16及び標準篩#12の代わりに、標準篩#10(目開き2.00mm)及び標準篩#8(目開き2.38mm)を用いて篩分を行った以外は、実施例1と同様な方法で実施例2の乾燥剤を用意した。
(実施例3)
標準篩#16及び標準篩#12の代わりに、標準篩#30(目開き0.59mm)及び標準篩#20(目開き0.84mm)を用いて篩分を行った以外は、実施例1と同様な方法で実施例3の乾燥剤を用意した。
(実施例4)
標準篩#16及び標準篩#12の代わりに、標準篩#14(目開き1.41mm)及び標準篩#12(目開き1.68mm)を用いて篩分を行った以外は、実施例1と同様な方法で実施例4の乾燥剤を用意した。
(実施例5)
標準篩#16及び標準篩#12の代わりに、標準篩#20(目開き0.84mm)及び標準篩#16(目開き1.19mm)を用いて篩分を行った以外は、実施例1と同様な方法で実施例5の乾燥剤を用意した。
Example 1
A commercially available bead-shaped 3A-type synthetic zeolite is sieved using standard sieve # 16 (mesh size 1.19 mm) and standard sieve # 12 (mesh size 1.70 mm), and standard sieve # 16 and standard sieve 500 g of type 3A synthetic zeolite between # 12 and # 12 was prepared. This 3A type synthetic zeolite was used as the desiccant of Example 1.
(Example 2)
Example 1 except using standard sieve # 10 (open 2.00 mm) and standard sieve # 8 (open 2.38 mm) instead of standard sieve # 16 and standard sieve # 12 The desiccant of Example 2 was prepared in the same manner as in.
(Example 3)
Example 1 except using standard sieve # 30 (aperture 0.59 mm) and standard sieve # 20 (aperture 0.84 mm) instead of standard sieve # 16 and standard sieve # 12 The desiccant of Example 3 was prepared in the same manner as in.
(Example 4)
Example 1 except using standard sieve # 14 (1.41 mm in mesh) and standard sieve # 12 (1.68 mm in mesh) instead of standard sieve # 16 and standard sieve # 12 The desiccant of Example 4 was prepared in the same manner as in.
(Example 5)
Example 1 except using standard sieve # 20 (0.84 mm aperture) and standard sieve # 16 (1.19 mm aperture) instead of standard sieve # 16 and standard sieve # 12 The desiccant of Example 5 was prepared in the same manner as in.

(比較例1)
標準篩#16及び標準篩#12の代わりに、標準篩#70(目開き0.21mm)及び標準篩#20(目開き0.84mm)を用いて篩分を行った以外は、実施例1と同様な方法で比較例1の乾燥剤を用意した。
(比較例2)
標準篩#16及び標準篩#12の代わりに、標準篩#8(目開き2.38mm)及び標準篩#7(目開き2.83mm)を用いて篩分を行った以外は、実施例1と同様な方法で比較例2の乾燥剤を用意した。
(比較例3)
標準篩#16及び標準篩#12の代わりに、標準篩#40(目開き0.42mm)及び標準篩#25(目開き0.71mm)を用いて篩分を行った以外は、実施例1と同様な方法で比較例3の乾燥剤を用意した。
(比較例4)
標準篩#16及び標準篩#12の代わりに、標準篩#8(目開き2.38mm)及び標準篩#7(目開き2.83mm)を用いて篩分を行った以外は、実施例1と同様な方法で比較例4の乾燥剤を用意した。
(比較例5)
標準篩#16及び標準篩#12の代わりに、標準篩#16(目開き1.19mm)及び標準篩#10(目開き2.00mm)を用いて篩分を行った以外は、実施例1と同様な方法で比較例5の乾燥剤を用意した。
(Comparative example 1)
Example 1 except using standard sieve # 70 (0.21 mm mesh) and standard sieve # 20 (0.84 mm mesh) instead of standard sieve # 16 and standard sieve # 12 The desiccant of Comparative Example 1 was prepared in the same manner as in the above.
(Comparative example 2)
Example 1 except that sieving was performed using standard sieve # 8 (2.38 mm aperture) and standard sieve # 7 (2.83 mm aperture) instead of standard sieve # 16 and standard sieve # 12. The desiccant of Comparative Example 2 was prepared in the same manner as in the above.
(Comparative example 3)
Example 1 was carried out except using standard sieve # 40 (opening 0.42 mm) and standard sieve # 25 (opening 0.71 mm) instead of standard sieve # 16 and standard sieve # 12. The desiccant of Comparative Example 3 was prepared in the same manner as in the above.
(Comparative example 4)
Example 1 except that sieving was performed using standard sieve # 8 (2.38 mm aperture) and standard sieve # 7 (2.83 mm aperture) instead of standard sieve # 16 and standard sieve # 12. The desiccant of Comparative Example 4 was prepared in the same manner as in the above.
(Comparative example 5)
Example 1 except using standard sieve # 16 (1.19 mm mesh) and standard sieve # 10 (2.00 mm mesh) instead of standard sieve # 16 and standard sieve # 12 The desiccant of Comparative Example 5 was prepared in the same manner as in the above.

[評価結果]
実施例1〜5及び比較例1〜5の乾燥剤の平均粒径、粒径の範囲、ダスト量、摩耗減少量及び機械的強度の評価結果を以下の表1に示す。
[Evaluation results]
The evaluation results of the average particle diameter, the range of particle diameter, the amount of dust, the amount of reduction in wear, and the mechanical strength of the desiccants of Examples 1 to 5 and Comparative Examples 1 to 5 are shown in Table 1 below.

図1に示すように、平均粒径が0.6〜2.5mmの本発明の範囲とすることで、摩耗減少量を0.7(wt%)以下に抑制することができる。   As shown in FIG. 1, the wear reduction amount can be suppressed to 0.7 (wt%) or less by setting the average particle diameter in the range of 0.6 to 2.5 mm according to the present invention.

実施例1〜5及び比較例1〜5の結果より、乾燥剤の平均粒径が0.6〜2.5mmであり、粒径の範囲が0.55mm以下であると、ダスト量が小さく、摩耗減少量が小さく、冷媒用乾燥剤と冷媒用乾燥剤を収容する袋体とを含むドライヤとして使用するのに十分な機械的強度を有する乾燥剤を得られることがわかった。   From the results of Examples 1 to 5 and Comparative Examples 1 to 5, when the average particle diameter of the desiccant is 0.6 to 2.5 mm and the range of the particle diameter is 0.55 mm or less, the dust amount is small, It has been found that it is possible to obtain a desiccant which has a small amount of wear reduction and which has a mechanical strength sufficient for use as a dryer including a desiccant for refrigerant and a bag containing a desiccant for refrigerant.

本発明の冷媒用乾燥剤は耐摩耗性に優れ、充填時のダストや静電気の発生、乾燥剤の噛み込み、充填時の乾燥剤の摩耗等の種々のトラブルが低減されるため、袋体に冷媒用乾燥剤を充填する作業を自動で行う自動化対応にも好適である。   The desiccant for refrigerant of the present invention is excellent in abrasion resistance, and various problems such as generation of dust and static electricity at the time of filling, biting of the desiccant, abrasion of the desiccant at the time of filling and the like are reduced. It is suitable also for automation corresponding to the operation of automatically filling the refrigerant desiccant.

Claims (9)

冷凍サイクルシステムの冷媒中の水分を吸着する粒状の冷媒用乾燥剤であって、
平均粒径が0.6〜2.5mmであり、
粒径の範囲が0.55mm以下である冷媒用乾燥剤。
A particulate refrigerant desiccant for adsorbing moisture in refrigerant of a refrigeration cycle system, comprising:
The average particle size is 0.6 to 2.5 mm,
Desiccant for refrigerants having a particle size range of 0.55 mm or less.
粒径の範囲が0.40mm以下である請求項1に記載の冷媒用乾燥剤。   The desiccant for refrigerant | coolant of Claim 1 whose range of a particle size is 0.40 mm or less. 平均粒径が0.6〜2.3mmである請求項1または2に記載の冷媒用乾燥剤。   The desiccant for refrigerant | coolants of Claim 1 or 2 whose average particle diameter is 0.6-2.3 mm. 粒径の範囲が0.10mm以上である請求項1〜3のいずれか1項に記載の冷媒用乾燥剤。   The range of a particle size is 0.10 mm or more, The desiccant for refrigerant | coolants of any one of Claims 1-3. 平均粒径が0.7〜2.2mmであり、
粒径の範囲が0.25〜0.51mmである請求項1に記載の冷媒用乾燥剤。
Average particle size is 0.7 to 2.2 mm,
The desiccant for refrigerant | coolant of Claim 1 which is a range of 0.25-0.51 mm of particle sizes.
合成ゼオライトの造粒物である請求項1〜5のいずれか1項に記載の冷媒用乾燥剤。   The desiccant for a refrigerant according to any one of claims 1 to 5, which is a granulated product of synthetic zeolite. 前記合成ゼオライトが、3A型合成ゼオライトまたは4A型合成ゼオライトである請求項6に記載の冷媒用乾燥剤   The desiccant for a refrigerant according to claim 6, wherein the synthetic zeolite is 3A synthetic zeolite or 4A synthetic zeolite. 前記冷凍サイクルシステムが車両用の冷凍サイクルシステムである請求項1〜7のいずれか1項に記載の冷媒用乾燥剤。   The refrigerant desiccant according to any one of claims 1 to 7, wherein the refrigeration cycle system is a refrigeration cycle system for a vehicle. 請求項1〜8のいずれか1項に記載の冷媒用乾燥剤と、
該冷媒用乾燥剤を収容する袋体とを含むドライヤ。
The desiccant for refrigerant | coolant of any one of Claims 1-8,
And a bag containing the refrigerant desiccant.
JP2017215604A 2017-11-08 2017-11-08 Refrigerator desiccant and dryer Pending JP2019086236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215604A JP2019086236A (en) 2017-11-08 2017-11-08 Refrigerator desiccant and dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215604A JP2019086236A (en) 2017-11-08 2017-11-08 Refrigerator desiccant and dryer

Publications (1)

Publication Number Publication Date
JP2019086236A true JP2019086236A (en) 2019-06-06

Family

ID=66762756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215604A Pending JP2019086236A (en) 2017-11-08 2017-11-08 Refrigerator desiccant and dryer

Country Status (1)

Country Link
JP (1) JP2019086236A (en)

Similar Documents

Publication Publication Date Title
JP4899013B2 (en) Method for drying a gas stream comprising fluoropropene
Ristić et al. Improved performance of binder-free zeolite Y for low-temperature sorption heat storage
US20090211453A1 (en) Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment
US3899310A (en) Alumina-zeolite composite adsorbents for refrigerants
US6589444B2 (en) Process for separating water from chemical mixtures
SG190208A1 (en) Methods and compositions for drying coal
US6168720B1 (en) Process for drying CH2F2 refrigerant utilizing zeolite
US6020281A (en) Process for drying CH2 F2 refrigerant utilizing zeolite
JPH0620544B2 (en) Adsorbent for gas purification and purification method
US6551700B2 (en) Spherical high-performance adsorbents with microstructure
JP2019086236A (en) Refrigerator desiccant and dryer
US20180237678A1 (en) Composite material for thermochemical storage and a method for forming a composite material
JP4660876B2 (en) Method for producing zeolite bead compact
ES2906779T3 (en) Use of molecular sieves for the decarbonation of natural gas
JP2004125200A (en) Refrigerant recovering device and refrigerant recovering method using this device
JP2018021706A (en) Refrigerant desiccant and dryer
JPH07294066A (en) Refrigeration system
US3407617A (en) Method of removing dissolved wax from a refrigerant
JPH08121909A (en) Refrigerating device
Shabir et al. Study on adsorption equilibrium of adsorbent-refrigerant pairs for adsorption cooling system application
JP2001261330A (en) Zeolite bead molding, method of producing the same, and method of adsorbing and removing using the zeolite bead molding
JP6733870B2 (en) Refrigeration cycle and receiver tank
JP2017120153A (en) Capacitor
JP2003305330A (en) Porous moisture absorbent
JPH08121908A (en) Hydrofluorocarbon dryer