JP2019082458A - Water quality evaluation device and water quality evaluation method - Google Patents

Water quality evaluation device and water quality evaluation method Download PDF

Info

Publication number
JP2019082458A
JP2019082458A JP2018032158A JP2018032158A JP2019082458A JP 2019082458 A JP2019082458 A JP 2019082458A JP 2018032158 A JP2018032158 A JP 2018032158A JP 2018032158 A JP2018032158 A JP 2018032158A JP 2019082458 A JP2019082458 A JP 2019082458A
Authority
JP
Japan
Prior art keywords
substrate
measured
water
quality evaluation
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018032158A
Other languages
Japanese (ja)
Other versions
JP7040116B2 (en
Inventor
侑 藤村
Yu FUJIMURA
侑 藤村
加藤 俊正
Toshimasa Kato
俊正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Publication of JP2019082458A publication Critical patent/JP2019082458A/en
Application granted granted Critical
Publication of JP7040116B2 publication Critical patent/JP7040116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To provide a water quality evaluation device and a water quality evaluation method which are able to accurately and with high detection probability detect all impurities present in superpure water for cleaning a semiconductor wafer.SOLUTION: According to the invention, the water quality evaluation device comprises: treatment means for specifically processing and manipulating a measured board; support means for supporting the measured board horizontally with a surface facing upward; dropping means for dropping evaluated water onto the surface of the specifically processed and manipulated measured board; and analysis means for analysing a watermark that is formed on the surface of the measured board after the measured board including the evaluated water dropped thereon is dried.SELECTED DRAWING: Figure 2

Description

本発明は、水質評価装置及び水質評価方法に関し、特に、半導体ウエハの洗浄に用いる超純水の水質評価装置及び水質評価方法に関する。   The present invention relates to a water quality evaluation apparatus and a water quality evaluation method, and more particularly to a water quality evaluation apparatus and a water quality evaluation method of ultrapure water used for cleaning a semiconductor wafer.

LSI(大規模集積回路)の製造工程においては、半導体ウエハの洗浄に超純水が用いられている。このような超純水は、洗浄工程の最後に半導体ウエハに接触する物質であるため、超純水中に含まれる不純物の濃度が半導体ウエハ表面の洗浄度合に大きく影響する。このため、近年のLSIの集積度の増加に伴い、LSIの製造工程で用いられる超純水中に存在する微粒子等の不純物の低減への要求はますます高まっており、例えばTOC、微粒子数、抵抗率等を測定することによって、超純水中の不純物の量を評価する方法が種々提案されている。   In the manufacturing process of LSI (large scale integrated circuit), ultrapure water is used for cleaning a semiconductor wafer. Since such ultrapure water is a substance that comes in contact with the semiconductor wafer at the end of the cleaning process, the concentration of impurities contained in the ultrapure water greatly affects the degree of cleaning of the semiconductor wafer surface. For this reason, with the increase in the degree of integration of LSI in recent years, the demand for reduction of impurities such as fine particles present in ultrapure water used in the manufacturing process of LSI is increasingly increasing. Various methods have been proposed to evaluate the amount of impurities in ultrapure water by measuring resistivity or the like.

上述のような洗浄用の超純水中に存在する微粒子等の不純物には、大きく分けて、半導体ウエハ表面に付着してその特性に悪影響を及ぼす可能性のある不純物と、半導体ウエハ表面に付着しないがその表面に形成された微細構造に留まり半導体ウエハを用いたデバイスの特性に悪影響を及ぼす可能性のある極微量の不純物とがある。洗浄によって清浄度の高い半導体ウエハを得るためには、これらの不純物すべてを正確に評価できることが望ましい。   Impurities such as fine particles present in ultra pure water for cleaning as described above are roughly classified into impurities that may adhere to the surface of the semiconductor wafer and adversely affect its characteristics, and adhere to the surface of the semiconductor wafer However, there are trace amounts of impurities which may remain in the fine structure formed on the surface and adversely affect the characteristics of the device using the semiconductor wafer. In order to obtain a highly clean semiconductor wafer by cleaning, it is desirable to be able to accurately evaluate all these impurities.

そこで、特許文献1及び特許文献2には、測定基板を密閉容器に保持し、そこに評価対象となる超純水を通水して測定基板と接触させ、その後、測定基板をパーティクルカウンタで測定することで測定基板表面に付着した微粒子数を評価する方法が開示されている。特許文献1及び特許文献2に開示の方法を用いれば、測定基板表面に付着した不純物を正確に評価することが可能であるとともに、大容量の超純水を評価対象とすることができるので評価精度を高めることが可能である。しかしながら、この方法では、測定基板表面に付着しないがその表面の微細化構造に取り込まれた極微量の微粒子等の不純物は評価することができない。   Therefore, according to Patent Document 1 and Patent Document 2, the measurement substrate is held in a closed container, ultrapure water to be evaluated is passed through the container and brought into contact with the measurement substrate, and then the measurement substrate is measured by the particle counter. The method of evaluating the number of microparticles | fine-particles adhering to the measurement board | substrate surface by doing is disclosed. By using the methods disclosed in Patent Document 1 and Patent Document 2, it is possible to accurately evaluate the impurities attached to the surface of the measurement substrate, and to evaluate a large volume of ultrapure water, which is an evaluation target. It is possible to increase the accuracy. However, this method can not evaluate impurities such as minute amounts of fine particles which are not attached to the surface of the measurement substrate but are incorporated into the finer structure of the surface.

一方、特許文献3には、測定基板(サファイア基板)上に評価対象となる極少量の超純水を滴下して乾固させた後、測定基板上に形成されるウォーターマークを、三次元画像解析を行って評価する方法が開示されている。特許文献3に開示の方法を用いれば、測定基板表面の微細構造に取り込まれて留まった極微量の不純物を評価することが可能である。しかしながら、この方法では、測定基板上に保持できる超純水の量が、使用する半導体ウエハの大きさに依存し、極少量の超純水しか評価対象とすることができないため、評価精度の低下を引き起こすおそれがある。また、親水性の表面を有する測定基板を用いた場合には、超純水が測定基板の表面に非常によくなじんで薄く広がるため、評価対象となる超純水を一カ所に留めておくことができず、測定範囲が広範囲になってしまい、上記極微量の不純物を検出できないおそれがある。   On the other hand, according to Patent Document 3, after a very small amount of ultrapure water to be evaluated is dropped on a measurement substrate (sapphire substrate) and dried, the water mark formed on the measurement substrate is a three-dimensional image. A method of performing analysis and evaluation is disclosed. By using the method disclosed in Patent Document 3, it is possible to evaluate a trace amount of impurities incorporated in the fine structure on the surface of the measurement substrate. However, in this method, the amount of ultrapure water that can be held on the measurement substrate depends on the size of the semiconductor wafer used, and only a very small amount of ultrapure water can be evaluated. May cause When using a measurement substrate having a hydrophilic surface, ultrapure water spreads very well on the surface of the measurement substrate and spreads thinly, so the ultrapure water to be evaluated should be kept in one place. As a result, the measurement range becomes wide and there is a possibility that the above trace amount of impurities can not be detected.

特許第4449135号Patent No. 4449135 特許第4507336号Patent No. 4507336 特許第2772361号Patent No. 2772361

上述のように、特許文献1及び特許文献2に開示の方法と特許文献3に開示の方法とでは不純物の評価手段が異なるため、これらの方法を組み合わせて用いることはできない。よって、従来技術では、半導体ウエハの洗浄用の超純水中に存在する不純物すべて、つまり半導体ウエハの表面に付着してその特性に悪影響を及ぼす可能性のある不純物と、半導体ウエハの表面に付着しないがその表面に形成された微細構造に留まり半導体ウエハを用いたデバイスの特性に悪影響を及ぼす可能性のある極微量の不純物とのすべてを正確に評価することはできないのが現状である。   As described above, the methods disclosed in Patent Document 1 and Patent Document 2 and the method disclosed in Patent Document 3 have different means for evaluating impurities, and therefore these methods can not be used in combination. Therefore, in the prior art, all impurities present in the ultrapure water for cleaning the semiconductor wafer, that is, impurities that may adhere to the surface of the semiconductor wafer and adversely affect the characteristics thereof, and adhere to the surface of the semiconductor wafer However, under the present circumstances, it is impossible to accurately evaluate all of the very small amounts of impurities that may remain in the fine structure formed on the surface and adversely affect the characteristics of the device using the semiconductor wafer.

本発明は上述のような事情に基づいてなされたものであり、半導体ウエハの洗浄用の超純水中に存在する不純物すべてを、高い検出確率をもって正確に評価することが可能な水質評価装置及び水質評価方法の提供を目的とする。   The present invention has been made based on the above situation, and is a water quality evaluation device capable of accurately evaluating all impurities present in ultrapure water for cleaning semiconductor wafers with a high detection probability. The purpose is to provide a water quality assessment method.

上記課題を解決するために、第一に本発明は、被測定基板に対して特定の加工又は操作を行う処理手段と、被測定基板をその表面を上向きにして水平に支持する支持手段と、特定の加工又は操作を行った被測定基板の表面に被評価水を滴下する滴下手段と、被評価水を滴下した被測定基板を乾燥させた後その表面に形成されるウォーターマークを分析する分析手段とを備える水質評価装置を提供する(発明1)。   In order to solve the above-described problems, according to the present invention, first, processing means for performing specific processing or operation on a substrate to be measured, and support means for horizontally supporting the substrate to be measured with its surface facing upward; Dropping means for dropping the water to be evaluated on the surface of the substrate to be measured which has been subjected to a specific processing or operation, and analysis to analyze the watermark formed on the surface of the substrate to be measured after drying the water to be measured And a water quality evaluation device provided with the following means (Invention 1).

かかる発明(発明1)によれば、特定の加工又は操作を行った被測定基板の表面に、被評価水を滴下した後、被評価水を滴下した被測定基板を乾燥させ、乾燥後の被測定基板の表面に形成されるウォーターマークを分析することによって、被評価水中に存在する不純物すべて、つまり被測定基板の表面に付着する不純物と、被測定基板表面に付着しないがその表面に形成された微細構造に留まる極微量の不純物とのすべてを評価することができる。   According to this invention (Invention 1), after the water to be evaluated is dropped on the surface of the substrate to be measured which has been subjected to the specific processing or operation, the substrate to be measured to which the water to be evaluated is dropped is dried. By analyzing the watermark formed on the surface of the measurement substrate, all impurities present in the water to be evaluated, that is, the impurities attached to the surface of the substrate to be measured, and not on the surface of the substrate to be measured are formed on the surface It is possible to evaluate all the trace impurities remaining in the fine structure.

なお、本発明において「ウォーターマーク」とは、半導体ウエハ等の基板の表面に水溶液を滴下して乾燥させた際に、水溶液中に存在していた物質が基板表面に濃化することにより形成される乾燥むらであって、いわゆる「水じみ」をいう。   In the present invention, the “water mark” is formed by concentrating the substance existing in the aqueous solution on the substrate surface when the aqueous solution is dropped on the surface of the substrate such as a semiconductor wafer and dried. Dry, which is the so-called "water mark".

上記発明(発明1)においては、前記処理手段が、被測定基板の表面に閉じた領域を区画する周壁部を形成する周壁部形成手段であることが好ましい(発明2)。   In the said invention (invention 1), it is preferable that the said process means is a surrounding-wall part formation means which forms the surrounding wall part which divides the area | region closed on the surface of a to-be-measured board | substrate (invention 2).

かかる発明(発明2)によれば、被測定基板の表面に形成された周壁部によって区画される閉じた領域に被評価水を滴下することで、平板状の測定基板を用いた場合に比べて、大容量の被評価水を評価対象とすることができ、評価精度を高めることができる。また、周壁部を形成する位置を調整することにより、閉じた領域のサイズ、つまり被評価水を留める範囲を任意に設定することができるので、被評価水のボリュームや性質に応じた測定が可能である。   According to this invention (invention 2), the water to be evaluated is dropped onto the closed region partitioned by the peripheral wall portion formed on the surface of the substrate to be measured, as compared to the case where the flat measurement substrate is used. A large volume of water to be evaluated can be evaluated, and the evaluation accuracy can be enhanced. In addition, by adjusting the position where the peripheral wall portion is formed, the size of the closed area, that is, the range in which the water to be evaluated can be set can be set arbitrarily, so that measurement according to the volume and properties of the water to be evaluated is possible. It is.

上記発明(発明1)においては、前記処理手段が、被測定基板の表面に閉じた領域を区画する溝部を形成する溝部形成手段であることが好ましい(発明3)。   In the above invention (Invention 1), it is preferable that the processing means is a groove forming means for forming a groove which defines a closed region on the surface of the substrate to be measured (Invention 3).

かかる発明(発明3)によれば、被測定基板の表面に形成された溝部によって区画される閉じた領域に被評価水を滴下することで、平板状の測定基板を用いた場合に比べて、大容量の被評価水を評価対象とすることができ、評価精度を高めることができる。また、溝部を形成する位置を調整することにより、閉じた領域のサイズ、つまり被評価水を留める範囲を任意に設定することができるので、被評価水のボリュームや性質に応じた測定が可能である。   According to this invention (invention 3), the water to be evaluated is dropped onto the closed region partitioned by the groove portion formed on the surface of the substrate to be measured, as compared with the case where the flat measurement substrate is used. A large volume of water to be evaluated can be evaluated, and the accuracy of evaluation can be enhanced. In addition, by adjusting the position where the groove is formed, the size of the closed area, that is, the range for retaining the water to be evaluated can be arbitrarily set, so that the measurement according to the volume and nature of the water to be evaluated is possible. is there.

上記発明(発明1)においては、前記処理手段が、前記支持手段により水平に支持した被測定基板をその裏面から吸引することにより凹状に湾曲させる吸引手段であることが好ましい(発明4)。   In the above invention (Invention 1), preferably, the processing means is a suction means for curving in a concave shape by suctioning the substrate to be measured horizontally supported by the support means from the back surface (Invention 4).

かかる発明(発明4)によれば、吸引することにより凹状に湾曲させた被測定基板の表面に被評価水を滴下しているので、平板状の測定基板を用いた場合に比べて、大容量の被評価水を評価対象とすることができ、評価精度を高めることができる。また、凹状に湾曲した被測定基板の形状のせいで、滴下された被評価水が被測定基板表面の一カ所に留まり、ウォーターマークが被測定基板表面の狭い範囲に形成されるため、親水性の表面を有する測定基板を用いた場合であっても、測定範囲が広範囲にならず、被測定基板の表面に形成された微細構造に留まった極微量の不純物の検出確率を高めることができる。   According to this invention (invention 4), since the water to be evaluated is dropped on the surface of the substrate to be measured which is concavely curved by suction, a large capacity can be obtained as compared with the case where a flat measurement substrate is used. The water to be evaluated can be the evaluation target, and the evaluation accuracy can be enhanced. In addition, due to the shape of the concavely curved substrate to be measured, the dropped water to be evaluated remains at one position on the surface of the substrate to be measured, and the water mark is formed in a narrow range on the surface of the substrate to be measured. Even in the case of using the measurement substrate having the surface of (1), the measurement range does not become wide, and the detection probability of the trace amount of impurities remaining in the fine structure formed on the surface of the measurement substrate can be enhanced.

上記発明(発明4)においては、前記吸引手段が吸盤状のサクションリフタ又は吸引ポンプを有することが好ましい(発明5)。   In the said invention (invention 4), it is preferable that the said suction means has a suction-lifter-like suction lifter or suction pump (invention 5).

上記発明(発明1−5)においては、前記乾燥後の被測定基板の表面状態を観察する観察手段をさらに備えることが好ましい(発明6)。   In the said invention (invention 1-5), it is preferable to further provide the observation means which observes the surface state of the to-be-measured board | substrate after said drying (invention 6).

通常、洗浄・乾燥後の半導体ウエハの表面状態の観察は、洗浄に用いる超純水中に存在する不純物の評価とは別途行われる。かかる発明(発明6)によれば、超純水中に存在する不純物の評価の際に、併せて洗浄・乾燥後の被測定基板の表面の状態を観察することができ、効率的である。   Usually, the observation of the surface condition of the semiconductor wafer after cleaning and drying is performed separately from the evaluation of the impurities present in the ultrapure water used for cleaning. According to this invention (Invention 6), when evaluating the impurities present in the ultrapure water, the state of the surface of the substrate to be measured after washing and drying can be observed together, which is efficient.

上記発明(発明1−6)においては、評価環境がチャンバ内であることが好ましい(発明7)。   In the said invention (invention 1-6), it is preferable that an evaluation environment is in a chamber (invention 7).

かかる発明(発明7)によれば、被評価水の水質評価をチャンバ内で行うことにより、評価中に外気から微粒子等の不純物が混入するのを防止することができる。   According to this invention (Invention 7), by performing the water quality evaluation of the water to be evaluated in the chamber, it is possible to prevent the mixing of impurities such as fine particles from the outside air during the evaluation.

上記発明(発明7)においては、前記チャンバ内が不活性ガス雰囲気で満たされていることが好ましい(発明8)。   In the said invention (invention 7), it is preferable that the inside of the said chamber is satisfy | filled with inert gas atmosphere (invention 8).

かかる発明(発明8)によれば、予めチャンバ内を不活性ガス雰囲気で満たした上で被評価水の水質評価を行うことにより、大気中に含まれる酸素が被評価水に溶け込むのを防止することができる。   According to this invention (Invention 8), oxygen contained in the atmosphere is prevented from being dissolved in the water to be evaluated by performing the water quality evaluation of the water to be evaluated after filling the chamber with the inert gas atmosphere in advance. be able to.

第二に本発明は、被測定基板に対して特定の加工又は操作を行う処理工程と、被測定基板をその表面を上向きにして水平に支持する支持工程と、特定の加工又は操作を行った被測定基板の表面に被評価水を滴下する滴下工程と、被評価水を滴下した被測定基板を乾燥させる乾燥工程と、乾燥後の被測定基板の表面に形成されるウォーターマークを分析する分析工程とを備える水質評価方法を提供する(発明9)。   Second, the present invention performs a specific processing or operation, a processing step of performing specific processing or operation on the substrate to be measured, a supporting step of horizontally supporting the substrate to be measured with its surface facing upward, and a specific processing or operation. Analysis of analyzing a drop formed on the surface of the substrate to be measured, a step of drying the substrate to be measured on which the water to be evaluated has been dropped, and a step of drying the substrate to be measured And a process for providing a water quality evaluation method (Invention 9).

上記発明(発明9)においては、前記処理工程が、被測定基板の表面に閉じた領域を区画する周壁部を形成する周壁部形成工程であることが好ましい(発明10)。   In the said invention (invention 9), it is preferable that the said process process is a surrounding wall part formation process which forms the surrounding wall part which divides the area | region closed on the surface of a to-be-measured board | substrate (invention 10).

上記発明(発明9)においては、前記処理工程が、被測定基板の表面に閉じた領域を区画する溝部を形成する溝部形成工程であることが好ましい(発明11)。   In the above invention (Invention 9), the processing step is preferably a groove forming step of forming a groove which defines a closed region on the surface of the substrate to be measured (Invention 11).

上記発明(発明9)においては、前記処理工程が、前記支持工程により水平に支持した被測定基板をその裏面から吸引することにより凹状に湾曲させる吸引工程であることが好ましい(発明12)。   In the above invention (Invention 9), preferably, the treatment step is a suction step in which the substrate to be measured horizontally supported by the support step is curved in a concave shape by suction from the back surface (Invention 12).

上記発明(発明12)においては、前記吸引工程を吸盤状のサクションリフタまたは吸引ポンプを用いて行うことが好ましい(発明13)。   In the said invention (invention 12), it is preferable to perform the said suction process using a suction disk shaped suction lifter or a suction pump (invention 13).

上記発明(発明9−13)においては、前記乾燥後の被測定基板の表面状態を観察する観察工程をさらに備えることが好ましい(発明14)。   In the said invention (invention 9-13), it is preferable to further provide the observation process which observes the surface state of the to-be-measured board | substrate after the said drying (invention 14).

上記発明(発明9−14)においては、評価環境がチャンバ内であることが好ましい(発明15)。   In the above invention (Inventions 9-14), it is preferable that the evaluation environment is in a chamber (Invention 15).

上記発明(発明15)においては、前記チャンバ内が不活性ガス雰囲気で満たされていることが好ましい(発明16)。   In the above invention (Invention 15), the inside of the chamber is preferably filled with an inert gas atmosphere (Invention 16).

本発明の水質評価装置及び水質評価方法によれば、特定の加工又は操作を行った被測定基板の表面に、被評価水を滴下した後、被評価水を滴下した被測定基板を乾燥させ、乾燥後の被測定基板の表面に形成されるウォーターマークを分析することによって、被評価水中に存在する不純物すべて、つまり被測定基板の表面に付着する不純物と、被測定基板表面に付着しないがその表面に形成された微細構造に留まる極微量の不純物とのすべてを評価することができる。   According to the water quality evaluation device and the water quality evaluation method of the present invention, after the water to be evaluated is dropped onto the surface of the substrate to be measured subjected to the specific processing or operation, the substrate to be measured to which the water to be evaluated is dropped is dried By analyzing the water mark formed on the surface of the substrate to be measured after drying, all the impurities present in the water to be evaluated, that is, the impurities adhering to the surface of the substrate to be measured and not attached to the surface of the substrate to be measured All the trace impurities remaining in the microstructure formed on the surface can be evaluated.

本発明の水質評価装置が備える処理手段により特定の加工又は操作を行った被測定基板の表面に被評価水を滴下した状態を示す模式的断面図であって、(a)は第一実施形態、(b)は第二実施形態、(c)は第三実施形態を示している。It is a schematic cross section which shows the state which dripped the to-be-evaluated water on the surface of the to-be-measured board | substrate which performed the specific process or operation by the process means with which the water quality evaluation apparatus of this invention is equipped, Comprising: (a) is 1st embodiment (B) shows a second embodiment, (c) shows a third embodiment. 本発明の水質評価装置を示す模式図であって、(a)は第一実施形態、(b)は第三実施形態を示している。It is a schematic diagram which shows the water quality-evaluation apparatus of this invention, Comprising: (a) is 1st embodiment, (b) has shown 3rd embodiment. 本発明の第一実施形態の水質評価装置を用いた水質評価方法の手順を示す説明図である。It is explanatory drawing which shows the procedure of the water quality evaluation method using the water quality evaluation apparatus of 1st embodiment of this invention. 本発明の第三実施形態の水質評価装置を用いた水質評価方法の手順を示す説明図である。It is explanatory drawing which shows the procedure of the water quality evaluation method using the water quality evaluation apparatus of 3rd embodiment of this invention.

以下、本発明の水質評価装置及び水質評価方法の実施の形態について、適宜図面を参照して説明する。以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではない。   Hereinafter, embodiments of the water quality evaluation device and the water quality evaluation method of the present invention will be described with reference to the drawings as appropriate. The embodiments described below are for the purpose of facilitating the understanding of the present invention, and do not limit the present invention at all.

[水質評価装置]
<第一実施形態>
図1(a)は、本発明の第一実施形態に係る水質評価装置10が備える処理手段としての周壁部形成手段によって被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に、被評価水Eを滴下した状態を示す模式的断面図である。第一実施形態に係る水質評価装置10は、図2(a)に示すように、周壁部形成手段(不図示)、支持手段1、滴下手段3、分析手段4を主に備える。周壁部形成手段は、被測定基板Wの表面に閉じた領域を区画する周壁部w1を形成するものである。支持手段1は、被測定基板Wをその表面を上向きにして水平に支持するものである。滴下手段3は、被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に被評価水Eを滴下するものである。分析手段4は、被評価水Eを滴下した被測定基板Wを乾燥させた後その表面に形成されるウォーターマークMを分析するものである。なお、本実施形態において、支持手段1、滴下手段3は、被評価水Eの評価環境がチャンバ内となるように、チャンバ5と一体的に設けられており、周壁部形成手段及び分析手段4はチャンバ5の外部に設けられている。
[Water quality evaluation device]
First Embodiment
FIG. 1A is closed by the peripheral wall portion w1 formed on the surface of the measurement substrate W by the peripheral wall portion forming means as the processing means included in the water quality evaluation apparatus 10 according to the first embodiment of the present invention It is typical sectional drawing which shows the state which dripped the to-be-evaluated water E in the area | region. The water quality evaluation apparatus 10 according to the first embodiment mainly includes a peripheral wall forming unit (not shown), a support unit 1, a dropping unit 3 and an analysis unit 4 as shown in FIG. The peripheral wall portion forming means forms a peripheral wall portion w1 that divides a closed region on the surface of the measurement target substrate W. The support means 1 supports the measurement substrate W horizontally with its surface facing upward. The dripping means 3 drips the to-be-evaluated water E in the closed area divided by the peripheral wall w1 formed on the surface of the substrate W to be measured. The analysis means 4 analyzes the water mark M formed on the surface of the substrate W after drying the substrate W onto which the water to be evaluated E is dropped. In the present embodiment, the supporting means 1 and the dropping means 3 are provided integrally with the chamber 5 so that the evaluation environment of the water to be evaluated E is in the chamber, and the peripheral wall forming means and the analyzing means 4 Is provided outside the chamber 5.

〔周壁部形成手段〕
周壁部形成手段は、被測定基板Wの表面に閉じた領域を区画する周壁部w1を形成するものであって、本実施形態においては、チャンバ5の外部に設けられている。周壁部形成手段による被測定基板Wの表面への周壁部w1の形成は、必要に応じて、手動又は自動装置によって行うことができる。周壁部形成手段により被測定基板Wの表面に形成される周壁部w1の材質としては、特に制限はないが、被評価水Eを一か所に留めるためのものであることから、その表面は撥水性が高く、被測定基板Wとの密着性がよく、かつ溶出等が生じないものが好ましく、例えばテフロン(登録商標)テープ等が挙げられる。また、周壁部w1の高さは、被測定基板Wの厚さに対して50%程度であることが好ましい。
[Peripheral wall portion forming means]
The peripheral wall portion forming means forms the peripheral wall portion w1 that divides the closed region on the surface of the measurement target substrate W, and is provided outside the chamber 5 in the present embodiment. The formation of the peripheral wall w1 on the surface of the substrate to be measured W by the peripheral wall forming means can be performed manually or by an automatic device as required. The material of the peripheral wall w1 formed on the surface of the substrate to be measured W by the peripheral wall forming means is not particularly limited, but the surface is the one for holding the water to be evaluated E in one place. It is preferable that the water repellency is high, the adhesion to the substrate to be measured W is good, and elution does not occur, and examples thereof include Teflon (registered trademark) tape and the like. The height of the peripheral wall w1 is preferably about 50% of the thickness of the measurement substrate W.

なお、本実施形態において、周壁部形成手段は、測定基板Wに対して別体に成形された周壁部w1を接着等によって接合するものであるが、これに限定されず、例えば、測定基板Wと周壁部w1とを一体成形するものであってもよい。   In the present embodiment, the peripheral wall forming means bonds the peripheral wall w1 separately formed to the measurement substrate W by adhesion or the like, but is not limited thereto. For example, the measurement substrate W And the peripheral wall portion w1 may be integrally molded.

周壁部形成手段を備えることにより、被測定基板Wの表面に形成された周壁部w1によって区画される閉じた領域に被評価水Eを滴下することで、平板状の測定基板を用いた場合に比べて、大容量の被評価水Eを評価対象とすることができ、評価精度を高めることができる。また、周壁部w1を形成する位置を調整することにより、閉じた領域のサイズ、つまり被評価水Eを留める範囲を任意に設定することができるので、被評価水Eのボリュームや性質に応じた測定が可能である。   In the case where a flat measurement substrate is used by dropping the water to be evaluated E onto a closed region partitioned by the peripheral wall w1 formed on the surface of the measurement substrate W by providing the peripheral wall forming means. In comparison, a large volume of water to be evaluated E can be evaluated, and the evaluation accuracy can be enhanced. In addition, by adjusting the position where the peripheral wall w1 is formed, the size of the closed area, that is, the range in which the water to be evaluated E can be set can be arbitrarily set. Measurement is possible.

〔支持手段〕
支持手段1は、被測定基板Wをその表面を上向きにして水平に支持するものであって、本実施形態においては、チャンバ5の内底面に対して水平に設置された支持台11により構成されている。なお、支持手段1としては、被測定基板Wをその表面を上向きにして水平に支持できるものであれば特に制限はない。支持手段1を備えることにより、被測定基板Wがその表面を上向きにして水平に支持されるので、滴下した被評価水Eがこぼれ落ちることなく安定的に保持される。
[Supporting means]
The support means 1 supports the measurement substrate W horizontally with its surface facing upward, and in this embodiment, is constituted by a support base 11 installed horizontally to the inner bottom surface of the chamber 5 ing. The support means 1 is not particularly limited as long as the substrate to be measured W can be horizontally supported with its surface facing upward. By providing the support means 1, the substrate W to be measured is horizontally supported with its surface facing upward, so the dropped water to be evaluated E is stably held without spilling.

〔滴下手段〕
滴下手段3は、被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に被評価水Eを滴下するものであって、本実施形態においては、チャンバ5の外側面に設けられる制御機構31と制御機構31からチャンバ5内部へ延出するノズル32とを有する構成である。被評価水Eは、ノズル32を通じて被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に滴下される。滴下する被評価水Eの量は、予め測定した被測定基板Wのサイズに応じて制御機構31により制御される。滴下手段3は、ノズル32の先端の位置を調整可能な調整機構をさらに有していてもよい。なお、滴下手段3としては、被測定基板Wの表面に被評価水Eを滴下できるものであれば特に制限はなく、例えば、被評価水Eを充填させたピペット等を用いて手作業により行うものであってもよい。滴下手段3を備えることにより、被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に、適切にかつ適量の被評価水Eを滴下することができる。
[Dropping means]
The dripping means 3 drips the water to be evaluated E in a closed region partitioned by the peripheral wall w1 formed on the surface of the substrate to be measured W, and in the present embodiment, on the outer surface of the chamber 5 The control mechanism 31 is provided, and the nozzle 32 extends from the control mechanism 31 to the inside of the chamber 5. The water to be evaluated E is dropped to a closed region partitioned by the peripheral wall w1 formed on the surface of the substrate to be measured W through the nozzle 32. The amount of the to-be-evaluated water E to be dropped is controlled by the control mechanism 31 according to the size of the to-be-measured substrate W measured in advance. The dropping means 3 may further have an adjusting mechanism capable of adjusting the position of the tip of the nozzle 32. The dripping means 3 is not particularly limited as long as the water to be evaluated E can be dropped onto the surface of the substrate W to be measured, and for example, it is manually performed using a pipette filled with the water to be evaluated E It may be one. By providing the dripping means 3, it is possible to properly and appropriately drop the to-be-evaluated water E in a closed region partitioned by the peripheral wall w1 formed on the surface of the substrate to be measured W.

〔分析手段〕
分析手段4は、被評価水Eを滴下した被測定基板Wを自然乾燥させた後その表面に形成されるウォーターマークMを分析するものであって、本実施形態においてはチャンバ5の外部に設けられているが、チャンバ5の内部に設けられていてもよい。また、例えば、分析手段4は、図示せぬネットワーク上に配置されており、このネットワークを介してチャンバ5内の乾燥後の被測定基板Wの表面に形成されるウォーターマークMを分析するように構成されていてもよい。分析手段4としては、乾燥後の被測定基板Wの表面に形成されるウォーターマークMを分析することにより、被評価水E中に存在する不純物を評価できるものであれば特に制限はなく、例えば、走査型電子顕微鏡(SEM)やエネルギー分散型X線分析装置(EDX)を好適に用いることができる。分析手段4を備えることにより、被評価水E中に存在する不純物すべて、つまり被測定基板Wの表面に付着した不純物と、被測定基板Wの表面に付着しないがその表面に形成された微細構造に留まった極微量の不純物とのすべてを評価することができる。
[Analytical means]
The analysis means 4 analyzes the water mark M formed on the surface of the substrate W after being naturally dried after dropping the water to be evaluated E, and is provided outside the chamber 5 in the present embodiment. However, it may be provided inside the chamber 5. Also, for example, the analysis unit 4 is disposed on a network (not shown), and analyzes the water mark M formed on the surface of the substrate to be measured W after drying in the chamber 5 through this network. It may be configured. The analysis means 4 is not particularly limited as long as impurities present in the water to be evaluated E can be evaluated by analyzing the water mark M formed on the surface of the substrate to be measured W after drying. A scanning electron microscope (SEM) or an energy dispersive X-ray analyzer (EDX) can be suitably used. By providing the analysis means 4, all the impurities present in the water to be evaluated E, that is, the impurities attached to the surface of the substrate W to be measured, and the microstructures not attached to the surface of the substrate W to be measured are formed on the surface It is possible to evaluate all the trace impurities remaining in the

〔チャンバ〕
チャンバ5は、外気から微粒子等の不純物が混入するのを防止するものであって、少なくとも作業空間を画成する枠体51を有する。枠体51の内底面には支持台11が設けられている。枠体51の一方の外側面上部には、制御機構31が設けられており、制御機構31からチャンバ5内部へノズル32が延出している。チャンバ5としては、外気から微粒子等の不純物が混入するのを防止できるものであれば特に制限はないが、圧力の設定や不活性ガスの導入が可能なグローブボックスを好適に用いることができる。なお、チャンバ5内は、予め不活性ガス雰囲気で満たされていてもよい。不活性ガス雰囲気で満たされたチャンバ5内で被評価水Eの水質評価を行うことにより、大気中に含まれる酸素が被評価水Eに溶け込むのを防止できるので、評価誤差を減少させることが可能となる。
[Chamber]
The chamber 5 is for preventing the mixing of impurities such as fine particles from the outside air, and has a frame 51 defining at least a working space. A support 11 is provided on the inner bottom surface of the frame 51. A control mechanism 31 is provided on the upper side of one of the outer surfaces of the frame 51, and the nozzle 32 extends from the control mechanism 31 into the chamber 5. The chamber 5 is not particularly limited as long as impurities such as fine particles can be prevented from being mixed in from the outside air, but a glove box capable of setting a pressure and introducing an inert gas can be suitably used. The inside of the chamber 5 may be filled in advance with an inert gas atmosphere. By performing the water quality evaluation of the water to be evaluated E in the chamber 5 filled with the inert gas atmosphere, it is possible to prevent oxygen contained in the atmosphere from being dissolved in the water to be evaluated E, thereby reducing the evaluation error. It becomes possible.

<第二実施形態>
次に、本発明の第二実施形態に係る水質評価装置について説明する。なお、第二実施形態は、上述の第一実施形態と処理手段が異なるだけであるため、以下では第一実施形態との相違点のみ説明し、その他の説明は省略する。
Second Embodiment
Next, a water quality evaluation device according to a second embodiment of the present invention will be described. The second embodiment is different from the above-described first embodiment only in the processing means. Therefore, only differences from the first embodiment will be described below, and the other descriptions will be omitted.

図1(b)は、本発明の第二実施形態に係る水質評価装置が備える処理手段としての溝部形成手段によって被測定基板Wの表面に形成された溝部w2により区画される閉じた領域に、被評価水Eを滴下した状態を示す模式的断面図である。第二実施形態に係る水質評価装置の構成は、図2(a)に示す第一実施形態に係る水質評価装置10の構成と、処理手段のみが異なるものであって、溝部形成手段(不図示)、支持手段1、滴下手段3、分析手段4を主に備える。   FIG. 1B is a closed region partitioned by the groove w2 formed on the surface of the measurement substrate W by the groove forming means as the processing means included in the water quality evaluation apparatus according to the second embodiment of the present invention; It is a schematic cross section which shows the state which dripped the to-be-evaluated water E. FIG. The configuration of the water quality evaluation apparatus according to the second embodiment is different from the configuration of the water quality evaluation apparatus 10 according to the first embodiment shown in FIG. , Supporting means 1, dropping means 3, and analyzing means 4.

〔溝部形成手段〕
溝部形成手段は、被測定基板Wの表面に閉じた領域を区画する溝部w2を形成するものであって、本実施形態においては、チャンバ5の外部に設けられている。溝部形成手段による被測定基板Wの表面への溝部w2の形成は、必要に応じて、手動又は自動装置によって行うことができる。また、溝部w2の深さは、被測定基板Wの厚さに対して50%未満であることが好ましい。
[Groove Forming Means]
The groove forming means forms the groove w2 for dividing the closed region on the surface of the measurement target substrate W, and is provided outside the chamber 5 in the present embodiment. The formation of the groove portion w2 on the surface of the measurement target substrate W by the groove portion forming means can be performed manually or by an automatic device as necessary. The depth of the groove w2 is preferably less than 50% of the thickness of the measurement substrate W.

なお、本実施形態において、溝部形成手段は、測定基板Wの表面を、剃刃等を用いて傷付けることにより溝部w2を形成するものであるが、これに限定されず、例えば、溝部w2を設けた測定基板Wを成形するものであってもよい。   In the present embodiment, the groove forming means forms the groove w2 by scratching the surface of the measurement substrate W using a razor blade or the like, but is not limited to this. For example, the groove w2 is provided The measurement substrate W may be molded.

溝部形成手段を備えることにより、被測定基板Wの表面に形成された溝部w2によって区画される閉じた領域に被評価水Eを滴下することで、平板状の測定基板を用いた場合に比べて、大容量の被評価水Eを評価対象とすることができ、評価精度を高めることができる。また、溝部w2を形成する位置を調整することにより、閉じた領域のサイズ、つまり被評価水Eを留める範囲を任意に設定することができるので、被評価水Eのボリュームや性質に応じた測定が可能である。   Compared with the case where a flat measurement substrate is used, the evaluation water E is dropped onto a closed region partitioned by the groove w2 formed on the surface of the measurement substrate W by providing the groove formation means. A large volume of water to be evaluated E can be evaluated, and the evaluation accuracy can be enhanced. Further, by adjusting the position where the groove portion w2 is formed, the size of the closed region, that is, the range for retaining the water to be evaluated E can be arbitrarily set, so that the measurement according to the volume and properties of the water to be evaluated E Is possible.

<第三実施形態>
次に、本発明の第三実施形態に係る水質評価装置10’について説明する。なお、第三実施形態は、上述の第一実施形態及び第二実施形態と支持手段及び処理手段が異なるだけであるため、以下では第一実施形態及び第二実施形態との相違点のみ説明し、その他の説明は省略する。また、図2(b)において図2(a)と同一の構成要素については、同一の符号を用いている。
Third Embodiment
Next, a water quality evaluation apparatus 10 'according to a third embodiment of the present invention will be described. The third embodiment is different from the first and second embodiments described above only in the supporting means and the processing means, so only the differences between the first embodiment and the second embodiment will be described below. , Other explanations are omitted. Further, in FIG. 2B, the same reference numerals are used for the same components as in FIG. 2A.

図1(c)は、本発明の第三実施形態に係る水質評価装置10’が備える処理手段としての吸引手段2によって凹状に湾曲させた被測定基板Wの表面に、被評価水Eを滴下した状態を示す模式的断面図である。第三実施形態に係る水質評価装置10’は、図2(b)に示すように、支持手段1’、吸引手段2、滴下手段3、分析手段4を主に備える。支持手段1’は、被測定基板Wをその表面を上向きにして水平に支持するものである。吸引手段2は、水平に支持した被測定基板Wをその裏面から吸引することにより凹状に湾曲させるものである。滴下手段3は、凹状に湾曲させた被測定基板Wの表面に被評価水Eを滴下するものである。分析手段4は、被評価水Eを滴下した被測定基板Wを乾燥させた後その表面に形成されるウォーターマークMを分析するものである。なお、本実施形態において、支持手段1’、吸引手段2、滴下手段3は、被評価水の評価環境がチャンバ内となるように、チャンバ5と一体的に設けられており、分析手段4はチャンバ5の外部に設けられている。   FIG. 1 (c) shows that the water E to be evaluated is dropped on the surface of the substrate W to be measured concavely curved by the suction means 2 as the processing means included in the water quality evaluation system 10 'according to the third embodiment of the present invention. It is typical sectional drawing which shows the state which was carried out. The water quality evaluation apparatus 10 'according to the third embodiment mainly includes a support means 1', a suction means 2, a dropping means 3 and an analysis means 4 as shown in FIG. 2 (b). The support means 1 ′ horizontally supports the measurement substrate W with its surface facing upward. The suction unit 2 is configured to curve the concave-shaped measurement target substrate W supported horizontally by suctioning it from its back surface. The dripping means 3 drips the water to be evaluated E onto the surface of the substrate W to be measured that is curved in a concave shape. The analysis means 4 analyzes the water mark M formed on the surface of the substrate W after drying the substrate W onto which the water to be evaluated E is dropped. In the present embodiment, the support unit 1 ′, the suction unit 2, and the dropping unit 3 are provided integrally with the chamber 5 so that the evaluation environment of the water to be evaluated is in the chamber, and the analysis unit 4 is It is provided outside the chamber 5.

〔支持手段〕
支持手段1’は、被測定基板Wをその表面を上向きにして水平に支持するものであって、本実施形態においては、チャンバ5の内底面に対して水平に設置された支持台11’と、支持台11’の表面に対して水平に固定された後述する吸引手段2としてのサクションリフタ21とを有する構成である。なお、支持手段1’としては、被測定基板Wをその表面を上向きにして水平に支持できるものであれば特に制限はなく、例えば、支持台11’を有せず吸引手段2自体が支持手段1’としても機能するもの等であってもよい。支持手段1’を備えることにより、被測定基板Wがその表面を上向きにして水平に支持されるので、滴下した被評価水がこぼれ落ちることなく安定的に保持される。
[Supporting means]
The support means 1 ′ horizontally supports the measurement substrate W with its surface facing upward, and in the present embodiment, the support base 11 ′ disposed horizontally with respect to the inner bottom surface of the chamber 5 The suction lifter 21 as suction means 2 which will be described later is fixed horizontally to the surface of the support 11 '. The support means 1 'is not particularly limited as long as it can horizontally support the substrate W with its surface facing upward. For example, the suction means 2 itself is a support means without the support 11'. It may be one that also functions as 1 ′. By providing the support means 1 ′, the substrate W to be measured is horizontally supported with its surface facing upward, so that the dropped water to be evaluated is stably held without spilling.

〔吸引手段〕
吸引手段2は、水平に支持した被測定基板Wをその裏面から吸引することにより凹状に湾曲させるものである。本実施形態においては、吸引手段2として吸盤状のサクションリフタ21を用いている。サクションリフタとは、ガラス板や金属板等の移動や運搬がしにくい対象物に吸着させて使用する調整自在な吸引作用を有する機器であって、対象物の裏面に着脱自在に取り付けられるゴム製の吸盤部材を有し、この吸盤部材が吸引状態と非吸引状態とに切替可能であるように構成されている。なお、吸引手段2としては、水平に支持した被測定基板Wをその裏面から吸引できるものであれば特に制限はなく、例えば、被測定基板Wをその裏面で保持するためのすり鉢状の保持部材とこの保持部材の底部から吸引するためのポンプとにより構成されるもの等であってもよい。被測定基板Wの湾曲度合の制御は、目視により行ってもよいし、例えば、吸引手段2に被測定基板Wの湾曲度合を制御可能な制御機構を設けることにより行ってもよい。このとき、吸引手段2の吸引が強すぎると、被測定基板Wが割れてしまうおそれがあるので、目視の場合には特に徐々に吸引を行うのが好ましい。
[Suction means]
The suction unit 2 is configured to curve the concave-shaped measurement target substrate W supported horizontally by suctioning it from its back surface. In the present embodiment, a suction lifter 21 having a suction disk shape is used as the suction unit 2. A suction lifter is a device with an adjustable suction function that is used by adsorbing to an object that is difficult to move or transport, such as a glass plate or a metal plate, and made of rubber that is removably attached to the back of the object The suction cup member is configured to be switchable between a suction state and a non-suction state. The suction means 2 is not particularly limited as long as it can suck the measurement substrate W supported horizontally from its back surface, and, for example, a mortar-shaped holding member for holding the measurement substrate W on its back surface And a pump for suctioning from the bottom of the holding member. The control of the degree of curvature of the substrate to be measured W may be performed visually, or may be performed, for example, by providing the suction means 2 with a control mechanism capable of controlling the degree of curvature of the substrate to be measured W. At this time, if the suction of the suction means 2 is too strong, the substrate to be measured W may be broken. Therefore, in the case of visual observation, it is preferable to perform the suction gradually.

吸引手段2を備えることにより、被測定基板Wを凹状に湾曲させることができるので、平板状の測定基板を用いた場合に比べて、大容量の被評価水Eを評価対象とすることができ、評価精度を高めることができる。さらに、凹状に湾曲した被測定基板Wの形状のせいで、滴下された被評価水Eが被測定基板Wの表面の一カ所に留まり、ウォーターマークMが被測定基板Wの表面の狭い範囲に形成されるため、親水性の表面を有する測定基板Wを用いた場合であっても、測定範囲が広範囲にならず、被測定基板Wの表面に形成された微細構造に留まった極微量の不純物の検出確率を高めることができる。   By providing the suction means 2, the substrate W to be measured can be curved in a concave shape, so a large volume of the water to be evaluated E can be evaluated as compared with the case where a flat measurement substrate is used. , Can improve the evaluation accuracy. Furthermore, due to the concavely curved shape of the substrate W to be measured, the dropped water E to be evaluated remains at one position on the surface of the substrate W, and the water mark M is in a narrow range on the surface of the substrate W Even if the measurement substrate W having a hydrophilic surface is used, the measurement range does not become a wide range because it is formed, and a trace amount of impurities remaining in the fine structure formed on the surface of the measurement substrate W Detection probability can be increased.

なお、本発明に係る水質評価装置は、乾燥後の被測定基板Wの表面状態を観察する観察手段をさらに備えていてもよい。観察手段としては、イメージング解析によるものが好ましく、全反射フーリエ変換赤外分光法(FTIR−ATR法)によるものが特に好ましい。FTIR−ATR法とは、物質の化学的な面情報を得ることができるイメージング解析機能を備えたFTIR−ATR装置を用いた解析方法であって、物質の構造、特に化学物質の化学構造を高精度で画像解析することができるため、一度の測定でFTIRスペクトルを多数取得することが可能であり、測定されたスペクトルから、乾燥後の被測定基板Wの表面状態を観察することができる。観察手段を備えることにより、従来は洗浄に用いる超純水中に存在する不純物の評価とは別途行われていた洗浄・乾燥後の半導体ウエハ(被測定基板W)の表面状態の観察を、不純物の評価と併せて行うことができる。   The water quality evaluation apparatus according to the present invention may further include observation means for observing the surface state of the substrate to be measured W after drying. As an observation means, one by imaging analysis is preferable, and one by total reflection Fourier transform infrared spectroscopy (FTIR-ATR method) is particularly preferable. The FTIR-ATR method is an analysis method using an FTIR-ATR apparatus equipped with an imaging analysis function capable of obtaining chemical surface information of a substance, and the structure of the substance, in particular, the chemical structure of the chemical substance is enhanced. Since image analysis can be performed with accuracy, a large number of FTIR spectra can be acquired by one measurement, and the surface condition of the substrate W after drying can be observed from the measured spectra. The observation of the surface condition of the semiconductor wafer (substrate W to be measured) after cleaning and drying, which has been performed separately from the evaluation of the impurities present in the ultrapure water used for cleaning, by providing the observation means, Can be performed in conjunction with the evaluation of

また、本発明に係る水質評価装置は、被評価水Eを滴下した被測定基板Wを乾燥させる乾燥手段をさらに備えていてもよい。乾燥手段としては、被評価水Eを滴下した被測定基板Wを乾燥できるものであれば特に制限はなく、例えば、チャンバ5の天井面に設けた赤外線ランプやチャンバ5の内部に設けたヒーター等であってもよく、又はチャンバ5の外部に設けたスピン乾燥機等であってもよい。乾燥手段が赤外線ランプの場合には、その光を効果的にチャンバ5内部に照射させるための反射板を有していてもよい。乾燥手段を備えることにより、被測定基板Wの表面に、分析手段4の分析対象となるウォーターマークを、短時間で形成させることができる。   In addition, the water quality evaluation apparatus according to the present invention may further include a drying unit that dries the measurement target substrate W on which the evaluation target water E is dropped. The drying unit is not particularly limited as long as the substrate to be measured W on which the water to be evaluated E can be dropped can be dried. For example, an infrared lamp provided on the ceiling surface of the chamber 5, a heater provided inside the chamber 5, etc. It may be a spin dryer provided outside the chamber 5 or the like. When the drying means is an infrared lamp, it may have a reflection plate for effectively irradiating the light into the chamber 5. By providing the drying means, the watermark to be analyzed by the analysis means 4 can be formed on the surface of the measurement substrate W in a short time.

[水質評価方法]
次に、上述した第一実施形態から第三実施形態の水質評価装置を用いた水質評価方法について図3及び図4を参照しつつ詳説する。なお、図3及び図4において図2と同一の構成要素については、適宜符号を省略する。
[Water quality evaluation method]
Next, a water quality evaluation method using the water quality evaluation apparatus according to the first to third embodiments described above will be described in detail with reference to FIGS. 3 and 4. In addition, in FIG.3 and FIG.4, about the component same as FIG. 2, a code | symbol is abbreviate | omitted suitably.

<第一実施形態>
第一実施形態の水質評価装置10を用いた水質評価方法は、図3に示すように、処理工程(STP1)、支持工程(STP2)、滴下工程(STP3)、乾燥工程(STP4)、分析工程(STP5)を主に備える。
First Embodiment
The water quality evaluation method using the water quality evaluation apparatus 10 of the first embodiment is, as shown in FIG. 3, a treatment process (STP1), a support process (STP2), a dropping process (STP3), a drying process (STP4), an analysis process Mainly comprises (STP5).

〔処理工程〕
第一実施形態では、処理工程において、チャンバ5の外部に設けられた処理手段としての周壁部形成手段(不図示)によって、被測定基板Wの表面に閉じた領域を区画する周壁部w1が形成される(STP1)。
[Processing step]
In the first embodiment, in the processing step, the peripheral wall w1 partitioning the area closed on the surface of the measurement substrate W is formed by the peripheral wall forming means (not shown) as processing means provided outside the chamber 5 (STP1).

〔支持工程〕
支持工程においては、チャンバ5内の支持手段1としての支持台11に対して、被測定基板Wをその表面を上向きにして水平に支持する(STP2)。
[Supporting process]
In the supporting step, the substrate to be measured W is horizontally supported with its surface facing upward with respect to the support base 11 as the support means 1 in the chamber 5 (STP 2).

〔滴下工程〕
滴下工程においては、被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に、ノズル32を通じて被評価水Eを滴下する(STP3)。滴下する被評価水Eの量は、予め測定した被測定基板Wのサイズに応じて、制御機構31により制御される。滴下工程は、被測定基板Wの表面に形成された周壁部w1により区画される閉じた領域に所定の被評価水Eが滴下された時点を終了点とすればよい。
[Dropping process]
In the dropping step, the water to be evaluated E is dropped through the nozzle 32 in a closed region partitioned by the peripheral wall w1 formed on the surface of the measurement target substrate W (STP3). The amount of the to-be-evaluated water E to be dropped is controlled by the control mechanism 31 in accordance with the size of the to-be-measured substrate W measured in advance. In the dropping step, the end point may be a point in time when a predetermined water to be evaluated E is dropped in a closed region partitioned by the peripheral wall w1 formed on the surface of the measurement target substrate W.

〔乾燥工程〕
乾燥工程においては、自然乾燥により、被評価水Eを滴下した被測定基板Wを乾燥させる(STP4)。乾燥工程は、被測定基板Wの表面にウォーターマークMが形成された時点を終了点とすればよい。
[Drying process]
In the drying step, the substrate W to which the water to be evaluated E is dropped is dried by natural drying (STP 4). In the drying step, the end point may be the point when the water mark M is formed on the surface of the measurement target substrate W.

なお、本実施形態において乾燥工程は自然乾燥により行っているが、乾燥手段を用いて行ってもよい。乾燥手段としては、被評価水Eを滴下した被測定基板Wを乾燥できるものであれば特に制限はなく、例えば、チャンバ5の天井面に設けた赤外線ランプやチャンバ5の内部に設けたヒーター等であってもよく、又はチャンバ5の外部に設けたスピン乾燥機等であってもよい。乾燥手段が赤外線ランプの場合には、その光を効果的にチャンバ5内部に照射させるための反射板を有していてもよい。乾燥手段を備えることにより、被測定基板Wの表面に、分析手段4の分析対象となるウォーターマークMを、短時間で形成させることができる。   In the present embodiment, the drying step is performed by natural drying, but may be performed using a drying unit. The drying unit is not particularly limited as long as the substrate to be measured W on which the water to be evaluated E can be dropped can be dried. For example, an infrared lamp provided on the ceiling surface of the chamber 5, a heater provided inside the chamber 5, etc. It may be a spin dryer provided outside the chamber 5 or the like. When the drying means is an infrared lamp, it may have a reflection plate for effectively irradiating the light into the chamber 5. By providing the drying means, the watermark M to be analyzed by the analysis means 4 can be formed on the surface of the measurement substrate W in a short time.

〔分析工程〕
分析工程においては、チャンバ5の外部に設けられた分析手段4により、被測定基板Wの表面に形成されたウォーターマークMを分析する(STP5)。より具体的には、被測定基板Wの表面に形成されたウォーターマークMを分析することにより、被評価水E中に存在する不純物を評価する。分析工程によって、被評価水E中に存在する不純物すべて、つまり被測定基板Wの表面に付着した不純物と、被測定基板Wの表面に付着しないがその表面に形成された微細構造に留まった極微量の不純物とのすべてを評価することができる。
[Analytical process]
In the analysis step, the water mark M formed on the surface of the measurement target substrate W is analyzed by the analysis means 4 provided outside the chamber 5 (STP 5). More specifically, by analyzing the water mark M formed on the surface of the substrate W to be measured, the impurities present in the water to be evaluated E are evaluated. In the analysis step, all the impurities present in the water to be evaluated E, that is, the impurities attached to the surface of the substrate W to be measured, and the poles not attached to the surface of the substrate W to be measured but remaining in the fine structure formed on the surface All with trace impurities can be evaluated.

なお、当該水質評価方法は、乾燥後の被測定基板Wの表面状態を観察する観察工程をさらに備えていてもよい。観察工程においては、観察手段としてのFTIR−ATR装置で測定されたスペクトルに基づき、乾燥後の被測定基板Wの表面状態を観察することができる。観察工程を備えることにより、従来は洗浄に用いる超純水中に存在する不純物の評価とは別途行われていた洗浄・乾燥後の半導体ウエハ(被測定基板W)の表面状態の観察を、不純物の評価と併せて行うことができる。   In addition, the said water quality evaluation method may further be equipped with the observation process which observes the surface state of the to-be-measured board | substrate W after drying. In the observation step, the surface state of the substrate to be measured W after drying can be observed based on the spectrum measured by the FTIR-ATR apparatus as an observation means. The observation of the surface condition of the semiconductor wafer (substrate W to be measured) after cleaning and drying, which has been performed separately from the evaluation of the impurities present in the ultrapure water conventionally used for cleaning, by providing the observation step, Can be performed in conjunction with the evaluation of

また、チャンバ5内は、予め不活性ガス雰囲気で満たされていてもよい。不活性ガス雰囲気で満たされたチャンバ5内で被評価水Eの水質評価を行うことにより、大気中に含まれる酸素が被評価水Eに溶け込むのを防止することができるので、評価誤差を減少させることが可能となる。   Also, the inside of the chamber 5 may be filled in advance with an inert gas atmosphere. By performing the water quality evaluation of the water to be evaluated E in the chamber 5 filled with the inert gas atmosphere, it is possible to prevent oxygen contained in the atmosphere from being dissolved in the water to be evaluated E, thereby reducing the evaluation error It is possible to

<第二実施形態>
次に、本発明の第二実施形態に係る水質評価装置を用いた水質評価方法について説明する。なお、第二実施形態は、上述の第一実施形態と処理工程の内容が異なるだけであるため、以下では第一実施形態との相違点のみ説明し、その他の説明は省略する。
Second Embodiment
Next, a water quality evaluation method using the water quality evaluation device according to the second embodiment of the present invention will be described. The second embodiment is different from the above-described first embodiment only in the contents of the processing steps. Therefore, only differences from the first embodiment will be described below, and the other descriptions will be omitted.

〔処理工程〕
第二実施形態では、処理工程において、チャンバ5の外部に設けられた処理手段としての溝部形成手段(不図示)によって、被測定基板Wの表面に閉じた領域を区画する溝部w2が形成される(STP1)。
[Processing step]
In the second embodiment, in the processing step, the groove w2 for dividing the closed region on the surface of the measurement substrate W is formed by the groove forming means (not shown) as the processing means provided outside the chamber 5 (STP1).

<第三実施形態>
次に、本発明の第三実施形態に係る水質評価装置10’を用いた水質評価方法について説明する。なお、第三実施形態は、上述の第一実施形態及び第二実施形態と支持工程と処理工程の順序及び内容が異なるだけであるため、以下では第一実施形態との相違点のみ説明し、その他の説明は省略する。
Third Embodiment
Next, a water quality evaluation method using the water quality evaluation device 10 'according to the third embodiment of the present invention will be described. Note that the third embodiment is different from the first and second embodiments described above in the order and contents of the supporting process and the processing process, so only the differences from the first embodiment will be described below. Other explanations are omitted.

第三実施形態に係る水質評価装置10’を用いた水質評価方法は、図4に示すように、支持工程(STP1’)、処理工程(STP2’)、滴下工程(STP3)、乾燥工程(STP4)、分析工程(STP5)を主に備える。   The water quality evaluation method using the water quality evaluation apparatus 10 'according to the third embodiment is, as shown in FIG. 4, a support process (STP1'), a treatment process (STP2 '), a dropping process (STP3), a drying process (STP4) And analysis step (STP5) mainly.

〔支持工程〕
支持工程においては、チャンバ5内の支持台11’に載置されたサクションリフタ21の吸盤部材に対して、被測定基板Wをその表面を上向きにして水平に支持する(STP1’)。このとき、サクションリフタ21の吸盤部材は非吸着状態にある。
[Supporting process]
In the supporting step, the substrate to be measured W is horizontally supported with the surface thereof facing upward with respect to the suction cup member of the suction lifter 21 placed on the support 11 'in the chamber 5 (STP1'). At this time, the suction cup member of the suction lifter 21 is in the non-sucking state.

〔処理工程〕
第三実施形態では、処理工程において、処理手段としての吸引手段2として用いられるサクションリフタ21を吸引状態に切り替えて、被測定基板Wをその裏面から吸引することによって、被測定基板Wを所定の湾曲度合いで凹状に湾曲させる(STP2’)。被測定基板Wの湾曲度合の制御は、目視により行ってもよいし、例えば、吸引手段2に被測定基板Wの湾曲度合を制御可能な制御機構を設けることにより行ってもよい。なお、処理工程、つまりサクションリフタ21による被測定基板Wの吸引は、評価試験の終了点まで継続させることが好ましい。
[Processing step]
In the third embodiment, in the processing step, the suction lifter 21 used as the suction means 2 as the processing means is switched to the suction state, and the substrate to be measured W is suctioned from the back surface thereof, thereby predetermined the substrate to be measured W It is made to curve concavely by the degree of curvature (STP2 '). The control of the degree of curvature of the substrate to be measured W may be performed visually, or may be performed, for example, by providing the suction means 2 with a control mechanism capable of controlling the degree of curvature of the substrate to be measured W. It is preferable that the treatment process, that is, the suction of the measurement substrate W by the suction lifter 21 be continued until the end point of the evaluation test.

以上のように、本発明の水質評価装置及び水質評価方法によれば、周壁部の形成、溝部の形成又は吸引といった、特定の加工又は操作を行った被測定基板の表面に、被評価水を滴下した後、被評価水を滴下した被測定基板を乾燥させ、乾燥後の被測定基板の表面に形成されるウォーターマークを分析することによって、被評価水中に存在する不純物すべて、つまり被測定基板の表面に付着する不純物と、被測定基板表面に付着しないがその表面に形成された微細構造に留まる極微量の不純物とのすべてを評価することができる。特定の加工又は操作が周壁部の形成又は溝部の形成である場合には、被測定基板の表面に形成された周壁部又は溝部によって区画される閉じた領域に被評価水を滴下することで、平板状の測定基板を用いた場合に比べて、大容量の被評価水を評価対象とすることができ、評価精度を高めることができる。特定の加工又は操作が吸引である場合には、吸引することにより凹状に湾曲させた被測定基板の表面に被評価水を滴下しているので、平板状の測定基板を用いた場合に比べて、大容量の被評価水を評価対象とすることができ、評価精度を高めることができる。   As described above, according to the water quality evaluation device and the water quality evaluation method of the present invention, the water to be evaluated is applied to the surface of the substrate to be measured which has undergone specific processing or operation such as formation of a peripheral wall, formation of a groove or suction. After dropping, the substrate to be measured to which the water to be evaluated has been dropped is dried, and the water mark formed on the surface of the substrate to be measured after drying is analyzed to determine all the impurities present in the water to be evaluated, that is, the substrate to be measured. It is possible to evaluate all of the impurities adhering to the surface of the substrate and the trace impurities not adhering to the surface of the substrate to be measured but remaining in the fine structure formed on the surface. When the specific processing or operation is the formation of a peripheral wall or the formation of a groove, the water to be evaluated is dropped onto a closed region partitioned by the peripheral wall or groove formed on the surface of the measurement substrate, As compared with the case of using a flat measurement substrate, a large volume of water to be evaluated can be evaluated, and the evaluation accuracy can be enhanced. When the specific processing or operation is suction, the water to be evaluated is dropped on the surface of the substrate to be measured that is concavely curved by suction, so compared to the case where a flat measurement substrate is used. A large volume of water to be evaluated can be evaluated, and the evaluation accuracy can be enhanced.

以上、本発明について図面を参照にして説明してきたが、本発明は上記実施形態に限定されず、種々の変更実施が可能である。本発明においては、被測定基板へ被評価水を滴下する前に特定の加工又は操作を行っているが、例えば、試験用基板に滴下した被評価水の水滴上に被測定基板を被せて接触させた状態で被測定基板を乾燥させた後、その表面に形成されるウォーターマークを分析することにより被評価水の評価を行ってもよい。   As mentioned above, although this invention was demonstrated with reference to drawings, this invention is not limited to the said embodiment, A various change implementation is possible. In the present invention, the specific processing or operation is performed before dropping the water to be measured onto the substrate to be measured, but for example, the substrate to be measured is covered by a drop of the water to be evaluated dropped onto the test substrate After the substrate to be measured is dried in the allowed state, the water to be evaluated may be evaluated by analyzing a watermark formed on the surface.

以下、実施例に基づき本発明をさらに詳説するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.

図2(a)に示す水質評価装置10を用いて、被評価水の評価試験を以下の通り行った。   The evaluation test of the water to be evaluated was conducted as follows using the water quality evaluation device 10 shown in FIG. 2 (a).

[実施例1:ウォーターマークの分析]
(1)確認した微粒子数
特許文献1及び特許文献2に開示の方法(以下、比較例1という。)では、測定基板に60mmの超純水を通水させた後、残存する0.2μm以上の微粒子数を、パーティクルカウンタで測定している。一方、実施例1では、測定基板上に10μLの超純水を滴下させ、乾燥させた後、測定基板表面に形成されたウォーターマークを分析することにより、残存する10nm以上の微粒子数を走査型電子顕微鏡(SEM)で確認した。また、その微粒子をエネルギー分散型X線分析(EDX)で測定することで、炭素系の微粒子やシリカ系の微粒子、金属系の微粒子が混在していることが分かった。
(2)評価可能な超純水のボリューム
特許文献3に開示の方法(以下、比較例2という。)では、測定基板(サファイア基板)上に、1mLの超純水を滴下している。一方、実施例1では、測定基板の表面に閉じた領域を区画する周壁部を形成しているため、平板状の測定基板を用いた場合に比べて、大容量の超純水を留めることが可能であり、6インチの測定基板においては、最大で30mLまで超純水を滴下することができた。
(3)分析範囲
特許文献3(比較例2)には、三次元画像解析を行った範囲について明記がされていないが、滴下した超純水が1mLなので、最低でも1cm程度は測定する必要があると考えられる。一方、実施例1では、周壁部を形成する位置を調整することにより、閉じた領域のサイズ、つまり被評価水を留める範囲を任意に設定することができるので、超純水のボリュームに応じた測定が可能である。
Example 1: Watermark Analysis
(1) Number of Fine Particles Confirmed In the method disclosed in Patent Document 1 and Patent Document 2 (hereinafter referred to as Comparative Example 1), 0.2 μm remaining after passing 60 mm 3 of ultrapure water through the measurement substrate The number of particles above is measured with a particle counter. On the other hand, in Example 1, after 10 μL of ultrapure water is dropped on the measurement substrate and dried, the number of remaining particles of 10 nm or more is scanned by analyzing the watermark formed on the surface of the measurement substrate. It confirmed by the electron microscope (SEM). In addition, it was found that carbon-based particles, silica-based particles, and metal-based particles were mixed by measuring the particles by energy dispersive X-ray analysis (EDX).
(2) Volume of Ultrapure Water that can be Evaluated In the method disclosed in Patent Document 3 (hereinafter referred to as Comparative Example 2), 1 mL of ultrapure water is dropped on a measurement substrate (sapphire substrate). On the other hand, in Example 1, since the peripheral wall which divides the closed region is formed on the surface of the measurement substrate, a large volume of ultrapure water can be retained as compared to the case where a flat measurement substrate is used. In the case of a 6 inch measuring substrate, it was possible to drop ultrapure water to a maximum of 30 mL.
(3) Analysis range Although the range which performed three-dimensional image analysis is not specified in patent document 3 (comparative example 2), since the ultrapure water dropped is 1 mL, it is necessary to measure at least about 1 cm 2 It is thought that there is. On the other hand, in Example 1, the size of the closed area, that is, the range for retaining the water to be evaluated can be arbitrarily set by adjusting the position where the peripheral wall portion is formed. Measurement is possible.

上記(1)−(3)について、実施例1、比較例1及び比較例2の比較結果を表1に示す。

Figure 2019082458
Table 1 shows the comparison results of Example 1, Comparative Example 1 and Comparative Example 2 for the above (1) to (3).
Figure 2019082458

[実施例2:基板の表面状態の観察]
以下の試験手順により、洗浄・乾燥後の被測定基板の表面状態の観察を行った。
(1)前処理として、Siウエハを0.5wt%のDHFで2分間洗浄後、超純水で2分間洗浄した。
(2)前処理を施したSiウエハの表面に、テフロン(登録商標)テープを用いて周壁部を形成し、評価対象の超純水を滴下するための閉じた領域を作製した。
(3)水質評価装置10の支持台に、Siウエハをその表面を上向きにして水平に支持した後、Siウエハの表面に形成された周壁部により区画される閉じた領域に、被評価水としての超純水を1mL−20mL滴下して、10分−180分静置した。
(4)自然乾燥によって、超純水を滴下したSiウエハを乾燥させた。
(5)FTIR−ATR装置を用いて、乾燥後のSiウエハの最表面のスペクトルを測定した。
Example 2 Observation of Surface State of Substrate
The surface condition of the substrate to be measured after washing and drying was observed according to the following test procedure.
(1) As pretreatment, the Si wafer was washed with 0.5 wt% DHF for 2 minutes and then washed with ultrapure water for 2 minutes.
(2) A peripheral wall was formed on the surface of the pre-treated Si wafer using a Teflon (registered trademark) tape, and a closed region for dropping ultrapure water to be evaluated was produced.
(3) After the Si wafer is horizontally supported with its surface facing upward on the support of the water quality evaluation apparatus 10, it is used as water to be evaluated in a closed region partitioned by the peripheral wall formed on the surface of the Si wafer. 1 mL-20 mL of the ultrapure water of the above was added dropwise, and allowed to stand for 10 minutes-180 minutes.
(4) The Si wafer to which the ultrapure water was dropped was dried by natural drying.
(5) The spectrum of the outermost surface of the Si wafer after drying was measured using the FTIR-ATR apparatus.

上記試験手順によって、超純水(以下、超純水1という。)と、Siウエハ表面を粗らす有機物を0.1ppt程度添加した超純水(以下、超純水2という。)とを用いて洗浄・乾燥後のSiウエハ表面の比較を行ったところ、超純水1を滴下したSiウエハに比べて、超純水2を滴下したSiウエハは、測定されたスペクトルにおいて、最表面の水素終端を示す領域で明らかに変化が見られ、Siウエハの表面が粗れていること又は変質していることが確認できた。   According to the above test procedure, ultrapure water (hereinafter referred to as ultrapure water 1) and ultrapure water (hereinafter referred to as ultrapure water 2) to which about 0.1 ppt of an organic substance that roughens the surface of the Si wafer are added. Comparison of the Si wafer surface after cleaning and drying using the results showed that the Si wafer onto which the ultra pure water 2 was dropped compared to the Si wafer onto which the ultra pure water 1 was dropped had the outermost surface in the measured spectrum. A clear change was observed in the region showing hydrogen termination, and it was confirmed that the surface of the Si wafer was rough or degraded.

以上説明したように、本発明の水質評価装置及び水質評価方法によれば、半導体ウエハの洗浄用の超純水中に存在する不純物すべてを、高い検出確率をもって正確に評価することができる。   As described above, according to the water quality evaluation apparatus and the water quality evaluation method of the present invention, it is possible to accurately evaluate all the impurities present in the ultrapure water for cleaning semiconductor wafers with a high detection probability.

本発明は、LSI(大規模集積回路)の製造工程において、半導体ウエハの洗浄に用いる超純水の水質評価装置及び水質評価方法として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as an apparatus and method for evaluating water quality of ultrapure water used for cleaning semiconductor wafers in a manufacturing process of LSI (large scale integrated circuit).

10,10’ 水質評価装置
1,1’ 支持手段
11,11’ 支持台
2 吸引手段
21 サクションリフタ
3 滴下手段
31 制御機構
32 ノズル
4 分析手段
5 チャンバ
51 枠体
W 被測定基板
w1 周壁部
w2 溝部
E 被評価水
M ウォーターマーク
DESCRIPTION OF SYMBOLS 10, 10 'Water quality evaluation apparatus 1, 1' Support means 11, 11 'Support stand 2 Suction means 21 Suction lifter 3 Dropping means 31 Control mechanism 32 Nozzle 4 Analysis means 5 Chamber 51 Frame W W to-be-measured board w1 Peripheral wall part w2 Groove part E Water to be evaluated M Watermark

Claims (16)

被測定基板に対して特定の加工又は操作を行う処理手段と、
被測定基板をその表面を上向きにして水平に支持する支持手段と、
特定の加工又は操作を行った被測定基板の表面に被評価水を滴下する滴下手段と、
被評価水を滴下した被測定基板を乾燥させた後その表面に形成されるウォーターマークを分析する分析手段と
を備える水質評価装置。
Processing means for performing specific processing or operation on the substrate to be measured;
Supporting means for horizontally supporting the substrate to be measured with its surface facing upward;
Dropping means for dropping water to be evaluated onto the surface of the substrate to be measured which has been subjected to specific processing or operation;
A water quality evaluation apparatus comprising: an analysis unit that dries a substrate to be measured to which water to be evaluated is dropped and then analyzes a watermark formed on the surface of the substrate.
前記処理手段が、被測定基板の表面に閉じた領域を区画する周壁部を形成する周壁部形成手段である請求項1に記載の水質評価装置。   The water quality evaluation apparatus according to claim 1, wherein the processing means is a peripheral wall forming means that forms a peripheral wall that divides a closed region on the surface of the measurement substrate. 前記処理手段が、被測定基板の表面に閉じた領域を区画する溝部を形成する溝部形成手段である請求項1に記載の水質評価装置。   The water quality evaluation apparatus according to claim 1, wherein the processing means is groove forming means for forming a groove which divides a closed region on the surface of the measurement substrate. 前記処理手段が、前記支持手段により水平に支持した被測定基板をその裏面から吸引することにより凹状に湾曲させる吸引手段である請求項1に記載の水質評価装置。   The water quality evaluation apparatus according to claim 1, wherein the processing means is suction means for curving in a concave shape by suctioning the substrate to be measured horizontally supported by the support means from its back surface. 前記吸引手段が吸盤状のサクションリフタ又は吸引ポンプを有する請求項4に記載の水質評価装置。   The water quality evaluation device according to claim 4, wherein the suction means comprises a suction lifter or suction pump in the form of a suction cup. 前記乾燥後の被測定基板の表面状態を観察する観察手段をさらに備える請求項1から請求項5のいずれか一項に記載の水質評価装置。   The water quality evaluation device according to any one of claims 1 to 5, further comprising observation means for observing the surface state of the substrate to be measured after drying. 評価環境がチャンバ内である請求項1から請求項6のいずれか一項に記載の水質評価装置。   The water quality evaluation device according to any one of claims 1 to 6, wherein the evaluation environment is in a chamber. 前記チャンバ内が不活性ガス雰囲気で満たされている請求項7に記載の水質評価装置。   The water quality evaluation device according to claim 7, wherein the inside of the chamber is filled with an inert gas atmosphere. 被測定基板に対して特定の加工又は操作を行う処理工程と、
被測定基板をその表面を上向きにして水平に支持する支持工程と、
特定の加工又は操作を行った被測定基板の表面に被評価水を滴下する滴下工程と、
被評価水を滴下した被測定基板を乾燥させる乾燥工程と、
乾燥後の被測定基板の表面に形成されるウォーターマークを分析する分析工程と
を備える水質評価方法。
A processing step of performing specific processing or operation on the substrate to be measured;
A supporting step of supporting the substrate to be measured horizontally with its surface facing upward;
A dropping step of dropping water to be evaluated onto the surface of the substrate to be measured which has been subjected to a specific processing or operation;
A drying step of drying the substrate to be measured to which the water to be evaluated has been dropped;
And an analysis step of analyzing a watermark formed on the surface of the substrate to be measured after drying.
前記処理工程が、被測定基板の表面に閉じた領域を区画する周壁部を形成する周壁部形成工程である請求項9に記載の水質評価方法。   The water quality evaluation method according to claim 9, wherein the treatment step is a peripheral wall forming step of forming a peripheral wall that divides a closed region on the surface of the measurement substrate. 前記処理工程が、被測定基板の表面に閉じた領域を区画する溝部を形成する溝部形成工程である請求項9に記載の水質評価方法。   The water quality evaluation method according to claim 9, wherein the treatment step is a groove forming step of forming a groove which divides a closed region on the surface of the measurement substrate. 前記処理工程が、前記支持工程により水平に支持した被測定基板をその裏面から吸引することにより凹状に湾曲させる吸引工程である請求項9に記載の水質評価方法。   10. The water quality evaluation method according to claim 9, wherein the treatment step is a suction step of curving in a concave shape by suctioning the substrate to be measured horizontally supported by the support step from the back surface thereof. 前記吸引工程を吸盤状のサクションリフタまたは吸引ポンプを用いて行う請求項12に記載の水質評価方法。   The water quality evaluation method according to claim 12, wherein the suction process is performed using a suction-type suction lifter or a suction pump. 前記乾燥後の被測定基板の表面状態を観察する観察工程をさらに備える請求項9から請求項13のいずれか一項に記載の水質評価方法。   The water quality evaluation method according to any one of claims 9 to 13, further comprising an observation step of observing a surface state of the substrate to be measured after drying. 評価環境がチャンバ内である請求項9から請求項14のいずれか一項に記載の水質評価方法。   The water quality evaluation method according to any one of claims 9 to 14, wherein the evaluation environment is in a chamber. 前記チャンバ内が不活性ガス雰囲気で満たされている請求項15に記載の水質評価方法。   The water quality evaluation method according to claim 15, wherein the inside of the chamber is filled with an inert gas atmosphere.
JP2018032158A 2017-10-30 2018-02-26 Water quality evaluation device and water quality evaluation method Active JP7040116B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209683 2017-10-30
JP2017209683 2017-10-30

Publications (2)

Publication Number Publication Date
JP2019082458A true JP2019082458A (en) 2019-05-30
JP7040116B2 JP7040116B2 (en) 2022-03-23

Family

ID=66670306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032158A Active JP7040116B2 (en) 2017-10-30 2018-02-26 Water quality evaluation device and water quality evaluation method

Country Status (1)

Country Link
JP (1) JP7040116B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353750A (en) * 1991-05-30 1992-12-08 Tadahiro Omi Evaluation of segregation state of solid-liquid interface and segregation apparatus
JP2006105705A (en) * 2004-10-04 2006-04-20 National Institute For Materials Science Sample-manufacturing substrate, liquid sample build-up method and sample-manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772361B2 (en) 1989-03-17 1998-07-02 オルガノ株式会社 Ultrapure water quality evaluation method
JP2002340751A (en) 2001-05-14 2002-11-27 Japan Organo Co Ltd Method for evaluating quality of sample water, and apparatus for sampling impurity in sample water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353750A (en) * 1991-05-30 1992-12-08 Tadahiro Omi Evaluation of segregation state of solid-liquid interface and segregation apparatus
JP2006105705A (en) * 2004-10-04 2006-04-20 National Institute For Materials Science Sample-manufacturing substrate, liquid sample build-up method and sample-manufacturing method

Also Published As

Publication number Publication date
JP7040116B2 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
KR100950641B1 (en) Inspection system and apparatus
US9484273B2 (en) Apparatus for measuring impurities on wafer and method of measuring impurities on wafer
JP2010505278A (en) Offset correction method and apparatus for positioning and inspecting a substrate
CN107850569B (en) Silicon substrate analytical equipment
JP2016509669A (en) Method for preparing a sample for imaging
CN111656485B (en) Equipment cleaning device and method
JP2017181479A (en) Method for determining concentration of material not dissolved by silicon etching agent contaminating product
WO2014124980A2 (en) Process for producing a gallium arsenide substrate, gallium arsenide substrate and use thereof
JP2019082458A (en) Water quality evaluation device and water quality evaluation method
US10746635B2 (en) Method and apparatus for inspecting process solution, and sample preparation apparatus in inspection
KR20220000409A (en) Chamber component cleanliness measurement system
US6727494B2 (en) Method and apparatus for detecting contaminating species on a wafer edge
KR100862837B1 (en) Method of simple evaluation for Epi. Defect on single crystal epitaxial wafer
KR20190119803A (en) Apparatus for inspecting edge area of wafer and method using the same
KR20180130049A (en) Scanning electron microscope system for integrated sample processing apparatus and method for sample three-dimensional image using the same
CN113532979A (en) Preparation method of aluminum scandium target material sample
EP2902845A1 (en) Surface delayering with a programmed manipulator
KR20190134275A (en) System for inspecting edge area of wafer and method using the same
CN212693817U (en) Silicon wafer bearing device and silicon wafer defect detection device
US20200098543A1 (en) Pattern evaluation device
Fyen et al. A detailed study of semiconductor wafer drying
EP1879011A3 (en) Method for separating a minute sample from a work piece
KR20090096167A (en) Holder of scanning electron microscope
CN115655984A (en) Semiconductor equipment and detection method for surface particles of component
Yoo et al. Identification and sizing of particle defects in semiconductor-wafer processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150