JP2017120153A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2017120153A
JP2017120153A JP2015256554A JP2015256554A JP2017120153A JP 2017120153 A JP2017120153 A JP 2017120153A JP 2015256554 A JP2015256554 A JP 2015256554A JP 2015256554 A JP2015256554 A JP 2015256554A JP 2017120153 A JP2017120153 A JP 2017120153A
Authority
JP
Japan
Prior art keywords
desiccant
heat exchange
refrigerant
hygroscopic
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015256554A
Other languages
Japanese (ja)
Other versions
JP6696175B2 (en
Inventor
堀田 雅敏
Masatoshi Hotta
雅敏 堀田
淳二 武田
Junji Takeda
淳二 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Showa KK
Original Assignee
Union Showa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Showa KK filed Critical Union Showa KK
Priority to JP2015256554A priority Critical patent/JP6696175B2/en
Publication of JP2017120153A publication Critical patent/JP2017120153A/en
Application granted granted Critical
Publication of JP6696175B2 publication Critical patent/JP6696175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of improving a moisture removal capability in a sub-cooling capacitor.SOLUTION: A capacitor comprises: multiple heat exchange tubes that are disposed in parallel; and a header tank communicating with both right and left ends of the heat exchange tubes. A coolant condensation path consists of upper multiple heat exchange tubes among the heat exchange tubes, and a coolant over-cooling path consists of lower multiple heat exchange tubes. A packaging material filled with beads-like desiccant is disposed within a header tank where a coolant passing through the coolant condensation path flows in and flows out to the over-cooling path, among the header tanks. The packaging material is formed from at least either a hygroscopic resin in which powder-like desiccant are dispersed or a hygroscopic unwoven fabric to which powder-like desiccant are deposited.SELECTED DRAWING: Figure 2

Description

本発明は、自動車用エアコンの冷凍サイクルを構成するサブクール式のコンデンサ(以下、サブクールコンデンサ)に関するものである。   The present invention relates to a subcool condenser (hereinafter referred to as a subcool condenser) that constitutes a refrigeration cycle of an automotive air conditioner.

自動車用エアコン用の冷凍サイクルは、コンプレッサー、コンデンサ、膨張弁およびエバポレータを中空管で連結して構成される。通常、コンデンサ内で凝縮した冷媒は過冷却度が不充分であり、下流側での僅かな受熱や圧損によって気化する不安定な状態にあり、このために冷凍サイクルの効率低下や変動を生じ易い。この対策として、コンデンサによる凝縮を経た冷媒を更に凝縮温度よりも5〜8℃程度低い温度まで過冷却するサブクール部を設け、液冷媒として安定化した状態で蒸発器側へ送る方法が知られている(例えば、特許文献1)。このサブクール部は、空間効率の観点から、コンデンサに一体に組み込んだ構成(サブクールコンデンサ)とすることが多い。   A refrigeration cycle for an automotive air conditioner is configured by connecting a compressor, a condenser, an expansion valve, and an evaporator with a hollow tube. Usually, the refrigerant condensed in the condenser is insufficiently supercooled, and is in an unstable state that is vaporized by slight heat reception or pressure loss on the downstream side, which tends to cause the efficiency reduction or fluctuation of the refrigeration cycle. . As a countermeasure against this, there is known a method of providing a subcool section for supercooling the refrigerant that has been condensed by the condenser to a temperature lower by about 5 to 8 ° C. than the condensation temperature, and sending it to the evaporator side in a stabilized state as a liquid refrigerant. (For example, Patent Document 1). In many cases, the subcool portion has a structure (subcool capacitor) integrated into a capacitor from the viewpoint of space efficiency.

サブクールコンデンサは、通常、並列配置された複数の熱交換管と、熱交換管の左右両端部と連通するヘッダタンクとを備え、熱交換管のうち、上方の複数の熱交換管により冷媒凝縮パスを構成し、下方の複数の熱交換管により冷媒過冷却パスを構成している。前記の冷媒凝縮パスでは、冷媒の凝縮が行われ、冷媒過冷却パスでは、冷媒の過冷却が行われる。   The subcool condenser usually includes a plurality of heat exchange pipes arranged in parallel and header tanks communicating with the left and right ends of the heat exchange pipe. Among the heat exchange pipes, a refrigerant condensing path is formed by a plurality of upper heat exchange pipes. The refrigerant subcooling path is configured by a plurality of heat exchange tubes below. In the refrigerant condensing path, the refrigerant is condensed, and in the refrigerant subcooling path, the refrigerant is subcooled.

冷凍サイクル中に水分が含まれていると膨脹弁の細孔で凍結して冷媒の流れを阻害したり、冷凍装置の機能部品を腐蝕させるおそれがあるため、冷凍サイクル中には、乾燥剤を配置することが好ましく、例えば、特許文献1には、前記のヘッダタンクのうち、冷媒凝縮パスを経た冷媒を流入させて、過冷却パスへと流出させるヘッダタンク内に、ビーズ状の乾燥剤を充填した乾燥剤充填容器を配置した構造が開示されている。この乾燥剤によって、冷媒中に混入した水分が除去される。   If moisture is contained in the refrigeration cycle, it may freeze at the pores of the expansion valve and hinder the flow of refrigerant or corrode functional parts of the refrigeration equipment. For example, in Patent Document 1, a bead-shaped desiccant is introduced into the header tank that causes the refrigerant that has passed through the refrigerant condensation path to flow into the supercooling path. A structure in which a filled desiccant-filled container is arranged is disclosed. This desiccant removes moisture mixed in the refrigerant.

乾燥剤による水分除去能力は、使用される乾燥剤の量に比例するが、ヘッダタンク内の限られたスペースに封入できる乾燥剤の容量には限界がある。
乾燥剤の封入量を増加させることなく、サブクールコンデンサの水分除去能力向上を求める手段として、封入する乾燥剤自体の吸湿能力を改善する方法が考えられる。最近では、自動車用エアコンの冷凍サイクル内で使用される乾燥剤には特に高い硬度が求められ、この硬度と更に高い吸湿能力を両立させた乾燥剤が開発されて来てはいるものの、更なる性能向上が求められている。
また、ヘッダタンクを大型化して乾燥剤の封入量増加を図ることは可能であるが、ヘッダタンクの大型化は、車体の限られた空間を有効利用するといった観点や、車載設備の軽量化を図るといった観点から好ましくない。
Although the ability of the desiccant to remove moisture is proportional to the amount of desiccant used, the capacity of the desiccant that can be enclosed in a limited space in the header tank is limited.
A method for improving the moisture absorption capability of the encapsulating desiccant itself can be considered as a means for obtaining an improvement in the moisture removal capability of the subcool condenser without increasing the encapsulating amount of the desiccant. Recently, the desiccant used in the refrigeration cycle of automobile air conditioners is required to have a particularly high hardness, and although a desiccant that has both this hardness and a higher moisture absorption capacity has been developed, further desiccant has been developed. There is a need for improved performance.
In addition, it is possible to increase the amount of desiccant by increasing the size of the header tank. However, increasing the size of the header tank can reduce the weight of in-vehicle equipment in terms of effective use of the limited space of the vehicle body. It is not preferable from the viewpoint of aiming.

特開2012−154604号公報JP 2012-154604 A

本発明の目的は、上記の問題を解決し、従来ヘッダタンク内で使用されていた乾燥剤を、種類も封入量も変えることなく、そのまま使用した場合であっても、サブクールコンデンサにおける水分除去能力を向上させることができる技術を提供することである。   The object of the present invention is to solve the above-mentioned problems, and even if the desiccant used in the conventional header tank is used as it is without changing the type and the amount of filling, the water removal capability in the subcool condenser is achieved. It is to provide a technique capable of improving

本発明では、上記の課題を解決するための手段として、冷凍サイクルを構成するコンデンサにおいて、並列配置された複数の熱交換管と、熱交換管の左右両端部が接続されたヘッダタンクとを備え、前記熱交換管のうち、上方の複数の熱交換管により冷媒凝縮パスを構成し、下方の複数の熱交換管により冷媒過冷却パスを構成し、前記ヘッダタンクのうち、前記冷媒凝縮パスを経た冷媒を流入させて、前記過冷却パスへと流出させるヘッダタンク内に、乾燥剤を充填した包材を配置し、この包材が、パウダー状乾燥剤が分散された吸湿性樹脂もしくは、パウダー状乾燥剤を添着させた吸湿性不織布の少なくとも何れかである構成を採用した。   In the present invention, as means for solving the above-mentioned problems, in the condenser constituting the refrigeration cycle, a plurality of heat exchange pipes arranged in parallel and header tanks to which the left and right ends of the heat exchange pipe are connected are provided. Among the heat exchange pipes, a plurality of upper heat exchange pipes constitute a refrigerant condensation path, a plurality of lower heat exchange pipes constitute a refrigerant subcooling path, and the header tank includes the refrigerant condensation path. A wrapping material filled with a desiccant is placed in a header tank through which the passed refrigerant flows and flows out to the supercooling path, and this wrapping material is a hygroscopic resin in which a powdery desiccant is dispersed or a powder The structure which is at least any one of the hygroscopic nonwoven fabric which attached the dry desiccant was employ | adopted.

前記パウダー状乾燥剤は、ゼオライトであることが好ましい。   The powdery desiccant is preferably zeolite.

前記吸湿性樹脂は、ゼオライトと熱可塑性樹脂を含有することが好ましい。この熱可塑性樹脂は、軟化点が70℃以上であることが好ましく、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレンの少なくとも何れかであることがより好ましい。   The hygroscopic resin preferably contains a zeolite and a thermoplastic resin. The thermoplastic resin preferably has a softening point of 70 ° C. or higher, and is more preferably at least one of polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, and syndiotactic polystyrene. preferable.

前記吸湿性不織布が、不織布原紙の重量に対して、パウダー状乾燥剤を10〜70%含有する不織布であることが好ましく、前記吸湿性不織布を構成する繊維が、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維の少なくとも何れかを含むことが好ましい。   The hygroscopic non-woven fabric is preferably a non-woven fabric containing 10 to 70% of a powdery desiccant with respect to the weight of the non-woven fabric, and the fibers constituting the hygroscopic non-woven fabric are aramid fibers, glass fibers, and cellulose fibers. It is preferable that at least one of nylon fiber, polyester fiber, polyolefin fiber, and rayon fiber is included.

上記構成からなる本発明では、サブクールコンデンサのヘッダタンク内に配置される乾燥剤を収容する包材を、吸湿性樹脂もしくは吸湿性不織布で作成しているため、冷媒中に混入している水分を、従来の成型された乾燥剤のほか、パウダー状乾燥剤が分散された吸湿性樹脂もしくは、パウダー状乾燥剤を添着させた吸湿性不織布からなる包材によっても除去することができる。このため、本発明によれば、従来ヘッダタンク内で使用されていた乾燥剤を、種類も封入量も変えることなく、そのまま使用した場合であっても、サブクールコンデンサにおける水分除去能力を向上させることができる。   In the present invention configured as described above, since the packaging material containing the desiccant disposed in the header tank of the subcool condenser is made of a hygroscopic resin or a hygroscopic nonwoven fabric, moisture mixed in the refrigerant is removed. In addition to the conventional molded desiccant, it can also be removed by a hygroscopic resin in which a powdery desiccant is dispersed or a packaging material made of a hygroscopic nonwoven fabric to which a powdery desiccant is attached. For this reason, according to the present invention, the desiccant that has been used in the header tank in the past can be used as it is without changing the type and the amount of sealing, and the water removal capability of the subcool condenser can be improved. Can do.

本実施形態のコンデンサの全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of the capacitor of this embodiment. 図1のコンデンサを模式的に示す正面図である。FIG. 2 is a front view schematically showing the capacitor of FIG. 1.

本発明は、冷凍サイクルを構成するコンデンサにおいて、並列配置された複数の熱交換管と、熱交換管の左右両端部と連通するヘッダタンクとを備え、前記熱交換管のうち、上方の複数の熱交換管により冷媒凝縮パスを構成し、下方の複数の熱交換管により冷媒過冷却パスを構成し、前記ヘッダタンクのうち、前記冷媒凝縮パスを経た冷媒を流入させて、前記過冷却パスへと流出させるヘッダタンク内に、乾燥剤を充填した包材を配置し、この包材が、パウダー状乾燥剤が分散された吸湿性樹脂もしくは、パウダー状乾燥剤を添着させた吸湿性不織布の少なくとも何れかである構成としたものである。以下、本発明の実施の形態について、図面を参照しながら説明する。   In the condenser constituting the refrigeration cycle, the present invention includes a plurality of heat exchange tubes arranged in parallel, and header tanks communicating with the left and right ends of the heat exchange tube, and among the heat exchange tubes, A refrigerant condensing path is constituted by the heat exchange pipe, a refrigerant subcooling path is constituted by the plurality of lower heat exchange pipes, and the refrigerant that has passed through the refrigerant condensing path is introduced into the header tank to the supercooling path. A wrapping material filled with a desiccant is disposed in the header tank to be discharged, and this wrapping material is at least a hygroscopic resin in which a powdery desiccant is dispersed or a hygroscopic nonwoven fabric to which a powdery desiccant is attached. It is set as the structure which is either. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態のコンデンサは、冷媒が流通する扁平状の複数本の熱交換管1が長手方向(水平方向)に設けられ、その各熱交換管1間には、冷媒と空気との熱交換を促進する波状のフィン2が配設されており、このフィン2および熱交換管1により冷媒と空気とを熱交換させる熱交換管路が並列配置された熱交換パス(図2に示す冷媒凝縮パス3、冷媒過冷却パス4)を形成している。   As shown in FIG. 1, the condenser of this embodiment is provided with a plurality of flat heat exchange tubes 1 in the longitudinal direction (horizontal direction) through which refrigerant flows, and between the heat exchange tubes 1, there is a refrigerant. And a heat exchange path (in which heat exchange pipes for exchanging heat between the refrigerant and air are arranged in parallel by the fins 2 and the heat exchange pipe 1. A refrigerant condensing path 3 and a refrigerant subcooling path 4) shown in FIG. 2 are formed.

また、熱交換管1の両端側には、熱交換管の長手方向(水平方向)と直交する方向(垂直方向)に延びて複数本の熱交換管1と連通するヘッダータンク5、6、7を配設している。そして、ヘッダータンク5には、冷媒入口部8が設けられ、ヘッダータンク6には、冷媒出口部9が設けられている。ヘッダータンク6には、仕切り板10が設けられている。冷媒入口部8から流入した冷媒は、図中に示す矢印aから矢印kの順に流れて、冷媒出口部9から流出する。   Further, header tanks 5, 6, 7 that extend in a direction (vertical direction) perpendicular to the longitudinal direction (horizontal direction) of the heat exchange pipe and communicate with the plurality of heat exchange pipes 1 are disposed at both ends of the heat exchange pipe 1. Is arranged. The header tank 5 is provided with a refrigerant inlet 8, and the header tank 6 is provided with a refrigerant outlet 9. A partition plate 10 is provided in the header tank 6. The refrigerant flowing in from the refrigerant inlet 8 flows in the order of the arrow a to the arrow k shown in the figure, and flows out from the refrigerant outlet 9.

熱交換パスは、冷媒の凝縮が行われる冷媒凝縮パス3(図2中に示す矢印bから矢印gまで)と、凝縮されて気液混合状態となった冷媒の過冷却が行われる冷媒過冷却パス4(図中に示す矢印hから矢印jまで)とに区分されている。   The heat exchange path includes a refrigerant condensing path 3 (from arrow b to arrow g shown in FIG. 2) in which refrigerant is condensed, and refrigerant supercooling in which refrigerant that has been condensed into a gas-liquid mixed state is subcooled. It is divided into paths 4 (from arrow h to arrow j shown in the figure).

ヘッダタンクのうち、前記冷媒凝縮パスを経た冷媒を流入させて、前記過冷却パスへと流出させるヘッダタンク7内には、ビーズ状の乾燥剤を充填した包材11が配置されている。本明細書において、「ビーズ状」とは、平均粒径0.5〜4.8mm程度(4〜35メッシュ程度)の球状の成形体(原料粉末を圧縮成形したもの)を意味する。
乾燥剤に冷媒(例えば、代替フロン)が吸着されると発熱が生じるため、乾燥剤は、0.28nm(2.8Å)の分子径を有する水分子は吸着され、冷媒は吸着されない有効細孔径を有するものであることが好ましい。
冷媒がフッ素系ガスの場合、フッ素系ガス分子は、ゼオライトの有効細孔径5Å以上で取り込まれやすくなるため、有効細孔径が3〜4Åのゼオライトが好ましい。具体的には、有効細孔径3Åの3A型ゼオライトもしくは有効細孔径4Åの4A型ゼオライトが好適である。本明細書において有効細孔径は、定容量式ガス吸着法により測定される細孔径であり、定容量式ガス吸着法に使用する吸着ガスとしては、N、CO、CH、H等が挙げられる。
A packaging material 11 filled with a bead-shaped desiccant is disposed in the header tank 7 in which the refrigerant having passed through the refrigerant condensing path flows in the header tank and flows out to the supercooling path. In this specification, “bead-like” means a spherical shaped body (compressed raw material powder) having an average particle size of about 0.5 to 4.8 mm (about 4 to 35 mesh).
Since heat is generated when a refrigerant (for example, alternative chlorofluorocarbon) is adsorbed on the desiccant, the desiccant adsorbs water molecules having a molecular diameter of 0.28 nm (2.8 cm), and effective pore diameter that does not adsorb the refrigerant. It is preferable that it has.
When the refrigerant is a fluorine-based gas, the fluorine-based gas molecules are easily taken in when the effective pore diameter of the zeolite is 5 mm or more. Therefore, zeolite having an effective pore diameter of 3 to 4 mm is preferable. Specifically, 3A-type zeolite having an effective pore diameter of 3 mm or 4A-type zeolite having an effective pore diameter of 4 mm is preferable. In this specification, the effective pore diameter is a pore diameter measured by a constant volume gas adsorption method, and examples of the adsorption gas used in the constant volume gas adsorption method include N 2 , CO 2 , CH 4 , H 2, and the like. Is mentioned.

本発明では、この包材を、パウダー状乾燥剤が分散された吸湿性樹脂もしくは、パウダー状乾燥剤を添着させた吸湿性不織布の少なくとも何れかで構成している。   In the present invention, the packaging material is composed of at least one of a hygroscopic resin in which a powdery desiccant is dispersed or a hygroscopic nonwoven fabric to which a powdery desiccant is attached.

(吸湿性樹脂)
吸湿性樹脂は、冷媒に含まれた水分を吸着するパウダー状乾燥剤を樹脂中に分散させた合成樹脂である。本明細書において、「パウダー状」とは、粒径0.1〜60μm程度の粉末状を意味する。パウダー状乾燥剤の平均粒径(d50)は、樹脂との混合の観点から、より好ましくは1〜10μm、更に好ましくは2〜5μmである。
(Hygroscopic resin)
The hygroscopic resin is a synthetic resin in which a powdery desiccant that adsorbs moisture contained in the refrigerant is dispersed in the resin. In this specification, “powder” means a powder having a particle size of about 0.1 to 60 μm. The average particle diameter (d50) of the powdery desiccant is more preferably 1 to 10 μm, still more preferably 2 to 5 μm, from the viewpoint of mixing with the resin.

パウダー状乾燥剤は、ゼオライトであることが好ましい。   The powdery desiccant is preferably zeolite.

上記のビーズ状乾燥剤と同様に、パウダー状乾燥剤に冷媒(例えば、代替フロン)が吸着されると発熱が生じるため、パウダー状乾燥剤は、0.28nm(2.8Å)の分子径を有する水分子は吸着され、冷媒は吸着されない有効細孔径を有するものであることが好ましく、有効細孔径が3〜4Åのゼオライトが好ましい。具体的には、有効細孔径3Åの3A型ゼオライトもしくは有効細孔径4Åの4A型ゼオライトが好適である。但し、使用する冷媒の種類によって、ゼオライトに冷媒が吸着しないように、ゼオライトの有効細孔径の大きさに注意する必要がある。   As with the above-mentioned bead-shaped desiccant, heat is generated when a refrigerant (for example, alternative chlorofluorocarbon) is adsorbed to the powder-shaped desiccant. It is preferable to have an effective pore size in which water molecules are adsorbed and refrigerant is not adsorbed, and zeolite having an effective pore size of 3 to 4 mm is preferable. Specifically, 3A-type zeolite having an effective pore diameter of 3 mm or 4A-type zeolite having an effective pore diameter of 4 mm is preferable. However, depending on the type of refrigerant used, it is necessary to pay attention to the size of the effective pore diameter of the zeolite so that the refrigerant is not adsorbed on the zeolite.

カーエアコンの冷凍サイクルでは、冷媒が60℃程度の高温に晒される事もあるため、パウダー状乾燥剤を分散させる樹脂としては、軟化点が70℃以上のエンジニアリング・プラスチックが好ましく、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレンの少なくとも何れかが好適である。   In the refrigeration cycle of a car air conditioner, the refrigerant may be exposed to a high temperature of about 60 ° C. Therefore, the resin for dispersing the powdery desiccant is preferably an engineering plastic having a softening point of 70 ° C. or higher, such as polyacetal, polyamide, At least one of polycarbonate, modified polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, and syndiotactic polystyrene is suitable.

吸湿性樹脂には、パウダー状乾燥剤を樹脂中に均一に分散させる目的で、分散剤を配合することができる。このような分散剤としては、一般に、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸リチウム、ステアリン酸アルミニウム、ステアリン酸カルシウム、12−ヒドロキシステアリン酸カルシウム等の金属石ケンや、エチレンビスステアリルアマイド、低分子量ポリエチレンワックス、流動パラフィン、パラフィン合成ワックス、ポリプロピレンワックス、シリコーンオイル等を挙げることができる。これらの分散剤は、一般に、樹脂成分100g当り0.5〜5g、特に1〜3g使用される。その他、吸湿性や成形性等を損なわない限りの量で、それ自体公知の各種配合剤、例えば滑剤、帯電防止剤、酸化防止剤等を適宜配合することもできる。   In the hygroscopic resin, a dispersant can be blended for the purpose of uniformly dispersing the powdery desiccant in the resin. Such dispersants generally include metal soaps such as zinc stearate, magnesium stearate, lithium stearate, aluminum stearate, calcium stearate, 12-hydroxy calcium stearate, ethylene bisstearyl amide, low molecular weight polyethylene wax. , Liquid paraffin, paraffin synthetic wax, polypropylene wax, silicone oil and the like. These dispersants are generally used in an amount of 0.5 to 5 g, particularly 1 to 3 g per 100 g of the resin component. In addition, various compounding agents known per se, for example, lubricants, antistatic agents, antioxidants, and the like can be appropriately blended in amounts that do not impair hygroscopicity and moldability.

吸湿性樹脂からなる包材11は、上記のパウダー状乾燥剤と樹脂を混練してマスターバッチとした後、パウダー状乾燥剤含有マスターバッチをそのまま、あるいは、樹脂と混合してメッシュ状の包材を作成する。当該マスターバッチは、パウダー状乾燥剤を好ましくは10〜70質量%、より好ましくは20〜70質量%、さらに好ましくは30〜70質量%の割合で含有するものである。
パウダー状乾燥剤の含有量は、好ましくは10〜70質量%、より好ましくは20〜70質量%、さらに好ましくは30〜70質量%である。
パウダー状乾燥剤の含有量が少なすぎると所望の吸水性能が発現しない恐れがあるが、上記範囲とすることにより、所望の吸水性能を確実に発現させることができる。
一方、パウダー状乾燥剤の含有量が多すぎると、パウダー状乾燥剤が冷媒中に落下する可能性が高まる他、吸湿性樹脂の物性(強度等)が低下する恐れがあるが、上記範囲とすることにより、これらのリスクを確実に回避することができる。
The packaging material 11 made of a hygroscopic resin is a mesh-like packaging material obtained by kneading the above-mentioned powdery desiccant and resin into a masterbatch, and then mixing the powdery desiccant-containing masterbatch directly with the resin. Create The masterbatch preferably contains a powdery desiccant in a proportion of 10 to 70% by mass, more preferably 20 to 70% by mass, and still more preferably 30 to 70% by mass.
The content of the powdery desiccant is preferably 10 to 70% by mass, more preferably 20 to 70% by mass, and still more preferably 30 to 70% by mass.
If the content of the powdery desiccant is too small, the desired water absorption performance may not be exhibited. However, by setting the content in the above range, the desired water absorption performance can be reliably exhibited.
On the other hand, if the content of the powdery desiccant is too large, there is a possibility that the powdery desiccant may fall into the refrigerant, and the physical properties (strength, etc.) of the hygroscopic resin may be lowered. By doing so, these risks can be surely avoided.

次に、具体的な例を用いて本実施の形態による効果を説明する。パウダー状乾燥剤にはモレキュラーシーブ3Aパウダー(ユニオン昭和株式会社製)を用い、パウダー状乾燥剤を分散させる樹脂にはポリカーボネート樹脂を用いて、吸湿性樹脂からなるメッシュ状の包材11を作成する。   Next, the effect by this Embodiment is demonstrated using a specific example. A molecular sieve 3A powder (manufactured by Union Showa Co., Ltd.) is used as the powdery desiccant, and a polycarbonate resin is used as the resin to disperse the powdery desiccant, thereby creating a mesh-like packaging material 11 made of a hygroscopic resin. .

包材11は、車の大きさによってサイズが異なるが、通常10〜100g程度のビーズ状ゼオライトを封入することができるサイズのものが多い。モレキュラーシーブの吸水量は、モレキュラーシーブの質量に対して、最大20%であるので、例えば、モレキュラーシーブ3Aパウダーを樹脂の重量に対して10g含有させた場合、従来技術(本発明の吸湿性を有さない通常の樹脂)を用いた場合に比べて、吸水量を最大2g程度向上させることができる。   Although the size of the packaging material 11 varies depending on the size of the vehicle, the size of the packaging material 11 is usually large enough to enclose about 10 to 100 g of beaded zeolite. The amount of water absorbed by the molecular sieve is 20% at the maximum with respect to the mass of the molecular sieve. Therefore, for example, when 10 g of molecular sieve 3A powder is contained with respect to the weight of the resin, the conventional technology (the hygroscopicity of the present invention is reduced). The amount of water absorption can be improved by up to about 2 g compared to the case of using a normal resin that does not have.

(吸湿性不織布)
吸湿性不織布は、冷媒に含まれた水分を吸着するパウダー状乾燥剤を不織布に添着させたものである。不織布を構成する繊維は、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維の少なくとも何れから選択される繊維を含むことが好ましい。
ゼオライトを不織布に添着させる方法としては、例えば、不織布に対し、ゼオライトを有機溶剤とバインダーに分散させたものに浸漬させたり、吹き付ける等して添着させた後、乾燥機にて乾燥する工程を経ることによって固定化することができる。
添着させる工程後、乾燥工程にてある程度の水分は除去可能であるが、湿度をコントロールした室内やドライボックス内で実施することがより望ましい。
(Hygroscopic nonwoven fabric)
The hygroscopic nonwoven fabric is obtained by attaching a powdery desiccant that adsorbs moisture contained in a refrigerant to the nonwoven fabric. The fibers constituting the nonwoven fabric preferably include fibers selected from at least any of aramid fibers, glass fibers, cellulose fibers, nylon fibers, polyester fibers, polyolefin fibers, and rayon fibers.
As a method of attaching the zeolite to the nonwoven fabric, for example, the nonwoven fabric is immersed in an organic solvent and a binder dispersed in an organic solvent or sprayed, and then dried in a dryer. Can be fixed.
A certain amount of moisture can be removed in the drying step after the attaching step, but it is more preferable to carry out in a room or a dry box in which the humidity is controlled.

パウダー状乾燥剤は、ゼオライトであることが好ましい。   The powdery desiccant is preferably zeolite.

上記のビーズ状乾燥剤と同様に、パウダー状乾燥剤に冷媒(例えば、代替フロン)が吸着されると発熱が生じるため、パウダー状乾燥剤は、パウダー状乾燥剤は、0.28nm(2.8Å)の分子径を有する水分子は吸着され、冷媒は吸着されない有効細孔径を有するものであることが好ましく、有効細孔径が3〜4Åのモレキュラーシーブが好ましい。具体的には、有効細孔径3Åの3A型ゼオライトもしくは有効細孔径4Åの4A型ゼオライトが好適である。   Similarly to the above-mentioned bead-shaped desiccant, heat is generated when a refrigerant (for example, alternative chlorofluorocarbon) is adsorbed to the powder-shaped desiccant. Therefore, the powder-shaped desiccant is 0.28 nm (2. Water molecules having a molecular diameter of 8 cm) are preferably adsorbed and molecular sieves having an effective pore diameter of 3 to 4 mm are preferred, and the refrigerant is preferably not adsorbed. Specifically, 3A-type zeolite having an effective pore diameter of 3 mm or 4A-type zeolite having an effective pore diameter of 4 mm is preferable.

吸湿性不織布からなる包材11は、下記のように作成される。   The packaging material 11 made of a hygroscopic nonwoven fabric is prepared as follows.

まず、ゼオライトとして、合成ゼオライトであるモレキュラーシーブ3Aパウダー(ユニオン昭和株式会社製)、酢酸ビニル樹脂およびメチルアルコールを混合して、混合液を作成する。モレキュラーシーブ、酢酸ビニル樹脂およびメチルアルコールの混合比は、用途や目的に応じて混合比を調整すればよい。   First, as a zeolite, molecular sieve 3A powder (manufactured by Union Showa Co., Ltd.), which is a synthetic zeolite, vinyl acetate resin and methyl alcohol are mixed to prepare a mixed solution. The mixing ratio of the molecular sieve, the vinyl acetate resin, and methyl alcohol may be adjusted according to the application and purpose.

ついで、この混合液に不織布を含浸させる。そして、乾燥機や減圧乾燥によって、不織布を乾燥させると、吸湿性不織布を得ることができる。   Next, this mixed solution is impregnated with a nonwoven fabric. And a hygroscopic nonwoven fabric can be obtained when a nonwoven fabric is dried with drying machine or reduced pressure drying.

混合液での添着量は、不織布の単位面積あたり、好ましくは1〜30g/m、より好ましくは1〜50g/m、さらに好ましくは1〜70g/mであり、吸湿性不織布は、不織布原紙(混合液を添着する前の不織布)の重量に対して、原紙の目付にもよるが、パウダー状乾燥剤を1〜70質量%、好ましくは1〜50質量%含有する。
パウダー状乾燥剤の含有量が少なすぎると所望の吸水性能が発現しない恐れがあるが、上記範囲とすることにより、所望の吸水性能を確実に発現させることができる。
一方、パウダー状乾燥剤の含有量が多すぎるとパウダー状乾燥剤が冷媒中に落下する可能性が高まる他、不織布の物性(強度等)が低下する恐れがあるが、上記範囲とすることにより、これらのリスクを確実に回避することができる。
Impregnated amount of mixture per unit area of the nonwoven fabric is preferably 1 to 30 g / m 2, more preferably 1 to 50 g / m 2, more preferably a 1~70g / m 2, hygroscopicity nonwoven fabric, Although depending on the basis weight of the base paper, the powdery desiccant is contained in an amount of 1 to 70% by weight, preferably 1 to 50% by weight, based on the weight of the non-woven base paper (non-woven fabric before admixing the mixed liquid).
If the content of the powdery desiccant is too small, the desired water absorption performance may not be exhibited. However, by setting the content in the above range, the desired water absorption performance can be reliably exhibited.
On the other hand, if the content of the powdery desiccant is too large, the possibility of the powdery desiccant falling into the refrigerant increases, and the physical properties (strength, etc.) of the nonwoven fabric may be lowered. These risks can be reliably avoided.

次に、具体的な例を用いて本実施の形態による効果を説明する。パウダー状乾燥剤にはモレキュラーシーブ3Aパウダー(ユニオン昭和株式会社製)を用い、酢酸ビニル樹脂およびメチルアルコールを混合して、混合液(混合比 20g:20g:60cc)を作成する。この混合液に、不織布を含浸後、乾燥させて吸湿性不織布を作成する。この吸湿性不織布を袋形状に縫製して筒状の包材11を作成する。   Next, the effect by this Embodiment is demonstrated using a specific example. A molecular sieve 3A powder (manufactured by Union Showa Co., Ltd.) is used as the powdery desiccant, and a vinyl acetate resin and methyl alcohol are mixed to prepare a mixed solution (mixing ratio 20 g: 20 g: 60 cc). The mixed solution is impregnated with a nonwoven fabric and then dried to prepare a hygroscopic nonwoven fabric. The hygroscopic nonwoven fabric is sewn into a bag shape to create a cylindrical packaging material 11.

この包材11に、合計で、30g/mのパウダー状モレキュラーシーブを添着させる。モレキュラーシーブの吸水量は、モレキュラーシーブの質量に対して、最大20%であるので、モレキュラーシーブを不織布の重量に対して約6g/m吸湿できることになり、従来技術(吸湿性を有さない通常の不織布)を用いた場合に比べて、添着させたモレキュラーシーブの吸水量分向上させることができる。 A total of 30 g / m 2 of powdery molecular sieve is attached to the packaging material 11. The amount of water absorbed by the molecular sieve is 20% at the maximum with respect to the mass of the molecular sieve. Therefore, the molecular sieve can absorb moisture of about 6 g / m 2 with respect to the weight of the non-woven fabric. Compared with the case of using a normal non-woven fabric), it is possible to improve the amount of water absorbed by the attached molecular sieve.

上記構成からなる本発明によれば、冷媒中に混入している水分を、従来の乾燥剤(成形体)のほか、パウダー状乾燥剤が分散された吸湿性樹脂もしくは、パウダー状乾燥剤を添着させた吸湿性不織布からなる包材によっても除去することができる。このため、本発明によれば、従来ヘッダタンク内で使用されていた乾燥剤を、種類も封入量も変えることなく、そのまま使用した場合であっても、サブクールコンデンサにおける水分除去能力を向上させることができる。
このような本発明は、ヘッダタンクの大型化や、乾燥剤の変更といった手段によらず、サブクールコンデンサにおける水分除去能力を向上させたい、という需要に応える技術として特に有用である。
According to the present invention having the above-described configuration, moisture mixed in the refrigerant is adsorbed with a hygroscopic resin in which a powdery desiccant is dispersed or a powdery desiccant in addition to a conventional desiccant (molded product). It can also be removed by a packaging material made of a hygroscopic nonwoven fabric. For this reason, according to the present invention, the desiccant that has been used in the header tank in the past can be used as it is without changing the type and the amount of sealing, and the water removal capability of the subcool condenser can be improved. Can do.
The present invention as described above is particularly useful as a technique that meets the demand for improving the water removal capability of the subcool condenser regardless of the means of increasing the size of the header tank or changing the desiccant.

1 熱交換管
2 フィン
3 冷媒凝縮パス
4 冷媒過冷却パス
5 ヘッダータンク
6 ヘッダータンク
7 ヘッダータンク
8 冷媒入口部
9 冷媒出口部
10 仕切り板
11 包材
DESCRIPTION OF SYMBOLS 1 Heat exchange pipe 2 Fin 3 Refrigerant condensation path 4 Refrigerant supercooling path 5 Header tank 6 Header tank 7 Header tank 8 Refrigerant inlet part 9 Refrigerant outlet part 10 Partition plate 11 Packaging material

Claims (7)

冷凍サイクルを構成するコンデンサであって、
並列配置された複数の熱交換管と、熱交換管の左右両端部が接続されるヘッダタンクとを備え、
前記熱交換管のうち、上方の複数の熱交換管により冷媒凝縮パスを構成し、下方の複数の熱交換管により冷媒過冷却パスを構成し、
前記ヘッダタンクのうち、前記冷媒凝縮パスを経た冷媒を流入させて、前記過冷却パスへと流出させるヘッダタンク内に、乾燥剤を充填した包材を配置し、
この包材が、パウダー状乾燥剤が分散された吸湿性樹脂もしくは、パウダー状乾燥剤を添着させた吸湿性不織布の少なくとも何れかであることを特徴とする、コンデンサ。
A capacitor constituting a refrigeration cycle,
A plurality of heat exchange tubes arranged in parallel, and a header tank to which the left and right ends of the heat exchange tube are connected,
Among the heat exchange tubes, a plurality of upper heat exchange tubes constitute a refrigerant condensation path, and a plurality of lower heat exchange tubes constitute a refrigerant subcooling path,
Place the packing material filled with desiccant in the header tank that flows in the refrigerant that has passed through the refrigerant condensation path out of the header tank and flows out to the supercooling path,
A capacitor characterized in that the packaging material is at least one of a hygroscopic resin in which a powdery desiccant is dispersed or a hygroscopic nonwoven fabric to which a powdery desiccant is attached.
前記パウダー状乾燥剤が、ゼオライトである、請求項1記載のコンデンサ。   2. The capacitor according to claim 1, wherein the powdery desiccant is zeolite. 前記吸湿性樹脂が、ゼオライトとエンジニアリング・プラスチックを含有する、請求項1記載のコンデンサ。   The capacitor according to claim 1, wherein the hygroscopic resin contains a zeolite and an engineering plastic. 前記エンジニアリング・プラスチックの軟化点が70℃以上である、請求項3記載のコンデンサ。   The capacitor according to claim 3, wherein the engineering plastic has a softening point of 70 ° C. or higher. 前記エンジニアリング・プラスチックが、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレンの少なくとも何れかである、請求項4記載のコンデンサ。   The capacitor according to claim 4, wherein the engineering plastic is at least one of polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, and syndiotactic polystyrene. 前記吸湿性不織布が、不織布原紙の質量に対して、パウダー状乾燥剤を1〜70質量%含有する不織布である、請求項1記載のコンデンサ。   The capacitor according to claim 1, wherein the hygroscopic nonwoven fabric is a nonwoven fabric containing 1 to 70 mass% of a powdery desiccant with respect to the mass of the nonwoven fabric base paper. 前記吸湿性不織布を構成する繊維が、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維の少なくとも何れかを含む、請求項6記載のコンデンサ。   The capacitor | condenser of Claim 6 in which the fiber which comprises the said hygroscopic nonwoven fabric contains at least any one of an aramid fiber, a glass fiber, a cellulose fiber, a nylon fiber, a polyester fiber, a polyolefin fiber, and a rayon fiber.
JP2015256554A 2015-12-28 2015-12-28 Capacitor Expired - Fee Related JP6696175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256554A JP6696175B2 (en) 2015-12-28 2015-12-28 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256554A JP6696175B2 (en) 2015-12-28 2015-12-28 Capacitor

Publications (2)

Publication Number Publication Date
JP2017120153A true JP2017120153A (en) 2017-07-06
JP6696175B2 JP6696175B2 (en) 2020-05-20

Family

ID=59271673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256554A Expired - Fee Related JP6696175B2 (en) 2015-12-28 2015-12-28 Capacitor

Country Status (1)

Country Link
JP (1) JP6696175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117038A (en) * 2017-12-27 2019-07-18 ユニオン昭和株式会社 Subcooling condenser

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108137A (en) * 1980-12-25 1982-07-06 Ichiro Noda Production of sheet suitable for interior use particularly in closet and kitchen
JPH03115368U (en) * 1990-03-07 1991-11-28
JPH0743048A (en) * 1992-05-01 1995-02-10 Fayette Tubular Technology Corp Receiver drier
JPH07109673A (en) * 1993-10-13 1995-04-25 P F C:Kk Functional fiber material
JP2000274882A (en) * 1999-03-24 2000-10-06 Calsonic Kansei Corp Condenser
JP2002228305A (en) * 2001-01-30 2002-08-14 Denso Corp Drying agent container bag
US20050229628A1 (en) * 2002-04-17 2005-10-20 Flow Dry Technology Ltd Desiccant cartridge for an integrated condenser/receiver and method of making same
JP2007010298A (en) * 2005-07-04 2007-01-18 Nikkei Nekko Kk Heat exchanger with receiver tank
JP2008163323A (en) * 2006-12-07 2008-07-17 Multisorb Technologies Inc Resin bonded adsorbent
JP2008529877A (en) * 2005-06-02 2008-08-07 株式会社デンソー Air conditioner condenser
JP2008545809A (en) * 2005-01-21 2008-12-18 ムルチソルブ テクノロギエス インコーポレーテッド Resin bonded adsorbent
JP2010127556A (en) * 2008-11-28 2010-06-10 Showa Denko Kk Heat exchanger
JP2012116488A (en) * 2010-11-29 2012-06-21 Union Showa Kk Water-absorbing packaging material, method of manufacturing the same, and reproducing method
JP2012154604A (en) * 2011-01-28 2012-08-16 Showa Denko Kk Condenser
US20130152460A1 (en) * 2011-12-16 2013-06-20 Brian Boezi Tank fuel drying device
JP2014006027A (en) * 2012-06-27 2014-01-16 Mitsubishi Electric Corp Refrigeration cycle device
JP2014193454A (en) * 2013-02-26 2014-10-09 Nippon Valqua Ind Ltd Adsorption sheet, manufacturing method for obtaining the adsorption sheet, recovery method of adsorption performance and adsorption method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108137A (en) * 1980-12-25 1982-07-06 Ichiro Noda Production of sheet suitable for interior use particularly in closet and kitchen
JPH03115368U (en) * 1990-03-07 1991-11-28
JPH0743048A (en) * 1992-05-01 1995-02-10 Fayette Tubular Technology Corp Receiver drier
JPH07109673A (en) * 1993-10-13 1995-04-25 P F C:Kk Functional fiber material
JP2000274882A (en) * 1999-03-24 2000-10-06 Calsonic Kansei Corp Condenser
JP2002228305A (en) * 2001-01-30 2002-08-14 Denso Corp Drying agent container bag
US20050229628A1 (en) * 2002-04-17 2005-10-20 Flow Dry Technology Ltd Desiccant cartridge for an integrated condenser/receiver and method of making same
JP2013100537A (en) * 2005-01-21 2013-05-23 Multisorb Technologies Inc Resin bonded sorbent
JP2008545809A (en) * 2005-01-21 2008-12-18 ムルチソルブ テクノロギエス インコーポレーテッド Resin bonded adsorbent
JP2008529877A (en) * 2005-06-02 2008-08-07 株式会社デンソー Air conditioner condenser
JP2007010298A (en) * 2005-07-04 2007-01-18 Nikkei Nekko Kk Heat exchanger with receiver tank
JP2008163323A (en) * 2006-12-07 2008-07-17 Multisorb Technologies Inc Resin bonded adsorbent
JP2013237854A (en) * 2006-12-07 2013-11-28 Multisorb Technologies Inc Resin bonded sorbent
JP2010127556A (en) * 2008-11-28 2010-06-10 Showa Denko Kk Heat exchanger
JP2012116488A (en) * 2010-11-29 2012-06-21 Union Showa Kk Water-absorbing packaging material, method of manufacturing the same, and reproducing method
JP2012154604A (en) * 2011-01-28 2012-08-16 Showa Denko Kk Condenser
US20130152460A1 (en) * 2011-12-16 2013-06-20 Brian Boezi Tank fuel drying device
JP2014006027A (en) * 2012-06-27 2014-01-16 Mitsubishi Electric Corp Refrigeration cycle device
JP2014193454A (en) * 2013-02-26 2014-10-09 Nippon Valqua Ind Ltd Adsorption sheet, manufacturing method for obtaining the adsorption sheet, recovery method of adsorption performance and adsorption method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117038A (en) * 2017-12-27 2019-07-18 ユニオン昭和株式会社 Subcooling condenser

Also Published As

Publication number Publication date
JP6696175B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US5861050A (en) Thermally-managed fuel vapor recovery canister
JP5728516B2 (en) Adsorbent and method for producing the same, canister and method for using the same
CN106461290A (en) Hybrid adsorber heat exchanging device and method of manufacture
US10101066B2 (en) Adsorber and adsorption refrigerator
CN105209815A (en) Gas storage modules, apparatus, systems and methods utilizing adsorbent materials
US10539344B2 (en) Adsorber
US8506691B2 (en) Shaped heat storage materials including heat transfer members
JP2013536932A (en) Receiver dryer for automobile air conditioner
JP2007031685A (en) Latent heat storage material and method for producing the same
JP6696175B2 (en) Capacitor
JP2002162134A (en) Freezing cycle device
Yang et al. Investigation on water vapor adsorption performance of carbon based composite adsorption material ACF-silica sol-LiCl
US20120210745A1 (en) Drier and refrigerating cycle
JP2008164272A (en) Liquid storage container
JP2017520746A (en) Capacitor cylinder suitable for use in air conditioning circuits, more specifically in automotive air conditioning circuits
JP4471700B2 (en) Canister
JP2013133987A (en) Dryer for refrigeration cycle, and refrigeration cycle
US11125509B2 (en) Heat storage system, heat storage container, heat storage device using heat storage container and warm-up device using heat storage device
WO2016059777A1 (en) Adsorber
CN107850357A (en) Absorber, the method for manufacturing absorber and the vehicle with absorber
JP2005282481A (en) Canister
CN104976122A (en) Compressor of air conditioner system and air conditioner system with compressor
JP2002090007A (en) Receiver drier for refrigeration cycle
JP2013096620A (en) Dryer for refrigeration cycle and refrigeration cycle
JP2019086236A (en) Refrigerator desiccant and dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees