JP2019084551A - Seam tracking system and metal product manufacturing method - Google Patents

Seam tracking system and metal product manufacturing method Download PDF

Info

Publication number
JP2019084551A
JP2019084551A JP2017213141A JP2017213141A JP2019084551A JP 2019084551 A JP2019084551 A JP 2019084551A JP 2017213141 A JP2017213141 A JP 2017213141A JP 2017213141 A JP2017213141 A JP 2017213141A JP 2019084551 A JP2019084551 A JP 2019084551A
Authority
JP
Japan
Prior art keywords
line
approximate
welding
estimation point
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017213141A
Other languages
Japanese (ja)
Other versions
JP6343711B1 (en
Inventor
一也 小林
Kazuya Kobayashi
一也 小林
一訓 鷲見
Kazunori Washimi
一訓 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Seiki Co Ltd
Original Assignee
Taiho Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Seiki Co Ltd filed Critical Taiho Seiki Co Ltd
Priority to JP2017213141A priority Critical patent/JP6343711B1/en
Application granted granted Critical
Publication of JP6343711B1 publication Critical patent/JP6343711B1/en
Publication of JP2019084551A publication Critical patent/JP2019084551A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

To provide a seam tracking system which can determine a weld line more easily while suppressing reduction in detection accuracy of a weld line due to false detection.SOLUTION: The seam tracking system comprises: a one side detection part 41 which is positioned on most one side on a prescribed scan line of imaging data, and detects one side presumption point which is presumed as a weld line S; an other side detection part 42 which is positioned on most other side on the scan line, and detects other side presumption point which is presumed as a weld line S; an approximate line calculation part 43 which calculates an approximate straight line or an approximate curve based on one side presumption point and other side presumption point which are detected on plural scan lines; and a position control part 44 which controls a weld position of a welding head 3 so as to set the approximate straight line or the approximate curve to the weld line S and perform welding on the weld line S. The approximate line calculation part 43 calculates an approximate straight line or an approximate curve except for one side presumption point and other side presumption point between which a clearance on a same scan line is a prescribed threshold or more.SELECTED DRAWING: Figure 1

Description

本発明は、画像センサを用いて溶接するシームトラッキングシステム及び金属製品製造方法に関する。   The present invention relates to a seam tracking system and a metal product manufacturing method for welding using an image sensor.

シームトラッキングシステムは、溶接ヘッドに先行する画像センサにより溶接線(シーム線)を検出し、溶接ヘッドの位置を当該溶接線上に制御する自動溶接システムである。このシームトラッキングシステムでは、画像センサによる溶接線の検出精度により、溶接品質が左右されるため、当該溶接線の検出精度を高めることが求められている。この溶接線の検出については、例えば特開平9−201673号公報及び特開平10−193148号公報に記載されている。これらの技術では、複数の検出点から近似直線を算出し、算出した近似直線から所定距離以上離れた検出点については、誤検出として処理している。   The seam tracking system is an automatic welding system that detects a weld line (seam line) by an image sensor preceding a weld head and controls the position of the weld head on the weld line. In this seam tracking system, since the welding quality is affected by the detection accuracy of the weld line by the image sensor, it is required to improve the detection accuracy of the weld line. The detection of the weld line is described, for example, in Japanese Patent Application Laid-Open Nos. 9-201673 and 10-193148. In these techniques, an approximate straight line is calculated from a plurality of detection points, and a detection point separated from the calculated approximate straight line by a predetermined distance or more is processed as an erroneous detection.

特開平9−201673号公報JP 9-201673 A 特開平10−193148号公報Unexamined-Japanese-Patent No. 10-193148

しかしながら、上記技術では、近似直線を算出した後に誤検出か否かを判別し、誤検出があった場合に当該誤検出点を除いて再度近似直線を算出しなければならない。つまり、一度近似直線が算出できるだけの検出点データを集めた後に、近似直線の修正処理を繰り返さなければならない。これにより、計算がフィードバックを含んだ複雑なものとなり、近似直線の演算・設定に遅れが出るおそれがある。また、近似直線が算出されるまでは、検出点が誤検出点であるか否かを判定できない。   However, in the above technology, after calculating the approximate straight line, it is determined whether or not it is a false detection, and if there is a false detection, the approximate straight line must be calculated again except for the false detection point. In other words, after collecting detection point data for which the approximate straight line can be calculated once, correction processing of the approximate straight line must be repeated. As a result, the calculation becomes complicated including feedback, and there is a possibility that the calculation and setting of the approximate straight line may be delayed. In addition, it is not possible to determine whether the detection point is a false detection point until the approximate straight line is calculated.

本発明は、このような事情に鑑みて為されたものであり、誤検出による溶接線の検出精度の低減を抑制しつつ、より容易に溶接線を決定することができるシームトラッキングシステム及び金属製品製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a seam tracking system and a metal product which can more easily determine a weld line while suppressing a decrease in detection accuracy of the weld line due to false detection The purpose is to provide a manufacturing method.

本発明のシームトラッキングシステムは、所定の進行方向に進行しつつワークを撮像する画像センサと、前記画像センサに追従する溶接ヘッドと、前記画像センサが撮像した撮像データに基づいて前記ワークの溶接線を検出し、前記溶接線に基づいて前記溶接ヘッドの溶接位置を制御する制御装置と、を備えるシームトラッキングシステムにおいて、前記制御装置は、前記撮像データにおいて前記進行方向に直交する方向に延びる仮想直線を走査線とすると、前記撮像データの所定の前記走査線上の最も一方側に位置する、前記溶接線と推定される一方側推定点を検出する一方側検出部と、前記走査線上の最も他方側に位置する、前記溶接線と推定される他方側推定点を検出する他方側検出部と、複数の前記走査線上で検出された前記一方側推定点及び前記他方側推定点に基づいて、近似直線又は近似曲線を算出する近似線算出部と、前記近似直線又は前記近似曲線を前記溶接線に設定し、前記溶接線上を溶接するように前記溶接ヘッドの溶接位置を制御する位置制御部と、を備え、前記近似線算出部は、同一の前記走査線上における離間距離が所定閾値以上である前記一方側推定点及び前記他方側推定点を除いて、前記近似直線又は前記近似曲線を算出する。   The seam tracking system according to the present invention comprises an image sensor for imaging a workpiece while advancing in a predetermined advancing direction, a welding head for following the image sensor, and a weld line of the workpiece based on imaging data captured by the image sensor. And a controller for detecting a welding position of the welding head based on the welding line, wherein the controller is an imaginary straight line extending in a direction orthogonal to the traveling direction in the imaging data. Assuming that the scanning line is a scanning line, a one-side detection unit for detecting the one-side estimation point estimated to be the welding line, which is located on the most one side of the predetermined scanning line of the imaging data; The other side detection unit for detecting the other side estimation point estimated to be the weld line, and the one side detected on a plurality of the scanning lines The welding is performed by setting the approximate straight line or the approximate curve on the welding line, and calculating the approximate straight line or the approximate curve on the basis of the fixed point and the other side estimation point, and setting the welding line along the welding line. And a position control unit for controlling the welding position of the head, wherein the approximate line calculation unit excludes the one-side estimation point and the other-side estimation point whose separation distance on the same scanning line is equal to or greater than a predetermined threshold. And calculating the approximate straight line or the approximate curve.

また、本発明の金属製品製造方法は、所定の進行方向に進行しつつ金属製のワークを撮像する画像センサと、前記画像センサに追従する溶接ヘッドと、前記画像センサが撮像した撮像データに基づいて前記ワークの溶接線を検出し、前記溶接線に基づいて前記溶接ヘッドの溶接位置を制御する制御装置と、を備えるシームトラッキングシステムを用いた金属製品製造方法であって、前記撮像データにおいて前記進行方向に直交する方向に延びる仮想直線を走査線とすると、前記制御装置が、前記撮像データの前記走査線上の最も一方側に位置する、前記溶接線と推定される一方側推定点を検出する一方側検出工程と、前記制御装置が、前記走査線上の最も他方側に位置する、前記溶接線と推定される他方側推定点を検出する他方側検出工程と、前記制御装置が、複数の前記走査線上で検出された前記一方側推定点及び前記他方側推定点に基づいて、近似直線又は近似曲線を算出する近似線算出工程と、前記近似直線又は前記近似曲線を前記溶接線に設定し、前記溶接線上を溶接するように前記溶接ヘッドの溶接位置を制御する位置制御工程と、を含み、前記近似線算出工程では、同一の前記走査線上における離間距離が所定閾値以上である前記一方側推定点及び前記他方側推定点を除いて、前記近似直線又は前記近似曲線が算出される。   In the metal product manufacturing method of the present invention, an image sensor for imaging a metal work while advancing in a predetermined traveling direction, a welding head for following the image sensor, and imaging data captured by the image sensor A control device for detecting a welding line of the workpiece and controlling a welding position of the welding head based on the welding line, the metal product manufacturing method using a seam tracking system, wherein the imaging data Assuming that a virtual straight line extending in a direction orthogonal to the traveling direction is a scanning line, the control device detects the one-side estimation point presumed to be the welding line, which is located closest to one side on the scanning line of the imaging data. One side detection step, and the other side detection step for detecting the other side estimation point presumed to be the welding line, which is located on the other side on the scanning line, An approximation line calculating step of calculating an approximation straight line or an approximation curve based on the one-side estimation point and the other-side estimation point detected on the plurality of scanning lines, and the approximation line or the approximation curve Setting the welding line to the welding line, and controlling the welding position of the welding head so as to weld the welding line, and in the approximation line calculation process, the separation distance on the same scanning line is predetermined The approximate straight line or the approximate curve is calculated except for the one-side estimation point and the other-side estimation point that are equal to or greater than a threshold.

本発明によれば、一方側推定点と他方側推定点との離間距離(ずれ)の大小に基づいて、近似直線又は近似曲線の演算要素の可否を判定するため、近似直線又は近似曲線の算出前後にかかわらず誤検出を判定することができる。つまり、誤検出の判定に予め近似直線又は近似曲線を算出する必要がない。これにより、容易に(素早く)溶接線を演算・設定することができる。また、走査線上の両推定点の離間距離が大きい場合、少なくとも一方の推定点がワークの傷や影による誤検出である可能性が高く、それを演算要素から排除することで、溶接線の検出精度は維持又は向上される。このように、本発明によれば、誤検出による溶接線の検出精度の低減を抑制しつつ、より容易に溶接線を決定することができる。   According to the present invention, calculation of the approximate straight line or the approximate curve is performed because it is possible to determine whether or not the calculation element of the approximate straight line or the approximate curve is based on the magnitude of the separation distance (shift) between the one side estimation point and the other side estimation point. False detection can be determined regardless of before or after. That is, it is not necessary to calculate an approximate straight line or an approximate curve in advance for the determination of an erroneous detection. This makes it possible to calculate (set) weld lines easily (rapidly). In addition, when the separation distance between the two estimation points on the scanning line is large, there is a high possibility that at least one estimation point is a false detection due to a scratch or a shadow of the work, and the welding line is detected by excluding it from the computing element. Accuracy is maintained or improved. As described above, according to the present invention, it is possible to more easily determine the weld line while suppressing the decrease in the detection accuracy of the weld line due to the erroneous detection.

本実施形態のシームトラッキングシステムの構成図である。It is a block diagram of the seam tracking system of this embodiment. 本実施形態の画像センサの撮像データの概念図である。It is a conceptual diagram of the imaging data of the image sensor of this embodiment. 本実施形態の近似直線の概念図である。It is a conceptual diagram of the approximation straight line of this embodiment. 本実施形態の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process of this embodiment. ダレがある対象ワークの模式断面図である。It is a schematic cross section of the object work which has a sag. 本実施形態の変形態様における画像センサの撮像データの概念図である。It is a conceptual diagram of the imaging data of the image sensor in the modification of this embodiment.

以下、本発明の実施形態について図に基づいて説明する。説明に用いる各図は概念図であり、各部の形状は必ずしも厳密なものではない。本実施形態のシームトラッキングシステム1は、図1に示すように、画像センサ2と、溶接ヘッド3と、制御装置4と、を備えている。画像センサ2は、対象ワークWの溶接線(シーム線)Sを検出するために、所定の進行方向に進行しつつ対象ワークWを撮像する装置である。本実施形態の対象ワークWは、突き合わされた2つの金属製の板状のワークW1、W2で構成されている。溶接線Sは、一方側ワークW1の端部と他方側ワークW2の端部とが当接(対面)して形成された線である。当該突き合わせ部分を開先ともいう。なお、説明において、対象ワークWにおける溶接ヘッド3に対向する面、すなわち対象ワークWの溶接線Sが露出した面を、対象ワークWの表面とする。   Hereinafter, an embodiment of the present invention will be described based on the drawings. Each figure used for explanation is a conceptual diagram, and the shape of each part is not necessarily exact. As shown in FIG. 1, the seam tracking system 1 according to the present embodiment includes an image sensor 2, a welding head 3, and a control device 4. The image sensor 2 is an apparatus for imaging the target work W while advancing in a predetermined traveling direction in order to detect a weld line (seam line) S of the target work W. The target work W of the present embodiment is composed of two metal plate-like works W1 and W2 which are butted to each other. The welding line S is a line formed by bringing the end of the first work W1 into contact with the end of the second work W2. The butt portion is also referred to as a groove. In the description, the surface of the target work W facing the welding head 3, that is, the surface on which the welding line S of the target work W is exposed is taken as the surface of the target work W.

画像センサ2は、対象ワークWの表面から離間して配置され、所定の進行方向に移動可能に構成されている。画像センサ2は、カメラ21と、光源22と、を備えている。カメラ21は、例えばCCDカメラであって、対象ワークWの表面に対向するように配置されている。カメラ21は、対象ワークWの表面を撮像し、撮像データを制御装置4に送信する。光源22は、撮像のために対象ワークWに光を照射する装置である。   The image sensor 2 is disposed apart from the surface of the target work W, and is configured to be movable in a predetermined traveling direction. The image sensor 2 includes a camera 21 and a light source 22. The camera 21 is, for example, a CCD camera, and is disposed to face the surface of the target workpiece W. The camera 21 captures an image of the surface of the target work W and transmits the captured data to the control device 4. The light source 22 is a device that emits light to the target work W for imaging.

画像センサ2は、所定移動距離毎に対象ワークWを撮像するように設定されている。図2に示すように、本実施形態において、撮像データにおいて画像センサ2の進行方向に直交する方向に延びる仮想直線を走査線とする。また、本実施形態の説明において、進行方向を「前後方向」とし、進行方向に直交し対象ワークWの延在方向(表面)に平行な方向を「左右方向」とする。なお、カメラ21は、水平走査方向が左右方向となるように配置されている。   The image sensor 2 is set to image the target work W at each predetermined moving distance. As shown in FIG. 2, in the present embodiment, a virtual straight line extending in a direction orthogonal to the traveling direction of the image sensor 2 in imaging data is taken as a scanning line. Further, in the description of the present embodiment, the advancing direction is referred to as “front-rear direction”, and the direction orthogonal to the advancing direction and parallel to the extending direction (surface) of the target work W is referred to as “left-right direction”. The camera 21 is disposed such that the horizontal scanning direction is in the left-right direction.

溶接ヘッド3は、ワークを溶接する装置であって、画像センサ2の移動に追従するように構成されている。つまり、溶接ヘッド3は、画像センサ2の後方に配置され、画像センサ2の前進と連動して(一体的に)前進する。画像センサ2及び溶接ヘッド3は、例えば、所定速度で前進するように設定されている。溶接ヘッド3は、例えばレーザ光を照射する溶接トーチであって、対象ワークWの溶接線Sに対向するように配置される。溶接ヘッド3は、前進しながら対象ワークWの溶接線Sを溶接目標として溶接していく。溶接ヘッド3は、溶接線Sと溶接位置とのずれに対応するために、制御装置4の制御に応じて左右方向にも移動可能に構成されている。なお、本実施形態の画像センサ2及び溶接ヘッド3は、レーザ溶接装置(例えばロボットアームを含む溶接装置)Aの一部を構成している。換言すると、レーザ溶接装置Aは、画像センサ2と、溶接ヘッド3と、を備えている。また、溶接準備段階として、対象ワークWは、レーザ溶接装置Aに対して、目視により溶接線Sが溶接ヘッド3の予定進行経路(前後方向に延びる直線)と一致するように配置されている。   The welding head 3 is an apparatus for welding a workpiece, and is configured to follow the movement of the image sensor 2. That is, the welding head 3 is disposed behind the image sensor 2 and advances (integrally) in conjunction with the advancement of the image sensor 2. The image sensor 2 and the welding head 3 are set to advance at a predetermined speed, for example. The welding head 3 is, for example, a welding torch that emits a laser beam, and is disposed to face the welding line S of the target work W. The welding head 3 welds the welding line S of the target work W as a welding target while advancing. The welding head 3 is configured to be movable also in the left-right direction in accordance with the control of the control device 4 in order to correspond to the deviation between the welding line S and the welding position. The image sensor 2 and the welding head 3 of the present embodiment constitute a part of a laser welding apparatus (for example, a welding apparatus including a robot arm) A. In other words, the laser welding apparatus A includes the image sensor 2 and the welding head 3. Further, in the welding preparation stage, the target work W is arranged with respect to the laser welding apparatus A so that the welding line S visually matches with a planned traveling path (a straight line extending in the front-rear direction) of the welding head 3.

制御装置4は、レーザ溶接装置Aに接続された、CPUやメモリ等を備えるコンピュータ(例えばパーソナルコンピュータ)である。制御装置4は、画像センサ2が撮像した撮像データに基づいて溶接線Sを検出し、当該溶接線Sに基づいて溶接ヘッド3の溶接位置を制御する。つまり、制御装置4は、画像センサ2及び溶接ヘッド3を前方に移動させつつ、検出された溶接線Sに応じて溶接ヘッド3の溶接位置(溶接目標位置)を左右に移動させる。   The control device 4 is a computer (for example, a personal computer) connected to the laser welding apparatus A and provided with a CPU, a memory, and the like. The control device 4 detects the welding line S based on the imaging data captured by the image sensor 2 and controls the welding position of the welding head 3 based on the welding line S. That is, the control device 4 moves the welding position (welding target position) of the welding head 3 to the left and right according to the detected welding line S while moving the image sensor 2 and the welding head 3 forward.

制御装置4は、機能として、一方側検出部41と、他方側検出部42と、近似線算出部43と、位置制御部44と、を備えている。一方側検出部41は、撮像データの所定の走査線上の最も一方側に位置する、溶接線Sと推定される一方側推定点を検出するように構成されている。換言すると、一方側検出部41は、撮像データの所定の走査線上を一方端部から他方端部に向けて解析し、溶接線Sと推定される点/位置(一方側推定点)を検出する。一方側検出部41は、所定の走査線上を一方向(右方向)に画像解析し、対象ワークWのうちの一方側ワークW1の他端部(右端部)の位置を検出するともいえる。   The control device 4 includes, as functions, one side detection unit 41, the other side detection unit 42, an approximate line calculation unit 43, and a position control unit 44. The one-side detection unit 41 is configured to detect a one-side estimation point estimated to be a weld line S, which is located on the most one side of a predetermined scanning line of imaging data. In other words, the one side detection unit 41 analyzes a predetermined scanning line of imaging data from one end to the other end, and detects a point / position presumed to be a weld line S (one side estimation point) . It can be said that the one-side detection unit 41 analyzes an image of a predetermined scanning line in one direction (right direction) and detects the position of the other end (right end) of the one-side work W1 of the target work W.

より具体的に、図2に示すように、一方側検出部41は、撮像データに対し画像処理を実行し、走査線上の最も一方側(左側)に位置する明るさが所定値未満の点(暗い点)を検出し、その点を一方側推定点に設定する。一方側検出部41は、撮像データを走査線上の一方端部から他方端部に向けて画像処理を実行し、明るさが所定値未満の点を検出すると、その点を一方側推定点に設定する。一方側検出部41は、一方側推定点の位置情報(座標情報)を近似線算出部43に送信する。位置情報は、例えば、左右方向をX軸方向とし、前後方向をY軸方向として、(X、Y)座標で記録できる。なお、位置情報は、上下方向をZ軸方向として加えた3次元の座標情報(X、Y、Z)であっても良い。   More specifically, as shown in FIG. 2, the one-side detection unit 41 executes image processing on the imaging data, and the brightness located at the most one side (left side) on the scanning line is less than the predetermined value Dark point is detected, and that point is set as one-side estimation point. The one-side detection unit 41 executes image processing from the imaging data from one end to the other end on the scanning line, and detects a point whose brightness is less than a predetermined value, and sets that point as one-side estimation point Do. The one side detection unit 41 transmits the position information (coordinate information) of the one side estimation point to the approximate line calculation unit 43. The position information can be recorded at (X, Y) coordinates, for example, with the left and right direction as the X axis direction and the front and back direction as the Y axis direction. The position information may be three-dimensional coordinate information (X, Y, Z) in which the vertical direction is added as the Z-axis direction.

他方側検出部42は、撮像データの所定の走査線上の最も他方側に位置する、溶接線Sと推定される他方側推定点を検出するように構成されている。換言すると、他方側検出部42は、撮像データの所定の走査線上を他方端部から一方端部に向けて解析し、溶接線Sと推定される点/位置(他方側推定点)を検出する。他方側検出部42は、所定の走査線上を他方向(左方向)に画像解析し、対象ワークWのうちの他方側ワークW2の一端部(左端部)の位置を検出するともいえる。   The other side detection unit 42 is configured to detect the other side estimated point estimated to be the weld line S, which is located on the other side of the predetermined scanning line of the imaging data. In other words, the other side detection unit 42 analyzes a predetermined scanning line of the imaging data from the other end toward the one end, and detects a point / position presumed to be the weld line S (the other side estimation point) . It can be said that the other side detection unit 42 analyzes an image of a predetermined scanning line in the other direction (left direction) and detects the position of one end (left end) of the other side work W2 of the target work W.

より具体的に、他方側検出部42は、撮像データに対し画像処理を実行し、走査線上の最も他方側(右側)に位置する明るさが所定値未満の点(暗い点)を検出し、その点を他方側推定点に設定する。他方側検出部42は、撮像データを走査線上の他方端部から一方端部に向けて画像処理を実行し、明るさが所定値未満の点を検出すると、その点を他方側推定点に設定する。他方側検出部42は、他方側推定点の位置情報(座標情報)を近似線算出部43に送信する。   More specifically, the other side detection unit 42 performs image processing on the imaging data, and detects a point (dark point) whose brightness on the other side (right side) on the scanning line is less than a predetermined value, The point is set to the other side estimation point. The other side detection unit 42 executes image processing from the other end to the one end of the scanning line and detects a point whose brightness is less than a predetermined value, and sets that point as the other side estimation point Do. The other side detection unit 42 transmits the position information (coordinate information) of the other side estimation point to the approximate line calculation unit 43.

一方側検出部41と他方側検出部42は、撮像データに対する共通の画像処理により、それぞれ同時進行で推定点を検出することができる。所定の走査線は、撮像データの所定点(所定座標)を通る直線であって、1つの撮像データに1本又は複数本設定されている。本実施形態では、1つの撮像データに対して所定の走査線(解析位置)が1本設定されている。   The one-side detection unit 41 and the other-side detection unit 42 can simultaneously detect the estimated points by common image processing on the imaging data. The predetermined scanning line is a straight line passing a predetermined point (predetermined coordinate) of the imaging data, and one or a plurality of scanning lines are set in one imaging data. In the present embodiment, one predetermined scanning line (analysis position) is set for one piece of imaging data.

近似線算出部43は、複数の走査線上の一方側推定点及び他方側推定点に基づいて、近似直線を算出するように構成されている。近似線算出部43は、1つの(同一の)走査線上で取得された一方側推定点と他方側推定点を1セットとして、両方の推定点を記録する。近似線算出部43は、同一走査線上で検出された一方側推定点と他方側推定点との離間距離を算出する。つまり、近似線算出部43は、1セット毎に、一方側推定点のX座標と他方側推定点のX座標との差分(絶対値)を算出する。近似線算出部43は、当該離間距離(すなわち当該差分)が所定閾値以上であるか否かを判定する。なお、理想的には、一方側推定点と他方側推定点とは一致しており、差分(ずれ)は0となる。   The approximate line calculation unit 43 is configured to calculate an approximate straight line based on the one-side estimation point and the other-side estimation point on the plurality of scanning lines. The approximate line calculation unit 43 records both estimation points with one set of estimation points on one side and the estimation point on the other side acquired on one (identical) scanning line. The approximate line calculation unit 43 calculates the separation distance between the one-side estimation point and the other-side estimation point detected on the same scanning line. That is, the approximate line calculation unit 43 calculates, for each set, the difference (absolute value) between the X coordinate of the one-side estimation point and the X coordinate of the other-side estimation point. The approximate line calculation unit 43 determines whether the separation distance (i.e., the difference) is equal to or greater than a predetermined threshold. Ideally, the one-side estimation point and the other-side estimation point coincide with each other, and the difference (deviation) is zero.

図3に示すように、近似線算出部43は、走査線上における離間距離が所定閾値以上であるセット(一方側推定点と他方側推定点)を除いて、近似直線を算出する。換言すると、近似線算出部43は、離間距離が所定閾値未満であるセットのみを用いて、近似直線を算出する。近似直線の算出は、例えば、一方側推定点と他方側推定点とが同じ位置(座標)である場合、当該1点を当該セットの推定点として用い、両推定点の位置が異なる場合(離間距離が所定閾値未満)は、一方側推定点と他方側推定点の中間点(中間座標)を、当該セットの推定点として用いて行うことができる。なお、図3の黒丸は、離間距離が0の一方側推定点及び他方側推定点(すなわち一致点)、又は離間距離が所定閾値未満である一方側推定点と他方側推定点との中間点を示す。また、図3の白丸は、離間距離が所定閾値以上である一方側推定点と他方側推定点を示す。   As shown in FIG. 3, the approximate line calculation unit 43 calculates an approximate straight line except for a set (one-side estimation point and the other-side estimation point) in which the separation distance on the scanning line is equal to or larger than a predetermined threshold. In other words, the approximate line calculation unit 43 calculates the approximate straight line using only the set whose separation distance is less than the predetermined threshold. In the calculation of the approximate straight line, for example, when the one side estimation point and the other side estimation point are at the same position (coordinates), the one point is used as the estimation point of the set, and the positions of both estimation points are different The distance may be smaller than a predetermined threshold) by using an intermediate point (intermediate coordinate) of the one-side estimation point and the other-side estimation point as the estimation point of the set. The black circles in FIG. 3 indicate the one-side estimation point and the other-side estimation point (that is, the coincidence point) where the separation distance is zero, or the middle point between the one-side estimation point and the other-side estimation point whose separation distance is less than a predetermined threshold. Indicates Further, white circles in FIG. 3 indicate one-side estimation points and the other-side estimation points at which the separation distance is equal to or more than a predetermined threshold value.

近似線算出部43は、離間距離が所定閾値以上であるセットを誤検出セット(2つの誤検出点)として、近似直線の演算から除外する。近似線算出部43は、近似直線を算出した後、除外した誤検出点を近似直線上に移動(オフセット)させる。図3の黒の菱形は、オフセット後の推定点を示す。なお、図3の破線は、一例として、他方側推定点の近似直線を基準とした場合の、離間距離が所定閾値未満である領域(正常判定領域)の境界を示したものである。これは例えば他方のワークW2の突き合わせ部分のみが垂直面状である場合(図5参照)など、他方側推定点の推定精度(端部検出精度)が高いと考えられる場合の考え方である。この場合、他方側推定点を基準として正常判定領域(破線で挟まれた領域)を設定することができる。この場合、例えば、一方側推定点がこの領域外(上の破線よりも上側)で検出されると、誤検出と判定され、当該推定点は演算要素から除外される。ただし、図3の破線は本実施形態とは別の例であって、本実施形態では、一方側推定点と他方側推定点との離間距離と所定閾値との比較によって、誤検出か否かを判定している。   The approximate line calculation unit 43 excludes a set whose separation distance is equal to or more than a predetermined threshold as an erroneous detection set (two erroneous detection points) from the calculation of the approximate straight line. After calculating the approximate straight line, the approximate line calculation unit 43 moves (offsets) the excluded erroneous detection point on the approximate straight line. The black diamonds in FIG. 3 indicate estimated points after offset. In addition, the broken line in FIG. 3 shows the boundary of the area | region (normal determination area | region) whose separation distance is less than a predetermined threshold-value on the basis of the approximation straight line of the other side presumed point as an example. This is an idea in the case where it is considered that the estimation accuracy (end portion detection accuracy) of the other-side estimated point is high, for example, when only the abutting portion of the other workpiece W2 is in the vertical plane (see FIG. 5). In this case, it is possible to set a normal judgment area (an area sandwiched by broken lines) based on the other side estimated point. In this case, for example, when the one-side estimation point is detected outside this area (above the upper broken line), it is determined as a false detection, and the estimation point is excluded from the calculation element. However, the broken line in FIG. 3 is an example different from the present embodiment, and in the present embodiment, it is erroneously detected or not by comparing the separation distance between the one side estimation point and the other side estimation point and a predetermined threshold value. Is determined.

近似線算出部43は、所定数の推定点セットに基づいて近似直線を算出し、その後に取得した推定点セットについても、離間距離が所定閾値未満である推定点セットは当該推定点を近似直線の演算要素に加えて所定数毎に近似直線を更新し、離間距離が所定閾値以上である推定点セットは当該誤検出点を近似直線上に移動させる。   The approximate line calculation unit 43 calculates an approximate straight line based on a predetermined number of estimated point sets, and the estimated point set whose separated distance is less than a predetermined threshold value also approximates the estimated points for the estimated point set acquired thereafter. The approximate straight line is updated for each predetermined number in addition to the computing elements in the above, and the estimated point set whose separation distance is equal to or larger than the predetermined threshold moves the erroneous detection point on the approximate straight line.

このように、近似線算出部43は、同一走査線上における一方側推定点と他方側推定点との離間距離が所定閾値未満(又は以上)であるか否かを判定する判定部と、離間距離が所定閾値未満である一方側推定点と他方側推定点のみを用いて近似直線を算出する算出部と、近似直線が計算(設定)された状態において、離間距離が所定閾値以上である一方側推定点と他方側推定点とを近似直線上に移動させるオフセット部と、を備えているといえる。   As described above, the approximate line calculation unit 43 determines whether or not the separation distance between the one side estimation point and the other side estimation point on the same scanning line is less than (or more than) a predetermined threshold, and the separation distance Is a calculation unit that calculates an approximate straight line using only one side estimation point and the other side estimation point, which is less than a predetermined threshold value, and in a state where the approximate straight line is calculated (set), It can be said that an offset unit for moving the estimation point and the other-side estimation point on an approximate straight line is provided.

所定閾値は、実験やシミュレーション等により、開先形状及び突き合わされた2つのワークW1、W2の厚みの差の少なくとも一方に基づいて予め設定されている。例えば、少なくとも一方のワークW1、W2の開先形状が、ダレを有する湾曲形状であった場合、開先形状が直角同士の状況に比べて、撮像データに影ができやすく、一方側推定点と他方側推定点とのずれ(離間距離)が大きくなりやすいと考えられる。また、同様に、例えば、ワークW1、W2の厚み(板厚)が異なる場合、厚みが同じである状況と比べて、撮像データに影ができやすく、一方側推定点と他方側推定点とのずれが大きくなりやすいと考えられる。このようにワークW1、W2の状態に応じて、予め所定閾値を設定することができる。   The predetermined threshold is set in advance based on at least one of the groove shape and the difference in the thickness of the two workpieces W1 and W2 which are abutted with each other by experiment, simulation or the like. For example, when the groove shape of at least one of the works W1 and W2 is a curved shape having a sag, compared to the situation in which the groove shapes are perpendicular to each other, shadows are easily generated in the imaging data, and one side estimation point It is considered that the deviation (separation distance) from the other side estimation point tends to be large. Similarly, for example, when the thickness (plate thickness) of the works W1 and W2 is different, a shadow is easily formed in the imaging data as compared with the situation where the thickness is the same, and one side estimation point and the other side estimation point It is considered that the deviation tends to be large. As described above, the predetermined threshold can be set in advance according to the states of the works W1 and W2.

位置制御部44は、近似直線を溶接線Sとして設定し、設定した当該溶接線S上を溶接するように溶接ヘッド3の溶接位置を制御するように構成されている。位置制御部44は、溶接ヘッド3の前進に伴って、溶接位置が近似直線上の座標を通るように、溶接ヘッド3の左右位置を調節する。溶接ヘッド3は、位置制御部44からの指令により、左右に移動する。位置制御部44は、画像センサ2及び溶接ヘッド3の前進中又は停止中に、画像センサ2の左右位置は固定のまま、溶接ヘッド3の左右位置を制御する。基本的に、画像センサ2と溶接ヘッド3とは、前後方向(Y軸方向)の離間距離を変化させずに一体的に前進する。   The position control unit 44 is configured to set the approximate straight line as the welding line S and to control the welding position of the welding head 3 so as to weld the set welding line S. The position control unit 44 adjusts the left and right positions of the welding head 3 so that the welding position passes through the coordinates on the approximate straight line as the welding head 3 advances. The welding head 3 moves to the left and right according to a command from the position control unit 44. The position control unit 44 controls the left and right positions of the welding head 3 while the left and right positions of the image sensor 2 are fixed while the image sensor 2 and the welding head 3 are advancing or stopping. Basically, the image sensor 2 and the welding head 3 integrally advance without changing the separation distance in the front-rear direction (Y-axis direction).

本実施形態は、金属製品製造方法としても記載することができる。すなわち、本実施形態の金属製品製造方法は、シームトラッキングシステム1を用いてワークを溶接することで金属製品を製造する方法であって、図4に示すように、制御装置4が、撮像データの所定の走査線上の最も一方側に位置する、溶接線Sと推定される一方側推定点を検出する一方側検出工程S101と、制御装置4が、走査線上の最も他方側に位置する、溶接線Sと推定される他方側推定点を検出する他方側検出工程S102と、制御装置4が、複数の走査線で検出された一方側推定点及び他方側推定点に基づいて、近似直線を算出する近似線算出工程S103と、近似直線を溶接線Sに設定し、溶接線S上を溶接するように溶接ヘッド3の溶接位置を制御する位置制御工程S104と、を含み、近似線算出工程S103では、制御装置4が、同一の走査線上における離間距離が所定閾値以上である一方側推定点及び他方側推定点を除いて、近似直線を算出する。   This embodiment can also be described as a method of manufacturing a metal product. That is, the metal product manufacturing method of the present embodiment is a method of manufacturing a metal product by welding a work using the seam tracking system 1, and as shown in FIG. One-side detection step S101 for detecting one-side estimated point presumed to be welding line S located on the most one side on a predetermined scanning line, and welding line where control device 4 is located on the other other side on the scanning line The other side detection step S102 for detecting the other side estimation point estimated to be S, and the control device 4 calculate an approximate straight line based on the one side estimation point and the other side estimation point detected in a plurality of scanning lines. In the approximate line calculation step S103, an approximate line calculation step S103, and a position control step S104 in which the approximate straight line is set to the welding line S and the welding position of the welding head 3 is controlled to weld on the welding line S , Device 4, the distance on the same scan line with the exception of one side estimate point and the other side estimate point is above a predetermined threshold value, and calculates an approximate straight line.

ここで、近似線算出工程S103は、制御装置4が、同一走査線上における一方側推定点と他方側推定点との離間距離を算出し、当該離間距離が所定閾値未満であるか否かを判定する判定工程S1031と、制御装置4が、離間距離が所定閾値未満である一方側推定点と他方側推定点のみを用いて近似直線を算出する算出工程S1032と、を含んでいる。   Here, in the approximate line calculation step S103, the control device 4 calculates the separation distance between the one-side estimation point and the other-side estimation point on the same scanning line, and determines whether the separation distance is less than a predetermined threshold. The determining step S1031 and the calculating step S1032 in which the control device 4 calculates the approximate straight line using only the one-side estimation point and the other-side estimation point whose separation distance is less than the predetermined threshold value are included.

検出された一方側推定点と他方側推定点との離間距離が所定閾値未満である場合(S1031:Yes)、制御装置4が、当該推定点を近似直線の算出で用いる演算要素として設定する(S1032)。制御装置4は、所定数の演算要素を取得すると、近似直線を算出する(S1032)。一方、検出された一方側推定点と他方側推定点との離間距離が所定閾値未満でない場合(S1031:No)、当該推定点を近似直線の算出で用いる点として設定せず、演算要素から除外する(S1033)。ここで、すでに近似直線が算出されている場合、制御装置4は、演算要素から除外される当該推定点を近似直線上にオフセットさせる(S1033)。つまり、本方法は、近似直線が算出されている場合において、検出された一方側推定点と他方側推定点との離間距離が所定閾値未満でない場合、制御装置4が、当該両推定点を近似直線上に移動させるオフセット工程S1033を含んでいる。例えば、このような処理の流れが、走査線毎に(本実施形態では撮像データ毎に)実行される。なお、工程S101、S102は同時進行で行われても良い。当該溶接を経て、金属製品(例えば車両用部品)が製造される。   When the separation distance between the detected one-side estimation point and the other-side estimation point is less than the predetermined threshold (S1031: Yes), the control device 4 sets the estimation point as a calculation element used in calculation of the approximate straight line S1032). When acquiring a predetermined number of operation elements, the control device 4 calculates an approximate straight line (S1032). On the other hand, when the separation distance between the detected one-side estimation point and the other-side estimation point is not less than the predetermined threshold (S1031: No), the estimation point is not set as a point used in the calculation of the approximate straight line and excluded from the calculation element (S1033). Here, when the approximate straight line has already been calculated, the control device 4 offsets the estimated point to be excluded from the calculation element onto the approximate straight line (S1033). That is, when the separation distance between the detected one-side estimation point and the other-side estimation point is not less than a predetermined threshold when the approximate straight line is calculated, the control device 4 approximates the two estimation points. It includes an offset step S1033 of moving on a straight line. For example, the flow of such processing is performed for each scanning line (for each imaging data in the present embodiment). Steps S101 and S102 may be performed simultaneously. Through the welding, metal products (for example, parts for vehicles) are manufactured.

本実施形態によれば、一方側推定点と他方側推定点との離間距離(ずれ)の大小に基づいて、近似直線の演算要素の可否を判定するため、近似直線の算出前後にかかわらず誤検出を判定することができる。つまり、誤検出の判定に予め近似直線を算出する必要がなく、例えば推定点の検出毎に誤検出の判定をすることができる。これにより、容易に(素早く)溶接線を演算・設定することができる。   According to the present embodiment, since the propriety of the operation element of the approximate straight line is determined based on the magnitude of the separation distance (shift) between the one-side estimation point and the other-side estimation point Detection can be determined. That is, it is not necessary to calculate an approximate straight line in advance for the determination of the erroneous detection, and for example, the erroneous detection can be determined every time the estimation point is detected. This makes it possible to calculate (set) weld lines easily (rapidly).

また、走査線上の両推定点の離間距離が大きい場合、少なくとも一方の推定点がワークW1、W2の傷や影による誤検出である可能性が高く、それを演算要素から排除することで、溶接線の検出精度は維持又は向上される。また、画像センサ2自体の繰り返し検出によるバラツキが原因の誤検出も、演算要素から排除することができる。このように、本発明によれば、誤検出による溶接線の検出精度(トラッキング精度)の低減を抑制しつつ、より容易に溶接線を決定することができる。   In addition, when the separation distance between the two estimation points on the scanning line is large, there is a high possibility that at least one estimation point is an erroneous detection due to a flaw or a shadow of the workpiece W1 or W2. Line detection accuracy is maintained or improved. In addition, erroneous detection caused by variations due to repeated detection of the image sensor 2 itself can be excluded from the calculation elements. As described above, according to the present invention, it is possible to more easily determine a weld line while suppressing a decrease in detection accuracy (tracking accuracy) of a weld line due to an erroneous detection.

また、誤検出された推定点を近似直線上にオフセットさせることで、当該走査線に対して推定点を検出した事実を残しつつ(例えば制御装置4による未検出等のエラー認識を防ぎつつ)、後の近似直線の演算の妨げになることを抑制することができる。なお、制御装置4は、誤検出された推定点を削除したり、誤検出点として認識したりするように構成されても良い。   Further, by offsetting the erroneously detected estimated point on the approximate straight line, while leaving the fact that the estimated point is detected for the scanning line (for example, while preventing the error recognition such as undetected by the control device 4) It can be suppressed that it interferes with the later calculation of the approximate straight line. The control device 4 may be configured to delete an erroneously detected estimated point or to recognize it as an erroneous detection point.

また、所定閾値が開先形状及び突き合わされた2つの前記ワークの厚みの差の少なくとも一方に基づいて決定されることで、より対象ワークWの状態や2つのワークW1、W2の組み合わせに応じた溶接が可能となる。例えば、図5に示すように、一方のワークW1の突き合わせ部分にダレが形成されている場合(及び/又は互いに厚みが異なる場合)、当該ダレ等でできる影の影響を考慮して所定閾値を設定することで、対象ワークWの状態に応じた精度の良い溶接線Sの検出が可能となる。   In addition, the predetermined threshold value is determined based on at least one of the groove shape and the difference between the thicknesses of the two workpieces that are abutted, thereby further depending on the state of the target workpiece W and the combination of the two workpieces W1 and W2. Welding becomes possible. For example, as shown in FIG. 5, when a sagging is formed at the butt portion of one work W1 (and / or when the thicknesses are different from each other), the predetermined threshold is taken into consideration in consideration of the shadow produced by the sagging or the like. By setting, it is possible to detect the welding line S with high accuracy according to the state of the target work W.

(その他)
本発明は、上記実施形態に限られない。例えば、近似線算出部43は、近似曲線を算出するように設定されても良い。また、推定点の検出は、上記実施形態のように、一方側推定点を撮像データの一端から他端に向けた画像処理(検出処理)により検出し、他方側推定点を撮像データの他端から一端に向けた画像処理により検出することが効率的であるが、それ以外の方法で実行されても良い。また、1つの撮像データに複数の走査線(検出線ともいえる)を設定しても良い。また、各推定点は検出点ともいえる。
(Others)
The present invention is not limited to the above embodiment. For example, the approximate line calculation unit 43 may be set to calculate an approximate curve. Further, detection of an estimation point is detected by image processing (detection processing) in which one side estimation point is directed from one end of the imaging data to the other end as in the above embodiment, and the other side estimation point is the other end of imaging data Although it is efficient to detect by image processing directed from one end to the other, it may be performed by other methods. Further, a plurality of scanning lines (also referred to as detection lines) may be set in one imaging data. Also, each estimated point can be said to be a detection point.

また、制御装置4には、所定閾値の他に、X座標において一方側限界値(上限値)及び他方側限界値(下限値)が設定されても良い。この場合、例えば、近似線算出部43は、一方側推定点及び他方側推定点の少なくとも一方が一方側限界値よりも一方側にある場合、又は一方側推定点及び他方側推定点の少なくとも一方が他方側限界値よりも他方側にある場合、離間距離の大小にかかわらず、当該両推定点を近似直線の演算要素から除くように構成されても良い。また、これらの推定点を近似直線上にオフセットさせても良い。このような構成にすることで、明らかに誤検出である場合には、離間距離の演算を省略することができる。また、離間距離は所定閾値未満であるが共に限界値の外側にある推定点についても、演算要素から除外することができる。つまり、より精度の低減を抑制することができる。   Further, in the control device 4, in addition to the predetermined threshold value, one side limit value (upper limit value) and the other side limit value (lower limit value) may be set in the X coordinate. In this case, for example, when the at least one of the one-side estimation point and the other-side estimation point is on one side of the one-side limit value, the approximation line calculation unit 43 or at least one of the one-side estimation point and the other side estimation point When is on the other side of the other side limit value, both of the estimated points may be excluded from the calculation elements of the approximate straight line regardless of the magnitude of the separation distance. Also, these estimated points may be offset on an approximate straight line. By adopting such a configuration, it is possible to omit the calculation of the separation distance when there is a clear misdetection. In addition, estimated points that are less than the predetermined threshold but are both outside the limit value can also be excluded from the calculation element. That is, reduction in accuracy can be further suppressed.

また、近似直線の演算要素(推定点)の設定は上記実施形態に限られない。例えば、近似直線の演算要素として一方側推定点と他方側推定点との中間点を用いるのではなく、近似直線の演算要素が予め設定された側の推定点(一方側推定点又は他方側推定点)に近づくように、重み付けをしたうえで近似直線の演算要素を決定しても良い。例えば、図5及び図6に示すように、一方のワークW1の突き合わせ部分にのみダレがある場合、当該ダレにより一方側推定点のみが実際の溶接線Sから離れて検出される可能性が高い。このような場合、離間距離が所定閾値未満である一方側推定点及び他方側推定点のうち、他方側推定点のみを用いて、又は中間点よりも他方側推定点に近い点を用いて、近似直線を算出しても良い。これにより、さらに対象ワークWの状態・組み合わせに応じた溶接線Sの決定が可能となる。重み付けは、例えば、実験等により、開先形状やワークW1、W2の厚みの差などに基づいて決定することができる。複数の演算要素が設定されれば、近似直線又は近似曲線の算出は、公知の方法で実行できる。   Moreover, the setting of the operation element (estimated point) of the approximate straight line is not limited to the above embodiment. For example, instead of using the middle point between the one-side estimation point and the other-side estimation point as the calculation element of the approximate straight line, the estimation point on the side where the calculation element of the approximate straight line is preset (one-side estimation point or other side estimation The operation element of the approximate straight line may be determined after weighting so as to be closer to the point). For example, as shown in FIG. 5 and FIG. 6, when there is a sag only at the butt portion of one work W1, there is a high possibility that only one side estimated point is detected away from the actual welding line S by the sag. . In such a case, of the one-side estimation point and the other-side estimation point at which the separation distance is less than the predetermined threshold value, using only the other-side estimation point or using a point closer to the other-side estimation point than the middle point An approximate straight line may be calculated. Thereby, determination of welding line S according to the state and combination of object work W is attained. The weighting can be determined based on, for example, the groove shape and the thickness difference of the workpieces W1 and W2 by experiments or the like. If a plurality of operation elements are set, calculation of the approximate straight line or approximate curve can be performed by a known method.

1…シームトラッキングシステム、2…画像センサ、21…カメラ、22…光源、3…溶接ヘッド、4…制御装置、41…一方側検出部、42…他方側検出部、43…近似線算出部、44…位置制御部、W…対象ワーク、W1、W2…ワーク。 DESCRIPTION OF SYMBOLS 1 ... Seam tracking system, 2 ... Image sensor, 21 ... Camera, 22 ... Light source, 3 ... Welding head, 4 ... Control device, 41 ... One side detection part 42 ... Other side detection part 43 ... Approximate line calculation part, 44: Position control unit, W: Target work, W1, W2: Work.

本発明のシームトラッキングシステムは、所定の進行方向に進行しつつワークを撮像する画像センサと、前記画像センサに追従する溶接ヘッドと、前記画像センサが撮像した撮像データに基づいて前記ワークの突き合わせ部分に影として表れる溶接対象となる溶接線を検出し、前記溶接線に基づいて前記溶接ヘッドの溶接位置を制御する制御装置と、を備えるシームトラッキングシステムであって、前記制御装置は、前記撮像データにおいて前記進行方向に直交する方向に延びる仮想直線を走査線とすると、前記撮像データの明るさに基づいて、前記撮像データの所定の前記走査線上の最も一方側に位置する、前記溶接線と推定される一方側推定点を検出する一方側検出部と、前記撮像データの明るさに基づいて、前記走査線上の最も他方側に位置する、前記溶接線と推定される他方側推定点を検出する他方側検出部と、複数の前記走査線上で検出された前記一方側推定点及び前記他方側推定点に基づいて、近似直線又は近似曲線を算出する近似線算出部と、前記近似直線又は前記近似曲線を前記溶接線に設定し、前記溶接線上を溶接するように前記溶接ヘッドの溶接位置を制御する位置制御部と、を備え、前記近似線算出部は、同一の前記走査線上における離間距離が所定閾値以上である前記一方側推定点及び前記他方側推定点を除いて、前記近似直線又は前記近似曲線を算出する。 In the seam tracking system according to the present invention, an image sensor for imaging a workpiece while advancing in a predetermined advancing direction, a welding head for following the image sensor, and a butt portion of the workpiece based on imaging data imaged by the image sensor to detect the weld line to be welded appearing as a shadow, a seam tracking system and a control device for controlling the welding position of the welding head on the basis of the weld line, the control device, the imaging data Assuming that a virtual straight line extending in a direction orthogonal to the traveling direction is a scanning line, and the welding line is estimated to be located closest to one of the predetermined scanning lines of the imaging data based on the brightness of the imaging data while a side detection unit, based on the brightness of the imaging data, the most other side of the scanning line to detect the one-side estimate point to be An approximate straight line or an approximate straight line based on the one side estimation point and the other side estimation point detected on a plurality of the scanning lines, and the other side detection unit that detects the other side estimation point estimated to be the weld line located An approximate line calculation unit that calculates an approximate curve, and a position control unit that sets the approximate straight line or the approximate curve to the welding line and controls the welding position of the welding head so as to weld on the welding line. The approximate line calculation unit calculates the approximate straight line or the approximate curve except for the one-side estimation point and the other-side estimation point whose separation distance on the same scanning line is a predetermined threshold or more.

また、本発明の金属製品製造方法は、所定の進行方向に進行しつつ金属製のワークを撮像する画像センサと、前記画像センサに追従する溶接ヘッドと、前記画像センサが撮像した撮像データに基づいて前記ワークの突き合わせ部分に影として表れる溶接対象となる溶接線を検出し、前記溶接線に基づいて前記溶接ヘッドの溶接位置を制御する制御装置と、を備えるシームトラッキングシステムを用いた金属製品製造方法であって、前記撮像データにおいて前記進行方向に直交する方向に延びる仮想直線を走査線とすると、前記制御装置が、前記撮像データの明るさに基づいて、前記撮像データの前記走査線上の最も一方側に位置する、前記溶接線と推定される一方側推定点を検出する一方側検出工程と、前記制御装置が、前記撮像データの明るさに基づいて、前記走査線上の最も他方側に位置する、前記溶接線と推定される他方側推定点を検出する他方側検出工程と、前記制御装置が、複数の前記走査線上で検出された前記一方側推定点及び前記他方側推定点に基づいて、近似直線又は近似曲線を算出する近似線算出工程と、前記近似直線又は前記近似曲線を前記溶接線に設定し、前記溶接線上を溶接するように前記溶接ヘッドの溶接位置を制御する位置制御工程と、を含み、前記近似線算出工程では、同一の前記走査線上における離間距離が所定閾値以上である前記一方側推定点及び前記他方側推定点を除いて、前記近似直線又は前記近似曲線が算出される。 In the metal product manufacturing method of the present invention, an image sensor for imaging a metal work while advancing in a predetermined traveling direction, a welding head for following the image sensor, and imaging data captured by the image sensor Control apparatus for detecting a weld line to be welded which appears as a shadow on the butt portion of the work, and controlling a welding position of the welding head based on the weld line; and manufacturing a metal product using a seam tracking system In the method, assuming that a virtual straight line extending in a direction orthogonal to the traveling direction in the imaging data is a scanning line, the control device determines the most on the scanning line of the imaging data based on the brightness of the imaging data. on the other hand located on the side, and one side detection step of detecting a one-side estimate point that is estimated to the weld line, wherein the controller, light of the imaging data Based on the located most other side of the scanning line, and the other side detection step of detecting the other side estimated point that is estimated to the weld line, the control device has been detected by the plurality of the scan lines An approximation line calculating step of calculating an approximation straight line or an approximation curve based on the one side estimation point and the other side estimation point, setting the approximation line or the approximation curve as the welding line, and welding the welding line And a position control step of controlling the welding position of the welding head, and in the approximate line calculation step, the one-side estimation point and the other-side estimation whose separated distance on the same scanning line is equal to or more than a predetermined threshold With the exception of points, the approximate straight line or the approximate curve is calculated.

Claims (8)

所定の進行方向に進行しつつワークを撮像する画像センサと、前記画像センサに追従する溶接ヘッドと、前記画像センサが撮像した撮像データに基づいて前記ワークの溶接線を検出し、前記溶接線に基づいて前記溶接ヘッドの溶接位置を制御する制御装置と、を備えるシームトラッキングシステムにおいて、
前記制御装置は、
前記撮像データにおいて前記進行方向に直交する方向に延びる仮想直線を走査線とすると、前記撮像データの所定の前記走査線上の最も一方側に位置する、前記溶接線と推定される一方側推定点を検出する一方側検出部と、
前記走査線上の最も他方側に位置する、前記溶接線と推定される他方側推定点を検出する他方側検出部と、
複数の前記走査線上で検出された前記一方側推定点及び前記他方側推定点に基づいて、近似直線又は近似曲線を算出する近似線算出部と、
前記近似直線又は前記近似曲線を前記溶接線に設定し、前記溶接線上を溶接するように前記溶接ヘッドの溶接位置を制御する位置制御部と、
を備え、
前記近似線算出部は、同一の前記走査線上における離間距離が所定閾値以上である前記一方側推定点及び前記他方側推定点を除いて、前記近似直線又は前記近似曲線を算出するシームトラッキングシステム。
An image sensor for imaging a workpiece while advancing in a predetermined advancing direction, a welding head for following the image sensor, and a welding line of the workpiece are detected based on imaging data imaged by the image sensor, and A controller for controlling a welding position of the welding head based on the seam tracking system.
The controller is
Assuming that a virtual straight line extending in a direction orthogonal to the traveling direction in the imaging data is a scanning line, the one-side estimation point estimated to be the welding line located on the most one side of the predetermined scanning line of the imaging data One side detection unit to detect,
The other side detection unit which detects the other side estimation point estimated to be the welding line, which is located on the other side of the scanning line;
An approximate line calculation unit that calculates an approximate straight line or an approximate curve based on the one-side estimation point and the other-side estimation point detected on a plurality of the scanning lines;
A position control unit that sets the approximate straight line or the approximate curve to the welding line, and controls a welding position of the welding head so as to weld on the welding line;
Equipped with
The seam tracking system, wherein the approximate line calculation unit calculates the approximate straight line or the approximate curve except for the one-side estimation point and the other-side estimation point whose separation distance on the same scanning line is equal to or more than a predetermined threshold.
前記近似線算出部は、前記近似直線又は前記近似曲線が算出された状態において、同一の前記走査線上における離間距離が前記所定閾値以上である前記一方側推定点及び前記他方側推定点の位置情報を前記近似直線又は前記近似曲線上に移動させる請求項1に記載のシームトラッキングシステム。   The approximate line calculation unit, when the approximate straight line or the approximate curve is calculated, indicates position information of the one-side estimation point and the other-side estimation point whose separation distance on the same scanning line is equal to or more than the predetermined threshold. The seam tracking system according to claim 1, wherein the line is moved on the approximate straight line or the approximate curve. 前記所定閾値は、開先形状及び突き合わされた2つの前記ワークの厚みの差の少なくとも一方に基づいて予め設定されている請求項1又は2に記載のシームトラッキングシステム。   The seam tracking system according to claim 1 or 2, wherein the predetermined threshold is preset based on at least one of a groove shape and a difference in thickness of the two workpieces which are abutted. 前記近似線算出部は、同一の前記走査線上における前記一方側推定点及び前記他方側推定点の少なくとも一方が一方側限界値よりも一方側にある場合、又は前記一方側推定点及び前記他方側推定点の少なくとも一方が他方側限界値よりも他方側にある場合、前記離間距離の大小にかかわらず、当該両推定点を除いて前記近似直線又は前記近似曲線を算出する請求項1〜3の何れか一項に記載のシームトラッキングシステム。   When the at least one of the one-side estimation point and the other-side estimation point on the same scanning line is on one side of the one-side limit value, or the approximate line calculation unit is used, or the one-side estimation point and the other side When at least one of the estimated points is on the other side of the other side limit value, the approximate straight line or the approximate curve is calculated excluding the two estimated points regardless of the magnitude of the separation distance. Seam tracking system according to any one of the preceding claims. 所定の進行方向に進行しつつ金属製のワークを撮像する画像センサと、前記画像センサに追従する溶接ヘッドと、前記画像センサが撮像した撮像データに基づいて前記ワークの溶接線を検出し、前記溶接線に基づいて前記溶接ヘッドの溶接位置を制御する制御装置と、を備えるシームトラッキングシステムを用いた金属製品製造方法であって、
前記撮像データにおいて前記進行方向に直交する方向に延びる仮想直線を走査線とすると、
前記制御装置が、前記撮像データの前記走査線上の最も一方側に位置する、前記溶接線と推定される一方側推定点を検出する一方側検出工程と、
前記制御装置が、前記走査線上の最も他方側に位置する、前記溶接線と推定される他方側推定点を検出する他方側検出工程と、
前記制御装置が、複数の前記走査線上で検出された前記一方側推定点及び前記他方側推定点に基づいて、近似直線又は近似曲線を算出する近似線算出工程と、
前記近似直線又は前記近似曲線を前記溶接線に設定し、前記溶接線上を溶接するように前記溶接ヘッドの溶接位置を制御する位置制御工程と、
を含み、
前記近似線算出工程では、前記制御装置が、同一の前記走査線上における離間距離が所定閾値以上である前記一方側推定点及び前記他方側推定点を除いて、前記近似直線又は前記近似曲線を算出する金属製品製造方法。
An image sensor for imaging a metal work while advancing in a predetermined advancing direction, a welding head for following the image sensor, and a welding line of the work detected based on imaging data imaged by the image sensor; A control device for controlling a welding position of the welding head based on a welding line, and a metal product manufacturing method using a seam tracking system,
Assuming that a virtual straight line extending in a direction orthogonal to the traveling direction in the imaging data is a scanning line,
A one-side detection step of detecting the one-side estimation point estimated to be the weld line, the control device being positioned on the most one side of the scanning line of the imaging data;
The other side detection step of detecting the other side estimation point estimated to be the welding line, which is located on the most other side of the scanning line;
An approximation line calculation step of calculating an approximation straight line or an approximation curve based on the one-side estimation point and the other-side estimation point detected on a plurality of the scanning lines by the control device;
A position control step of setting the approximate straight line or the approximate curve to the welding line and controlling a welding position of the welding head so as to weld on the welding line;
Including
In the approximate line calculation step, the control device calculates the approximate straight line or the approximate curve except for the one-side estimation point and the other-side estimation point whose separation distance on the same scanning line is a predetermined threshold or more. Metal product manufacturing method.
前記近似線算出工程では、前記近似直線又は前記近似曲線が算出された状態において、前記制御装置が、同一の前記走査線上における離間距離が前記所定閾値以上である前記一方側推定点及び前記他方側推定点の位置情報を前記近似直線又は前記近似曲線上に移動させる請求項5に記載の金属製品製造方法。   In the approximate line calculation step, in a state where the approximate straight line or the approximate curve is calculated, the control device determines the one side estimated point and the other side where the separation distance on the same scanning line is equal to or more than the predetermined threshold The metal product manufacturing method according to claim 5, wherein position information of the estimated point is moved on the approximate straight line or the approximate curve. 前記所定閾値は、開先形状及び突き合わされた2つの前記ワークの厚みの差の少なくとも一方に基づいて予め設定されている請求項5又は6に記載の金属製品製造方法。   The metal product manufacturing method according to claim 5 or 6, wherein the predetermined threshold value is preset based on at least one of a groove shape and a difference in thickness of the two workpieces which are abutted. 前記近似線算出工程では、同一の前記走査線上における前記一方側推定点及び前記他方側推定点の少なくとも一方が一方側限界値よりも一方側にある場合、又は前記一方側推定点及び前記他方側推定点の少なくとも一方が他方側限界値よりも他方側にある場合、前記制御装置が、前記離間距離の大小にかかわらず、当該両推定点を除いて前記近似直線又は前記近似曲線を算出する請求項5〜7の何れか一項に記載の金属製品製造方法。   In the approximate line calculation step, when at least one of the one-side estimation point and the other-side estimation point on the same scanning line is on one side of the one-side limit value, or the one-side estimation point and the other side When at least one of the estimated points is on the other side of the other side limit value, the control device calculates the approximate straight line or the approximate curve excluding both the estimated points regardless of the magnitude of the separation distance The metal product manufacturing method as described in any one of claim | item 5 -7.
JP2017213141A 2017-11-02 2017-11-02 Seam tracking system and metal product manufacturing method Active JP6343711B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017213141A JP6343711B1 (en) 2017-11-02 2017-11-02 Seam tracking system and metal product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017213141A JP6343711B1 (en) 2017-11-02 2017-11-02 Seam tracking system and metal product manufacturing method

Publications (2)

Publication Number Publication Date
JP6343711B1 JP6343711B1 (en) 2018-06-13
JP2019084551A true JP2019084551A (en) 2019-06-06

Family

ID=62555269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017213141A Active JP6343711B1 (en) 2017-11-02 2017-11-02 Seam tracking system and metal product manufacturing method

Country Status (1)

Country Link
JP (1) JP6343711B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773841B (en) * 2019-09-25 2021-12-03 浙江金华巨能电子科技有限公司 Trajectory tracking method for welding
CN114061482B (en) * 2021-10-19 2024-10-11 嘉善宇达电子有限公司 Quick accurate detecting system of sound membrane size
CN114749849B (en) * 2022-06-01 2023-09-01 江苏徐工工程机械研究院有限公司 Welding control method, device and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740049A (en) * 1993-07-29 1995-02-10 Nippon Steel Corp Method and device for detecting weld zone of uo steel pipe
JP3719764B2 (en) * 1996-04-01 2005-11-24 Jfeスチール株式会社 Seam copying method in laser welding pipe making
JPH10105717A (en) * 1996-09-30 1998-04-24 Honda Motor Co Ltd Generation method of template for pattern matching
JPH11287619A (en) * 1998-04-03 1999-10-19 Ishikawajima Harima Heavy Ind Co Ltd Method and device for detecting weld line for copy welding
JP2008260043A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Welding method, and apparatus for detecting stepped portion
JP6755709B2 (en) * 2016-05-18 2020-09-16 株式会社東芝 Welding equipment and welding method

Also Published As

Publication number Publication date
JP6343711B1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
Xu et al. Visual sensing technologies in robotic welding: Recent research developments and future interests
JP2895448B2 (en) Method and apparatus for monitoring and locating a beam or jet stream for processing a workpiece
Huang et al. Development of a real-time laser-based machine vision system to monitor and control welding processes
CN111014879B (en) Automatic welding method for corrugated plate of robot based on laser weld seam tracking
JP6343711B1 (en) Seam tracking system and metal product manufacturing method
Liu et al. Precise initial weld position identification of a fillet weld seam using laser vision technology
TW201823712A (en) Method for detecting shape of welded steel pipe butt-seam, method for welded steel pipe quality control using said method, and device for same
JP2014032076A (en) Method of measuring position and shape of welding groove
JP2017203744A (en) Aircraft panel appearance inspection method
Eren et al. Recent developments in computer vision and artificial intelligence aided intelligent robotic welding applications
JP2017205789A (en) Welding apparatus and welding method
JP7234420B2 (en) Method for scanning the surface of a metal workpiece and method for performing a welding process
Yu et al. Unified seam tracking algorithm via three-point weld representation for autonomous robotic welding
JP2004219154A (en) Surface shape measuring method of object and automatic welding device
JP2000024777A (en) Groove shape detecting device
Nilsen et al. Adaptive control of the filler wire rate during laser beam welding of squared butt joints with varying gap width
Shi et al. Adaptive robotic welding system using laser vision sensing for underwater engineering
JP2003220471A (en) Automatic trace controller of welding position
CN114111627A (en) Scanning system and scanning method based on laser tracker
KR102124307B1 (en) Method for auto tracking weld line and apparatus thereof
JP2895289B2 (en) Automatic welding copying machine
Alzarok et al. Review for the current performances for Machine Visions in Industrial Robotic welding and drilling tasks
Kim et al. Development of welding profile sensor and its application
Li et al. Type identification and feature extraction of weld joint for adaptive robotic welding
JP6842171B2 (en) Automatic welding machine and automatic welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6343711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250