JP2019082270A - Condenser cooling equipment of power generating plant, and back washing operation method - Google Patents

Condenser cooling equipment of power generating plant, and back washing operation method Download PDF

Info

Publication number
JP2019082270A
JP2019082270A JP2017208846A JP2017208846A JP2019082270A JP 2019082270 A JP2019082270 A JP 2019082270A JP 2017208846 A JP2017208846 A JP 2017208846A JP 2017208846 A JP2017208846 A JP 2017208846A JP 2019082270 A JP2019082270 A JP 2019082270A
Authority
JP
Japan
Prior art keywords
pipe
water
tube bundle
condenser
water chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017208846A
Other languages
Japanese (ja)
Other versions
JP6925935B2 (en
Inventor
一郎 宮
Ichiro Miya
一郎 宮
高橋 玲樹
Tamaki Takahashi
玲樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017208846A priority Critical patent/JP6925935B2/en
Publication of JP2019082270A publication Critical patent/JP2019082270A/en
Application granted granted Critical
Publication of JP6925935B2 publication Critical patent/JP6925935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To optimize reduction in amount of cooling piping and arrangement work thereof in condenser cooling equipment of a power generating plant.SOLUTION: Condenser cooling equipment of a power generating plant comprises: a first side pipe bundle and a second side pipe bundle, which are disposed in each of a plurality of condensers; a first side water chamber and a second side water chamber, which are connected to the first side pipe bundle and the second side pipe bundle, respectively; connecting pipes connecting the first side water chambers to each other and the second side water chambers to each other in adjacent condensers among the plurality of condensers; a header pipe supplying water for cooling; a supply branch pipe connecting side faces of the first side water chamber and the second side water chamber, which are disposed in the closest condenser to the water supply pipe side among the plurality of condensers, to the supply header pipe, respectively; a discharge header pipe discharging the water; and a discharge branch pipe connecting side faces of the first side water chamber and the second side water chamber, which are disposed in the closest condenser to the water discharge pipe side among the plurality of condensers, to the discharge header pipe, respectively.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、復水器内の蒸気を冷却する火力又は原子力発電プラントの復水器冷却設備及び逆洗運転方法に関する。   Embodiments of the present invention relate to a condenser cooling system and a backwash operation method of a thermal power or nuclear power plant for cooling steam in a condenser.

火力又は原子力発電プラントの復水器冷却設備は、蒸気タービンから排出された蒸気を海水等で冷却させる設備である。復水器内には多数の冷却管が冷却管束(以下、単に「管束」と呼ぶ)として収容されており、各冷却管には海水等の水が通水される。復水器内に排出された蒸気は、冷却管において冷やされ復水に戻される。   The condenser cooling equipment of a thermal power or nuclear power plant is equipment which cools the steam discharged from the steam turbine with seawater or the like. In the condenser, a large number of cooling pipes are accommodated as a cooling pipe bundle (hereinafter simply referred to as a “tube bundle”), and water such as seawater is passed through each cooling pipe. The steam discharged into the condenser is cooled in the cooling pipe and returned to the condensate.

海水を冷却源とする発電プラントでは、運転中に管束を構成する冷却管の上流側の設備や冷却配管の内壁に付着した海生生物が剥離して、水の流れに乗り、冷却管入口端や管内に詰まりを生じさせることがある。この海水生物を除去するために、冷却管内の冷却水を通常運転時とは逆に流す逆洗運転を可能としているプラントが多い。   In a power plant that uses seawater as a cooling source, marine organisms attached to equipment upstream of the cooling pipe that constitutes the pipe bundle during operation and the inner wall of the cooling pipe peel off and ride on the water flow, and the cooling pipe inlet end And may cause clogging in the tube. In order to remove this sea life, there are many plants that enable backwash operation in which cooling water in a cooling pipe is flowed in reverse to that during normal operation.

復水器冷却設備の逆洗運転では、冷却管の水の流れを反転させるため、通常運転から逆洗運転への移行時には水の流れが一旦止まることになる。その際、一時的に復水器冷却設備の冷却能力が低下し、復水器の真空が悪化することになる。そこで、逆洗運転を可能とする復水器冷却設備では、冷却能力の低下を極力抑えるために、全ての管束を同時に逆洗せず、順番に逆洗できるように構成が考慮されている。このため、復水器冷却設備は、冷却水の供給配管、排出配管、及び分岐管等の冷却配管や弁等が複雑に組み合わされた構成となっている。   In the backwashing operation of the condenser cooling system, the flow of water in the cooling pipe is reversed, so the flow of water once stops at the transition from the normal operation to the backwashing operation. At this time, the cooling capacity of the condenser cooling system temporarily decreases, and the condenser vacuum deteriorates. Therefore, in the condenser cooling system that enables the backwashing operation, in order to suppress the decrease in the cooling capacity as much as possible, the configuration is considered such that the backwashing can be performed in order without backwashing all the pipe bundles simultaneously. For this reason, the condenser cooling system has a configuration in which cooling pipes such as a cooling water supply pipe, a discharge pipe, and a branch pipe, valves and the like are combined in a complicated manner.

特開2014−159883号公報JP, 2014-159883, A 特開平2−169806号公報Unexamined-Japanese-Patent No. 2-169806

従来の復水器冷却設備では、逆洗運転を可能とするため、復水器1台当たり一対の管束を有し、各々の管束の両端に水室を設け、そこに大口径配管の冷却水供給配管及び排出配管が個別に接続される。よって、復水器1台当たり4本の大口径配管が配置されることになるが、通常、この復水器が複数台隣接するため、多数の大口径配管が復水器廻りの限られたスペースに配設されることになる。このため、復水器が設置されるタービン建屋最下部の床面を掘削し、これらの大口径配管を埋設するレイアウトを採用せざるを得ない。   In conventional condenser cooling equipment, in order to enable backwashing operation, each condenser has a pair of tube bundles, and water chambers are provided at both ends of each tube bundle, and there is cooling water for large diameter piping there Supply piping and discharge piping are connected separately. Therefore, although four large-bore pipes are disposed per condenser, usually, a large number of large-bore pipes are limited around the condenser because a plurality of condensers are adjacent to each other. It will be arranged in space. For this reason, it is necessary to excavate the floor surface at the lowermost part of the turbine building where the condenser is installed, and adopt a layout in which these large diameter pipes are embedded.

このような状況では、配管物量もさることながら、掘削、埋設の土木工事費も多大となり、加えて配管の埋設完了までは、復水器等のタービン建屋最下階機器の据付に取り掛かれないという工事工程上の制約も生じ、建設工期短縮に向けての足かせとなっている。   Under such circumstances, the cost of civil engineering work for drilling and burial will be great, as well as the amount of piping, and in addition, installation of the lower floor equipment such as a condenser can not be started until the completion of burial of piping. Due to restrictions on the construction process, the construction period has been delayed.

本実施形態に係る発電プラントの復水器冷却設備は、冷却配管の物量低減及び配設作業を効率化することを課題とする。また、本実施形態に係る発電プラントの復水器冷却設備及び逆洗運転方法は、冷却配管の物量低減及び配設作業を効率化しつつ、逆洗運転を可能にすることを課題とする。   The condenser cooling installation of the power plant concerning this embodiment makes it a subject to carry out efficiency reduction of physical quantity of cooling piping, and arrangement operation. Moreover, the condenser cooling installation and the backwashing operation method of the power generation plant according to the present embodiment have an object of enabling the backwashing operation while improving the efficiency of the work of reducing the physical quantity of the cooling pipe and the arrangement operation.

復水器に配置された管束と、その管束の両端に接続される水室とを設ける本実施形態に係る発電プラントの復水器冷却設備は、上述した課題を解決するために、複数の復水器の各復水器に配置された第1の側の管束及び第2の側の管束と、前記第1の側の管束及び第2の側の管束のそれぞれに接続される第1の側の水室及び第2の側の水室と、前記複数の復水器のうち、隣り合う復水器の第1の側の水室同士及び第2の側の水室同士を連結する連結管と、冷却用の水を供給する供給母管と、前記複数の復水器のうち、最も供給水管側の復水器に配置された第1の側の水室及び第2の側の水室の側面と前記供給母管とをそれぞれ接続する供給分岐管と、前記水を排出する排出母管と、前記複数の復水器のうち、最も排出水管側の復水器に配置された第1の側の水室及び第2の側の水室の側面と前記排出母管とをそれぞれ接続する排出分岐管と、を備えたことを特徴とする。   In order to solve the problems described above, the condenser cooling system of the power plant according to the present embodiment provided with the tube bundle disposed in the condenser and the water chambers connected to both ends of the tube bundle is a plurality of recovery units. A first side pipe bundle disposed on each condenser of the water tank and a second side pipe bundle, and a first side connected to each of the first side pipe bundle and the second side pipe bundle Pipe for connecting the water chambers on the first side and the water chambers on the second side of the condensers adjacent to each other among the plurality of water chambers and the water chambers on the second side A feed main pipe for supplying water for cooling, and a water chamber on the first side and a water chamber on the second side of the plurality of condensers disposed in the condenser closest to the feed water pipe Of the feed branch pipe respectively connecting the side surface of the pipe and the feed main pipe, the discharge main pipe for discharging the water, and the condenser on the side closest to the water discharge pipe among the plurality of condensers. A discharge branch pipe first side of the water chamber and the second side and the side surface of the water chamber and the discharge header tube connected respectively, characterized by comprising a.

複数の復水器の各復水器に配置された第1の側の管束及び第2の側の管束を備えた復水器冷却設備における本実施形態に係る逆洗運転方法は、上述した課題を解決するために、前記第1の側の管束と前記第2の側の管束とで水が互いに逆向きに流れるように、又は、前記第1の側の管束と前記第2の側の管束とで水が同じ向きに流れるように、前記水の流れる向きを制御することを特徴とする。   The backwash operation method according to the present embodiment in a condenser cooling system including a first side pipe bundle and a second side pipe bundle disposed in each of the plurality of condensers is the above-described problem. In order for the water to flow in the opposite direction to each other between the tube bundle on the first side and the tube bundle on the second side, or the tube bundle on the first side and the tube bundle on the second side. And controlling the flow direction of the water so that the water flows in the same direction.

本実施形態に係る発電プラントの復水器冷却設備によると、冷却配管の物量低減及び配設作業を効率化することができる。また、本実施形態に係る発電プラントの復水器冷却設備及び逆洗運転方法によると、冷却配管の物量低減及び配設作業を効率化しつつ、逆洗運転を可能にする。   According to the condenser cooling facility of the power generation plant according to the present embodiment, it is possible to reduce the amount of material in the cooling pipe and the installation work efficiently. Further, according to the condenser cooling system and the backwashing operation method of the power generation plant according to the present embodiment, the backwashing operation can be performed while reducing the amount of material in the cooling pipe and arranging work.

第1実施形態に係る発電プラントの復水器冷却設備の構成を示す斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view which shows the structure of the condenser cooling installation of the power generation plant which concerns on 1st Embodiment. (A),(B)は、第1実施形態に係る復水器冷却設備の構成を示すX−Y側面図、(C),(D)は、第1実施形態に係る復水器冷却設備の構成を示すY−Z側面図。(A), (B) is an XY side view showing a configuration of a condenser cooling system according to the first embodiment, (C), (D) is a condenser cooling system according to the first embodiment The YZ side view which shows the structure of these. 第1実施形態に係る復水器冷却設備に備えられる管束及び水室の構成例を示すX−Y側面図。An XY side view showing an example of composition of a tube bundle and a water room with which a condenser cooling installation concerning a 1st embodiment is equipped. (A),(B)は、第1実施形態に係る復水器冷却設備の動作を示す斜視図。(A), (B) is a perspective view which shows operation | movement of the condenser cooling installation which concerns on 1st Embodiment. 第2実施形態に係る発電プラントの復水器冷却設備の構成を示す斜視図。The perspective view which shows the structure of the condenser cooling installation of the power generation plant which concerns on 2nd Embodiment. (A),(B)は、第2実施形態に係る復水器冷却設備の構成を示すX−Y側面図、(C),(D)は、第2実施形態に係る復水器冷却設備の構成を示すY−Z側面図。(A), (B) is an XY side view showing a configuration of a condenser cooling system according to the second embodiment, (C), (D) is a condenser cooling system according to the second embodiment The YZ side view which shows the structure of these. (A),(B)は、第2実施形態に係る復水器冷却設備の動作を示す斜視図。(A), (B) is a perspective view which shows operation | movement of the condenser cooling installation which concerns on 2nd Embodiment. 第3実施形態に係る発電プラントの復水器冷却設備の構成を示す斜視図。The perspective view which shows the structure of the condenser cooling installation of the power generation plant which concerns on 3rd Embodiment. (A)は、第3実施形態に係る復水器冷却設備に備えられる管束、水室、及び冷却配管の構成例を示すX−Y側面図、(B)は、第3実施形態に係る復水器冷却設備に備えられる管束、水室、及び冷却配管の構成例を示すY−Z側面図。(A) is an X-Y side view showing a configuration example of a tube bundle, a water chamber, and a cooling pipe provided in a condenser cooling facility according to a third embodiment, (B) is a recovery according to the third embodiment YZ side view which shows the structural example of the tube bundle, water chamber, and cooling piping with which water cooler cooling installation is equipped. 従来の復水器冷却設備における冷却水配管の構成を示す斜視図。The perspective view which shows the structure of the cooling water piping in the conventional condenser cooling installation. (A),(B)は、従来の復水器における管束配列の構成例を示すX−Y側面図。(A) and (B) are XY side views which show the structural example of the tube bundle arrangement | positioning in the conventional condenser.

本実施形態に係る火力又は原子力発電プラントの復水器冷却設備について、添付図面を参照して説明する。   A condenser cooling system of a thermal power or nuclear power plant according to the present embodiment will be described with reference to the attached drawings.

従来の復水器に対する復水器冷却設備は、図11(A)に示す上下2分割管束配列の復水器冷却設備111と、図11(B)に示す縦長管束配列の復水器冷却設備112に大別される。上下2分割管束配列に実施適用する形態を第1実施形態とし、縦長管束配列に実施適用する形態を第2及び第3実施形態として以下に説明する。   Condenser cooling equipment for the conventional condenser is the condenser cooling equipment 111 of the upper and lower two-split tube bundle arrangement shown in FIG. 11 (A) and the condenser cooling equipment of the vertically long tube bundle arrangement shown in FIG. 11 (B) It is divided roughly into 112. An embodiment applied to the upper and lower two-segmented tube bundle arrangement will be described as the first embodiment, and an embodiment applied to the vertically long tube bundle arrangement will be described as the second and third embodiments.

1.第1実施形態
1−1.構成
図1は、第1実施形態に係る発電プラントの復水器冷却設備の構成を示す斜視図である。図2(A),(B)は、第1実施形態に係る復水器冷却設備の構成を示すX−Y側面図である。図2(C),(D)は、第1実施形態に係る復水器冷却設備の構成を示すY−Z側面図である。
1. First embodiment 1-1. Configuration FIG. 1 is a perspective view showing a configuration of a condenser cooling system of a power generation plant according to a first embodiment. FIG. 2: (A), (B) is a XY side view which shows the structure of the condenser cooling installation which concerns on 1st Embodiment. FIG.2 (C), (D) is a YZ side view which shows the structure of the condenser cooling installation which concerns on 1st Embodiment.

図1は、m(m=2,3,…)個のRm、例えば、2個の復水器R1,R2に対応する第1実施形態に係る復水器冷却設備11を示す。復水器冷却設備11は、復水器R1,R2内の管束の両端に設けられる水室3と、水室3同士を接続する連結管4と、冷却水を供給する供給母管5と、供給母管5及び水室3を接続する供給分岐管6と、水室3及び排出母管8を接続する排出分岐管7と、冷却後の温水を排出する排出母管8と、供給分岐管6及び排出分岐管7に設けられる弁9を設ける。以下、特に言及する場合を除き、m=2の場合について説明するが、その場合に限定されるものではない。また、2個の復水器R1,R2の配列方向をX軸方向と定義し、鉛直上向きの方向をY軸方向と定義し、管束2が延びる方向、つまり、X軸方向及びY軸方向に直交する方向をZ軸方向と定義する。   FIG. 1 shows a condenser cooling system 11 according to a first embodiment corresponding to m (m = 2, 3,...) Rm, for example, two condensers R1 and R2. Condenser cooling equipment 11 includes a water chamber 3 provided at both ends of a tube bundle in condensers R1 and R2, a connecting pipe 4 connecting water chambers 3 with each other, a supply main pipe 5 for supplying cooling water, The supply branch pipe 6 connecting the supply main pipe 5 and the water chamber 3, the discharge branch pipe 7 connecting the water chamber 3 and the discharge main pipe 8, the discharge main pipe 8 discharging the hot water after cooling, the supply branch pipe 6 and a valve 9 provided on the discharge branch pipe 7 are provided. Hereinafter, the case of m = 2 will be described except for the case where particular mention is made, but it is not limited to that case. Further, the arrangement direction of the two condensers R1 and R2 is defined as the X axis direction, and the vertically upward direction is defined as the Y axis direction, ie, the direction in which the tube bundle 2 extends, that is, in the X axis direction and the Y axis direction The orthogonal direction is defined as the Z-axis direction.

図2に示すように、復水器冷却設備11は、2個の復水器R1,R2のうち復水器R1に配置された第1の側の管束2A及び第2の側の管束2Bと、復水器R2に配置された管束である第1の側の管束2C及び第2の側の管束2Dを備える。以下、「第1の側」を、鉛直方向(Y軸方向)における「上側」とし、「第2の側」をY軸方向における「下側」とし、復水器冷却設備11が上側管束(上側の1又は複数の管束)及び下側管束(下側の1又は複数の管束)を備える場合について説明する。しかしながらその場合に限定されるものではない。例えば、図5〜図9を用いて後述するように、「第1の側」を、冷却水の「供給水管側」とし、「第2の側」を、冷却水の「排出水管側」としても良い。   As shown in FIG. 2, the condenser cooling system 11 includes a first bundle of pipes 2A and a second bundle of pipes 2B disposed in the condenser R1 among the two condensers R1 and R2. And a tube bundle 2C on the first side, which is a tube bundle disposed in the condenser R2, and a tube bundle 2D on the second side. Hereinafter, the “first side” is referred to as “upper side” in the vertical direction (Y-axis direction), the “second side” is referred to as “lower side” in the Y-axis direction, and the condenser cooling facility 11 is an upper tube bundle ( The case where the upper one or more tube bundles) and the lower tube bundle (lower one or more tube bundles) are provided will be described. However, it is not limited to that case. For example, as described later with reference to FIGS. 5 to 9, “first side” is the “supply water pipe side” of the cooling water, and “second side” is the “discharge water pipe side” of the cooling water. Also good.

管束2は、左右及び上下の8個の管束によって構成される。具体的には、管束2は、復水器R1内に配置された上側管束(例えば、図2では左右2個の上側管束)2A及び下側管束(例えば、図2では左右2個の下側管束)2Bと、復水器R2内に配置された上側管束(例えば、図2では左右2個の上側管束)2C及び下側管束(例えば、図2では左右2個の下側管束)2Dを備える。   The tube bundle 2 is constituted by eight tube bundles of right and left and upper and lower. Specifically, the tube bundle 2 is an upper tube bundle (for example, two left and right upper tube bundles in FIG. 2) 2A disposed in a condenser R1 and a lower tube bundle (for example, two left and right in FIG. 2) Tube bundle 2B, upper tube bundle (for example, two upper tube bundles in left and right in FIG. 2) 2C and lower tube bundle (for example, two lower tube bundles in left and right in FIG. 2) 2D disposed in the condenser R2 Prepare.

図2に示すように、水室3は、4個の水室の対、つまり、8個の水室によって構成され、管束2に接続される。具体的には、図3に示すように、復水器Rmは、上側の左右2個の管束2からなる上側管束2Aに対して1個の上側水室3Aを割り当て、下側の左右2個の管束2からなる下側管束2Bに対して1個の下側水室3Bを割り当てる。   As shown in FIG. 2, the water chamber 3 is constituted by a pair of four water chambers, that is, eight water chambers, and is connected to the tube bundle 2. Specifically, as shown in FIG. 3, the condenser Rm assigns one upper water chamber 3A to the upper tube bundle 2A consisting of the upper two tube bundles 2 on the upper side, and the lower two tubes One lower water chamber 3B is allocated to the lower tube bundle 2B consisting of the tube bundle 2 of FIG.

なお、復水器冷却設備11は、上側水室3A及び下側水室3Bが割り当てられるように、大水室を仕切板Vによって上側及び下側に分離した構成をもつ。これにより、上側管束2A及び下側管束2Bに対して、個別に水を流すことを可能とする。なお、上下分割は、大水室を仕切板Vによって仕切る構成に限定されるものではなく、個別に上側水室及び下側水室を設置する構成でも良い。   The condenser cooling system 11 has a configuration in which the large water chamber is separated by the partition plate V to the upper side and the lower side so that the upper water chamber 3A and the lower water chamber 3B are allocated. This enables water to flow separately to the upper tube bundle 2A and the lower tube bundle 2B. The upper and lower divisions are not limited to the configuration in which the large water chamber is partitioned by the partition plate V, and the upper water chamber and the lower water chamber may be separately installed.

図2の説明に戻って、連結管4は、冷却配管であり、m=2の場合は4本の連結管によって構成される。具体的には、連結管4は、隣り合う復水器R1,R2の上側水室同士、つまり、上側水室3A及び上側水室3Cを連結する連結管4Pと、上側水室3A´及び上側水室3C´を連結する連結管4P´を備える。同様に、連結管4は、隣り合う復水器R1,R2の下側水室同士、つまり、下側水室3B及び下側水室3Dを連結する連結管4Qと、下側水室3B´及び下側水室3D´を連結する連結管4Q´を備える。なお、連結管4は、m≧3の場合、複数の復水器のうち、隣り合う復水器の上側水室同士及び下側水室同士を接続する。   Returning to the explanation of FIG. 2, the connecting pipe 4 is a cooling pipe, and in the case of m = 2, it is constituted by four connecting pipes. Specifically, the connecting pipe 4 connects the upper water chambers of the adjacent condensers R1 and R2, that is, the connecting pipe 4P connecting the upper water chamber 3A and the upper water chamber 3C, the upper water chamber 3A 'and the upper water chamber A connecting pipe 4P 'connecting the water chamber 3C' is provided. Similarly, the connecting pipe 4 is a connecting pipe 4Q connecting the lower water chambers of the adjacent condensers R1 and R2, that is, the lower water chamber 3B and the lower water chamber 3D, and a lower water chamber 3B ' And a connecting pipe 4Q 'connecting the lower water chamber 3D'. In the case of m ≧ 3, the connecting pipe 4 connects the upper water chambers and the lower water chambers of the adjacent condensers among the plurality of condensers.

供給母管5は、復水器冷却設備11に冷却水を送水する冷却配管、即ち、供給水管であり、mの数に関わらず1本のみ設けられる。   The supply main pipe 5 is a cooling pipe for supplying cooling water to the condenser cooling facility 11, that is, a supply water pipe, and only one is provided regardless of the number of m.

供給分岐管6は、供給母管5より分岐した冷却配管であり、mの数に関わらず4本設けられる。具体的には、復水器冷却設備11は、供給分岐管6A,6A´,6B,6B´の4本を設け、最も供給水管側の復水器である復水器R1に配置された上側水室3A,3A´及び下側水室3B,3B´に供給母管5をそれぞれ接続する。また、供給分岐管6A,6A´,6B,6B´にはそれぞれ、弁9A,9A´,9B,9B´が設けられる。   The supply branch pipes 6 are cooling pipes branched from the supply main pipe 5, and four are provided regardless of the number of m. Specifically, the condenser cooling system 11 is provided with four of the supply branch pipes 6A, 6A ', 6B, 6B', and the upper side disposed in the condenser R1, which is the condenser closest to the water supply pipe. The supply main pipe 5 is connected to the water chambers 3A, 3A 'and the lower water chambers 3B, 3B', respectively. Further, valves 9A, 9A ', 9B, 9B' are provided in the supply branch pipes 6A, 6A ', 6B, 6B' respectively.

排出分岐管7は、冷却後の温水を排出する冷却配管であり、mの数に関わらず4本設けられる。具体的には、復水器冷却設備11は、排出分岐管7C,7C´,7D,7D´の4本を設け、最も排出水管側の復水器である復水器R2に配置された上側水室3C,3C´及び下側水室3D,3D´を排出母管8にそれぞれ接続する。また、排出分岐管7C,7C´,7D,7D´にはそれぞれ、弁9C,9C´,9D,9D´が設けられる。   The discharge branch pipe 7 is a cooling pipe for discharging the hot water after cooling, and four pipes are provided regardless of the number of m. Specifically, the condenser cooling system 11 is provided with four of the discharge branch pipes 7C, 7C ', 7D, 7D', and the upper side disposed in the condenser R2, which is the condenser closest to the discharge water pipe. The water chambers 3C, 3C 'and the lower water chambers 3D, 3D' are connected to the discharge main pipe 8, respectively. Further, valves 9C, 9C ', 9D, 9D' are provided in the discharge branch pipes 7C, 7C ', 7D, 7D' respectively.

排出母管8は、排出分岐管7C,7C´,7D,7D´から送られる排水を合流排出する冷却配管、即ち、排出水管であり、mの数に関わらず1本のみ設置される。   The discharge main pipe 8 is a cooling pipe that combines and discharges the drainage sent from the discharge branch pipes 7C, 7C ', 7D, 7D', that is, a discharge water pipe, and only one is installed regardless of the number of m.

なお、図1に示す水室3に接続される供給分岐管6及び排出分岐管7は、冷却配管の埋設を避けるため、水室3の下面以外の面に接続される。より好適には、水室3の側面、即ち、Y−Z面に接続されることが好適である。これにより、水室3の側面に供給分岐管6等の冷却配管が接続されるため、メンテナンスで必要となる冷却管(チューブ)の引抜作業を阻害しないという効果も得られる。冷却管の引抜作業は、管束2を構成する冷却管をZ軸に沿って引き抜く作業を意味する。   Note that the supply branch pipe 6 and the discharge branch pipe 7 connected to the water chamber 3 shown in FIG. 1 are connected to a surface other than the lower surface of the water chamber 3 in order to avoid the embedding of the cooling pipe. More preferably, it is connected to the side surface of the water chamber 3, that is, to the YZ plane. As a result, since the cooling pipes such as the supply branch pipe 6 are connected to the side surface of the water chamber 3, an effect of not inhibiting the drawing operation of the cooling pipe (tube) necessary for maintenance can be obtained. The drawing operation of the cooling pipe means the operation of drawing the cooling pipe constituting the pipe bundle 2 along the Z-axis.

1−2.動作
図4(A),(B)は、復水器冷却設備11の動作を示す斜視図である。なお、図4(A),(B)において、上側管束2Aを構成する左右2個の管束と、下側管束2Bを構成する左右2個の管束と、上側管束2Cを構成する左右2個の管束と、下側管束2Dを構成する左右2個の管束とは、それぞれ1個であるものとして便宜的に表現される。
1-2. Operation FIGS. 4A and 4B are perspective views showing the operation of the condenser cooling system 11. 4A and 4B, two right and left tube bundles constituting the upper tube bundle 2A, two right and left tube bundles constituting the lower tube bundle 2B, and two left and right tubes constituting the upper tube bundle 2C. The tube bundle and the two left and right tube bundles constituting the lower tube bundle 2D are conveniently expressed as being one each.

図4(A)は、復水器冷却設備11において、通常運転時の水の流れを模式的に示したものである。   FIG. 4 (A) schematically shows the flow of water during normal operation in the condenser cooling system 11.

図4(A)に示すように、復水器冷却設備11の通常運転時には、復水器R1内に配置された上側管束2Aと下側管束2Bとで、逆向きの流れを形成するよう弁9の開閉が設定される。例えば、弁9のうち、弁9A,9D,9B´,9C´が閉じられる一方で、弁9B,9C,9A´,9D´が開かれる。このような弁9の開閉により、冷却用の水は、供給母管5から分岐して供給分岐管6B,6A´に供給される。供給分岐管6Bに供給された水は、弁9Bを通り、分岐して下側管束2B及び連結管4Q経由で下側管束2Dに供給される。つまり、下側管束2B,2Dには同一向き(Z軸方向)で水が流れることになる。   As shown in FIG. 4 (A), during normal operation of the condenser cooling system 11, the valve is formed so that the flow in the opposite direction is formed by the upper pipe bundle 2A and the lower pipe bundle 2B disposed in the condenser R1. The opening and closing of 9 is set. For example, of the valves 9, the valves 9A, 9D, 9B ', 9C' are closed, while the valves 9B, 9C, 9A ', 9D' are opened. By opening and closing the valve 9, the water for cooling is branched from the supply main pipe 5 and supplied to the supply branch pipes 6B and 6A '. The water supplied to the supply branch pipe 6B passes through the valve 9B, branches, and is supplied to the lower pipe bundle 2D via the lower pipe bundle 2B and the connecting pipe 4Q. That is, water flows in the same direction (Z-axis direction) to the lower tube bundles 2B and 2D.

続いて、下側管束2Bを流れた水は、連結管4Q´を通り、下側管束2Dを流れた水と合流し、弁9D´を通り、排出母管8に排出される。   Subsequently, the water flowing through the lower pipe bundle 2B passes through the connecting pipe 4Q ′, joins with the water flowing through the lower pipe bundle 2D, passes through the valve 9D ′, and is discharged to the discharge main pipe 8.

一方で、供給分岐管6A´に供給された水は、弁9A´を通り、分岐して上側管束2A及び上側管束2Cに供給される。つまり、上側管束2A,2Cには同一向き(Z軸方向の逆方向)で水が流れることになる。   On the other hand, the water supplied to the supply branch pipe 6A 'passes through the valve 9A', branches and is supplied to the upper pipe bundle 2A and the upper pipe bundle 2C. That is, water flows in the same direction (opposite to the Z-axis direction) to the upper tube bundles 2A and 2C.

続いて、上側管束2A,2Cを流れた水は合流し、弁9Cを通り、排出母管8に排出される。   Subsequently, the water flowing through the upper tube bundles 2A and 2C merges, passes through the valve 9C, and is discharged to the discharge main pipe 8.

図4(B)は、復水器冷却設備11において、上側管束のみを逆洗運転させたときの水の流れを模式的に示したものである。   FIG. 4B schematically shows the flow of water when only the upper tube bundle is backwashed in the condenser cooling system 11.

図4(A)に示す閉状態の弁9A,9C´が開けられる一方で、開状態の弁9C,9A´が閉じられると、図4(B)に示す上側管束2A,2Cの逆洗運転となる。ここで、弁の開閉は、操作者による弁の操作により手動的に行われても良いし、操作者による入力に従って制御部(図示省略)が自動的に行うものであっても良い。   When the valves 9A and 9C 'in the closed state shown in FIG. 4 (A) are opened while the valves 9C and 9A' in the open state are closed, the backwash operation of the upper tube bundle 2A, 2C shown in FIG. 4 (B). It becomes. Here, the opening and closing of the valve may be manually performed by the operation of the valve by the operator, or may be automatically performed by the control unit (not shown) according to the input by the operator.

このような弁9の開閉操作により、冷却用の水は、供給母管5から分岐して供給分岐管6Aに流れ、弁9Aを通り、分岐して上側管束2A及び上側管束2Cに供給される。   By such opening / closing operation of the valve 9, water for cooling is branched from the supply main pipe 5, flows to the supply branch pipe 6A, passes through the valve 9A, branches and is supplied to the upper pipe bundle 2A and the upper pipe bundle 2C. .

続いて、上側管束2Aを流れた水は、結合管4P´を通り、上側管束2Cを流れた水と合流し、弁9C´を通り、排出母管8に排出される。   Subsequently, the water flowing through the upper tube bundle 2A passes through the joint tube 4P ', joins with the water flowing through the upper tube bundle 2C, passes through the valve 9C', and is discharged to the discharge main pipe 8.

一方で、供給分岐管6Bに供給された水は、通常運転時と同様に、弁9Bを通り、分岐して下側管束2B及び下側管束2Dに供給される。   On the other hand, the water supplied to the supply branch pipe 6B passes through the valve 9B and branches to be supplied to the lower pipe bundle 2B and the lower pipe bundle 2D as in the normal operation.

図4(B)を用いて説明したように、上側管束2A,2Cのみを逆洗運転する場合、上側管束2A,2Cと、下側管束2B,2Dとには同一向き(Z軸方向)で水が流れることになる。つまり、下側管束2B,2D中の水流を維持したまま、上側管束2A,2C中の水流の向きを反転させることが可能となる。なお、下側管束2B,2Dを逆洗運転する場合も同様に、弁9の開閉で制御できる。具体的には、図4(A)に示す閉状態の弁9D,9B´が開けられる一方で、開状態の弁9B,9D´が閉じられると、下側管束2B,2Dの逆洗運転となる。   As described with reference to FIG. 4B, when only the upper tube bundles 2A and 2C are backwashed, the upper tube bundles 2A and 2C and the lower tube bundles 2B and 2D are in the same direction (Z-axis direction) Water will flow. That is, it is possible to reverse the direction of the water flow in the upper tube bundles 2A, 2C while maintaining the water flow in the lower tube bundles 2B, 2D. In the case where the lower tube bundles 2B and 2D are backwashed, control can be similarly performed by opening and closing the valve 9. Specifically, when the closed valves 9D and 9B 'shown in FIG. 4A are opened while the open valves 9B and 9D' are closed, the lower tube bundle 2B or 2D is backwashed and Become.

1−3.効果
復水器冷却設備11によると、隣り合う復水器R1,R2の両端に冷却用の水の供給母管5を1本、排出母管8を1本のみを設置すれば冷却機能を満足することができる。また、復水器冷却設備11によると、母管の本数が少ないため、供給母管5、供給分岐管6、排出分岐管7、及び排出母管8等の冷却配管をタービン建屋の床上に敷設することが十分可能となる。その結果、タービン建屋の建屋レイアウト上、地下に埋設、引廻す冷却配管の物量低減、及び工事費の削減が図れる。例えば、3個の復水器を有するプラントの場合、母管を6本から2本に削減することができるが、冷却配管のタービン建屋地下の埋設作業が不要となることにより、冷却配管と復水器の据付を同時に行うことができ、工期の短縮が可能となる。
1-3. Effects According to the condenser cooling system 11, if only one supply main pipe 5 for cooling water and one discharge main pipe 8 are installed at both ends of the adjacent condensers R1 and R2, the cooling function is satisfied can do. Further, according to the condenser cooling system 11, since the number of main pipes is small, cooling pipes such as the supply main pipe 5, the supply branch pipe 6, the discharge branch pipe 7, and the discharge main pipe 8 are laid on the floor of the turbine building. It is possible to do enough. As a result, due to the building layout of the turbine building, the amount of cooling piping buried underground and reduced can be reduced, and the construction cost can be reduced. For example, in the case of a plant having three condensers, it is possible to reduce the number of main pipes from six to two, but there is no need to bury the cooling pipes underground in the turbine building, so Installation of the water tank can be performed simultaneously, and the construction period can be shortened.

なお、復水器冷却設備11では、上側管束2A,2Cのペアと、下側管束2B,2Dのペアを独立して逆洗運転可能である。そのため、上側管束2A,2Cと、下側管束2B,2Dとのうち一方の冷却機能を維持したまま他方の逆洗を実現することができるので、従来の復水器冷却設備の逆洗運転時と同様に、一時的な全ての冷却水流の停止を生じさせることなく、逆洗運転への切り替えが可能となる。   In the condenser cooling system 11, the pair of the upper tube bundle 2A, 2C and the pair of the lower tube bundle 2B, 2D can be independently backwashed. Therefore, since it is possible to realize the backwashing of the other of the upper tube bundles 2A and 2C and the lower tube bundle 2B and 2D while maintaining the cooling function of one of them, the backwashing operation of the conventional condenser cooling facility Similarly, it is possible to switch to the backwash operation without causing a temporary stop of all the coolant flow.

2.第2実施形態
2−1.構成
第2実施形態に係る復水器冷却設備は、図11(B)に示す縦長管束配列を有する従来の復水器冷却設備112に対して適用されるものである。縦長管束配列においては、水室を上下に分割することが構造上困難であるため、従来の復水器冷却設備112と同様に、供給水管側の水室と排出水管側の水室とで構成される。第2実施形態に係る復水器冷却設備において特徴的なのは、水室側面に接続する冷却配管を直管(直線的な配管)で構成できるように、X軸方向における供給水管側の水室と排出水管側の水室とをY軸方向に互い違いとなるように配置することで、冷却配管の設置領域(スペース)を確保した点である。
2. Second Embodiment 2-1. Configuration The condenser cooling system according to the second embodiment is applied to a conventional condenser cooling system 112 having the longitudinal tube bundle arrangement shown in FIG. 11 (B). In the vertically long tube bundle arrangement, it is difficult to divide the water chamber up and down in structure, so the water chamber on the water supply pipe side and the water chamber on the discharge water pipe side are configured similarly to the conventional condenser cooling equipment 112 Be done. The condenser cooling system according to the second embodiment is characterized by the water chamber on the water supply pipe side in the X-axis direction so that the cooling pipe connected to the side surface of the water chamber can be constituted by a straight pipe (linear pipe). By arranging the water chambers on the side of the discharge water pipe alternately in the Y-axis direction, the installation area (space) of the cooling piping is secured.

図5は、第2実施形態に係る発電プラントの復水器冷却設備の構成を示す斜視図である。図6(A),(B)は、第2実施形態に係る復水器冷却設備の構成を示すX−Y側面図である。図6(C),(D)は、第2実施形態に係る復水器冷却設備の構成を示すY−Z側面図である。   FIG. 5 is a perspective view showing a configuration of a condenser cooling system of a power plant according to a second embodiment. FIGS. 6A and 6B are X-Y side views showing the configuration of a condenser cooling system according to a second embodiment. FIG.6 (C), (D) is a YZ side view which shows the structure of the condenser cooling installation which concerns on 2nd Embodiment.

図5は、m個、例えば、2個の復水器R1,R2に対応する第2実施形態に係る復水器冷却設備12を示す。復水器冷却設備12は、復水器R1,R2内の縦長管束の両端に設けられる水室31と、水室31同士を接続する連結管41と、冷却水を供給する供給母管5と、供給母管5及び水室31を接続する供給分岐管61と、水室31及び排出母管8を接続する排出分岐管71と、冷却後の温水を排出する排出母管8と、供給分岐管61及び排出分岐管71に設けられる弁9を設ける。以下、特に言及する場合を除き、m=2の場合について説明するが、その場合に限定されるものではない。   FIG. 5 shows a condenser cooling system 12 according to a second embodiment corresponding to m, for example, two condensers R1 and R2. Condenser cooling system 12 includes a water chamber 31 provided at both ends of the longitudinally long tube bundle in condensers R1 and R2, a connecting pipe 41 connecting water chambers 31 with each other, and a supply main pipe 5 for supplying cooling water. A supply branch pipe 61 connecting the supply main pipe 5 and the water chamber 31, a discharge branch pipe 71 connecting the water chamber 31 and the discharge main pipe 8, a discharge main pipe 8 discharging the hot water after cooling, a supply branch A valve 9 provided in the pipe 61 and the discharge branch pipe 71 is provided. Hereinafter, the case of m = 2 will be described except for the case where particular mention is made, but it is not limited to that case.

図6に示すように、管束21は、4個の縦長管束によって構成される。具体的には、管束21は、復水器R1内に配置された管束21A及び管束21Bと、復水器R2に配置された管束21C及び管束21Dを備える。   As shown in FIG. 6, the tube bundle 21 is constituted by four longitudinal tube bundles. Specifically, the tube bundle 21 includes a tube bundle 21A and a tube bundle 21B disposed in the condenser R1, and a tube bundle 21C and a tube bundle 21D disposed in the condenser R2.

図6に示すように、水室31は、4個の水室の対、つまり、8個の水室によって構成され、管束21に接続される。具体的には、水室31は、復水器R1内の管束21Aの両端に接続される水室31A,31A´と、同様に管束21Bに接続される水室31B,31B´と、復水器R2内の管束21Cに接続される水室31C,31C´と、同様に管束21Dに接続される水室31D,31D´を備える。   As shown in FIG. 6, the water chamber 31 is constituted by a pair of four water chambers, that is, eight water chambers, and is connected to the tube bundle 21. Specifically, the water chamber 31 includes water chambers 31A and 31A 'connected to both ends of the pipe bundle 21A in the condenser R1, water chambers 31B and 31B' similarly connected to the pipe bundle 21B, and condensate The water chambers 31C and 31C 'connected to the tube bundle 21C in the vessel R2 and the water chambers 31D and 31D' similarly connected to the tube bundle 21D.

図6において、連結管41は、冷却配管であり、m=2の場合は4本の連結管によって構成される。具体的には、連結管4は、隣り合う復水器R1,R2の片側水室同士、つまり、水室31Aと水室31Cを連結する連結管41Pと、復水器の反対側の水室31A´と水室31C´を連結する連結管41P´を備える。また、連結管4は、隣り合う復水器R1,R2のもう片側の水室同士、つまり、水室31Bと水室31Dを連結する連結管41Qと、復水器の反対側の水室31B´と水室31D´を連結する連結管41Q´を備える。なお、連結管41は、m≧3の場合、複数の復水器のうち、隣り合う復水器の左右同一側の水室同士を接続する。   In FIG. 6, the connecting pipe 41 is a cooling pipe, and in the case of m = 2, it is constituted by four connecting pipes. Specifically, the connecting pipe 4 is one side water chambers of adjacent condensers R1 and R2, that is, a connecting pipe 41P connecting the water chamber 31A and the water chamber 31C, and a water chamber on the opposite side of the condenser. A connection pipe 41P 'is provided which connects the water chamber 31A' and the water chamber 31C '. In addition, the connecting pipe 4 is a water pipe 31Q connecting the water chambers 31B and 31D with water chambers on the other side of adjacent condensers R1 and R2, that is, a water chamber 31B on the other side of the condenser. A connecting pipe 41Q 'connecting the water chamber 31D' and the water chamber 31D 'is provided. In the case of m ≧ 3, the connecting pipe 41 connects the water chambers on the same side on the left and right sides of the adjacent condensers among the plurality of condensers.

また、連結管41は、上下に互い違いに配置される水室31によって形成される空きスペースを利用して配置される(図5に図示)。   In addition, the connecting pipe 41 is disposed using an empty space formed by the water chambers 31 disposed alternately in the vertical direction (shown in FIG. 5).

供給分岐管61は、供給母管5より分岐した冷却配管であり、mの数に関わらず4本設けられる。具体的には、復水器冷却設備12は、供給分岐管61A,61A´,61B,61B´の4本を設け、最も供給水管側の復水器である復水器R1に配置された水室31A,31A´,31B,31B´に供給母管5をそれぞれ接続する。また、供給分岐管61A,61A´,61B,61B´にはそれぞれ、弁9A,9A´,9B,9B´が設けられる。   The supply branch pipes 61 are cooling pipes branched from the supply main pipe 5, and four are provided regardless of the number of m. Specifically, the condenser cooling system 12 is provided with four of the supply branch pipes 61A, 61A ', 61B, 61B', and the water disposed in the condenser R1, which is the condenser closest to the water supply pipe. The supply main pipe 5 is connected to the chambers 31A, 31A ', 31B and 31B', respectively. Further, valves 9A, 9A ', 9B, 9B' are provided in the supply branch pipes 61A, 61A ', 61B, 61B' respectively.

排出分岐管71は、冷却後の温水を排出する冷却配管であり、mの数に関わらず4本設けられる。具体的には、復水器冷却設備12は、排出分岐管71C,71C´,71D,71D´の4本を設け、最も排出水管側の復水器である復水器R2に配置された水室31C,31C´,31D,31D´を排出母管8にそれぞれ接続する。また、排出分岐管71C,71C´,71D,71D´にはそれぞれ、弁9A,9A´,9B,9B´が設けられる。   The discharge branch pipe 71 is a cooling pipe for discharging the hot water after cooling, and four pipes are provided regardless of the number of m. Specifically, the condenser cooling system 12 is provided with four of the discharge branch pipes 71C, 71C ', 71D, 71D', and the water disposed in the condenser R2, which is the condenser closest to the discharge water pipe. The chambers 31C, 31C ', 31D, 31D' are connected to the discharge main pipe 8, respectively. Further, valves 9A, 9A ', 9B, 9B' are provided in the discharge branch pipes 71C, 71C ', 71D, 71D', respectively.

ここで、図5に示す水室31に接続される連結管41、供給分岐管61、及び排出分岐管71は、冷却配管の埋設を避けるため、水室31の下面以外の面に接続される。より好適には、水室31の側面、即ち、Y−Z面に接続されることが好適である。これにより、水室31の側面に供給分岐管61等の冷却配管が接続されるため、メンテナンスで必要となる冷却管の引抜作業を阻害しないという効果も得られる。   Here, the connection pipe 41, the supply branch pipe 61, and the discharge branch pipe 71 connected to the water chamber 31 shown in FIG. 5 are connected to a surface other than the lower surface of the water chamber 31 in order to avoid the embedding of the cooling piping. . More preferably, the water chamber 31 is connected to the side surface, that is, the Y-Z surface. As a result, the cooling piping such as the supply branch pipe 61 is connected to the side surface of the water chamber 31, so that an effect of not inhibiting the drawing operation of the cooling pipe, which is necessary for maintenance, can be obtained.

なお、図5及び図6において、図1及び図2と同一部材には同一符号を付して説明を省略する。   In FIG. 5 and FIG. 6, the same members as those in FIG. 1 and FIG.

2−2.動作
図7(A),(B)は、復水器冷却設備12の動作を示す斜視図である。
2-2. Operation FIGS. 7A and 7B are perspective views showing the operation of the condenser cooling system 12.

図7(A)は、復水器冷却設備12において、通常運転時の水の流れを模式的に示したものである。   FIG. 7 (A) schematically shows the flow of water during normal operation in the condenser cooling system 12.

図7(A)に示すように、復水器冷却設備12の通常運転時には、復水器R1内に配置された管束21Aと管束21Bとで、逆向きの流れを形成するよう弁9の開閉が設定される。例えば、弁9のうち、弁9A,9D,9B´,9C´が閉じられる一方で、弁9B,9C,9A´,9D´が開かれる。このような弁9の開閉により、冷却用の水は、供給母管5から分岐して供給分岐管61B,61A´に供給される。供給分岐管61Bに供給された水は、弁9Bを通り、水室31Bで分岐して管束21B及び連結管41Q経由で管束21Dに供給される。つまり、管束21B,21Dには同一向き(Z軸方向)で水が流れることになる。   As shown in FIG. 7A, during normal operation of the condenser cooling system 12, the valve 9 is opened and closed so as to form a flow in the opposite direction between the pipe bundle 21A and the pipe bundle 21B disposed in the condenser R1. Is set. For example, of the valves 9, the valves 9A, 9D, 9B ', 9C' are closed, while the valves 9B, 9C, 9A ', 9D' are opened. By opening and closing the valve 9, the water for cooling is branched from the supply main pipe 5 and supplied to the supply branch pipes 61B and 61A '. The water supplied to the supply branch pipe 61B passes through the valve 9B, branches at the water chamber 31B, and is supplied to the pipe bundle 21D via the pipe bundle 21B and the connecting pipe 41Q. That is, water flows in the same direction (Z-axis direction) in the tube bundles 21B and 21D.

続いて、管束21Bを流れた水は、連結管41Q´を通り、水室31D´で管束21Dを流れた水と合流し、弁9D´を通り、排出母管8に排出される。   Subsequently, the water flowing through the tube bundle 21B passes through the connecting tube 41Q ′, joins with the water flowing through the tube bundle 21D in the water chamber 31D ′, passes through the valve 9D ′, and is discharged to the discharge main pipe 8.

一方で、供給分岐管61A´に供給された水は、弁9A´を通り、水室31A´で分岐して管束21A及び連結管41P´に供給される。連結管41P´経由で管束21Cに供給される。つまり、管束21A,21Cには同一向き(Z軸方向の逆方向)で水が流れることになる。   On the other hand, the water supplied to the supply branch pipe 61A 'passes through the valve 9A', branches at the water chamber 31A ', and is supplied to the pipe bundle 21A and the connecting pipe 41P'. The pipe bundle 21C is supplied via the connecting pipe 41P '. That is, water flows in the same direction (in the direction opposite to the Z-axis direction) to the tube bundles 21A and 21C.

続いて、管束21Aを流れた水は連結管41Pを通り、水室31Cで管束21Cを流れた水と合流し、弁9Cを通り、排出母管8に排出される。   Subsequently, the water flowing through the pipe bundle 21A passes through the connecting pipe 41P, joins with the water flowing through the pipe bundle 21C in the water chamber 31C, passes through the valve 9C, and is discharged to the discharge main pipe 8.

図7(B)は、復水器冷却設備12において、片側の管束のみを逆洗運転させたときの水の流れを模式的に示したものである。   FIG. 7 (B) schematically shows the flow of water when only one tube bundle at the condenser cooling system 12 is backwashed.

図7(A)に示す閉状態の弁9A,9C´が開けられる一方で、開状態の弁9C,9A´が閉じられると、図7(B)に示す管束21A,21Cの逆洗運転となる。ここで、弁の開閉は、操作者による弁の操作により手動的に行われても良いし、操作者による入力に従って制御部(図示省略)が自動的に行うものであっても良い。   When the closed valves 9A and 9C 'shown in FIG. 7A are opened and the opened valves 9C and 9A' are closed, the backwashing operation of the tube bundles 21A and 21C shown in FIG. 7B and Become. Here, the opening and closing of the valve may be manually performed by the operation of the valve by the operator, or may be automatically performed by the control unit (not shown) according to the input by the operator.

このような弁9の開閉操作により、冷却用の水は、供給母管5から分岐して供給分岐管61A,61Bに供給される。供給分岐管61Aに供給された水は、弁9Aを通り、水室31Aで分岐して管束21A及び連結管41P経由で管束21Cに供給される。   By the opening and closing operation of the valve 9 as described above, the water for cooling is branched from the supply main pipe 5 and supplied to the supply branch pipes 61A and 61B. The water supplied to the supply branch pipe 61A passes through the valve 9A, branches at the water chamber 31A, and is supplied to the pipe bundle 21C via the pipe bundle 21A and the connecting pipe 41P.

続いて、管束21Aを流れた水は、連結管41P´を通り、水室31C´で管束21Cを流れた水と合流し、弁9C´を通り、排出母管8に排出される。   Subsequently, the water flowing through the tube bundle 21A passes through the connecting tube 41P ', joins with the water flowing through the tube bundle 21C in the water chamber 31C', passes through the valve 9C ', and is discharged to the discharge main pipe 8.

一方で、供給分岐管61Bに供給された水は、通常運転時と同様に、弁9Bを通り、管束21B及び管束21Dに供給される。   On the other hand, the water supplied to the supply branch pipe 61B passes through the valve 9B and is supplied to the pipe bundle 21B and the pipe bundle 21D as in the normal operation.

図7(B)を用いて説明したように、管束21A,21Cのみを逆洗運転する場合、管束21A,21Cと、管束21B,21Dとには同一向き(Z軸方向)で水が流れることになる。つまり、管束21B,21D中の水流を維持したまま、管束21A,21C中の水流の向きを反転させることが可能となる。なお、管束21B,21Dを逆洗運転する場合も同様に、弁9の開閉で制御できる。具体的には、図7(A)に示す閉状態の弁9D,9B´が開けられる一方で、開状態の弁9B,9D´が閉じられると、管束21B,21Dの逆洗運転となる。   As described with reference to FIG. 7B, when backwashing only the tube bundles 21A and 21C, water flows in the same direction (Z-axis direction) in the tube bundles 21A and 21C and the tube bundles 21B and 21D. become. That is, it is possible to reverse the direction of the water flow in the tube bundles 21A and 21C while maintaining the water flow in the tube bundles 21B and 21D. In the case of backwashing the tube bundles 21B and 21D, control can be similarly performed by opening and closing the valve 9. Specifically, when the closed valves 9D and 9B 'shown in FIG. 7A are opened, and the opened valves 9B and 9D' are closed, the tube bundles 21B and 21D are backwashed.

2−3.効果
復水器冷却設備12によると、隣り合う復水器R1,R2の両端に冷却用の水の供給母管5を1本、排出母管8を1本のみを設置すれば冷却機能を満足することができる。また、復水器冷却設備12によると、母管の本数が少ないため、供給母管5、供給分岐管61、排出分岐管71、及び排出母管8等の冷却配管をタービン建屋の床上に敷設することが十分可能となる。その結果、タービン建屋の建屋レイアウト上、地下に埋設、引廻す冷却配管の物量低減、及び工事費の削減が図れる。例えば、3個の復水器を有するプラントの場合、母管を6本から2本に削減することができるが、冷却配管のタービン建屋地下の埋設作業が不要となることにより、冷却配管と復水器の据付を同時に行うことができ、工期の短縮が可能となる。
2-3. Effects According to the condenser cooling system 12, if only one supply main pipe 5 for cooling water and one discharge main pipe 8 are installed at both ends of the adjacent condensers R1 and R2, the cooling function is satisfied can do. Further, according to the condenser cooling system 12, since the number of main pipes is small, cooling pipes such as the supply main pipe 5, the supply branch pipe 61, the discharge branch pipe 71, and the discharge main pipe 8 are laid on the floor of the turbine building. It is possible to do enough. As a result, due to the building layout of the turbine building, the amount of cooling piping buried underground and reduced can be reduced, and the construction cost can be reduced. For example, in the case of a plant having three condensers, it is possible to reduce the number of main pipes from six to two, but there is no need to bury the cooling pipes underground in the turbine building, so Installation of the water tank can be performed simultaneously, and the construction period can be shortened.

なお、復水器冷却設備12では、管束21A,21Cと、管束21B,21Dを独立して逆洗運転可能である。そのため、管束21A,21Cのペアと、管束21B,21Dのペアとのうち一方の冷却機能を維持したまま他方の逆洗を実現することができるので、従来の復水器冷却設備の逆洗運転時と同様に、一時的な全ての冷却水流の停止を生じさせることなく、逆洗運転への切り替えが可能となる。   In the condenser cooling system 12, the tube bundles 21A and 21C and the tube bundles 21B and 21D can be independently backwashed. Therefore, since the other backwashing can be realized while maintaining the cooling function of one of the pair of pipe bundles 21A and 21C and the pair of pipe bundles 21B and 21D, the backwash operation of the conventional condenser cooling system As with time, it is possible to switch to the backwash operation without causing a temporary stop of all cooling water flow.

3.第3実施形態
3−1.構成
第3実施形態に係る復水器冷却設備は、第2実施形態に係る復水器冷却設備と同様に、図11(B)に示す縦長管束配列を有する従来の復水器冷却設備112に対して適用する。第3実施形態に係る復水器冷却設備は、第2実施形態に係る復水器冷却設備と同様に、X軸方向における同一側の水室側面同士を冷却配管で接続するものである。第3実施形態に係る復水器冷却設備において特徴的なのは、水室側面に接続する冷却配管を直管で構成できるように凹みのある形状の水室を設置することで、冷却配管の設置領域を確保した点である。
3. Third embodiment 3-1. Configuration A condenser cooling system according to the third embodiment is the same as the condenser cooling system according to the second embodiment in the conventional condenser cooling system 112 having the vertically long tube bundle arrangement shown in FIG. Apply to The condenser cooling installation which concerns on 3rd Embodiment connects the water chamber side surfaces of the same side in an X-axis direction with cooling piping similarly to the condenser cooling installation which concerns on 2nd Embodiment. A characteristic of the condenser cooling system according to the third embodiment is that a water chamber having a recessed shape is installed so that the cooling pipe connected to the side surface of the water chamber can be constituted by a straight pipe. Was secured.

図8は、第3実施形態に係る発電プラントの復水器冷却設備の構成を示す斜視図である。   FIG. 8 is a perspective view showing a configuration of a condenser cooling system of a power generation plant according to a third embodiment.

図8は、m個、例えば、2個の復水器R1,R2に対応する第3実施形態に係る復水器冷却設備13を示す。復水器冷却設備13は、復水器R1,R2内の縦長管束の両端に設けられる水室31と、水室31同士を接続する連結管41と、冷却水を供給する供給母管5と、供給母管5及び水室31を接続する供給分岐管61と、水室31及び排出母管8を接続する排出分岐管71と、冷却後の温水を排出する排出母管8と、供給分岐管61及び排出分岐管71に設けられる弁9を設ける。以下、特に言及する場合を除き、m=2の場合について説明するが、その場合に限定されるものではない。   FIG. 8 shows a condenser cooling system 13 according to a third embodiment corresponding to m, for example, two condensers R1 and R2. Condenser cooling system 13 includes a water chamber 31 provided at both ends of the longitudinally long tube bundle in condensers R1 and R2, a connecting pipe 41 connecting water chambers 31 with each other, and a supply main pipe 5 for supplying cooling water. A supply branch pipe 61 connecting the supply main pipe 5 and the water chamber 31, a discharge branch pipe 71 connecting the water chamber 31 and the discharge main pipe 8, a discharge main pipe 8 discharging the hot water after cooling, a supply branch A valve 9 provided in the pipe 61 and the discharge branch pipe 71 is provided. Hereinafter, the case of m = 2 will be described except for the case where particular mention is made, but it is not limited to that case.

復水器冷却設備13の、図5及び図6に示す復水器冷却設備12と異なる構成は、水室の形状である。復水器冷却設備13の水室31は、冷却配管の設置領域を確保すべく、凹みのある形状を有する。   The configuration of the condenser cooling system 13 different from the condenser cooling system 12 shown in FIGS. 5 and 6 is the shape of a water chamber. The water chamber 31 of the condenser cooling system 13 has a concave shape to secure the installation area of the cooling pipe.

図9(A)は、復水器冷却設備13に備えられる管束21、水室31、及び冷却配管の構成例を示すX−Y側面図である。図9(B)は、復水器冷却設備13に備えられる管束21、水室31、及び冷却配管の構成例を示すY−Z側面図である。   FIG. 9A is an X-Y side view showing a configuration example of the tube bundle 21, the water chamber 31, and the cooling piping provided in the condenser cooling facility 13. FIG. 9B is a Y-Z side view showing a configuration example of the pipe bundle 21, the water chamber 31, and the cooling pipe provided in the condenser cooling facility 13.

復水器冷却設備13は、図9(A)に示すように、復水器Rmの左右に2個の管束21を備える。そして、復水器冷却設備13では、片側の管束21Aの端に水室31A,31A´が割り当てられ、もう片側の管束21Bの端に水室31B,31B´が割り当てられる。   Condenser cooling installation 13 equips the right and left of condenser Rm with two tube bundles 21, as shown in Drawing 9 (A). Then, in the condenser cooling facility 13, the water chambers 31A and 31A 'are allocated to the end of the tube bundle 21A on one side, and the water chambers 31B and 31B' are allocated to the end of the tube bundle 21B on the other side.

また、図8及び図9(A),(B)に示すように、復水器冷却設備13においては、水室31A,31Bの側面に接続される冷却配管の設置領域を確保するために、水室31A,31Bは、凹みのある形状を有する。例えば、水室31Aは、水室31Bに接続される供給分岐管61Bの設置領域を確保するために下側が凹みのある形状を有する一方、水室31Bは、水室31Aに接続される連結管41Pの設置領域を確保するために上側が凹みのある形状を有する。   Further, as shown in FIG. 8 and FIGS. 9A and 9B, in the condenser cooling facility 13, in order to secure the installation area of the cooling piping connected to the side surfaces of the water chambers 31A and 31B, The water chambers 31A, 31B have a recessed shape. For example, the water chamber 31A has a shape with a recess on the lower side to secure the installation area of the supply branch pipe 61B connected to the water chamber 31B, while the water chamber 31B is a connecting pipe connected to the water chamber 31A. In order to secure the installation area of 41 P, the upper side has a concave shape.

3−2.動作
復水器冷却設備13の動作は、図7を用いて説明した復水器冷却設備12の動作と同様であるので説明を省略する。
3-2. Operation The operation of the condenser cooling system 13 is the same as the operation of the condenser cooling system 12 described with reference to FIG.

3−3.効果
復水器冷却設備13において、復水器冷却設備12と同様の効果を有する。なお、復水器冷却設備12においては、管束に対して各水室が上方又は下方に伸長する形状となる。一方で、復水器冷却設備13においては、従来の復水器冷却設備と比較して水室の高さが変わらないため、上下方向の復水器の設置領域に余裕が無い場合でも適用が可能である。
3-3. Effects The condenser cooling system 13 has the same effects as the condenser cooling system 12. In the condenser cooling system 12, each water chamber extends upward or downward with respect to the tube bundle. On the other hand, in the condenser cooling system 13, the height of the water chamber does not change as compared with the conventional condenser cooling system, so application is possible even when there is no margin in the vertical installation area of the condenser. It is possible.

4.従来の復水器冷却設備
図10は、従来の復水器冷却設備における冷却水配管の構成を示す斜視図である。また、図11(A),(B)は、従来の復水器における管束配列の構成例を示すX−Y側面図である。図11(A)は、上下2分割管束の復水器冷却設備111を示し、図11(B)は、縦長管束配列の復水器冷却設備112を示す。
4. Conventional Condenser Cooling Equipment FIG. 10 is a perspective view showing a configuration of cooling water piping in a conventional condenser cooling equipment. FIGS. 11A and 11B are X-Y side views showing a configuration example of a tube bundle arrangement in a conventional condenser. Fig. 11 (A) shows a condenser cooling system 111 of upper and lower two-divided tube bundles, and Fig. 11 (B) shows a condenser cooling system 112 of a vertically long tube bundle arrangement.

図10は、復水器Smに対応する従来の復水器冷却設備111(復水器冷却設備112についも同様)を示す。復水器冷却設備111は、管束102(図11(A),(B)に図示)、水室103、水室連結管104、供給配管105、排出配管108、弁109、及び水室連絡弁110を設ける。   FIG. 10 shows a conventional condenser cooling system 111 (the same applies to the condenser cooling system 112) corresponding to the condenser Sm. Condenser cooling equipment 111 includes a tube bundle 102 (shown in FIGS. 11A and 11B), a water chamber 103, a water chamber connecting pipe 104, a supply piping 105, a discharge piping 108, a valve 109, and a water chamber communication valve. 110 is provided.

図10に示す復水器冷却設備111では、弁109,110の開閉の組み合わせにより、水室ごとの逆洗運転が可能となる。しかし、復水器1台当たり4本の大口径冷却水配管(供給配管105及び排出配管108)設置が必要となり、複数台の復水器111が隣接する場合、配置上の制約から、これらの大口径配管はタービン建屋の最下部を掘削し、復水器の設置床Gの下に埋設するレイアウトを採用することになってしまう。   In the condenser cooling system 111 shown in FIG. 10, the backwashing operation for each water chamber can be performed by the combination of the opening and closing of the valves 109 and 110. However, when it is necessary to install four large-diameter cooling water pipes (supply pipe 105 and discharge pipe 108) per condenser, and a plurality of condensers 111 are adjacent to each other, due to restrictions on the arrangement, Large diameter piping excavates the lowermost part of the turbine building, and will adopt the layout buried under the installation floor G of the condenser.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11,12,13…復水器冷却設備、2,21…管束、3,31…水室、4,41…連結管、5…供給母管、6,61…供給分岐管、7,71…排出分岐管、8…排出母管、9…弁。   11, 12, 13, ... condenser cooling equipment, 2, 21 ... tube bundle, 3, 31 ... water chamber, 4, 41 ... connection pipe, 5 ... supply main pipe, 6, 61 ... supply branch pipe, 7, 71 ... Discharge branch pipe, 8 ... discharge mother pipe, 9 ... valve.

Claims (8)

復水器に配置された管束と、その管束の両端に接続される水室とを設ける発電プラントの復水器冷却設備であって、
複数の復水器の各復水器に配置された第1の側の管束及び第2の側の管束と、
前記第1の側の管束及び第2の側の管束のそれぞれに接続される第1の側の水室及び第2の側の水室と、
前記複数の復水器のうち、隣り合う復水器の第1の側の水室同士及び第2の側の水室同士を連結する連結管と、
冷却用の水を供給する供給母管と、
前記複数の復水器のうち、最も供給水管側の復水器に配置された第1の側の水室及び第2の側の水室の側面と前記供給母管とをそれぞれ接続する供給分岐管と、
前記水を排出する排出母管と、
前記複数の復水器のうち、最も排出水管側の復水器に配置された第1の側の水室及び第2の側の水室の側面と前記排出母管とをそれぞれ接続する排出分岐管と、
を備えたことを特徴とする発電プラントの復水器冷却設備。
A condenser cooling system of a power plant, comprising a tube bundle disposed in a condenser and water chambers connected to both ends of the tube bundle,
A first side tube bundle and a second side tube bundle disposed in each of the plurality of condensers,
A first side water chamber and a second side water chamber connected to the first side tube bundle and the second side tube bundle respectively;
A connecting pipe for connecting the water chambers on the first side and the water chambers on the second side of the adjacent condensers among the plurality of condensers;
A supply main pipe for supplying water for cooling;
A supply branch connecting the side surface of the first side water chamber and the second side water chamber disposed in the condenser closest to the supply water pipe among the plurality of condensers and the supply main pipe With the tube,
A discharge main pipe for discharging the water;
A discharge branch that connects the side surface of the first water chamber and the second water chamber disposed in the condenser closest to the discharge water pipe among the plurality of condensers to the discharge main pipe With the tube,
Condenser cooling equipment of a power plant characterized by having.
前記供給分岐管及び前記排出分岐管は、それぞれ弁を設けた、
請求項1に記載の発電プラントの復水器冷却設備。
The supply branch pipe and the discharge branch pipe are each provided with a valve,
The condenser cooling installation of the power plant according to claim 1.
前記第1の側の管束と前記第2の側の管束とで水が互いに逆向きに流れるように前記弁の開閉を制御し、又は、前記第1の側の管束と前記第2の側の管束とで水が同じ向きに流れるように前記弁の開閉を制御する制御部を更に備えた、
請求項2に記載の発電プラントの復水器冷却設備。
The opening and closing of the valve is controlled such that water flows in the opposite direction between the first side tube bundle and the second side tube bundle, or the first side tube bundle and the second side A control unit is further provided to control opening and closing of the valve so that water flows in the same direction with the tube bundle.
The condenser cooling installation of a power plant according to claim 2.
前記第1の側の管束は、鉛直方向における上側の管束であり、
前記第2の側の管束は、鉛直方向における下側の管束であり、
前記第1の側の水室は、前記上側の管束の両端に接続される上側の水室であり、
前記第2の側の水室は、前記下側の管束の両端に接続される下側の水室である、
請求項1乃至3のうちいずれか一項に記載の復水器冷却設備。
The first side tube bundle is an upper tube bundle in the vertical direction,
The second side tube bundle is a lower tube bundle in the vertical direction,
The first water chamber is an upper water chamber connected to both ends of the upper tube bundle,
The second water chamber is a lower water chamber connected to both ends of the lower tube bundle,
The condenser cooling installation according to any one of claims 1 to 3.
前記第1の側の管束は、供給水管側の管束であり、
前記第2の側の管束は、排出水管側の管束であり、
前記第1の側の水室は、前記供給水管側の管束の両端に接続される供給水管側の水室であり、
前記第2の側の水室は、前記排出水管側の管束の両端に接続される排出水管側の水室である、
請求項1乃至3のうちいずれか一項に記載の復水器冷却設備。
The first side pipe bundle is a pipe bundle on the supply water pipe side,
The second side pipe bundle is a water pipe side pipe bundle,
The water chamber on the first side is a water chamber on the side of the supply water pipe connected to both ends of the tube bundle on the side of the supply water pipe,
The water chamber on the second side is a water chamber on the side of the discharge water pipe connected to both ends of the tube bundle on the side of the discharge water pipe,
The condenser cooling installation according to any one of claims 1 to 3.
前記連結管を直管で構成できるように、前記供給水管側の水室と前記排出水管側の水室とを鉛直方向に互い違いに配置した、
請求項5に記載の発電プラントの復水器冷却設備。
The water chambers on the side of the supply water pipe and the water chambers on the side of the discharge water pipe are alternately arranged in the vertical direction so that the connection pipe can be configured as a straight pipe.
The condenser cooling installation of the power plant according to claim 5.
前記連結管を直管で構成できるように、前記供給水管側の水室と前記排出水管側の水室とが連結管の設置領域を確保するように凹みのある形状を有した、
請求項5に記載の発電プラントの復水器冷却設備。
The water chamber on the side of the supply water pipe and the water chamber on the side of the discharge water pipe have a recessed shape so as to secure the installation area of the connection pipe so that the connection pipe can be constituted by a straight pipe.
The condenser cooling installation of the power plant according to claim 5.
複数の復水器の各復水器に配置された第1の側の管束及び第2の側の管束を備えた復水器冷却設備における逆洗運転方法であって、
前記第1の側の管束と前記第2の側の管束とで水が互いに逆向きに流れるように、又は、前記第1の側の管束と前記第2の側の管束とで水が同じ向きに流れるように、前記水の流れる向きを制御する、
ことを特徴とする逆洗運転方法。
A backwash operation method in a condenser cooling system comprising a first side pipe bundle and a second side pipe bundle disposed in each condenser of the plurality of condensers, wherein
Water flows opposite to each other between the first side tube bundle and the second side tube bundle, or the same direction is applied to the first side tube bundle and the second side tube bundle Control the flow direction of the water so as to
A backwash operation method characterized by
JP2017208846A 2017-10-30 2017-10-30 Condenser cooling equipment and backwash operation method of power plant Active JP6925935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208846A JP6925935B2 (en) 2017-10-30 2017-10-30 Condenser cooling equipment and backwash operation method of power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208846A JP6925935B2 (en) 2017-10-30 2017-10-30 Condenser cooling equipment and backwash operation method of power plant

Publications (2)

Publication Number Publication Date
JP2019082270A true JP2019082270A (en) 2019-05-30
JP6925935B2 JP6925935B2 (en) 2021-08-25

Family

ID=66670240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208846A Active JP6925935B2 (en) 2017-10-30 2017-10-30 Condenser cooling equipment and backwash operation method of power plant

Country Status (1)

Country Link
JP (1) JP6925935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079055A (en) * 2020-11-16 2022-05-26 株式会社東芝 Condenser cooling facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079055A (en) * 2020-11-16 2022-05-26 株式会社東芝 Condenser cooling facility
JP7414695B2 (en) 2020-11-16 2024-01-16 株式会社東芝 Condenser cooling equipment

Also Published As

Publication number Publication date
JP6925935B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
KR101452412B1 (en) Solar thermal power generation system using single hot molten salt tank
US6848498B2 (en) Temperature control apparatus
BR112017005539B1 (en) MANIFOLD
AU2011372733B2 (en) Multi-phase distribution system, sub sea heat exchanger and a method of temperature control for hydrocarbons
KR101519340B1 (en) Regenerative heat pump system comprising geothermal exchanger
US10811147B2 (en) Passive residual heat removal system and atomic power plant comprising same
JP2019082270A (en) Condenser cooling equipment of power generating plant, and back washing operation method
US20160298662A1 (en) Fluid manifold
JP2015142089A (en) emergency transformer cooling system and emergency transformer cooling method of underground substation
KR102084549B1 (en) Gas vaporizer
KR100853282B1 (en) Air-conditioning apparatus
JP6352580B1 (en) Thyristor assembly radiator for DC converter valve
KR101297764B1 (en) Direct exchange geothermal heat pump system
CN210459387U (en) Pump station is total tubular bypass pipeline for multi-equipment series connection pipeline
JP7414695B2 (en) Condenser cooling equipment
KR101796010B1 (en) Cooling system for thruster
JP2014238232A (en) Heat exchange pipe unit
CN211824039U (en) Aluminum heat exchanger
RU2679596C2 (en) Nuclear reactor design
US20130209185A1 (en) Hole drilling device and method
KR20150081739A (en) Thermal storage container and transport-type thermal storage system using thereof
KR101823548B1 (en) Heat recovery steam generator having piercing type bypass pipe
KR20200022886A (en) Combined wells geothermal system and performance estimation method therefor
JP2018059670A (en) Water heating system
KR102562339B1 (en) Nuclear reactor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6925935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150