JP2015142089A - emergency transformer cooling system and emergency transformer cooling method of underground substation - Google Patents

emergency transformer cooling system and emergency transformer cooling method of underground substation Download PDF

Info

Publication number
JP2015142089A
JP2015142089A JP2014015466A JP2014015466A JP2015142089A JP 2015142089 A JP2015142089 A JP 2015142089A JP 2014015466 A JP2014015466 A JP 2014015466A JP 2014015466 A JP2014015466 A JP 2014015466A JP 2015142089 A JP2015142089 A JP 2015142089A
Authority
JP
Japan
Prior art keywords
water
cooling
output end
emergency
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015466A
Other languages
Japanese (ja)
Other versions
JP6420040B2 (en
Inventor
偉生 橋本
Takeo Hashimoto
偉生 橋本
晋吾 今井
Shingo Imai
晋吾 今井
鈴木 浩二
Koji Suzuki
浩二 鈴木
文二 可児
Bunji Kani
文二 可児
謙一 伊藤
Kenichi Ito
謙一 伊藤
昌利 戸田
Masatoshi Toda
昌利 戸田
久雄 馬野
Hisao Umano
久雄 馬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2014015466A priority Critical patent/JP6420040B2/en
Publication of JP2015142089A publication Critical patent/JP2015142089A/en
Application granted granted Critical
Publication of JP6420040B2 publication Critical patent/JP6420040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformer Cooling (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which allows for continuous operation of minimum necessary transformers, as first aid, when a secondary cooler has stopped.SOLUTION: A first underground substation emergency transformer cooling system 10A includes a primary cooler 22 for cooling the heat generated from a transformer 11 by the cooling water supplied from a cooling pump 21, and a secondary cooler 23 for cooling the hot water after passing through the primary cooler. The cooling system 10A is further provided with a flow path of an emergency cooling water supply system 14, first flow path switching means 41 for switching the destination of water sent from a water storage tank 33, second flow path switching means 42 for switching the destination of hot water sent from the primary cooler, and third flow path switching means 43 for switching the supply source of water supplied to the cooling water pump. When the cooling function of the secondary cooler is lost, flow path of the makeup water is switched, and the makeup water to be stored in the water storage tank can be supplied cyclically to the primary cooler as the cooling water.

Description

本発明は、変電設備の冷却設備に係り、特に、地下変電所が被災した際に必要最低限度の変圧器の運用を可能にする地下変電所の緊急時変圧器冷却システムを用いてより長く地下変電所の変圧器の運用を継続する地下変電所の緊急時変圧器冷却システムおよび緊急時変圧器冷却方法に関する。   The present invention relates to a cooling facility for a substation, and more particularly to an underground substation emergency transformer cooling system that enables operation of the minimum necessary transformer when an underground substation is damaged. The present invention relates to an emergency transformer cooling system and an emergency transformer cooling method for underground substations that continue to operate transformers in substations.

都市部の市街地に設置される変電所は、一般に、建物の地下部分に設置されることが多く、地下変電所と呼ばれている。この地下変電所は、都市部の送配電において重要な設備であって、最大のものでは500kV級の設備もある。このような地下変電所は、都市部の主要機関に電力を供給している関係から、設備停止は都市部の混乱を招く等の社会問題としてクローズアップされる傾向がある。従って、地下変電所の信頼性向上は大きな命題である。   In general, substations installed in urban areas are often installed in the underground part of buildings and are called underground substations. This underground substation is an important facility for power transmission and distribution in urban areas, and the largest is a 500 kV class facility. Such underground substations tend to close up as a social problem such as causing disruption of the urban area due to the supply of electric power to the major institutions in the urban area. Therefore, improving the reliability of underground substations is a major proposition.

上述した事情から、地下変電所を構成する機器(例えば、変圧器)について、高い信頼性が求められるのはもちろんのこと、その補機(例えば、変圧器の冷却システム)についても同様に高い信頼性が求められる。例えば、地下変電所を構成する変圧器の冷却システムは、冷却システムの停止が、変圧器の停止(熱による自損)に直結するため、やはり、高い信頼性が求められる。   Because of the circumstances described above, not only high reliability is required for equipment (for example, transformers) that make up substations, but also high reliability is required for auxiliary equipment (for example, transformer cooling systems). Sex is required. For example, a transformer cooling system that forms an underground substation is required to have high reliability because the stop of the cooling system is directly connected to the stop of the transformer (self-damage due to heat).

また、地下変電所は、電力需要の大きな都市部に設置されるのに加えて、建物の地下階に設置されていることから、変圧器等で大量に発生した熱が放散しにくく、発生した熱を地下階から屋外(地上)へ強制的に放出することが必要であり、地下変電所の冷却設備は屋外に設置される変電所に比べて、大型化・複雑化する傾向がある。   In addition to being installed in urban areas where electricity demand is high, underground substations are installed on the basement floor of buildings, so heat generated in large quantities by transformers is difficult to dissipate. It is necessary to forcibly release heat from the underground floor to the outside (above ground), and the cooling facilities of underground substations tend to be larger and more complex than substations installed outdoors.

一般的な地下変電所の冷却設備システムは、変圧器で発生した熱を、変圧器に設置される一次冷却器において冷水が温水となる過程で熱交換し、一次冷却器からの温水(一次冷却器で熱交換された後の冷却水)をポンプによって二次冷却器へ送り、二次冷却器で温水が冷水となる過程で熱交換することによって放熱する仕組である。   A general underground substation cooling facility system exchanges heat generated in a transformer in the process of chilled water becoming hot water in a primary cooler installed in the transformer, and then heat from the primary cooler (primary cooling). The cooling water after being heat exchanged in the cooler) is sent to the secondary cooler by a pump, and heat is exchanged in the process of warm water becoming cold water in the secondary cooler.

この様な冷却設備を有する変電設備では、例えば、想定規模以上の地震や火事等に地下変電所が被災した場合、一次冷却器から二次冷却器(冷却塔又は乾式冷却器)への水路が破断する等によって、二次冷却器が機能しない停止状態となってしまう事態も起こり得る。特に、地震によって建物が倒壊してしまった場合には二次冷却器への水路が破断する可能性が高く、この場合の二次冷却器の機能停止が危惧されている。この様な場合であっても、変電所の切り替えや供給側で生じる問題を解決できるだけの対策時間を確保する時間(最低限半日程度、好ましくはそれ以上)は、応急処置的な運用状態となったとしても運用を停止させないようにすることは必要不可欠である。   In a substation with such a cooling facility, for example, when an underground substation is damaged by an earthquake or fire of an expected size or larger, there is a water channel from the primary cooler to the secondary cooler (cooling tower or dry cooler). There may be a situation in which the secondary cooler enters a stopped state due to breakage or the like. In particular, when a building collapses due to an earthquake, there is a high possibility that the water channel to the secondary cooler will break, and there is a concern that the secondary cooler will stop functioning in this case. Even in such a case, the time to secure a countermeasure time (minimum of half a day, preferably more than half a day) that can solve the problems occurring at the switching of substations and the supply side is an emergency treatment operation state. Even so, it is essential not to stop the operation.

上述した事情を考慮して、例えば、特許第5320147号公報に記載されるように、二次冷却器が停止してしまった場合に、応急処置的な運用状態であっても、なんとか変圧器本体が損傷に至る温度上昇の時定数分の時間(通常、1,2時間程度)以上の運用時間を確保する地下変電所の緊急時変圧器冷却システムが提案されている(例えば、特許文献1参照)。   Considering the circumstances described above, for example, as described in Japanese Patent No. 5320147, when the secondary cooler is stopped, the transformer main body is managed even if it is in the first aid operation state. An emergency transformer cooling system for an underground substation has been proposed that secures an operation time that is equal to or longer than the time constant of the temperature rise leading to damage (usually about 1 to 2 hours) (see, for example, Patent Document 1). ).

特許第5320147号公報Japanese Patent No. 5320147

上述した引用文献1に記載される地下変電所の緊急時変圧器冷却システムでは、運用条件によっても異なるが、変圧器本体が損傷に至る温度上昇を回避できる応急処置的な必要最低限度の変圧器の運用を最大で数日程度は継続することができる。   In the emergency transformer cooling system for an underground substation described in the above-mentioned cited document 1, the minimum necessary transformer for emergency measures that can avoid the temperature rise that causes damage to the transformer body, depending on the operating conditions. Can be continued for up to several days.

しかしながら、数日程度という期間は、実際に大地震に被災した場合に地下変電所を停止させない対策を講じるまでの期間としては、決して十分とはいえない。2011年3月に発生した東日本大震災の状況に鑑みると、最低限のインフラが復旧するまでに数日程度を要しており、同程度の規模の大地震が発生した場合、最低限のインフラが復旧するまでに数日以上かかることも想定しておく必要がある。従って、地下変電所の停止を確実に回避する観点からすれば、応急処置的な必要最低限度の変圧器の運用が可能な期間をさらに延ばしておいた方がより確実である。   However, the period of several days is not enough to take measures to prevent the underground substation from shutting down in the event of a major earthquake. Considering the situation of the Great East Japan Earthquake that occurred in March 2011, it took several days to restore the minimum infrastructure. If a large earthquake of the same scale occurred, the minimum infrastructure It must also be assumed that it will take several days or more to recover. Therefore, from the viewpoint of surely avoiding the stoppage of the underground substation, it is more certain that the period in which the transformer can be operated to the minimum necessary for emergency measures is further extended.

本発明は、このような事情を考慮してなされたもので、地震や火事等の災害に見舞われて二次冷却器が停止してしまった場合に応急処置的に必要最低限度の変圧器の運用を継続的に可能にする地下変電所の緊急時変圧器冷却システムおよびその冷却方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in the event that a secondary cooler stops due to a disaster such as an earthquake or fire, the minimum necessary transformer is required for emergency measures. It is an object of the present invention to provide an emergency transformer cooling system for an underground substation and its cooling method that enable continuous operation.

本発明の実施形態に係る地下変電所の緊急時変圧器冷却システムは、上述した課題を解決するため、地下変電所に設置される変圧器の冷却システムにおいて、前記変圧器の発生熱を冷却水で冷却する一次冷却器と、前記一次冷却器とは離れた位置に設置され、前記一次冷却器を通過した後の冷却水である温水を冷却する二次冷却器とを備え、前記一次冷却器と前記二次冷却器とを冷却する、又蒸発などで一部失われる前記冷却水を補給する冷却用補給水を貯水し、前記冷却用補給水を補給する補給水槽と、前記補給水槽に補給する冷却用補給水を貯水するとともに補給水ポンプを備える貯水槽とを接続し、前記貯水槽から前記補給水槽に冷却用補給水を送る流路を有する補給水系統と、通常運用時に前記一次冷却器および前記二次冷却器に冷却水を供給する流路として、前記一次冷却器の入力端と前記一次冷却器の入力端へ冷却水を供給する冷却水ポンプの出力端とが接続され、前記一次冷却器の出力端と前記二次冷却器の入力端とが接続され、前記二次冷却器の出力端と前記冷却水ポンプの入力端とが接続されることによって、前記冷却水が循環可能に形成される流路を有する冷却水供給系統とを接続し、前記貯水槽の水を前記補給水系統および冷却水供給系統の流路を介して前記一次冷却器側に供給する流路を有する緊急冷却水供給系統と、前記貯水槽と接続される1個の入力端と、前記補給水槽と接続される開閉自在な第1の出力端と、前記一次冷却器の入力端と接続される開閉自在な第2の出力端とを含む複数個の出力端とを備え、前記貯水槽から導入される冷却用補給水の供給先を選択的に切り替える第1の流路切替手段と、前記一次冷却器の出力端と接続される1個の入力端と、前記二次冷却器の入力端と接続される開閉自在な第3の出力端と、前記第3の出力端とは異なる開閉自在な第4の出力端とを含む複数個の出力端とを備え、前記一次冷却器から導入される前記温水の供給先を選択的に切り替える第2の流路切替手段と、をさらに設けて構成されており、前記二次冷却器の冷却機能が停止した状態となった場合、前記冷却水ポンプと前記補給水ポンプを停止させた状態で、前記第1の出力端と前記第3の出力端とを閉じ、一端から放出される流体が前記貯水槽へ流入するように配設される仮設管の他端を前記第4の出力端に取り付け、前記第2の出力端と前記第4の出力端とを開いて、前記補給水ポンプを起動させることによって、前記貯水槽に貯水される前記冷却用補給水を、前記第2の出力端、前記一次冷却器、前記第4の出力端、および前記仮設管を経由させて前記貯水槽へ戻して循環させながら前記冷却水として前記一次冷却器へ供給可能に構成されることを特徴とする。   An emergency transformer cooling system for an underground substation according to an embodiment of the present invention is a cooling system for a transformer installed in an underground substation in order to solve the above-described problem. A primary cooler that cools the primary cooler, and a secondary cooler that is installed at a position distant from the primary cooler and cools hot water that is cooling water after passing through the primary cooler, and the primary cooler And cooling the secondary cooler, storing the replenishing water for replenishing the cooling water partially lost due to evaporation, etc., and replenishing the replenishing water tank for replenishing the replenishing water for cooling A replenishment water system having a flow path for storing replenishing water for cooling and connecting a reserving tank equipped with a replenishing water pump and sending cooling replenishing water from the water storage tank to the replenishing water tank, and the primary cooling during normal operation And cool the secondary cooler As a flow path for supplying water, an input end of the primary cooler and an output end of a cooling water pump for supplying cooling water to the input end of the primary cooler are connected, and the output end of the primary cooler and the second end Cooling having a flow path formed so that the cooling water can be circulated by connecting the input end of the secondary cooler and connecting the output end of the secondary cooler and the input end of the cooling water pump. An emergency cooling water supply system having a flow path for connecting the water supply system to the primary cooler via the flow paths of the makeup water system and the cooling water supply system, and the water storage system. One input terminal connected to the tank, a first output terminal that can be opened and closed connected to the makeup water tank, and a second output terminal that can be opened and closed connected to the input terminal of the primary cooler. A plurality of output ends including cooling makeup water introduced from the water storage tank First flow path switching means for selectively switching the supply destination, one input end connected to the output end of the primary cooler, and an openable / closable first connected to the input end of the secondary cooler A plurality of output ends including a third output end and a fourth output end that is openable and closable different from the third output end, and selects a supply destination of the hot water introduced from the primary cooler And a second flow path switching means for switching automatically, and when the cooling function of the secondary cooler is stopped, the cooling water pump and the makeup water pump are stopped. In this state, the first output end and the third output end are closed, and the other end of the temporary pipe disposed so that the fluid discharged from one end flows into the water storage tank is connected to the fourth output end. The replenishment water pump is attached to the output end, and the second output end and the fourth output end are opened. The cooling replenishing water stored in the water storage tank is made to pass through the second output end, the primary cooler, the fourth output end, and the temporary pipe, by starting the storage tank. The cooling water is configured to be supplied to the primary cooler while being returned to the tank and circulated.

本発明の実施形態に係る地下変電所の緊急時変圧器冷却方法は、上述した課題を解決するため、地下変電所に設置される変圧器の発生熱を冷却水で冷却する一次冷却器と、前記一次冷却器とは離れた位置に設置され、前記一次冷却器を通過した後の冷却水である温水を冷却する二次冷却器とを備え、前記一次冷却器と前記二次冷却器とを冷却する、又蒸発などで一部失われる前記冷却水を補給する冷却用補給水を貯水する前記冷却用補給水を補給する補給水槽と、前記補給水槽に補給する前記冷却用補給水を貯水するとともに補給水ポンプを備える貯水槽とを接続し、前記貯水槽から前記補給水槽に前記冷却用補給水を送る流路を有する補給水系統と、通常運用時に前記一次冷却器および前記二次冷却器に冷却水を供給する流路として、前記一次冷却器の入力端と前記一次冷却器の入力端へ冷却水を供給する冷却水ポンプの出力端とが接続され、前記一次冷却器の出力端と前記二次冷却器の入力端とが接続され、前記二次冷却器の出力端と前記冷却水ポンプの入力端とが接続されることによって、前記冷却水が循環可能に形成される流路を有する冷却水供給系統とを接続し、前記貯水槽の水を前記補給水系統および冷却水供給系統の流路を介して前記一次冷却器側に供給する流路を有する緊急冷却水供給系統と、前記貯水槽と接続される1個の入力端と、前記補給水槽と接続される開閉自在な第1の出力端と、前記一次冷却器の入力端と接続される開閉自在な第2の出力端とを含む複数個の出力端とを備え、前記貯水槽から導入される前記冷却用補給水の供給先を選択的に切り替える第1の流路切替手段と、前記一次冷却器の出力端と接続される1個の入力端と、前記二次冷却器の入力端と接続される開閉自在な第3の出力端と、前記第3の出力端とは異なる開閉自在な第4の出力端とを含む複数個の出力端とを備え、前記一次冷却器から導入される前記温水の供給先を選択的に切り替える第2の流路切替手段と、前記二次冷却器の出力端と開閉自在に接続される第1の入力端と、前記第1の入力端とは異なる開閉自在な第2の入力端と、前記冷却水ポンプの入力端と開閉自在に接続される出力端とを備え、前記第1の入力端、および前記第2の入力端の何れか一方から導入される流体を前記冷却水ポンプの入力端と開閉自在に接続される前記出力端へ案内する第3の流路切替手段と、をさらに設けて構成される冷却システムを用いた地下変電所の緊急時変圧器冷却方法であり、前記二次冷却器の冷却機能が停止した状態となった場合に、前記冷却水ポンプと前記補給水ポンプとを停止させ、前記冷却水ポンプと前記補給水ポンプとが停止した状態で、前記第1の出力端と前記第3の出力端とを閉じ、一端から放出される流体が前記貯水槽へ流入するように配設される仮設管の他端を前記第4の出力端に取り付けてから前記第2の出力端と前記第4の出力端とを開いて、前記補給水ポンプを起動させることによって、前記貯水槽に貯水される前記冷却用補給水を、前記第2の出力端、前記一次冷却器、前記第4の出力端、および前記仮設管を経由させて前記貯水槽へ戻し、前記一次冷却器と前記貯水槽とを循環させながら前記冷却水として前記一次冷却器へ供給し、前記冷却用補給水を消費しながら前記一次冷却器を冷却する第1次段階のステップと、前記冷却システムに対して、前記一次冷却器からの温水を熱交換した後に前記貯水槽へ戻す非常用冷却設備がさらに設けられた後に、前記第2の流路切替手段が前記貯水槽と前記一次冷却器と前記非常用冷却設備との間で前記冷却用補給水が循環する循環流路に切り替えることによって、前記非常用冷却設備が前記貯水槽と前記一次冷却器と前記非常用冷却設備との間で循環する前記冷却用補給水を冷却する第2次段階のステップと、を備えることを特徴とする。   An emergency transformer cooling method for an underground substation according to an embodiment of the present invention is a primary cooler for cooling generated heat of a transformer installed in an underground substation with cooling water in order to solve the above-described problem, A secondary cooler that is installed at a position apart from the primary cooler and cools hot water that is the coolant after passing through the primary cooler, the primary cooler and the secondary cooler Replenishing water tank for replenishing the replenishing water for cooling, replenishing the replenishing water for cooling, replenishing the replenishing water for cooling, or replenishing the cooling water partially lost due to evaporation, and the replenishing water for replenishing the replenishing water tank are stored A replenishment water system having a flow path for connecting the replenishing water pump to the replenishing water tank from the water storage tank, and the primary cooler and the secondary cooler during normal operation. As a flow path for supplying cooling water to The input end of the primary cooler and the output end of the cooling water pump that supplies cooling water to the input end of the primary cooler are connected, and the output end of the primary cooler and the input end of the secondary cooler are connected The output end of the secondary cooler and the input end of the cooling water pump are connected to connect a cooling water supply system having a flow path formed so that the cooling water can be circulated, and An emergency cooling water supply system having a flow path for supplying water from the water storage tank to the primary cooler through the flow paths of the makeup water system and the cooling water supply system, and one input connected to the water storage tank A plurality of output ends including a first output end that can be opened and closed connected to the replenishing water tank, and a second output end that can be opened and closed connected to the input end of the primary cooler. , Selectively switching the supply source of the cooling makeup water introduced from the water tank A first flow path switching means; one input end connected to the output end of the primary cooler; a third output end that can be opened and closed connected to the input end of the secondary cooler; A plurality of output ends including a fourth output end that is openable and closable different from the third output end, and a second flow for selectively switching a supply destination of the hot water introduced from the primary cooler A path switching means, a first input end that is openably and closably connected to an output end of the secondary cooler, a second input end that is openable and closable different from the first input end, and the cooling water pump And an output end connected to be openable and closable, and fluid introduced from one of the first input end and the second input end can be freely opened and closed with the input end of the cooling water pump. And a third flow path switching means for guiding to the output end connected to the cooling system. Is an emergency transformer cooling method for an underground substation using a substation, and when the cooling function of the secondary cooler is stopped, the cooling water pump and the makeup water pump are stopped, With the cooling water pump and the makeup water pump stopped, the first output end and the third output end are closed, and the fluid discharged from one end flows into the water storage tank. The other end of the temporary pipe is attached to the fourth output end, then the second output end and the fourth output end are opened, and the makeup water pump is activated to store water in the water storage tank. The cooling makeup water to be returned to the water storage tank through the second output end, the primary cooler, the fourth output end, and the temporary pipe, and the primary cooler and the water storage tank And supplying the cooling water as the cooling water to the primary cooler. A first stage step of cooling the primary cooler while consuming the cooling make-up water, and an emergency for returning the water to the water storage tank after exchanging heat from the primary cooler with respect to the cooling system; After the cooling facility is further provided, the second channel switching means switches to the circulation channel through which the cooling makeup water circulates between the water storage tank, the primary cooler, and the emergency cooling facility. The emergency cooling facility comprises a second stage step of cooling the cooling makeup water circulating between the water storage tank, the primary cooler, and the emergency cooling facility. To do.

本発明によれば、地震や火事等の災害に見舞われて二次冷却器が停止してしまった場合に必要最低限度の運用を継続的に行うことができる。   According to the present invention, when the secondary cooler stops due to a disaster such as an earthquake or a fire, the minimum necessary operation can be continuously performed.

本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(通常運用時)。1 is a system schematic diagram (during normal operation) schematically showing an emergency transformer cooling system for an underground substation and its cooling system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(緊急運用時の第1次段階)。BRIEF DESCRIPTION OF THE DRAWINGS The system schematic which showed roughly the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention, and its cooling system (the 1st stage at the time of emergency operation). 本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(緊急運用時の第2次段階)。BRIEF DESCRIPTION OF THE DRAWINGS The system schematic which showed roughly the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention, and its cooling system (2nd step | paragraph at the time of emergency operation). 本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(緊急運用時の第3次段階)。BRIEF DESCRIPTION OF THE DRAWINGS The system schematic which showed roughly the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention, and its cooling system (the 3rd step in emergency operation). 本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統の第1の流路切替手段の変形例を示す概略図であり、(A)は2個の三方弁を直列に接続して第1の流路切替手段を構成した例を示す図、(B)は3個のポートを備える1個のヘッダーと1個の三方弁とを直列に接続して第1の流路切替手段を構成した例を示す図。It is the schematic which shows the modification of the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention, and the 1st flow-path switching means of the cooling system, (A) is two three-way The figure which shows the example which connected the valve in series and comprised the 1st flow-path switching means, (B) is connecting the 1 header provided with 3 ports, and the 1 three-way valve in series. The figure which shows the example which comprised the 1 flow-path switching means. 本発明の実施形態に係る地下変電所の緊急時変圧器冷却システムの貯水槽を二系統化して構成した構成例を示した概略図。Schematic which showed the example of a structure which constituted the water tank of the emergency transformer cooling system of the underground substation which concerns on embodiment of this invention into 2 systems. 地下変電所の変圧器冷却システムの基本構成の一例であり、二次冷却器が屋外に設置される構成例を示した説明図。Explanatory drawing which was an example of the basic composition of the transformer cooling system of an underground substation, and showed the example of a structure by which a secondary cooler is installed outdoors. 地下変電所の変圧器冷却システムの基本構成の一例であり、二次冷却器が屋内に設置される構成例を示した説明図。Explanatory drawing which was an example of the basic composition of the transformer cooling system of an underground substation, and showed the example of a structure by which a secondary cooler is installed indoors. 第2次段階に移行している本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統の第1変形例を概略的に示したシステム概略図。The system schematic which showed roughly the 1st modification of the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention which has transfered to the 2nd step, and its cooling system. 第2次段階に移行している本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統の第2変形例を概略的に示したシステム概略図。The system schematic which showed schematically the 2nd modification of the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention which has transfered to the 2nd step, and its cooling system. 第3次段階に移行している本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統の変形例を概略的に示したシステム概略図。The system schematic which showed schematically the modification of the emergency transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention which has transfered to the 3rd step, and its cooling system. 本発明の第2の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(通常運用時)。The system schematic diagram (at the time of normal operation) which showed roughly the emergency transformer cooling system of the underground substation concerning the 2nd Embodiment of the present invention, and its cooling system. 本発明の第2の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(緊急運用時の第1次段階)。The system schematic which showed roughly the emergency transformer cooling system of the underground substation which concerns on the 2nd Embodiment of this invention, and its cooling system (the 1st stage at the time of emergency operation). 本発明の第2の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(緊急運用時の第2次段階)。The system schematic which showed roughly the emergency transformer cooling system of the underground substation which concerns on the 2nd Embodiment of this invention, and its cooling system (2nd stage at the time of emergency operation). 本発明の第2の実施形態に係る地下変電所の緊急時変圧器冷却システムおよびその冷却系統を概略的に示したシステム概略図(緊急運用時の第3次段階)。The system schematic which showed roughly the emergency transformer cooling system of the underground substation which concerns on the 2nd Embodiment of this invention, and its cooling system (the 3rd step in emergency operation).

以下、本発明の実施形態に係る地下変電所の緊急時変圧器冷却システム(以下、「地下変電所緊急時変圧器冷却システム」と称する)および緊急時変圧器冷却方法について、図面を参照して説明する。   Hereinafter, an emergency transformer cooling system for an underground substation according to an embodiment of the present invention (hereinafter referred to as an “underground substation emergency transformer cooling system”) and an emergency transformer cooling method will be described with reference to the drawings. explain.

[第1の実施形態]
図1〜4は、本発明の第1の実施形態に係る地下変電所緊急時変圧器冷却システムの一実施例である地下変電所緊急時変圧器冷却システム(以下、「第1の地下変電所緊急時変圧器冷却システム」と称する)10Aおよびその冷却系統を運用状態毎に概略的に示したシステム概略図である。
[First Embodiment]
1 to 4 show an underground substation emergency transformer cooling system (hereinafter referred to as “first underground substation”) which is an example of an underground transformer emergency transformer cooling system according to the first embodiment of the present invention. 10A is a system schematic diagram schematically showing 10A and its cooling system for each operation state.

より具体的には、図1が通常運用時(緊急運用時以外)、図2が緊急運用時の第1次段階(以下、単に「第1次段階」と称する)、図3が緊急運用時の第2次段階(以下、単に「第2次段階」と称する)、図4が緊急運用時の第3次段階(以下、単に「第3次段階」と称する)における第1の地下変電所緊急時変圧器冷却システム10Aおよびその冷却系統を示している。   More specifically, FIG. 1 is during normal operation (other than emergency operation), FIG. 2 is the first stage during emergency operation (hereinafter simply referred to as “first stage”), and FIG. 3 is during emergency operation. The first substation in the second stage (hereinafter simply referred to as “secondary stage”) and FIG. 4 in the third stage during emergency operation (hereinafter simply referred to as “third stage”). An emergency transformer cooling system 10A and its cooling system are shown.

通常運用時の第1の地下変電所緊急時変圧器冷却システム10A(図1)は、大別すると、地下変電所の変圧器11を冷却する役割を担う冷却水供給系統12と、冷却水が減少した場合に冷却水を適宜補給する役割を担う補給水系統13と、冷却水供給系統12と補給水系統13とを接続し、補給水系統13側から冷却水供給系統12側への冷却水の供給を可能とする緊急冷却水供給系統14と、三つの系統を備えて構成される。   The first underground substation emergency transformer cooling system 10A (FIG. 1) during normal operation can be broadly divided into a cooling water supply system 12 that plays a role of cooling the transformer 11 of the underground substation, and a cooling water The coolant water 13 that plays a role of appropriately replenishing the coolant when it decreases, the coolant supply system 12 and the makeup water system 13 are connected, and the coolant from the makeup water system 13 side to the coolant supply system 12 side. The emergency cooling water supply system 14 that enables the supply of water and three systems are provided.

第1の地下変電所緊急時変圧器冷却システム10Aの各系統12,13,14について説明する。冷却水供給系統12では、冷却水ポンプ21によって冷却水が一次冷却器22に運ばれ、変圧器11を熱交換によって冷却する。続いて、一次冷却器22で変圧器11の発生熱を吸収した冷却水(以下、「温水」と称する)はさらに二次冷却器23に運ばれ、二次冷却器23で温水を熱交換して冷却する。すなわち、二次冷却器23は、温水を熱交換する過程で温水に吸収された変圧器11の熱を外部へ放熱し、温水を冷水とする。続いて、二次冷却器23で冷水となった冷却水は冷却水ポンプ21に戻される。   The systems 12, 13, and 14 of the first underground substation emergency transformer cooling system 10A will be described. In the cooling water supply system 12, the cooling water is carried to the primary cooler 22 by the cooling water pump 21, and the transformer 11 is cooled by heat exchange. Subsequently, the cooling water (hereinafter referred to as “hot water”) that has absorbed the heat generated by the transformer 11 by the primary cooler 22 is further conveyed to the secondary cooler 23, and heat exchange is performed on the hot water by the secondary cooler 23. Cool down. That is, the secondary cooler 23 dissipates the heat of the transformer 11 absorbed in the hot water in the process of exchanging the hot water to the outside, and uses the hot water as cold water. Subsequently, the cooling water that has become cold water in the secondary cooler 23 is returned to the cooling water pump 21.

補給水系統13は、冷却水が冷却水供給系統12を循環する過程で蒸発等により減少するため、適宜、補給水槽31に貯えた冷却用補給水を補給水槽31と冷却水供給系統12とを連結した膨張配管32を介して冷却水供給系統12へ供給する。補給水槽31の冷却用補給水は、予め水道等の水源から水を引いて貯水しておいた貯水槽33の水を補給水ポンプ34によって適宜送出することによって補充される。補給水槽31の冷却用補給水がオーバーフローした時は、オーバーフロー管35から排水される。   Since the replenishing water system 13 is reduced by evaporation or the like in the process of circulating the cooling water through the cooling water supply system 12, the replenishing water tank 31 and the cooling water supply system 12 are appropriately supplied with the replenishing water stored in the replenishing water tank 31, The cooling water supply system 12 is supplied through the connected expansion pipe 32. The replenishing water for cooling the replenishing water tank 31 is replenished by appropriately sending out the water in the water storage tank 33 that has been stored in advance by drawing water from a water source such as a water supply. When the replenishing water for cooling in the replenishing water tank 31 overflows, it is drained from the overflow pipe 35.

貯水槽33は、例えば、四つの水槽33−1〜33−4等の複数の水槽を連通管37で連結して構成される。尚、貯水槽33は、必ずしも、複数の水槽を連通管37で連結した構成である必要はなく、1個の水槽であっても良いが、複数の水槽で構成されることが好ましい。1個の水槽の場合、実施する形態によっては、緊急時において仕切(パーテション)を追設する等の必要が生じる場合もあるためである。   The water storage tank 33 is configured by connecting a plurality of water tanks such as four water tanks 33-1 to 33-4 with a communication pipe 37, for example. The water storage tank 33 does not necessarily have a configuration in which a plurality of water tanks are connected by the communication pipe 37 and may be a single water tank, but is preferably configured by a plurality of water tanks. This is because, in the case of one water tank, depending on the embodiment to be implemented, it may be necessary to additionally install a partition (partition) in an emergency.

緊急冷却水供給系統14は、通常運用時に使用されない冷水の供給系統であり、被災したことによって二次冷却器23の機能が停止してしまった等の緊急時に使用される。緊急冷却水供給系統14は、冷却水供給系統12と補給水系統13とを連結する流路を有し、緊急時に貯水槽33に貯水してある補給水を補給水系統13から冷却水供給系統12へ導く役割を担う。   The emergency cooling water supply system 14 is a cold water supply system that is not used during normal operation, and is used in an emergency such as the function of the secondary cooler 23 being stopped due to a disaster. The emergency cooling water supply system 14 has a flow path that connects the cooling water supply system 12 and the make-up water system 13, and supplies the make-up water stored in the water storage tank 33 in an emergency from the make-up water system 13 to the cooling water supply system. The role leading to 12.

また、第1の地下変電所緊急時変圧器冷却システム10Aでは、通常運用時、および緊急時の運用段階に応じて、流路を自在に切り替えることが必要となる。そこで、流路を切り替えるための構成要素として、例えば、第1,2,3の流路切替手段41A,42,43が設けられている。   Further, in the first underground substation emergency transformer cooling system 10A, it is necessary to freely switch the flow path according to the operation stage in normal operation and emergency. Therefore, for example, first, second, and third flow path switching means 41A, 42, and 43 are provided as components for switching the flow paths.

第1の流路切替手段41Aは、例えば、4個のポート(入力端と出力端)を備える流路切替手段である。第1の流路切替手段41Aの4個のポートのうち3個は、それぞれ、補給水槽31、冷却水ポンプ21の出力端、および貯水槽33と接続される。また、残りの1個のポートは、後述する第3次段階で非常用冷却設備47(図4)へ冷却用補給水を供給するための仮設管45(図4)が接続される。第1の流路切替手段41Aのポートのうち、少なくとも、出力端となるポート、すなわち、補給水槽31と接続されるポート、冷却水ポンプ21の出力端と接続されるポート、および後述する第3次段階で仮設管45が接続されるポートは、何れも開閉可能に構成される。   The first flow path switching unit 41A is a flow path switching unit including, for example, four ports (input end and output end). Three of the four ports of the first flow path switching means 41A are connected to the makeup water tank 31, the output end of the cooling water pump 21, and the water tank 33, respectively. Further, the remaining one port is connected to a temporary pipe 45 (FIG. 4) for supplying cooling makeup water to an emergency cooling facility 47 (FIG. 4) in a third stage to be described later. Among the ports of the first flow path switching means 41A, at least a port serving as an output end, that is, a port connected to the makeup water tank 31, a port connected to the output end of the cooling water pump 21, and a third described later. Any port to which the temporary pipe 45 is connected in the next stage is configured to be openable and closable.

第1の流路切替手段41Aは、例えば、少なくとも3個のポートが開閉自在に構成された4個のポートを備えるヘッダー411であり、弁412,413,414を開閉することによって、貯水槽33の補給水の供給先を、補給水槽31(通常運用時)、一次冷却器22(第1,2次段階)、および非常用冷却設備47(第3次段階)の何れかに切り替える。   The first flow path switching means 41A is, for example, a header 411 having four ports in which at least three ports are configured to be openable and closable. By opening and closing the valves 412, 413, and 414, the water storage tank 33 is provided. The supply destination of the makeup water is switched to any one of the makeup water tank 31 (during normal operation), the primary cooler 22 (first and second stages), and the emergency cooling equipment 47 (third stage).

第2の流路切替手段42は、例えば、3個のポート(入力端と出力端)を備える流路切替手段である。第2の流路切替手段42の3個のポートのうち2個は、それぞれ、一次冷却器22の出力端、および二次冷却器23の入力端に接続される。残る1個のポートは、通常運用時には予備として閉止されており、緊急運用時に仮設管45(図2〜4)を取り付けて使用される。第2の流路切替手段42のポートのうち、少なくとも、出力端となるポート、すなわち、二次冷却器23の入力端と接続されるポート、および通常運用時には予備として閉止されるポートは、何れも開閉可能に構成される。   The second flow path switching means 42 is a flow path switching means including, for example, three ports (input end and output end). Two of the three ports of the second flow path switching means 42 are connected to the output end of the primary cooler 22 and the input end of the secondary cooler 23, respectively. The remaining one port is closed as a spare during normal operation, and is used with a temporary pipe 45 (FIGS. 2 to 4) attached during emergency operation. Of the ports of the second flow path switching means 42, which is at least an output end port, that is, a port connected to the input end of the secondary cooler 23 and a port closed as a spare during normal operation, Is also configured to be openable and closable.

第2の流路切替手段42は、例えば、少なくとも2個のポートが開閉自在に構成された3個のポートを備えるヘッダー421であり、弁422,423を開閉することによって、一次冷却器22からの温水の供給先を二次冷却器23(通常運用時)と弁423(緊急運用時)とに切り替える。なお、第2次段階への移行をより速く行えるようにするため、図1〜4に示される第2の流路切替手段42では、通常運用時には予備として閉止される弁423が設置される流路を、弁423とヘッダー421との間で分岐させ、分岐させた流路にさらに弁424を設けている。   The second flow path switching means 42 is, for example, a header 421 having three ports in which at least two ports are configured to be openable and closable. By opening and closing the valves 422 and 423, the second flow path switching means 42 is removed from the primary cooler 22. The hot water supply destination is switched between the secondary cooler 23 (during normal operation) and the valve 423 (during emergency operation). In order to make the transition to the second stage faster, the second flow path switching means 42 shown in FIGS. 1 to 4 is provided with a valve 423 that is closed as a spare during normal operation. The path is branched between the valve 423 and the header 421, and a valve 424 is further provided in the branched flow path.

第3の流路切替手段43は、例えば、3個のポート(入力端と出力端)を備える流路切替手段である。第3の流路切替手段43の3個のポートのうち2個は、それぞれ、二次冷却器23の出力端、および冷却水ポンプ21の入力端に接続される。残る1個のポートは、第3次段階以外の状況下では予備として閉止されており、第3次段階に仮設管45(図4)を取り付けて使用される。第3の流路切替手段43のポートのうち、少なくとも、入力端となるポート、すなわち、二次冷却器23の出力端と接続されるポート、および通常運用時等では予備として閉止されるポートは、何れも開閉可能に構成される。   The third flow path switching means 43 is a flow path switching means including, for example, three ports (input end and output end). Two of the three ports of the third flow path switching unit 43 are connected to the output end of the secondary cooler 23 and the input end of the cooling water pump 21, respectively. The remaining one port is closed as a reserve under circumstances other than the third stage, and is used with a temporary pipe 45 (FIG. 4) attached to the third stage. Of the ports of the third flow path switching means 43, at least the ports serving as input ends, that is, the ports connected to the output end of the secondary cooler 23, and the ports closed as spares during normal operation or the like are Both are configured to be openable and closable.

第3の流路切替手段43は、例えば、少なくとも2個のポートが開閉自在に構成された3個のポートを備えるヘッダー431であり、弁432,433を開閉することによって、冷却水ポンプ21へ戻す冷却水の供給元を二次冷却器23(通常運用時)と弁433(第3次段階)とに切り替える。   The third flow path switching unit 43 is, for example, a header 431 having three ports configured so that at least two ports can be freely opened and closed. By opening and closing the valves 432 and 433, the third flow path switching unit 43 is supplied to the cooling water pump 21. The supply source of the cooling water to be returned is switched between the secondary cooler 23 (during normal operation) and the valve 433 (third stage).

仮設管45(図2,3,4)は、緊急運用時に取り付けられる着脱自在な可撓性の管であり、例えば、樹脂繊維を筒状に製織して構成される円筒織物の両面に熱可塑性樹脂等の被覆材によって被覆したホース等である。このホースとしては、例えば、芦森工業株式会社のパルジェット(登録商標)、またはこれと同様の製品を採用することができる。このような円筒織物によって構成されるホースは、通常運用時にはコンパクトに収納でき、保管中の劣化が少ない等の利点がある。   The temporary tube 45 (FIGS. 2, 3, and 4) is a detachable flexible tube that is attached during emergency operation. For example, the temporary tube 45 is thermoplastic on both sides of a cylindrical fabric formed by weaving resin fibers in a cylindrical shape. A hose or the like covered with a coating material such as resin. As this hose, for example, Paljet (registered trademark) of Ashimori Industry Co., Ltd. or a similar product can be adopted. A hose made of such a cylindrical fabric has advantages such that it can be stored compactly during normal operation and has little deterioration during storage.

非常用冷却設備47は、第1次段階から第2次段階への移行時において追設される仮設の冷却設備であり、二次冷却器23と同等の役割を果たす。非常用冷却設備47は、いわば、仮設の二次冷却器23であり、例えば、乾式冷却塔や開放型冷却塔471等の仮設冷却塔を備える。仮設冷却塔としての開放型冷却塔471は、例えば、地上面等の安定した場所に設置される。   The emergency cooling equipment 47 is a temporary cooling equipment that is additionally installed at the time of transition from the primary stage to the secondary stage, and plays the same role as the secondary cooler 23. The emergency cooling equipment 47 is, so to speak, the temporary secondary cooler 23, and includes a temporary cooling tower such as a dry cooling tower or an open cooling tower 471. The open type cooling tower 471 as a temporary cooling tower is installed in a stable place such as the ground surface.

乾式冷却塔や開放型冷却塔471は、密閉型冷却塔473(図11)等の他の冷却塔を採用する場合と比較して、コスト、搬入および組立の作業、保管、並びに汎用性の面で他の冷却塔よりも優位である。具体的には、比較的安価である点、比較的軽量で搬入、搬出、および組立が容易である点、重量および大きさの観点からトレーラーやヘリコプター等の輸送機器による搬入が可能である点、部品単位で保管可能である点、並びに他の設備等で使用している冷却塔の流用が可能である点が利点となる。   The dry cooling tower and the open type cooling tower 471 are more costly, carrying in and assembling, storing, and versatile than the case where other cooling towers such as the closed type cooling tower 473 (FIG. 11) are employed. It is superior to other cooling towers. Specifically, it is relatively inexpensive, relatively light and easy to carry in, out and assemble, and can be carried in by transport equipment such as trailers and helicopters from the viewpoint of weight and size, The advantage is that it can be stored in parts and that the cooling tower used in other facilities can be used.

尚、図1〜4に示される第1の地下変電所緊急時変圧器冷却システム10Aは一実施例であって、図示される構成に限定されない。例えば、図1に示される一次冷却器22の台数が異なる場合、図1では多重化されていない流路が多重化されている場合、または、弁412〜414,422〜424,432,433以外の弁が適宜追加されている場合等であっても良い。また、弁412〜414,422〜424,432,433は手動弁であるか電動弁であるかを問わず任意に選択できる。   The first underground substation emergency transformer cooling system 10A shown in FIGS. 1 to 4 is an example, and is not limited to the illustrated configuration. For example, when the number of primary coolers 22 shown in FIG. 1 is different, in FIG. 1, when channels that are not multiplexed are multiplexed, or other than valves 412 to 414, 422 to 424, 432, and 433 This may be the case where the valve is added as appropriate. Further, the valves 412 to 414, 422 to 424, 432, and 433 can be arbitrarily selected regardless of whether they are manual valves or electric valves.

続いて、第1の地下変電所緊急時変圧器冷却システム10A(通常運用時:図1)の幾つかの変形例について説明する。   Subsequently, some modifications of the first underground substation emergency transformer cooling system 10A (during normal operation: FIG. 1) will be described.

図5(図5(A)および図5(B))は第1の地下変電所緊急時変圧器冷却システム10Aに設けられる第1の流路切替手段41Aの変形例を示す概略図であり、図6は本発明の実施形態に係る地下変電所の緊急時変圧器冷却システムの貯水槽を二系統化して構成した構成例である貯水槽33x,33yの構成を示した概略図である。なお、図5に示される第1の流路切替手段41Aの各ポートの開閉状態は、通常運用時の状態である。   FIG. 5 (FIG. 5 (A) and FIG. 5 (B)) is a schematic diagram showing a modification of the first flow path switching means 41A provided in the first underground substation emergency transformer cooling system 10A. FIG. 6 is a schematic diagram illustrating the configuration of the water storage tanks 33x and 33y, which is a configuration example in which the water storage tanks of the emergency transformer cooling system of the underground substation according to the embodiment of the present invention are divided into two systems. Note that the open / closed state of each port of the first flow path switching means 41A shown in FIG. 5 is a state during normal operation.

第1の流路切替手段41Aは、図1〜4に例示される構成の他、例えば、2個の三方弁415,416を直列に接続して構成したり(図5(A))、弁412と、1個のポートが弁412と接続されるT字継手418と、T字継手418の弁412によって開閉されない2個のポートうち、何れか一方のポートと三方弁416の1個のポートとを直列にして構成したりすることができる(図5(B))。   The first flow path switching means 41A may be configured by connecting two three-way valves 415 and 416 in series in addition to the configuration illustrated in FIGS. 1 to 4 (FIG. 5A), 412, a T-shaped joint 418 in which one port is connected to the valve 412, and one of the two ports not opened / closed by the valve 412 of the T-shaped joint 418 and one port of the three-way valve 416. Can be configured in series (FIG. 5B).

尚、図5は第1の流路切替手段41Aの変形例を示したものであるが、他の流路切替手段である第2,3の流路切替手段42,43についても、第1の流路切替手段41Aと同様にして図1〜4に例示される構成の以外の構成(例えば、1個の三方弁や1個のT字継手と2個の弁(二方弁)とを接続した構成等)を採用することができる。   FIG. 5 shows a modified example of the first flow path switching means 41A, but the second and third flow path switching means 42 and 43, which are other flow path switching means, are also the first one. Similar to the flow path switching unit 41A, a configuration other than the configuration illustrated in FIGS. 1 to 4 (for example, one three-way valve, one T-shaped joint, and two valves (two-way valve) are connected. Can be adopted.

一方、貯水槽33の構成についても、図1〜4に示される例に限定されない。すなわち、図1〜4に示される第1の地下変電所緊急時変圧器冷却システム10Aにおける貯水槽33は、1系統であるが、図6に例示されるように、2系統等の複数系統化(多重化)された貯水槽33x,33yであっても良い。   On the other hand, the configuration of the water storage tank 33 is not limited to the example shown in FIGS. That is, the water storage tank 33 in the first underground substation emergency transformer cooling system 10A shown in FIGS. 1 to 4 is one system, but as illustrated in FIG. (Multiplexed) storage tanks 33x and 33y may be used.

複数系統化(多重化)された貯水槽33x,33yが設置されている第1の地下変電所緊急時変圧器冷却システム10Aでは、補給水ポンプ34の一方を第1系統側の貯水槽33xへ配置しつつ、補給水ポンプ34の他方を第2系統側の貯水槽の33yへ配置することによって、貯水槽33xの水の温度が上昇して冷却水として使用できない状況となっても、貯水槽33xとは異なる系統である貯水槽33yの水を使って変圧器11の冷却をすることができ、その間に貯水槽33xの水を自然冷却することができる。   In the first underground substation emergency transformer cooling system 10A in which a plurality of systematic (multiplexed) water storage tanks 33x and 33y are installed, one of the makeup water pumps 34 is connected to the water storage tank 33x on the first system side. Even if it is in a situation where the temperature of the water in the water storage tank 33x rises and cannot be used as cooling water by disposing the other side of the makeup water pump 34 to the water storage tank 33y on the second system side, the water storage tank The transformer 11 can be cooled using the water of the water storage tank 33y which is a system different from 33x, and the water of the water storage tank 33x can be naturally cooled during that time.

続いて、本発明の第1の実施形態に係る地下変電所の緊急時変圧器冷却方法として、第1の地下変電所緊急時変圧器冷却システム10Aを用いた地下変電所の変圧器11の冷却方法(以下、単に「第1の変圧器冷却方法」と称する)について説明する。   Subsequently, as the emergency transformer cooling method of the underground substation according to the first embodiment of the present invention, the cooling of the transformer 11 of the underground substation using the first underground substation emergency transformer cooling system 10A. A method (hereinafter, simply referred to as “first transformer cooling method”) will be described.

第1の地下変電所緊急時変圧器冷却システム10Aは、通常運用時(緊急運用時以外)の場合(図1)、緊急冷却水供給系統14の流路は閉じており、補給水槽31に補給水を供給する補給水系統13の流路が開いている。すなわち、第1の流路切替手段41Aの弁412は開いており、弁413は閉じている。なお、通常運用時には弁414も閉じている。   In the case of the first underground substation emergency transformer cooling system 10A during normal operation (other than during emergency operation) (FIG. 1), the flow path of the emergency cooling water supply system 14 is closed, and the supply water tank 31 is replenished. The flow path of the makeup water system 13 for supplying water is open. That is, the valve 412 of the first flow path switching unit 41A is open and the valve 413 is closed. Note that the valve 414 is also closed during normal operation.

また、冷却水供給系統12では、冷却水ポンプ21、一次冷却器22、第2の流路切替手段42、二次冷却器23、第3の流路切替手段43、および冷却水ポンプ21がループ状に接続され、冷却水が通水する流路が形成される。通常運用時の場合、第2の流路切替手段42では、弁422が開いており、弁423および弁424が閉じている。また、第3の流路切替手段43では、弁432が開いており、弁433が閉じている。   In the cooling water supply system 12, the cooling water pump 21, the primary cooler 22, the second flow path switching means 42, the secondary cooler 23, the third flow path switching means 43, and the cooling water pump 21 are looped. A flow path through which cooling water flows is formed. In the normal operation, in the second flow path switching unit 42, the valve 422 is open and the valve 423 and the valve 424 are closed. In the third flow path switching unit 43, the valve 432 is open and the valve 433 is closed.

この状況下において、冷却水供給系統12では、冷却水ポンプ21が動作し、変圧器11を冷却する冷却水が冷却水ポンプ21から供給される。冷却水ポンプ21から供給された冷却水は、冷却水ポンプ21から一次冷却器22、第2の流路切替手段42(ヘッダー421および弁422)、二次冷却器23、および第3の流路切替手段43(弁432およびヘッダー431)を経由して冷却水ポンプ21へ戻る流路を循環する。   Under this circumstance, in the cooling water supply system 12, the cooling water pump 21 operates and cooling water for cooling the transformer 11 is supplied from the cooling water pump 21. The cooling water supplied from the cooling water pump 21 is supplied from the cooling water pump 21 to the primary cooler 22, the second flow path switching means 42 (header 421 and valve 422), the secondary cooler 23, and the third flow path. It circulates in the flow path which returns to the cooling water pump 21 via the switching means 43 (the valve 432 and the header 431).

また、冷却水の循環過程で、冷却水が不足してきた場合には補給水槽31から膨張配管32を経由して適宜冷却水を冷却水供給系統12へ補給する。補給水槽31の補給水が不足してきた場合には、間欠的に補給水ポンプ34を稼動させて、貯水槽33の水を補給水系統13の流路を経由して補給水槽31へ適宜送り出すことによって補充する。   Further, when the cooling water becomes insufficient in the circulation process of the cooling water, the cooling water is appropriately supplied to the cooling water supply system 12 from the makeup water tank 31 via the expansion pipe 32. When the makeup water in the makeup water tank 31 is insufficient, the makeup water pump 34 is operated intermittently, and the water in the water storage tank 33 is appropriately sent to the makeup water tank 31 via the flow path of the makeup water system 13. Refill with.

一方、地震や火事等の災害に見舞われる等の事態が発生して二次冷却器23の機能が停止(喪失)してしまった場合(緊急運用時の場合:図2,3,4)、第1の地下変電所緊急時変圧器冷却システム10Aでは、まず、初期対応として緊急運用時の第1次段階へ移行して変圧器11を冷却する。その後、順次、変圧器11をより安定的(長期間に亘って)冷却可能な第2次段階、および第3次段階へと移行して変圧器11を冷却する。   On the other hand, when a situation such as a disaster such as an earthquake or a fire occurs and the function of the secondary cooler 23 is stopped (lost) (in the case of emergency operation: FIGS. 2, 3 and 4), In the first underground substation emergency transformer cooling system 10A, first, as an initial response, the operation proceeds to the first stage during emergency operation to cool the transformer 11. Thereafter, the transformer 11 is cooled by sequentially shifting to a second stage and a third stage where the transformer 11 can be cooled more stably (over a long period of time).

通常運用時から第1次段階への移行は、第1のステップとして、冷却水ポンプ21と補給水ポンプ34を停止させる。続く第2のステップとして、貯水槽33に貯水される補給水の供給先が一次冷却器22となるように流路の切り替えを行うべく、通常運用時には開いている弁412と弁422を閉じる。さらに、続く第3のステップとして、仮設管45(図2)の一端を弁423に取り付け、仮設管45の他端を弁423を通水する水が貯水槽33へ流入するように配設する。   The transition from the normal operation to the primary stage stops the cooling water pump 21 and the makeup water pump 34 as a first step. As a subsequent second step, the valves 412 and 422 that are open during normal operation are closed so that the flow path is switched so that the supply destination of the makeup water stored in the water storage tank 33 is the primary cooler 22. Furthermore, as a subsequent third step, one end of the temporary pipe 45 (FIG. 2) is attached to the valve 423, and the other end of the temporary pipe 45 is disposed so that water passing through the valve 423 flows into the water storage tank 33. .

仮設管45の他端が配設される位置は、温度上昇を少しでも遅らせる観点から、補給水ポンプ34が設置される水槽33−1と異なる水槽(図2に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、水槽33−2,33−3,33−4)であることが好ましい。仮設管45の他端が配設されるより好ましい位置は、水槽33−1から離れている水槽(図2に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、水槽33−3,33−4)であり、最も好ましい位置は、第1の水槽33−1から最も遠くに位置する水槽(図2に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、水槽33−4)である。   The position where the other end of the temporary pipe 45 is disposed is a tank different from the tank 33-1 where the makeup water pump 34 is installed (first underground substation shown in FIG. 2) from the viewpoint of delaying the temperature rise as much as possible. In the emergency transformer cooling system 10A, the water tanks 33-2, 33-3, 33-4) are preferable. A more preferable position at which the other end of the temporary pipe 45 is disposed is a water tank separated from the water tank 33-1 (in the first underground substation emergency transformer cooling system 10A shown in FIG. , 33-4), and the most preferable position is the tank located farthest from the first tank 33-1 (in the first underground substation emergency transformer cooling system 10A shown in FIG. 2, the tank 33). -4).

続く第4のステップとして、閉じている第1の流路切替手段41Aの弁413と第2の流路切替手段42の弁423とを開く。すなわち、補給水系統13の流路のうち弁412から補給水槽31側の流路と冷却水供給系統12の流路のうち弁422から二次冷却器23側の流路とを閉じ、緊急冷却水供給系統14の流路と弁423を開くことで、貯水槽33の水を一次冷却器22に通水させて貯水槽33へ戻す循環流路に切り替える。   As a subsequent fourth step, the valve 413 of the closed first flow path switching means 41A and the valve 423 of the second flow path switching means 42 are opened. That is, the flow path from the valve 412 to the supply water tank 31 side in the flow path of the makeup water system 13 and the flow path from the valve 422 to the secondary cooler 23 side in the flow path of the cooling water supply system 12 are closed, and emergency cooling is performed. By opening the flow path of the water supply system 14 and the valve 423, the water in the water storage tank 33 is switched to the circulation flow path that passes the water through the primary cooler 22 and returns it to the water storage tank 33.

続く第5のステップとして、補給水ポンプ34を起動する。これによって、貯水槽33の水は、第1の流路切替手段41A(ヘッダー411および弁413)を経由して緊急冷却水供給系統14の流路へ流入し、緊急冷却水供給系統14の流路から一次冷却器22に流入し、一次冷却器22から第2の流路切替手段42(ヘッダー421および弁423)を経由して貯水槽33へ流入する循環流路を循環する。第1〜5のステップが完了すると、第1の地下変電所緊急時変圧器冷却システム10Aは第1次段階(図2)への移行する工程を完了する。   As a subsequent fifth step, the makeup water pump 34 is activated. Thus, the water in the water storage tank 33 flows into the flow path of the emergency cooling water supply system 14 via the first flow path switching means 41A (header 411 and valve 413), and the flow of the emergency cooling water supply system 14 It flows into the primary cooler 22 from the passage, and circulates in the circulation flow path that flows from the primary cooler 22 into the water storage tank 33 via the second flow path switching means 42 (header 421 and valve 423). When the first to fifth steps are completed, the first substation emergency transformer cooling system 10A completes the process of transitioning to the first stage (FIG. 2).

第1次段階へ移行している第1の地下変電所緊急時変圧器冷却システム10A(図2)では、二次冷却器23の機能が喪失してしまった場合にも、貯水槽33の水を一次冷却器22に供給することができるので、変圧器11の熱を貯水槽33から供給される水に吸収させて放熱することができる。また、変圧器11の熱を回収した後の温水は、貯水槽33へ戻されるため、変圧器11の冷却に要する水を循環させて再利用することができ、半日から数日程度は変圧器11を冷却することができる。   In the first substation emergency transformer cooling system 10A (FIG. 2) that has shifted to the first stage, the water in the water storage tank 33 can be used even if the function of the secondary cooler 23 is lost. Can be supplied to the primary cooler 22, so that the heat of the transformer 11 can be absorbed by the water supplied from the water storage tank 33 and dissipated. Moreover, since the hot water after recovering the heat of the transformer 11 is returned to the water storage tank 33, the water required for cooling the transformer 11 can be circulated and reused. 11 can be cooled.

ここで、第1次段階へ移行可能な第1の地下変電所緊急時変圧器冷却システム10Aの作用について補足する。   Here, it supplements about an effect | action of 10 A of 1st underground substation emergency transformer cooling systems which can transfer to a 1st stage.

第1の地下変電所緊急時変圧器冷却システム10Aでは、通常運用時には変圧器11の一次冷却器22の入口側(冷却前)の水温は約50℃であり、出口側(冷却後)の水温は約60℃となるのに対し、第1,2次段階において一次冷却器22へ供給される貯水槽33の水は地下に貯水している関係から約20℃と水温が低く通常運用時よりも大きな冷却効果が得られるため、一次冷却器22へ供給する冷却水の水量を通常運用時よりも少なく済ませることができる。   In the first underground substation emergency transformer cooling system 10A, the water temperature on the inlet side (before cooling) of the primary cooler 22 of the transformer 11 is about 50 ° C. during normal operation, and the water temperature on the outlet side (after cooling). Is about 60 ° C., whereas the water in the water tank 33 supplied to the primary cooler 22 in the first and second stages is about 20 ° C. and the water temperature is lower than in normal operation because it is stored underground. Since a large cooling effect can be obtained, the amount of cooling water supplied to the primary cooler 22 can be reduced compared to that during normal operation.

例えば、通常運用時と同じ負荷で運転をする場合であっても、温度差が約10℃から約40℃に拡大するので、通常運用時と同等の冷却効果を得るためには約1/4の水量で済ませることができる。このことは、通常運用時に使用される冷却水供給系統12の流路の断面積に対して、第1,2次段階において使用される緊急冷却水供給系統14の流路の断面積を約1/4とすることができることを意味する。   For example, even when the operation is performed with the same load as that during normal operation, the temperature difference increases from about 10 ° C. to about 40 ° C. Therefore, in order to obtain a cooling effect equivalent to that during normal operation, about 1/4. It can be done with the amount of water. This means that the cross-sectional area of the flow path of the emergency cooling water supply system 14 used in the first and second stages is about 1 with respect to the cross-sectional area of the flow path of the cooling water supply system 12 used during normal operation. This means that it can be set to / 4.

仮に補給水ポンプ34の送水能力が冷却水ポンプ21の送水能力に対して1/4未満の場合であっても、補給水ポンプ34は通常、冗長化(多重化)されており、図1等に示されるように最低二台設置されているはずなので、二台を稼動させることで冷却水ポンプ21の送水能力に対する1/4の送水能力を確保することが可能となる。   Even if the water supply capacity of the make-up water pump 34 is less than ¼ of the water supply capacity of the cooling water pump 21, the make-up water pump 34 is usually made redundant (multiplexed). As shown in FIG. 4, since at least two units should be installed, it is possible to secure 1/4 of the water supply capacity of the cooling water pump 21 by operating the two units.

尚、緊急時における負荷は通常運用時の負荷に対して100%となることは稀であり、例えば、80%である場合には発生する熱量は64%の負荷損(理論値)と僅かの無負荷損になるから冷却水の水量はさらに少なくて済み、大抵の場合、補給水ポンプ34を二台稼動させるまでもなく、通常のプラント設計仕様であれば、この要件を十分に満足することができる。   Note that the emergency load is rarely 100% of the load during normal operation. For example, when it is 80%, the amount of heat generated is 64% load loss (theoretical value) and a slight amount. Since there is no load loss, the amount of cooling water can be further reduced. In most cases, it is not necessary to operate two make-up water pumps 34, and this requirement will be sufficiently satisfied with normal plant design specifications. Can do.

しかしながら、上述する第1次段階の状態では、変圧器11の熱を回収するにつれて、貯水槽33内の水の温度が上昇するため、数日程度で変圧器11を冷却することができなくなってしまう。従って、第1次段階よりも長い期間に亘って継続的に冷却可能な段階(以下に説明する第2,3次段階)へ移行する方が好ましい。   However, in the state of the first stage described above, the temperature of the water in the water tank 33 rises as the heat of the transformer 11 is recovered, so that the transformer 11 cannot be cooled in about several days. End up. Therefore, it is preferable to shift to a stage (second and third stages described below) that can be continuously cooled over a longer period than the first stage.

このような事情を考慮して、第1の地下変電所緊急時変圧器冷却システム10Aおよびその冷却方法では、準備が整い次第、既存配管の切断、新規の配管や弁の追設等のプラントの大幅な改修を行うことなく、仮設管45の取り付けおよび取り外し(繋ぎ変え)や弁412,413,422〜424等の開閉程度の簡単な操作によって、より長い期間に亘って継続的に冷却可能な第2,3次段階へ移行することができる。   In consideration of such circumstances, in the first underground substation emergency transformer cooling system 10A and its cooling method, as soon as preparation is completed, cutting of existing pipes, addition of new pipes and valves, etc. Cooling can be continuously performed over a longer period by simple operations such as attaching and detaching (changing) the temporary pipe 45 and opening and closing the valves 412, 413, 422 to 424, etc., without making major modifications. It is possible to move to the second and third stages.

第1次段階から第2次段階への移行は、少なくとも非常用冷却設備47を調達して設置する準備作業が必要となる。また、非常用冷却設備47を設置する際には、第1次段階から第2次段階へ移行する作業時間、すなわち、補給水ポンプ34を停止させる時間をより短くする観点から、予め保管される仮設管45(45−1,45−2)を用意し、非常用冷却設備47としての仮設冷却塔(図3,4に示される例は開放型冷却塔471)に、第2の流路切替手段42の弁423(または弁424)へ取り付け可能な仮設管45−1と、開放型冷却塔471で冷却後の水を貯水槽33へ戻す(流入させる)仮設管45−2との2本の仮設管45(45−1,45−2)の一端を取り付ける作業を行っておく方が良い。この準備作業が完了したら、第1次段階から第2次段階へ移行することができる。   The transition from the primary stage to the secondary stage requires at least preparation work for procurement and installation of the emergency cooling equipment 47. Further, when installing the emergency cooling equipment 47, it is stored in advance from the viewpoint of shortening the work time for shifting from the primary stage to the secondary stage, that is, the time for stopping the makeup water pump 34. Temporary pipes 45 (45-1, 45-2) are prepared, and the second flow path is switched to a temporary cooling tower (the example shown in FIGS. 3 and 4 is an open type cooling tower 471) as the emergency cooling equipment 47. Two pipes, a temporary pipe 45-1 that can be attached to the valve 423 (or valve 424) of the means 42 and a temporary pipe 45-2 that returns (inflows) water cooled by the open type cooling tower 471 to the water storage tank 33. It is better to work to attach one end of the temporary pipe 45 (45-1, 45-2). When this preparatory work is completed, it is possible to move from the primary stage to the secondary stage.

第1次段階から第2次段階への移行は、第1のステップとして、補給水ポンプ34を停止させる。続く第2のステップとして、弁423に取り付けられている仮設管45(図2)を取り外し、開放型冷却塔471の入力端と取り付けられている仮設管45−1の他端を弁423に取り付ける(繋ぎ変える)とともに、開放型冷却塔471の出力端と取り付けられている仮設管45−2の他端を貯水槽33に流入するように配設する(仮設管45の切り替え)。続く第3のステップとして、補給水ポンプ34を起動する。第1〜3のステップが完了すると、第1の地下変電所緊急時変圧器冷却システム10Aは第1次段階(図2)から第2次段階(図3)への移行が完了する。   The transition from the primary stage to the secondary stage stops the makeup water pump 34 as a first step. As a subsequent second step, the temporary pipe 45 (FIG. 2) attached to the valve 423 is removed, and the other end of the temporary pipe 45-1 attached to the input end of the open type cooling tower 471 is attached to the valve 423. At the same time, the output end of the open type cooling tower 471 and the other end of the temporary pipe 45-2 attached are arranged to flow into the water storage tank 33 (switching of the temporary pipe 45). As a subsequent third step, the makeup water pump 34 is activated. When the first to third steps are completed, the first underground substation emergency transformer cooling system 10A completes the transition from the primary stage (FIG. 2) to the secondary stage (FIG. 3).

尚、弁424が設けられている場合(図1〜4)には、弁423に取り付けられている仮設管45(図2)を取り外すことなく、そのまま、開放型冷却塔471の入力端と取り付けられている仮設管45−1の他端(弁424に取り付け可能に構成される)を弁424に取り付け、その後に弁423と弁424の開閉状態を切り替えることによって、第2のステップを行うことができる。この場合、弁423に取り付けられている仮設管45(図2)を繋ぎ変える必要がないので、更に素早く第1次段階から第2次段階への移行することができる。   When the valve 424 is provided (FIGS. 1 to 4), the temporary tube 45 (FIG. 2) attached to the valve 423 is not removed and attached to the input end of the open cooling tower 471 as it is. The second step is performed by attaching the other end of the temporary pipe 45-1 (configured to be attachable to the valve 424) to the valve 424 and switching the open / close state of the valve 423 and the valve 424 thereafter. Can do. In this case, there is no need to change the temporary pipe 45 (FIG. 2) attached to the valve 423, so that the primary stage can be more quickly shifted to the secondary stage.

第2次段階へ移行している第1の地下変電所緊急時変圧器冷却システム10A(図3)では、補給水ポンプ34を起動することによって、貯水槽33の水は、補給水ポンプ34で汲み上げられて第1の流路切替手段41A(ヘッダー411および弁413)を経由して緊急冷却水供給系統14の流路へ流入し、緊急冷却水供給系統14の流路から一次冷却器22に流入し、一次冷却器22から第2の流路切替手段42(ヘッダー421および弁424)を経由して開放型冷却塔471へ流入し、開放型冷却塔471から貯水槽33へ流入する循環流路を循環する。   In the first underground substation emergency transformer cooling system 10 </ b> A (FIG. 3) that has shifted to the second stage, the makeup water pump 34 is activated so that the water in the water storage tank 33 is supplied by the makeup water pump 34. It is pumped up and flows into the flow path of the emergency cooling water supply system 14 via the first flow path switching means 41A (header 411 and valve 413), and from the flow path of the emergency cooling water supply system 14 to the primary cooler 22 A circulating flow that flows into the open cooling tower 471 from the primary cooler 22 via the second flow path switching means 42 (header 421 and valve 424) and flows into the water storage tank 33 from the open cooling tower 471. Circulate the road.

このように、第2次段階へ移行している第1の地下変電所緊急時変圧器冷却システム10Aでは、一次冷却器22を通水した後の温水を開放型冷却塔471によって冷却(熱交換)した後に貯水槽33へ戻すことができるので、変圧器11の熱を放熱することができるだけでなく、第1次段階よりも低い温度で水が貯水槽33へ戻る結果、気化による減少分を少なく抑えることができる。従って、同じ条件での変圧器11の運転環境下においては、貯水槽33の水の加熱を防ぐことができ、蒸発による少しずつの消費を考慮しても、変圧器11の冷却を第1次段階よりも長期間に亘って継続できる。   In this way, in the first underground substation emergency transformer cooling system 10A that has shifted to the second stage, the hot water that has passed through the primary cooler 22 is cooled by the open cooling tower 471 (heat exchange). ) Can be returned to the water storage tank 33, so that not only can the heat of the transformer 11 be dissipated, but the water returns to the water storage tank 33 at a temperature lower than that of the first stage. It can be kept low. Therefore, under the operating environment of the transformer 11 under the same conditions, the water in the water storage tank 33 can be prevented from being heated, and the transformer 11 is cooled in the first order even if the consumption due to evaporation is taken into consideration. It can continue for a longer period than the stage.

尚、通常運用時から第1次段階へ移行する工程、および第1次段階から第2次段階へ移行する工程では、弁423と弁424とが逆に使用されて良い。すなわち、通常運用時から第1次段階へ移行する工程では、仮設管45(図2)の一端を弁423に取り付けているが、弁423の代わりに弁424に取り付けることができる。この場合、第1次段階から第2次段階へ移行する工程では、開放型冷却塔471の入力端と取り付けられている仮設管45−1の他端(弁423に取り付け可能に構成される)は、弁424の代わりに弁423に取り付けられる。   Note that the valve 423 and the valve 424 may be used in reverse in the process of shifting from the normal operation to the primary stage and in the process of shifting from the primary stage to the secondary stage. That is, in the process of shifting from the normal operation to the first stage, one end of the temporary pipe 45 (FIG. 2) is attached to the valve 423, but can be attached to the valve 424 instead of the valve 423. In this case, in the process of shifting from the primary stage to the secondary stage, the input end of the open cooling tower 471 and the other end of the temporary pipe 45-1 attached (configured to be attachable to the valve 423). Is attached to valve 423 instead of valve 424.

続いて、第2次段階から第3次段階への移行は、移行する作業時間、すなわち、補給水ポンプ34を停止させる時間をより短くする観点から、非常用冷却設備47としての開放型冷却塔471に補給水を供給する補給水入力端に仮設管45−3の一端を取り付けておく事前準備を行っておく方が好ましい。   Subsequently, the transition from the second stage to the third stage is performed in the open cooling tower as the emergency cooling equipment 47 from the viewpoint of shortening the time for the transition, that is, the time for stopping the makeup water pump 34. It is preferable to prepare in advance to attach one end of the temporary pipe 45-3 to the makeup water input end for supplying makeup water to 471.

第2次段階から第3次段階への移行は、第1のステップとして、補給水ポンプ34を停止させる。続く第2のステップとして、一端が開放型冷却塔471の補給水入力端に取り付けられる仮設管45−3の他端を第1の流路切替手段41Aの弁414に取り付けるとともに、仮設管45−2の他端(貯水槽33側の端)を第3の流路切替手段43の弁433に取り付ける。続く第3のステップとして、弁413を閉じるとともに弁414と弁433とを開く。   The transition from the second stage to the third stage stops the makeup water pump 34 as the first step. As the subsequent second step, the other end of the temporary pipe 45-3 whose one end is attached to the makeup water input end of the open type cooling tower 471 is attached to the valve 414 of the first flow path switching means 41A, and the temporary pipe 45- 2 is attached to the valve 433 of the third flow path switching means 43. As a subsequent third step, the valve 413 is closed and the valve 414 and the valve 433 are opened.

これにより、通常運用時と同様に、貯水槽33から弁414を経由して補給水を非常用冷却設備47(開放型冷却塔471)へ供給する系統と、冷却水ポンプ21の出力端から、一次冷却器22、第2の流路切替手段42の弁424、非常用冷却設備47(開放型冷却塔471)、および第3の流路切替手段43の弁433を経由して冷却水ポンプ21の入力端へ戻る系統とがそれぞれ確保される。   As a result, as in normal operation, from the water supply tank 33 via the valve 414, the system for supplying makeup water to the emergency cooling equipment 47 (open cooling tower 471), and the output end of the cooling water pump 21, The coolant pump 21 passes through the primary cooler 22, the valve 424 of the second flow path switching means 42, the emergency cooling equipment 47 (open cooling tower 471), and the valve 433 of the third flow path switching means 43. And a system for returning to the input terminal of each.

続く第4のステップとして冷却水ポンプ21を起動する。冷却水ポンプ21を起動すると、冷却水ポンプ21から送り出された冷却水は、一次冷却器22、第2の流路切替手段42の弁424、非常用冷却設備47(開放型冷却塔471)、および第3の流路切替手段43の弁433を経由して冷却水ポンプ21へ戻る循環流路を循環する。第1〜4のステップが完了すると、第1の地下変電所緊急時変圧器冷却システム10Aは第2次段階(図3)から第3次段階(図4)への移行が完了する。   As a subsequent fourth step, the cooling water pump 21 is started. When the cooling water pump 21 is started, the cooling water sent out from the cooling water pump 21 is supplied to the primary cooler 22, the valve 424 of the second flow path switching means 42, the emergency cooling equipment 47 (open cooling tower 471), And it circulates through the circulation channel which returns to the cooling water pump 21 via the valve 433 of the 3rd channel switching means 43. When the first to fourth steps are completed, the first substation emergency transformer cooling system 10A completes the transition from the second stage (FIG. 3) to the third stage (FIG. 4).

第3次段階へ移行している第1の地下変電所緊急時変圧器冷却システム10A(図4)では、弁413を閉じるとともに弁414を開くことによって、貯水槽33の水は、緊急冷却水供給系統14の流路へ流入せずに、弁414および仮設管45−3を通って開放型冷却塔471へ導入される。尚、補給水ポンプ34は、補給水の補給が必要な場合に起動される。   In the first underground substation emergency transformer cooling system 10A (FIG. 4) that has shifted to the third stage, the valve 413 is closed and the valve 414 is opened so that the water in the water storage tank 33 is changed to the emergency cooling water. Instead of flowing into the flow path of the supply system 14, it is introduced into the open cooling tower 471 through the valve 414 and the temporary pipe 45-3. The makeup water pump 34 is activated when the makeup water needs to be replenished.

また、冷却水ポンプ21を起動することによって、冷却水ポンプ21から送水される冷却水は、緊急冷却水供給系統14の流路へ流入せずに一次冷却器22へ流入し、一次冷却器22から第2の流路切替手段42(ヘッダー421および弁424)を経由して開放型冷却塔471へ流入し、開放型冷却塔471から第3の流路切替手段43(弁433およびヘッダー431)を経由して冷却水ポンプ21へ流入する循環流路を循環する。   In addition, by starting the cooling water pump 21, the cooling water sent from the cooling water pump 21 flows into the primary cooler 22 without flowing into the flow path of the emergency cooling water supply system 14, and the primary cooler 22. From the open type cooling tower 471 through the second flow path switching means 42 (header 421 and valve 424) and the third flow path switching means 43 (valve 433 and header 431). Is circulated through the circulation flow path that flows into the cooling water pump 21 via.

このように、第3次段階へ移行している第1の地下変電所緊急時変圧器冷却システム10Aでは、通常運用時と同様に冷却水ポンプ21による変圧器11の冷却が可能となるので、補給水ポンプ34から送水される水を用いる第1,2次段階では採り得ない、例えば、100%負荷等の高負荷による変圧器11の運転が可能となる。さらに、他の水源(例えば、防火水槽等の貯水施設、湖沼、ダム、池、河川、水を積載したタンクローリーなどの給水車両等)から貯水槽33への給水が可能な状態になれば、貯水槽33に水を補給することによって、更に長期の運用が可能になる。   In this way, in the first underground substation emergency transformer cooling system 10A that has shifted to the third stage, the cooling water pump 21 can cool the transformer 11 in the same manner as during normal operation. For example, the transformer 11 can be operated with a high load such as 100% load, which cannot be taken in the first and second stages using the water fed from the makeup water pump 34. Furthermore, if water can be supplied to the water storage tank 33 from other water sources (for example, water storage facilities such as fire prevention water tanks, lakes, dams, ponds, rivers, water supply vehicles such as tank trucks loaded with water, etc.) By replenishing the tank 33 with water, it is possible to operate for a longer period of time.

尚、第1の地下変電所緊急時変圧器冷却システム10Aは、地下変電所の変圧器冷却システムを新設する場合のみならず、既存の地下変電所の変圧器冷却システムに対して、大幅なシステム変更や多くの機器の追加をすることなく適用することができる。続いて、従来適用される地下変電所の変圧器冷却システムに対して、第1の地下変電所緊急時変圧器冷却システム10Aを適用する例について説明する。   The first underground substation emergency transformer cooling system 10A is not only a case of newly installing a transformer cooling system in an underground substation, but also a significant system compared to the transformer cooling system in an existing underground substation. It can be applied without changing or adding many devices. Next, an example in which the first underground substation emergency transformer cooling system 10A is applied to a transformer cooling system of an underground substation that is conventionally applied will be described.

図7は地下変電所の変圧器冷却システムの基本構成の一例として二次冷却器23が屋外(屋上)に設置される構成例を示す説明図であり、図8は地下変電所の変圧器冷却システムの基本構成の一例として二次冷却器23が屋内に設置される構成例を示した説明図である。   FIG. 7 is an explanatory diagram showing a configuration example in which the secondary cooler 23 is installed outdoors (rooftop) as an example of the basic configuration of the transformer cooling system of the underground substation, and FIG. 8 is the transformer cooling of the underground substation. It is explanatory drawing which showed the example of a structure by which the secondary cooler 23 is installed indoors as an example of the basic composition of a system.

従来適用される地下変電所の変圧器冷却システムは、二次冷却器23が設置される場所によって図7,8に示されるような二つの方式に大別されるが、第1の地下変電所緊急時変圧器冷却システム10Aは、上記何れの方式についても大幅なシステム変更や大幅な機器の追加をすることなく適応可能である。尚、図7,8においては一部構成が省略されているが、地下階には図1に示される貯水槽33および補給水ポンプ34が存在しているものとする。また、図8においては、図1に示される補給水槽31が屋内に設置されているものとする。   Conventionally applied transformer cooling systems for underground substations are roughly divided into two types as shown in FIGS. 7 and 8 depending on the location where the secondary cooler 23 is installed. The emergency transformer cooling system 10A can be applied to any of the above methods without significant system changes or significant addition of equipment. 7 and 8, a part of the configuration is omitted, but it is assumed that the water storage tank 33 and the makeup water pump 34 shown in FIG. In FIG. 8, it is assumed that the makeup water tank 31 shown in FIG. 1 is installed indoors.

図7に示されるような従来の地下変電所の変圧器冷却システムに対して、第1の地下変電所緊急時変圧器冷却システム10Aを構成するには、緊急冷却水供給系統14の流路と、第1〜3の流路切替手段41A,42,43を追加する必要があるものの、緊急冷却水供給系統14の流路は変電設備の規模が大きいものでも十数メートル[m]程度で済み、第1〜3の流路切替手段41A,42,43は、ヘッダー411,421,431と弁412〜414,422〜424,432,433とで構成されるので、システム変更が軽微、かつ、追加する機器も調達の容易な基本的部品が少数(10点程度)で済む。   To configure the first underground substation emergency transformer cooling system 10A with respect to the conventional underground substation transformer cooling system as shown in FIG. Although it is necessary to add the first to third flow path switching means 41A, 42, 43, the flow path of the emergency cooling water supply system 14 needs only about a dozen meters [m] even if the scale of the substation equipment is large. The first to third flow path switching means 41A, 42, 43 are composed of headers 411, 421, 431 and valves 412 to 414, 422 to 424, 432, 433, so that the system change is slight, and The number of basic components that can be easily procured is small (about 10).

一方、図8に示されるような従来の地下変電所の変圧器冷却システムは、二次冷却器23が屋内に設置されているため、二次冷却器23を介して放熱される変圧器11の熱を強制的に屋外へ排出する必要がある。そこで、吸気ダクトから取り込んだ冷たい空気を二次冷却器23に通し、二次冷却器23を介して変圧器11の熱を吸収した空気を送風機49で強制的に排気している。   On the other hand, in the transformer cooling system of the conventional underground substation as shown in FIG. 8, since the secondary cooler 23 is installed indoors, the transformer 11 radiated through the secondary cooler 23 It is necessary to exhaust heat to the outdoors. Therefore, cold air taken in from the intake duct is passed through the secondary cooler 23, and the air that has absorbed the heat of the transformer 11 is forcibly exhausted by the blower 49 via the secondary cooler 23.

図8に示される地下変電所の変圧器冷却システムに対して、第1の地下変電所緊急時変圧器冷却システム10Aを構成する場合であっても、基本的には図7に示される場合と同様にシステムを構築でき、貯水槽33から供給される水に吸収させた変圧器11の熱を屋外へ放熱することができる。   Even if the first underground substation emergency transformer cooling system 10A is configured for the transformer cooling system of the underground substation shown in FIG. 8, the case shown in FIG. Similarly, the system can be constructed, and the heat of the transformer 11 absorbed in the water supplied from the water storage tank 33 can be radiated to the outdoors.

図8に示される地下変電所の変圧器冷却システムの場合、図7に示される地下変電所の変圧器冷却システムよりも、一次冷却器22と二次冷却器23との距離が短い分だけ建物の倒壊に対して強く、二次冷却器23の機能が停止してしまうような事態は想定し難いようにも思われる。しかし、図8に示される地下変電所の変圧器冷却システムの場合、火災時等の発生によって吸気ダクトおよび排気ダクトを含むフロア内の全ての通気口が閉じてしまうことがある。このような事態に陥ると、二次冷却器23の熱を放熱できず、二次冷却器23の機能が停止してしまうと考えられるため、図8に示される地下変電所の変圧器冷却システムに対しても第1の地下変電所緊急時変圧器冷却システム10Aは有益なシステムといえる。   In the case of the transformer cooling system of the underground substation shown in FIG. 8, the building is as much as the distance between the primary cooler 22 and the secondary cooler 23 is shorter than that of the transformer cooling system of the underground substation shown in FIG. It seems that it is hard to assume the situation where the function of the secondary cooler 23 stops because it is strong against collapse. However, in the case of the transformer cooling system for an underground substation shown in FIG. 8, all vents in the floor including the intake duct and the exhaust duct may be closed due to the occurrence of a fire or the like. In such a situation, it is considered that the heat of the secondary cooler 23 cannot be dissipated and the function of the secondary cooler 23 is stopped. Therefore, the transformer cooling system of the underground substation shown in FIG. In contrast, the first underground substation emergency transformer cooling system 10A is a useful system.

このように、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法では、地震や火事等の災害に見舞われて二次冷却器23の機能が停止してしまった緊急時の場合においても、通常、補給水槽31へ補給水を送る補給水ポンプ34を使って地下に貯えられた貯水槽33の水を冷却水として一次冷却器22に直接供給することができるので、非常用冷却設備47が無い場合でも、数日程度の期間であれば、貯水槽33への水の補給無しに変圧器11の冷却を継続できるので、応急処置的な必要最低限度の変圧器11の運用が可能となる(第1次段階)。   Thus, in the first underground substation emergency transformer cooling system 10A and the first transformer cooling method, the secondary cooler 23 has stopped functioning due to a disaster such as an earthquake or fire. Even in the case of an emergency, the water in the water storage tank 33 stored in the basement can be directly supplied to the primary cooler 22 as cooling water by using a makeup water pump 34 that usually sends makeup water to the makeup water tank 31. Even if there is no emergency cooling facility 47, the cooling of the transformer 11 can be continued without supplying water to the water tank 33 within a period of several days. 11 can be operated (first stage).

仮に数日程度の期間内に非常用冷却設備47ができない場合であっても、貯水槽33へ水を補給することができれば、さらに長い期間に亘って変圧器11の冷却を継続することができる。従って、第1次段階へ移行した後は、貯水槽33への水補給を定期的に継続することによって、必要最低限度の変圧器11の運用をより長期間に亘って継続することができる。   Even if the emergency cooling facility 47 is not possible within a period of several days, the cooling of the transformer 11 can be continued for a longer period if water can be supplied to the water storage tank 33. . Therefore, after shifting to the first stage, the operation of the minimum required transformer 11 can be continued for a longer period of time by regularly continuing the water supply to the water storage tank 33.

また、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法では、非常用冷却設備47を調達できれば、仮設の流路となる仮設管45(45−1,45−2)を非常用冷却設備47に取り付け、既に弁423に取り付けられている仮設管45と仮設管45−1との繋ぎ変え、または仮設管45−1を弁424へ取り付け、その後、弁423を閉止して弁424を開放する等のシステムの改修を伴わない簡単な作業によって、一次冷却器22を通水した後の温水を開放型冷却塔471によって冷却(熱交換)した後に貯水槽33へ戻すことができる(第2次段階)。   Further, in the first underground substation emergency transformer cooling system 10A and the first transformer cooling method, if the emergency cooling equipment 47 can be procured, temporary pipes 45 (45-1, 45-) serving as temporary flow paths are provided. 2) is attached to the emergency cooling equipment 47, the temporary pipe 45 already attached to the valve 423 is connected to the temporary pipe 45-1, or the temporary pipe 45-1 is attached to the valve 424, and then the valve 423 is installed. The warm water after passing through the primary cooler 22 is cooled (heat exchanged) by the open cooling tower 471 and then transferred to the water storage tank 33 by a simple operation without modification of the system such as closing and opening the valve 424. Can be returned (second stage).

第2次段階は、同じ条件で変圧器11を運転した場合に第1次段階よりも貯水槽33の水の減少量を少なく抑えることができ、変圧器11の冷却を第1次段階よりも長期間に亘って継続できる利点がある。第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法を適用すれば、システムの改修を伴わない簡単な作業によって、第1次段階よりも貯水槽33への水を補給することなく変圧器11の冷却を継続できる期間が長い第2次段階へ移行させることができる。   In the second stage, when the transformer 11 is operated under the same conditions, the amount of water in the water tank 33 can be reduced less than in the first stage, and the transformer 11 is cooled more than in the first stage. There is an advantage that it can be continued for a long time. If the first substation emergency transformer cooling system 10A and the first transformer cooling method are applied, the water to the water tank 33 can be supplied to the water tank 33 more than the first stage by a simple operation without system modification. It is possible to shift to the second stage having a long period during which the cooling of the transformer 11 can be continued without replenishment.

さらに、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法は、仮設管45−2,45−3の取り付けや弁413,414,433の開閉操作等のシステムの改修を伴わない簡単な作業によって、通常運用時と同様に冷却水ポンプ21による変圧器11の冷却が可能となる(第3次段階)。   Furthermore, the first underground substation emergency transformer cooling system 10A and the first transformer cooling method are provided for system installation such as installation of temporary pipes 45-2 and 45-3 and opening / closing operations of valves 413, 414 and 433. Through a simple operation that does not involve refurbishment, the transformer 11 can be cooled by the cooling water pump 21 as in normal operation (third stage).

第3次段階に移行した第1の地下変電所緊急時変圧器冷却システム10Aは、通常運用時の第1の地下変電所緊急時変圧器冷却システム10Aと比べて、二次冷却器23が非常用冷却設備47になっている点と一部の配管が仮設管45となっている点とで相違するものの、変圧器11の冷却に関する作用および効果の点では、実質的な相違はない。すなわち、第3次段階では、第1,2次段階では行い得ない高負荷(例えば、通常運用時の負荷に対して100%の負荷)での変圧器11の運転が可能となる利点がある。   The first underground substation emergency transformer cooling system 10A, which has shifted to the third stage, has an emergency secondary cooler 23 compared to the first underground substation emergency transformer cooling system 10A during normal operation. Although there is a difference between the point being the cooling equipment 47 and the point that some of the pipes are the temporary pipes 45, there is no substantial difference in terms of the action and effects relating to the cooling of the transformer 11. That is, in the third stage, there is an advantage that the transformer 11 can be operated at a high load (for example, a load of 100% with respect to the load during normal operation) that cannot be performed in the first and second stages. .

従って、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法を適用すれば、システムの改修を伴わない簡単な作業によって、通常運用時と同等レベルの高負荷で変圧器11を運転することが可能な第3次段階へ移行させることができる。   Therefore, if the first underground substation emergency transformer cooling system 10A and the first transformer cooling method are applied, the transformer can be transformed with a high load equivalent to that during normal operation by a simple operation without system modification. It is possible to shift to the third stage in which the vessel 11 can be operated.

また、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法によれば、通常運用時に使用されない機器との接続に仮設管45を使用することで、従来の地下変電所の変圧器冷却システムから改修する場合に必要な作業量を最低限度に抑えることができるとともに、緊急運用時において段階を移行する際の繋ぎ変え等を容易に行うことができる。   In addition, according to the first underground substation emergency transformer cooling system 10A and the first transformer cooling method, the temporary underground pipe 45 is used for connection to equipment that is not used during normal operation. In addition, it is possible to minimize the amount of work required when refurbishing from the transformer cooling system at the station, and to easily change the connection when the stage is shifted during emergency operation.

さらに、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法によれば、従来の地下変電所の変圧器冷却システムに対して、調達の容易な少数(10点程度)の基本的部品を追設する軽微なシステム変更によって、第1の地下変電所緊急時変圧器冷却システム10Aへの変更が可能なので、大幅なシステム変更や大量の機器の追加を要することなく、従来の地下変電所の変圧器冷却システムから第1の地下変電所緊急時変圧器冷却システム10Aへの改造(改修)が可能となる。   Further, according to the first underground substation emergency transformer cooling system 10A and the first transformer cooling method, a small number (about 10 points) that is easy to procure compared to the conventional underground substation transformer cooling system. ) By changing the system to the first substation emergency transformer cooling system 10A by adding a minor system change, without requiring major system changes or adding a large amount of equipment. It is possible to modify (renovate) the conventional underground substation transformer cooling system to the first underground substation emergency transformer cooling system 10A.

なお、図1〜4に示される第1の地下変電所緊急時変圧器冷却システム10Aは、一例を示したものであり、必ずしも図示される構成に限定されるものではない。例えば、図1に示される第1の地下変電所緊急時変圧器冷却システム10A(通常運用時)では、第1の流路切替手段41Aが弁414によって開閉自在なポートを備えているが、このポートは、配管の接続または切断や弁の追設等のシステムの比較的軽微な改修工事を許容するのであれば、省略することもできる。   In addition, 10 A of 1st underground substation emergency transformer cooling systems shown by FIGS. 1-4 show an example, and are not necessarily limited to the structure shown in figure. For example, in the first underground substation emergency transformer cooling system 10A shown in FIG. 1 (during normal operation), the first flow path switching means 41A includes a port that can be opened and closed by a valve 414. The port can be omitted if it allows relatively minor refurbishment of the system, such as connecting or disconnecting piping or adding valves.

また、第2次段階および第3次段階に移行している第1の地下変電所緊急時変圧器冷却システム10Aの構成についても、図3,4に示される構成例に限らず、他の構成例を採用することもできる。   Further, the configuration of the first underground substation emergency transformer cooling system 10A that has shifted to the second stage and the third stage is not limited to the configuration example shown in FIGS. An example can also be adopted.

図9および図10は、第2次段階に移行している開放型冷却塔471を用いた第1の地下変電所緊急時変圧器冷却システム10Aおよびその冷却系統の変形例を概略的に示したシステム概略図である。また、図11は、第3次段階に移行している密閉型冷却塔473を用いた第1の地下変電所緊急時変圧器冷却システム10Aおよびその冷却系統の変形例を概略的に示したシステム概略図である。尚、図9〜11は、図の明りょう性や簡潔性を考慮して、図3,4に示される第1の地下変電所緊急時変圧器冷却システム10Aの構成要素のうち、非常用冷却設備47における熱交換と関係が薄い構成等の一部構成を省略している。   9 and 10 schematically show a modification of the first underground substation emergency transformer cooling system 10A using the open cooling tower 471 that has shifted to the second stage, and its cooling system. It is a system schematic diagram. FIG. 11 schematically shows a first underground substation emergency transformer cooling system 10A using a closed cooling tower 473 that has shifted to the third stage, and a modification of the cooling system. FIG. 9 to 11 are for emergency cooling among the components of the first underground substation emergency transformer cooling system 10A shown in FIGS. Some configurations such as a configuration that is not closely related to heat exchange in the equipment 47 are omitted.

図9,10に示される第1の地下変電所緊急時変圧器冷却システム10A(第2次段階)では、開放型冷却塔471と、熱交換器とを接続して構成される非常用冷却設備47が追設される。なお、熱交換器は、例えば、液体の熱交換に適しているプレート式熱交換器472で構成される。また、開放型冷却塔471から水槽33−4に流入する水を汲み上げてプレート式熱交換器472の2次側の入力端へ送り出す非常用冷却水ポンプ51が追設される。   In the first underground substation emergency transformer cooling system 10A (second stage) shown in FIGS. 9 and 10, an emergency cooling facility configured by connecting an open cooling tower 471 and a heat exchanger. 47 is added. The heat exchanger is configured by a plate heat exchanger 472 suitable for liquid heat exchange, for example. In addition, an emergency cooling water pump 51 that pumps up the water flowing into the water tank 33-4 from the open type cooling tower 471 and sends it to the secondary side input end of the plate heat exchanger 472 is additionally provided.

図9に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、弁424とプレート式熱交換器472の1次側の入力端とが仮設管45で接続され、プレート式熱交換器472の2次側の出力端と開放型冷却塔471の入力端とが仮設管45−1で接続され、非常用冷却水ポンプ51の出力端とプレート式熱交換器472の2次側の入力端とが仮設管45で接続される。   In the first underground substation emergency transformer cooling system 10A shown in FIG. 9, the valve 424 and the primary-side input end of the plate heat exchanger 472 are connected by a temporary pipe 45, and the plate heat exchanger The secondary side output end of 472 and the input end of the open type cooling tower 471 are connected by a temporary pipe 45-1, and the output end of the emergency cooling water pump 51 and the secondary side input of the plate heat exchanger 472 are connected. The ends are connected by a temporary pipe 45.

また、開放型冷却塔471の出力端には仮設管45−2が取り付けられ、プレート式熱交換器472の1次側の出力端には仮設管45が取り付けられる。さらに、仮設管45−2から流出する水を非常用冷却水ポンプ51が設置される水槽33−4に流入させる。さらにまた、プレート式熱交換器472の1次側の出力端に取り付けられる仮設管45から流出する水を非常用冷却水ポンプ51が設置される水槽33−4から最も遠くに位置する水槽33−1に流入させる。   In addition, a temporary pipe 45-2 is attached to the output end of the open type cooling tower 471, and a temporary pipe 45 is attached to the primary output end of the plate heat exchanger 472. Furthermore, the water flowing out from the temporary pipe 45-2 is caused to flow into the water tank 33-4 in which the emergency cooling water pump 51 is installed. Furthermore, the water tank 33-located farthest from the water tank 33-4 where the emergency cooling water pump 51 is installed flows out of the temporary pipe 45 attached to the primary output end of the plate heat exchanger 472. 1 to flow.

プレート式熱交換器472の1次側の出力端に取り付けられる仮設管45から流出する水を非常用冷却水ポンプ51が設置される水槽33−4から最も遠くに位置する水槽33−1に流入させるのは、プレート式熱交換器472で熱交換された水は熱交換して幾分低温となるものの開放型冷却塔471で冷却される水槽33−4に流入する冷水と比較して相対的に高温であり、開放型冷却塔471から水槽33−4に流入する水の温度が上昇するのを防いで熱交換量を高く維持するためである。また、開放型冷却塔471で幾分汚れやすい水と一次冷却器22(図9において省略)に流入する水とを分離する意味合いもある。   Water flowing out from the temporary pipe 45 attached to the primary side output end of the plate heat exchanger 472 flows into the water tank 33-1 located farthest from the water tank 33-4 where the emergency cooling water pump 51 is installed. The reason is that the water exchanged by the plate heat exchanger 472 is heat-exchanged to be somewhat lower in temperature, but is relatively less than the cold water flowing into the water tank 33-4 cooled by the open cooling tower 471. This is because the temperature of the water flowing from the open type cooling tower 471 to the water tank 33-4 is prevented from rising and the heat exchange amount is kept high. Further, there is also a meaning of separating water that is somewhat dirty in the open cooling tower 471 and water that flows into the primary cooler 22 (not shown in FIG. 9).

このように、図9に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、一次冷却器22を通水した後の温水を開放型冷却塔471によって冷却(熱交換)した後に貯水槽33(水槽33−4)へ戻し、さらに、プレート式熱交換器472を通して放熱することができるので、図3に示される第1の地下変電所緊急時変圧器冷却システム10Aと同様に変圧器11の熱を放熱することができる。   As described above, in the first underground substation emergency transformer cooling system 10A shown in FIG. 9, the hot water after passing through the primary cooler 22 is cooled (heat exchanged) by the open cooling tower 471, and then the stored water is stored. Since the heat can be returned to the tank 33 (water tank 33-4) and further radiated through the plate heat exchanger 472, the transformer is similar to the first underground substation emergency transformer cooling system 10A shown in FIG. 11 heat can be dissipated.

図10に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、図9に示される第1の地下変電所緊急時変圧器冷却システム10Aに対して、非常用冷却設備47の構成要素は異ならないが、連通管37が蓋53で塞がれることにより、補給水ポンプ34が設置される水槽33−1と連通する水槽群33−1,33−2と非常用冷却水ポンプ51が設置される水槽33−4と連通する水槽群33−3,33−4とを隔離している点と、プレート式熱交換器472の1次側の出力端に取り付けられる仮設管45から流出する水が流入する位置との点で異なる。   In the first underground substation emergency transformer cooling system 10A shown in FIG. 10, the components of the emergency cooling facility 47 are compared to the first underground substation emergency transformer cooling system 10A shown in FIG. Although the communication pipe 37 is closed with the lid 53, the tank groups 33-1 and 33-2 and the emergency cooling water pump 51 communicating with the tank 33-1 in which the makeup water pump 34 is installed are provided. It flows out from the point which isolates the tank group 33-3 and 33-4 which communicates with the installed water tank 33-4, and the temporary pipe 45 attached to the output side of the primary side of the plate-type heat exchanger 472. It differs from the point where water flows in.

図10に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、補給水ポンプ34が設置される水槽33−1と連通する水槽群33−1,33−2と非常用冷却水ポンプ51が設置される水槽33−4と連通する水槽群33−3,33−4とが隔離されている。また、プレート式熱交換器472の1次側の出力端に取り付けられる仮設管45から流出する位置は、補給水ポンプ34が設置される水槽33−1と連通する水槽群33−1,33−2のうち、補給水ポンプ34が設置される水槽33−1から最も遠くに位置する水槽33−2である。   In the first underground substation emergency transformer cooling system 10A shown in FIG. 10, a tank group 33-1, 33-2 communicating with a tank 33-1 in which a makeup water pump 34 is installed, and an emergency cooling water pump. The water tank groups 33-3 and 33-4 communicating with the water tank 33-4 in which 51 is installed are isolated. Further, the position flowing out from the temporary pipe 45 attached to the primary side output end of the plate heat exchanger 472 is a tank group 33-1, 33- communicating with the tank 33-1 in which the makeup water pump 34 is installed. 2 is the water tank 33-2 located farthest from the water tank 33-1 in which the makeup water pump 34 is installed.

プレート式熱交換器472の1次側の出力端に取り付けられる仮設管45から流出する水が、補給水ポンプ34が設置される水槽33−1と連通する水槽群33−1,33−2のうち、補給水ポンプ34が設置される水槽33−1から最も遠くに位置する水槽33−2に流入するようにしたのは、貯水槽33に貯水される水が温度上昇する速さをなるべく遅くするためである。   The water flowing out from the temporary pipe 45 attached to the primary output end of the plate heat exchanger 472 is connected to the water tank groups 33-1 and 33-2 in communication with the water tank 33-1 where the makeup water pump 34 is installed. Among them, the reason for flowing into the water tank 33-2 located farthest from the water tank 33-1 where the makeup water pump 34 is installed is that the speed at which the temperature of the water stored in the water storage tank 33 rises as slow as possible. It is to do.

このように、図10に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、一次冷却器22(図10において省略)を通水した後の温水を開放型冷却塔471によって冷却(熱交換)した後に貯水槽33(水槽33−4)へ戻し、さらに、プレート式熱交換器472を通して放熱することができる。   In this way, in the first underground substation emergency transformer cooling system 10A shown in FIG. 10, the hot water after passing through the primary cooler 22 (not shown in FIG. 10) is cooled by the open cooling tower 471 ( After heat exchange), the water can be returned to the water storage tank 33 (water tank 33-4) and further radiated through the plate heat exchanger 472.

また、図10に示される第1の地下変電所緊急時変圧器冷却システム10Aでは、補給水ポンプ34が設置される水槽33−1と連通する水槽群33−1,33−2と非常用冷却水ポンプ51が設置される水槽33−4と連通する水槽群33−3,33−4とが隔離されているので、開放型冷却塔471から混入した汚れが一次冷却器22(図10において省略)を冷却する系統に混入するのを防止できるとともに、プレート式熱交換器472の一次側と二次側との温度差を確実に維持できる。   Further, in the first underground substation emergency transformer cooling system 10A shown in FIG. 10, the tank groups 33-1 and 33-2 communicating with the tank 33-1 in which the makeup water pump 34 is installed and the emergency cooling are provided. Since the water tank groups 33-3 and 33-4 communicating with the water tank 33-4 in which the water pump 51 is installed are isolated, the contamination mixed from the open type cooling tower 471 is removed from the primary cooler 22 (not shown in FIG. 10). ) Can be prevented from entering the cooling system, and the temperature difference between the primary side and the secondary side of the plate heat exchanger 472 can be reliably maintained.

図11に示される第1の地下変電所緊急時変圧器冷却システム10A(第3次段階)では、非常用冷却設備47として密閉型冷却塔473が設置される。補給水ポンプ34、弁414を介して、弁474から供給される水は、密閉型冷却塔473の散布水であり、散布水の一部は蒸発して、密閉冷却管内を流れる冷却水を冷却する。また、密閉型冷却塔473は大気開放されていないため、密閉型冷却塔473の他、温度が変化することによる膨張や収縮を吸収(調整)するための流路内圧力調整手段が追設される。   In the first underground substation emergency transformer cooling system 10 </ b> A (third stage) shown in FIG. 11, a sealed cooling tower 473 is installed as the emergency cooling equipment 47. The water supplied from the valve 474 via the make-up water pump 34 and the valve 414 is sprayed water of the sealed cooling tower 473, and a part of the sprayed water evaporates to cool the cooling water flowing in the sealed cooling pipe. To do. Further, since the sealed cooling tower 473 is not open to the atmosphere, in addition to the sealed cooling tower 473, a pressure adjusting means in the flow path for absorbing (adjusting) expansion and contraction due to temperature change is additionally provided. The

流路内圧力調整手段は、図11に示される例では、液面調節機能を有する圧力容器476と、弁478とで構成され、密閉型冷却塔473の密閉冷却管内を流れる冷却水の膨張および収縮は、圧力容器476の液面の変動で吸収される。尚、圧力容器476は、非常用の補給水槽でも良い。   In the example shown in FIG. 11, the pressure adjusting means in the flow path is composed of a pressure vessel 476 having a liquid level adjusting function and a valve 478, and the expansion of the cooling water flowing in the sealed cooling pipe of the sealed cooling tower 473 and Shrinkage is absorbed by fluctuations in the liquid level of the pressure vessel 476. The pressure vessel 476 may be an emergency replenishment water tank.

密閉型冷却塔473は、開放型冷却塔471よりもコストも割高で、重量が重く搬入および組立の作業性が悪いという短所があるものの、外気と直接接触して熱交換(冷却)する訳ではないので、水質が悪化しにくく負荷側への影響を小さく抑えることができる点や、内蔵される熱交換器で腐食やスケール(水垢)が起こりにくくなる点等の長所がある。   The closed type cooling tower 473 is more expensive than the open type cooling tower 471 and has the disadvantages that it is heavy and has poor workability for carrying in and assembling. However, it does not exchange heat (cool) directly in contact with outside air. Therefore, there are advantages such as that the water quality is hardly deteriorated and the influence on the load side can be suppressed to a small degree, and that the built-in heat exchanger is less likely to cause corrosion and scale (scale).

[第2の実施形態]
図12〜15は、本発明の第2の実施形態に係る地下変電所緊急時変圧器冷却システムの一実施例である地下変電所緊急時変圧器冷却システム(以下、「第2の地下変電所緊急時変圧器冷却システム」と称する)10Bおよびその冷却系統を概略的に示したシステム概略図であり、それぞれ、通常運用時(図12)、第1次段階(図13)、第2次段階(図14)、および第3次段階(図15)における第2の地下変電所緊急時変圧器冷却システム10Bおよびその冷却系統のシステム概略図である。
[Second Embodiment]
12 to 15 show an underground substation emergency transformer cooling system (hereinafter referred to as “second underground substation”) which is an example of an underground substation emergency transformer cooling system according to the second embodiment of the present invention. It is a system schematic diagram schematically showing the emergency transformer cooling system) 10B and its cooling system, respectively, during normal operation (FIG. 12), the first stage (FIG. 13), and the second stage, respectively. FIG. 14 is a system schematic diagram of the second substation emergency transformer cooling system 10B and its cooling system in the third stage (FIG. 15).

第2の地下変電所緊急時変圧器冷却システム10Bは、第1の地下変電所緊急時変圧器冷却システム10Aに対して、第1の流路切替手段41Aの代わりに第1の流路切替手段41Bが設けられる点と、弁61が追設される点と、弁413と弁61との間の流路を弁413および弁61と着脱可能な仮設管45で構成した点とで相違するものの、その他の点は実質的に相違しない。そこで、本実施形態では、第1の地下変電所緊急時変圧器冷却システム10Aに対する相違点を中心に説明し、第1の地下変電所緊急時変圧器冷却システム10Aの構成要素と実質的に相違しない構成要素については同じ符号を付して説明を省略する。   The second underground substation emergency transformer cooling system 10B is different from the first underground substation emergency transformer cooling system 10A in that the first channel switching means instead of the first channel switching means 41A. Although the point that 41B is provided, the point that the valve 61 is additionally provided, and the point that the flow path between the valve 413 and the valve 61 is configured by the valve 413 and the temporary pipe 45 that is detachable from the valve 61 are different. The other points are not substantially different. Therefore, in the present embodiment, the difference from the first underground substation emergency transformer cooling system 10A will be mainly described and substantially different from the components of the first underground substation emergency transformer cooling system 10A. Components that are not used are given the same reference numerals and description thereof is omitted.

通常運用時の第2の地下変電所緊急時変圧器冷却システム10B(図12)は、通常運用時の第1の地下変電所緊急時変圧器冷却システム10A(図1)に対して、第1の流路切替手段41Aの代わりに第1の流路切替手段41Bが設けられる。   The second underground substation emergency transformer cooling system 10B (FIG. 12) during normal operation is the first in comparison with the first underground substation emergency transformer cooling system 10A (FIG. 1) during normal operation. Instead of the first channel switching unit 41A, a first channel switching unit 41B is provided.

第1の流路切替手段41Bは、3個のポート(入力端と出力端)を備える流路切替手段であり、第1の流路切替手段41Aに対して、弁414を省いた構成である。従って、第1の流路切替手段41Bは、例えば、少なくとも2個のポートが開閉自在に構成された3個のポートを備えるヘッダー411であり、例えば、弁412,413を開閉することによって、貯水槽33の補給水の供給先を、補給水槽31(通常運用時)、または一次冷却器22(第1,2次段階)および非常用冷却設備47(第3次段階)の何れか一方に切り替える。   The first flow path switching means 41B is a flow path switching means having three ports (input end and output end), and has a configuration in which the valve 414 is omitted from the first flow path switching means 41A. . Accordingly, the first flow path switching unit 41B is, for example, a header 411 having three ports in which at least two ports are configured to be openable and closable. For example, by opening and closing the valves 412 and 413, The supply destination of makeup water in the tank 33 is switched to either the makeup water tank 31 (during normal operation), or the primary cooler 22 (first and second stages) and the emergency cooling equipment 47 (third stage). .

第1の流路切替手段41Bの3個のポートのうち開閉しないポートは貯水槽33と接続される。また、残りの開閉自在な2個のポートとなる弁412,413については、弁412が補給水槽31と接続され、弁413が第1,2次段階では仮設管45を介して弁61と接続され、第3次段階では仮設管45−3を介して非常用冷却設備47(図15)と接続される。   Of the three ports of the first flow path switching means 41 </ b> B, the port that is not opened or closed is connected to the water storage tank 33. Further, for the remaining valves 412 and 413 that are two openable and closable ports, the valve 412 is connected to the makeup water tank 31, and the valve 413 is connected to the valve 61 via the temporary pipe 45 in the first and second stages. In the third stage, the emergency cooling equipment 47 (FIG. 15) is connected via the temporary pipe 45-3.

弁61は、弁413と一次冷却器22の入力端との間であって、冷却水ポンプ21の出力端と一次冷却器22の入力端とを接続する冷却水供給系統12の流路よりも弁413に近い個所に設けられ、補給水系統13の流路と冷却水供給系統12の流路とを接続する緊急冷却水供給系統14の流路を開閉する。弁61は、通常運用時、および第3次段階では閉止されており、第1,2次段階では開放される。   The valve 61 is between the valve 413 and the input end of the primary cooler 22, and is more than the flow path of the coolant supply system 12 that connects the output end of the coolant pump 21 and the input end of the primary cooler 22. It is provided at a location near the valve 413 and opens and closes the flow path of the emergency cooling water supply system 14 that connects the flow path of the makeup water system 13 and the flow path of the cooling water supply system 12. The valve 61 is closed during normal operation and in the third stage, and is opened in the first and second stages.

第2の地下変電所緊急時変圧器冷却システム10Bでは、通常運用時(図12)において、弁413と弁61とは物理的に切り離されている(接続する流路が存在しない)が、第1次段階(図13)および第2次段階(図14)では、弁413と弁61とが仮設管45で接続され、緊急冷却水供給系統14の流路として物理的に接続される。第3次段階(図15)では、弁413と弁61とが再び物理的に切り離され、弁413は仮設管45−3と接続される一方、弁61は閉止される。   In the second underground substation emergency transformer cooling system 10B, in normal operation (FIG. 12), the valve 413 and the valve 61 are physically separated (there is no channel to be connected) In the primary stage (FIG. 13) and the secondary stage (FIG. 14), the valve 413 and the valve 61 are connected by a temporary pipe 45 and physically connected as a flow path of the emergency cooling water supply system 14. In the third stage (FIG. 15), the valve 413 and the valve 61 are physically separated again, the valve 413 is connected to the temporary pipe 45-3, and the valve 61 is closed.

続いて、本発明の第2の実施形態に係る地下変電所の緊急時変圧器冷却方法として、第2の地下変電所緊急時変圧器冷却システム10Bを用いた地下変電所の変圧器11の冷却方法(以下、単に「第2の変圧器冷却方法」と称する)について説明する。   Subsequently, as the emergency transformer cooling method for the underground substation according to the second embodiment of the present invention, the cooling of the transformer 11 of the underground substation using the second underground substation emergency transformer cooling system 10B. A method (hereinafter, simply referred to as “second transformer cooling method”) will be described.

第2の変圧器冷却方法は、二次冷却器23の機能が停止(喪失)してしまった場合(緊急運用時の場合:図13,14,15)に、第1次段階、第2次段階、および第3次段階へ移行可能な点は第1の変圧器冷却方法と同様であるが、詳細なステップは幾つか相違する。具体的には、通常運用時(図12)から第1次段階(図13)へ移行するステップと、第2次段階(図14)から第3次段階(図15)へ移行するステップが相違している。そこで、以下の第2の変圧器冷却方法の説明では、上記相違点を中心に説明し、第1の変圧器冷却方法の説明と重複する説明を省略(または簡略)する。   In the second transformer cooling method, when the function of the secondary cooler 23 is stopped (lost) (in the case of emergency operation: FIGS. 13, 14, and 15), the first stage, the second stage The stage and the point where it is possible to move to the third stage are the same as those of the first transformer cooling method, but the detailed steps are different. Specifically, there is a difference between the step of transition from the normal operation (FIG. 12) to the first stage (FIG. 13) and the step of transition from the second stage (FIG. 14) to the third stage (FIG. 15). doing. Therefore, in the following description of the second transformer cooling method, the above differences will be mainly described, and description overlapping with the description of the first transformer cooling method will be omitted (or simplified).

第2の変圧器冷却方法では、第2の地下変電所緊急時変圧器冷却システム10Bが通常運用時に緊急冷却水供給系統14の流路を有していないため、通常運用時から第1次段階への移行する際に、弁413と弁61とを接続する仮設管45を取り付けるステップが最初に必要となる(第1のステップ)。その後、第1の変圧器冷却方法の第1〜3のステップを行い(第2〜4のステップ)、第5のステップとして、閉じている第1の流路切替手段41Aの弁413と、弁61と、第2の流路切替手段42の弁423とを開く。   In the second transformer cooling method, since the second underground substation emergency transformer cooling system 10B does not have the flow path of the emergency cooling water supply system 14 during normal operation, the first stage from the normal operation time. When shifting to, the step of attaching the temporary pipe 45 for connecting the valve 413 and the valve 61 is required first (first step). Thereafter, the first to third steps of the first transformer cooling method are performed (second to fourth steps). As the fifth step, the valve 413 of the closed first flow path switching means 41A, the valve 61 and the valve 423 of the second flow path switching means 42 are opened.

すなわち、補給水系統13の流路のうち弁412から補給水槽31側の流路と冷却水供給系統12の流路のうち弁422から二次冷却器23側の流路とを閉じ、緊急冷却水供給系統14の流路と弁423を開くことで、貯水槽33の水を一次冷却器22に通水させて貯水槽33へ戻す循環流路に切り替える。   That is, the flow path from the valve 412 to the supply water tank 31 side in the flow path of the makeup water system 13 and the flow path from the valve 422 to the secondary cooler 23 side in the flow path of the cooling water supply system 12 are closed, and emergency cooling is performed. By opening the flow path of the water supply system 14 and the valve 423, the water in the water storage tank 33 is switched to the circulation flow path that passes the water through the primary cooler 22 and returns it to the water storage tank 33.

続く第6のステップとして、補給水ポンプ34を起動する。これによって、第1の変圧器冷却方法と同様に、貯水槽33の水を一次冷却器22に通水させて貯水槽33へ戻す循環流路に供給することができる。第2の変圧器冷却方法は、第1〜6のステップが完了すると、第2の地下変電所緊急時変圧器冷却システム10Bは、第1次段階への移行が完了する。   As a subsequent sixth step, the makeup water pump 34 is activated. As a result, similarly to the first transformer cooling method, the water in the water storage tank 33 can be supplied to the circulation passage through the primary cooler 22 and returned to the water storage tank 33. In the second transformer cooling method, when the first to sixth steps are completed, the second underground substation emergency transformer cooling system 10B completes the transition to the first stage.

また、第2の地下変電所緊急時変圧器冷却システム10Bの第2次段階から第3次段階への移行は、第1の変圧器冷却方法に対して、弁413と接続される仮設管45を弁413から取り外すステップをさらに備える点と、第1の変圧器冷却方法の第2のステップにおける仮設管45−3の他端の取付先と、弁61を閉止するステップをさらに備える点とで相違するが、その他のステップは同様である。   In addition, the transition from the second stage to the third stage of the second underground substation emergency transformer cooling system 10B is the temporary pipe 45 connected to the valve 413 with respect to the first transformer cooling method. And the point of further comprising the step of closing the valve 61 and the attachment destination of the other end of the temporary pipe 45-3 in the second step of the first transformer cooling method. Although different, the other steps are similar.

すなわち、第2の変圧器冷却方法では、第1のステップとして、補給水ポンプ34を停止させる。続く第2のステップとして、第1の流路切替手段41Bの弁413と弁61とを閉止して、弁413に取り付けられる仮設管45を取り外す。続く第3のステップとして、一端が開放型冷却塔471の補給水入力端に取り付けられる仮設管45−3の他端を弁413に取り付けるとともに、仮設管45−2の他端(貯水槽33側の端)を第3の流路切替手段43の弁433に取り付ける。   That is, in the second transformer cooling method, the makeup water pump 34 is stopped as the first step. As a subsequent second step, the valve 413 and the valve 61 of the first flow path switching unit 41B are closed, and the temporary pipe 45 attached to the valve 413 is removed. As the following third step, the other end of the temporary pipe 45-3, one end of which is attached to the makeup water input end of the open type cooling tower 471, is attached to the valve 413, and the other end of the temporary pipe 45-2 (water tank 33 side). Is attached to the valve 433 of the third flow path switching means 43.

続く第4のステップとして、弁413と弁433とを開く。これにより、通常運用時と同様に、貯水槽33から弁413を経由して補給水を非常用冷却設備47(開放型冷却塔471)へ供給する系統と、冷却水ポンプ21の出力端から、一次冷却器22、第2の流路切替手段42の弁424、非常用冷却設備47(開放型冷却塔471)、および第3の流路切替手段43の弁433を経由して冷却水ポンプ21の入力端へ戻る循環系統とがそれぞれ確保される。   As a subsequent fourth step, the valve 413 and the valve 433 are opened. As a result, as in normal operation, from the water supply tank 33 via the valve 413 to the supply cooling water to the emergency cooling equipment 47 (open cooling tower 471), from the output end of the cooling water pump 21, The coolant pump 21 passes through the primary cooler 22, the valve 424 of the second flow path switching means 42, the emergency cooling equipment 47 (open cooling tower 471), and the valve 433 of the third flow path switching means 43. And a circulation system for returning to the input terminal of each.

続く第5のステップとして冷却水ポンプ21を起動する。冷却水ポンプ21を起動すると、冷却水ポンプ21から送り出された冷却水は、一次冷却器22、第2の流路切替手段42の弁424、非常用冷却設備47(開放型冷却塔471)、および第3の流路切替手段43の弁433を経由して冷却水ポンプ21へ戻る循環流路を循環する。また、開放型冷却塔471からの蒸発等で冷却水の水量が低下すると、散布水槽の液面が低下して補給水ポンプ34により貯水槽33の冷却用補給水が供給される。第1〜5のステップが完了すると、第2の地下変電所緊急時変圧器冷却システム10Bは、第2次段階から第3次段階への移行が完了する。   As a subsequent fifth step, the cooling water pump 21 is started. When the cooling water pump 21 is started, the cooling water sent out from the cooling water pump 21 is supplied to the primary cooler 22, the valve 424 of the second flow path switching means 42, the emergency cooling equipment 47 (open cooling tower 471), And it circulates through the circulation channel which returns to the cooling water pump 21 via the valve 433 of the 3rd channel switching means 43. When the amount of cooling water decreases due to evaporation from the open type cooling tower 471 or the like, the level of the spray water tank decreases, and the replenishing water pump 34 supplies the replenishing water for cooling the water storage tank 33. When the first to fifth steps are completed, the second underground substation emergency transformer cooling system 10B completes the transition from the second stage to the third stage.

このように、第2の地下変電所緊急時変圧器冷却システム10Bおよび第2の変圧器冷却方法によれば、第1の地下変電所緊急時変圧器冷却システム10Aおよび第1の変圧器冷却方法と同様の効果を得ることができる。   Thus, according to the second underground substation emergency transformer cooling system 10B and the second transformer cooling method, the first underground substation emergency transformer cooling system 10A and the first transformer cooling method. The same effect can be obtained.

また、第2の地下変電所緊急時変圧器冷却システム10Bは、従来の地下変電所の変圧器冷却システムから改修する場合において、第1の地下変電所緊急時変圧器冷却システム10Aよりも、追設する弁や配管の点数が少なく、二次冷却器23の機能が停止してしまった緊急時の場合に、第1次段階、第2次段階、および第3次段階へ順次移行可能な地下変電所緊急時変圧器冷却システムへの改修をより容易に行うことができる。   In addition, the second underground substation emergency transformer cooling system 10B is more suitable than the first underground substation emergency transformer cooling system 10A when renovating the conventional underground substation transformer cooling system. In the case of an emergency when the number of valves and pipes to be installed is small and the function of the secondary cooler 23 has stopped, it is possible to move to the first stage, the second stage, and the third stage in order. The substation emergency transformer cooling system can be modified more easily.

以上、第1,2の地下変電所緊急時変圧器冷却システム10A,10Bおよび第1,2の変圧器冷却方法によれば、地震や火事等の災害に見舞われて二次冷却器23の機能が停止してしまった緊急時の場合においても、通常、補給水槽31へ補給水を送る補給水ポンプ34を使って地下に貯えられた貯水槽33の水を冷却水として一次冷却器22に直接供給することができるので、非常用冷却設備47が無い場合でも、数日程度の期間であれば、貯水槽33への水の補給無しに変圧器11の冷却を継続できるので、応急処置的な必要最低限度の変圧器11の運用が可能となる(第1次段階)。   As described above, according to the first and second underground substation emergency transformer cooling systems 10A and 10B and the first and second transformer cooling methods, the functions of the secondary cooler 23 are affected by disasters such as earthquakes and fires. Even in the case of an emergency where the water supply has stopped, the water in the water storage tank 33 stored in the basement by using the replenishing water pump 34 that sends the replenishing water to the replenishing water tank 31 is usually directly supplied to the primary cooler 22 as cooling water. Since it can be supplied, even if there is no emergency cooling facility 47, the cooling of the transformer 11 can be continued without supplying water to the water storage tank 33 within a period of several days. The transformer 11 can be operated at the minimum necessary level (first stage).

また、第1,2の地下変電所緊急時変圧器冷却システム10A,10Bおよび第1,2の変圧器冷却方法によれば、既に弁423に取り付けられている仮設管45と仮設管45−1との繋ぎ変え、または仮設管45−1を弁424へ取り付け、その後、弁423を閉止して弁424を開放する等のシステムの改修を伴わない簡単な作業によって、一次冷却器22を通水した後の温水を開放型冷却塔471によって冷却(熱交換)した後に貯水槽33へ戻すことができる(第2次段階)。   Further, according to the first and second underground substation emergency transformer cooling systems 10A and 10B and the first and second transformer cooling methods, the temporary pipe 45 and the temporary pipe 45-1 already attached to the valve 423 are used. The primary cooler 22 is made to flow through a simple operation that does not involve modification of the system, such as changing the connection with the valve or attaching the temporary pipe 45-1 to the valve 424 and then closing the valve 423 and opening the valve 424. After the hot water is cooled (heat exchanged) by the open type cooling tower 471, it can be returned to the water storage tank 33 (second stage).

さらに、第1,2の地下変電所緊急時変圧器冷却システム10A,10Bおよび第1,2の変圧器冷却方法によれば、仮設管45−2,45−3の取り付けや弁413,414,433の開閉操作等のシステムの改修を伴わない簡単な作業によって、通常運用時と同様に冷却水ポンプ21による変圧器11の冷却が可能となる(第3次段階)。第3次段階へ移行することによって、第1,2次段階では行い得ない高負荷(例えば、通常運用時の負荷に対して100%の負荷)での変圧器11の運転が可能となる。また、第2,3次段階で他の水源から貯水槽33等の冷却水の循環流路に水を補給することによって、更に長期に変圧器11を運転することができる。   Further, according to the first and second underground substation emergency transformer cooling systems 10A and 10B and the first and second transformer cooling methods, the installation of temporary pipes 45-2 and 45-3 and valves 413 and 414 The transformer 11 can be cooled by the cooling water pump 21 as in the normal operation by a simple operation that does not involve system modification such as opening / closing operation 433 (third stage). By shifting to the third stage, the transformer 11 can be operated at a high load that cannot be performed in the first and second stages (for example, 100% of the load during normal operation). Moreover, the transformer 11 can be operated for a longer period by replenishing water from the other water sources to the circulation path of the cooling water such as the water storage tank 33 in the second and third stages.

また、第1,2の地下変電所緊急時変圧器冷却システム10A,10Bおよび第1,2の変圧器冷却方法によれば、従来の地下変電所の変圧器冷却システムに対しても、調達の容易な少数(10点程度)の基本的部品を追設する軽微なシステム変更によって、第1,2の地下変電所緊急時変圧器冷却システム10A,10Bへ変更することができるので、大幅なシステム変更や大量の機器の追加を要することなく、従来の地下変電所の変圧器冷却システムから改造(改修)して第1,2の地下変電所緊急時変圧器冷却システム10A,10Bを構築することができる。   Further, according to the first and second underground substation emergency transformer cooling systems 10A and 10B and the first and second transformer cooling methods, the conventional underground substation transformer cooling system is also procured. It is possible to change to the first and second underground substation emergency transformer cooling systems 10A and 10B by a minor system change that easily installs a small number of basic parts (about 10). The first and second underground substation emergency transformer cooling systems 10A and 10B are constructed by modifying (renovating) the conventional underground substation transformer cooling system without requiring modification or adding a large amount of equipment. Can do.

本発明は上記実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、第2の地下変電所緊急時変圧器冷却システム10Bの第1の流路切替手段41Bに弁414を追設すること、すなわち、第1の流路切替手段41Bの代わりに第1の流路切替手段41Aを設ける地下変電所緊急時変圧器冷却システムを構築することもできる。   The present invention is not limited to the above-described embodiment as it is, and can be carried out in various forms other than the above-described examples in the implementation stage, and various omissions can be made without departing from the gist of the invention. , Add, replace, change. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof. For example, adding a valve 414 to the first flow path switching means 41B of the second underground substation emergency transformer cooling system 10B, that is, instead of the first flow path switching means 41B, the first flow An underground substation emergency transformer cooling system in which the path switching means 41A is provided can also be constructed.

10A 第1の地下変電所緊急時変圧器冷却システム
10B 第2の地下変電所緊急時変圧器冷却システム
11 変圧器
12 冷却水供給系統
13 補給水系統
14 緊急冷却水供給系統
21 冷却水ポンプ
22 一次冷却器
23 二次冷却器
31 補給水槽
32 膨張配管
33,33x,33y 貯水槽
33−1〜33−4 水槽
34 補給水ポンプ
35 オーバーフロー管
37 連通管
41A,41B 第1の流路切替手段
411 ヘッダー
412,413,414 弁(二方弁)
415,416 三方弁
418 T字継手
42 第2の流路切替手段
421 ヘッダー
422,423,424 弁(二方弁)
43 第3の流路切替手段
431 ヘッダー
432,433 弁(二方弁)
45(45−1〜45−3) 仮設管
47 非常用冷却設備
471 開放型冷却塔
472 プレート式熱交換器
473 密閉型冷却塔
474,477,478 弁
476 圧力容器
49 送風機
51 非常用冷却水ポンプ
53 蓋
61 弁
10A First underground substation emergency transformer cooling system 10B Second underground substation emergency transformer cooling system 11 Transformer 12 Cooling water supply system 13 Makeup water system 14 Emergency cooling water supply system 21 Cooling water pump 22 Primary Cooler 23 Secondary cooler 31 Makeup water tank 32 Expansion pipes 33, 33x, 33y Water storage tanks 33-1 to 33-4 Water tank 34 Makeup water pump 35 Overflow pipe 37 Communication pipe 41A, 41B First flow path switching means 411 Header 412, 413, 414 valve (two-way valve)
415, 416 Three-way valve 418 T-shaped joint 42 Second flow path switching means 421 Header 422, 423, 424 Valve (two-way valve)
43 Third flow path switching means 431 Header 432, 433 Valve (two-way valve)
45 (45-1 to 45-3) Temporary pipe 47 Emergency cooling equipment 471 Open cooling tower 472 Plate heat exchanger 473 Sealed cooling tower 474, 477, 478 Valve 476 Pressure vessel 49 Blower 51 Emergency cooling water pump 53 Lid 61 Valve

Claims (12)

地下変電所に設置される変圧器の冷却システムにおいて、
前記変圧器の発生熱を冷却水で冷却する一次冷却器と、前記一次冷却器とは離れた位置に設置され、前記一次冷却器を通過した後の冷却水である温水を冷却する二次冷却器とを備え、
前記一次冷却器と前記二次冷却器とを冷却する、又蒸発などで一部失われる前記冷却水を補給する冷却用補給水を貯水し、前記冷却用補給水を補給する補給水槽と、前記補給水槽に補給する前記冷却用補給水を貯水するとともに補給水ポンプを備える貯水槽とを接続し、前記貯水槽から前記補給水槽に前記冷却用補給水を送る流路を有する補給水系統と、通常運用時に前記一次冷却器および前記二次冷却器に冷却水を供給する流路として、前記一次冷却器の入力端と前記一次冷却器の入力端へ冷却水を供給する冷却水ポンプの出力端とが接続され、前記一次冷却器の出力端と前記二次冷却器の入力端とが接続され、前記二次冷却器の出力端と前記冷却水ポンプの入力端とが接続されることによって、前記冷却水が循環可能に形成される流路を有する冷却水供給系統とを接続し、前記貯水槽の水を前記補給水系統および冷却水供給系統の流路を介して前記一次冷却器側に供給する流路を有する緊急冷却水供給系統と、
前記貯水槽と接続される1個の入力端と、前記補給水槽と接続される開閉自在な第1の出力端と、前記一次冷却器の入力端と接続される開閉自在な第2の出力端とを含む複数個の出力端とを備え、前記貯水槽から導入される前記冷却用補給水の供給先を選択的に切り替える第1の流路切替手段と、
前記一次冷却器の出力端と接続される1個の入力端と、前記二次冷却器の入力端と接続される開閉自在な第3の出力端と、前記第3の出力端とは異なる開閉自在な第4の出力端とを含む複数個の出力端とを備え、前記一次冷却器から導入される前記温水の供給先を選択的に切り替える第2の流路切替手段と、をさらに設けて構成されており、
前記二次冷却器の冷却機能が停止した状態となった場合、前記冷却水ポンプと前記補給水ポンプを停止させた状態で、前記第1の出力端と前記第3の出力端とを閉じ、一端から放出される流体が前記貯水槽へ流入するように配設される仮設管の他端を前記第4の出力端に取り付け、前記第2の出力端と前記第4の出力端とを開いて、前記補給水ポンプを起動させることによって、前記貯水槽に貯水される前記冷却用補給水を、前記第2の出力端、前記一次冷却器、前記第4の出力端、および前記仮設管を経由させて前記貯水槽へ戻して循環させながら前記冷却水として前記一次冷却器へ供給可能に構成されることを特徴とする地下変電所の緊急時変圧器冷却システム。
In the cooling system for transformers installed in underground substations,
A primary cooler that cools the generated heat of the transformer with cooling water, and a secondary cooling that is installed at a position away from the primary cooler and cools hot water that is cooling water after passing through the primary cooler Equipped with
Replenishing water tank for cooling the primary cooler and the secondary cooler, storing replenishing water for replenishing the cooling water partially lost by evaporation or the like, and replenishing the replenishing water for cooling, and A replenishment water system having a flow path for storing the replenishing water for replenishing to the replenishing water tank and connecting a water reserving tank having a replenishing water pump to the replenishing water tank and sending the replenishing water for cooling from the water storage tank to the replenishing water tank; As a flow path for supplying cooling water to the primary cooler and the secondary cooler during normal operation, an input end of the primary cooler and an output end of a cooling water pump for supplying cooling water to the input end of the primary cooler Are connected, the output end of the primary cooler and the input end of the secondary cooler are connected, and the output end of the secondary cooler and the input end of the cooling water pump are connected, A flow path in which the cooling water is circulated. And a cooling water supply system connected, the emergency cooling water supply system having a supply passage of water of the reservoir to the primary cooler side through the flow path of the makeup water system and the cooling water supply system to,
One input end connected to the water storage tank, a first openable output terminal connected to the makeup water tank, and a second openable output terminal connected to the input end of the primary cooler A first flow path switching means that selectively switches the supply destination of the cooling makeup water introduced from the water storage tank,
One input end connected to the output end of the primary cooler, a third output end that can be freely opened and closed connected to the input end of the secondary cooler, and an opening / closing different from the third output end A plurality of output ends including a fourth output end, and a second flow path switching means for selectively switching a supply destination of the hot water introduced from the primary cooler. Configured,
When the cooling function of the secondary cooler is stopped, the first output end and the third output end are closed with the cooling water pump and the makeup water pump stopped. The other end of the temporary pipe disposed so that the fluid discharged from one end flows into the water storage tank is attached to the fourth output end, and the second output end and the fourth output end are opened. Then, by activating the makeup water pump, the cooling makeup water stored in the water tank is supplied to the second output end, the primary cooler, the fourth output end, and the temporary pipe. An emergency transformer cooling system for an underground substation, wherein the cooling water is supplied to the primary cooler while circulating through the water storage tank.
前記二次冷却器の出力端と開閉自在に接続される第1の入力端と、前記第1の入力端とは異なる開閉自在な第2の入力端と、前記冷却水ポンプの入力端と開閉自在に接続される出力端とを備え、前記第1の入力端、および前記第2の入力端の何れか一方から導入される流体を前記冷却水ポンプの入力端と開閉自在に接続される前記出力端へ案内する第3の流路切替手段と、をさらに設けて構成されることを特徴とする請求項1に記載の地下変電所の緊急時変圧器冷却システム。   A first input terminal that is openably and closably connected to an output terminal of the secondary cooler; a second input terminal that is openable and closable different from the first input terminal; and an input terminal of the cooling water pump that is openable and closable. An output end connected freely, and the fluid introduced from any one of the first input end and the second input end is openably and closably connected to the input end of the cooling water pump. The emergency transformer cooling system for an underground substation according to claim 1, further comprising third flow path switching means for guiding to the output end. 前記第2の出力端と前記一次冷却器の入力端との間にあって、前記冷却水ポンプの出力端と前記一次冷却器の入力端とを接続する流路よりも前記第2の出力端に近い個所に第1の弁をさらに設け、
前記緊急冷却水供給系統の流路は、前記第2の出力端と前記第1の弁とに着脱自在な仮設管で構成されることを特徴とする請求項1または2に記載の地下変電所の緊急時変圧器冷却システム。
It is between the second output end and the input end of the primary cooler and is closer to the second output end than a flow path connecting the output end of the cooling water pump and the input end of the primary cooler. Further provided with a first valve at the point,
3. The underground substation according to claim 1, wherein the flow path of the emergency cooling water supply system includes a temporary pipe that is detachably attached to the second output end and the first valve. 4. Emergency transformer cooling system.
前記第1の流路切替手段は、前記貯水槽と接続される入力端と、前記第1の出力端と、前記第2の出力端とを備えるヘッダー、および前記貯水槽と接続される入力端と、前記第1の出力端と、前記第2の出力端とを備え、少なくとも、前記第1の出力端が閉じていて前記第2の出力端が開いている状態と前記第1の出力端が開いていて前記第2の出力端が閉じている状態とを切り替え可能な三方弁の何れか一方で構成されることを特徴とする請求項3に記載の地下変電所の緊急時変圧器冷却システム。 The first flow path switching unit includes an input terminal connected to the water storage tank, a header including the first output terminal and the second output terminal, and an input terminal connected to the water storage tank. The first output end and the second output end, and at least the first output end is closed and the second output end is open; and the first output end The emergency transformer cooling of an underground substation according to claim 3, characterized in that it is configured with one of three-way valves that can be switched between a state in which the second output end is closed and the second output end is closed. system. 前記第2の流路切替手段は、前記第3の出力端および前記第4の出力端とは異なる開閉自在な出力端であって、前記二次冷却器の冷却機能が停止した状態となった後に前記二次冷却器の役割を果たす非常用冷却設備をさらに設けて、導入される前記一次冷却器を通過した後の冷却水である前記温水を前記非常用冷却設備で冷却した後に前記貯水槽へ戻す流路へ切り替える場合に、前記非常用冷却設備の出力端に一端が取り付けられる仮設管の他端からの水が前記貯水槽へ流入するように配設されるとともに、前記非常用冷却設備の入力端に一端が取り付けられる仮設管の他端を取り付け可能な第7の出力端を備えることを特徴とする請求項1から4の何れか1項に記載の地下変電所の緊急時変圧器冷却システム。 The second flow path switching means is an openable / closable output end different from the third output end and the fourth output end, and the cooling function of the secondary cooler is stopped. The water storage tank is further provided with an emergency cooling facility that later functions as the secondary cooler, and the hot water that is the cooling water after passing through the primary cooler to be introduced is cooled by the emergency cooling facility When switching to the flow path to return to the emergency cooling equipment, the emergency cooling equipment is arranged so that water from the other end of the temporary pipe whose one end is attached to the output end of the emergency cooling equipment flows into the water storage tank. An emergency transformer for an underground substation according to any one of claims 1 to 4, further comprising a seventh output end to which the other end of the temporary pipe whose one end is attached to the input end of the substation can be attached. Cooling system. 前記二次冷却器の冷却機能が停止した状態となった後に前記二次冷却器の役割を果たす非常用冷却設備をさらに設けて、導入される前記一次冷却器を通過した後の冷却水である前記温水を前記非常用冷却設備で冷却した後に前記貯水槽へ戻す流路へ切り替える場合、
前記第4の出力端に取り付けられている前記仮設管の他端を取り外して代わりに前記第4の出力端に取り付け可能な仮設管を前記第4の出力端と前記非常用冷却設備の入力端に取り付け、前記非常用冷却設備の出力端に仮設管の一端を取り付け、取り付けた仮設管を通して前記非常用冷却設備からの水が前記貯水槽へ流入するように前記仮設管の他端を配設することによって、前記温水を前記非常用冷却設備で冷却した後に前記貯水槽へ戻す流路への切り替えが可能に構成されることを特徴とする請求項1から5の何れか1項に記載の地下変電所の緊急時変圧器冷却システム。
The cooling water after passing through the primary cooler to be introduced by further providing an emergency cooling facility that plays the role of the secondary cooler after the cooling function of the secondary cooler is stopped When the hot water is cooled by the emergency cooling facility and then switched to a flow path that returns to the water tank,
A temporary pipe that can be attached to the fourth output end instead of the other end of the temporary pipe attached to the fourth output end is replaced with the fourth output end and the input end of the emergency cooling facility. Attach one end of the temporary pipe to the output end of the emergency cooling equipment, and arrange the other end of the temporary pipe so that the water from the emergency cooling equipment flows into the water storage tank through the attached temporary pipe By performing, it is comprised so that switching to the flow path which returns the said hot water to the said water tank after cooling with the said emergency cooling equipment is possible. Underground transformer substation emergency transformer cooling system.
前記第2の出力端と前記一次冷却器の入力端との間にあって、前記冷却水ポンプの出力端と前記一次冷却器の入力端とを接続する流路よりも前記第2の出力端に近い個所に第1の弁をさらに設け、前記緊急冷却水供給系統の流路が、前記第2の出力端と前記第1の弁とに着脱自在な仮設管で構成されており、
前記二次冷却器の冷却機能が停止した状態となった後に、前記貯水槽から前記第2の出力端を経由して前記冷却用補給水水を前記非常用冷却設備へ供給する系統と、前記冷却水ポンプの出力端から、前記一次冷却器、前記第4の出力端、前記非常用冷却設備、および前記第2の入力端を経由して前記冷却水ポンプの入力端へ戻る系統との2個の独立した系統を確保して前記冷却水ポンプの運転を再開する場合、
前記第2の入力端と前記非常用冷却設備を接続する仮設管を取り付け、前記非常用冷却設備に前記冷却用補給水を供給する補給水入力端と前記第2の出力端とを接続する仮設管を取り付け、前記第1の弁を閉じることによって、前記2個の独立した系統の確保が可能に構成されることを特徴とする請求項6に記載の地下変電所の緊急時変圧器冷却システム。
It is between the second output end and the input end of the primary cooler and is closer to the second output end than a flow path connecting the output end of the cooling water pump and the input end of the primary cooler. The first valve is further provided at the location, and the flow path of the emergency cooling water supply system is constituted by a temporary pipe that is detachable from the second output end and the first valve,
After the cooling function of the secondary cooler has stopped, a system for supplying the cooling makeup water from the water storage tank to the emergency cooling facility via the second output end, and 2 from the output end of the cooling water pump to the primary cooler, the fourth output end, the emergency cooling facility, and the system returning to the input end of the cooling water pump via the second input end When securing the independent system and restarting the operation of the cooling water pump,
A temporary pipe that connects the second input end and the emergency cooling facility is attached, and a temporary water input end that supplies the cooling makeup water to the emergency cooling facility and the second output end are connected temporarily. The emergency transformer cooling system for an underground substation according to claim 6, wherein the two independent systems can be secured by attaching a pipe and closing the first valve. .
地下変電所に設置される変圧器の発生熱を冷却水で冷却する一次冷却器と、前記一次冷却器とは離れた位置に設置され、前記一次冷却器を通過した後の冷却水である温水を冷却する二次冷却器とを備え、前記一次冷却器と前記二次冷却器とを冷却する、又蒸発などで一部失われる前記冷却水を補給する冷却用補給水を貯水し、前記冷却用補給水を補給する補給水槽と、前記補給水槽に補給する前記冷却用補給水を貯水するとともに補給水ポンプを備える貯水槽とを接続し、前記貯水槽から前記補給水槽に前記冷却用補給水を送る流路を有する補給水系統と、通常運用時に前記一次冷却器および前記二次冷却器に冷却水を供給する流路として、前記一次冷却器の入力端と前記一次冷却器の入力端へ冷却水を供給する冷却水ポンプの出力端とが接続され、前記一次冷却器の出力端と前記二次冷却器の入力端とが接続され、前記二次冷却器の出力端と前記冷却水ポンプの入力端とが接続されることによって、前記冷却水が循環可能に形成される流路を有する冷却水供給系統とを接続し、前記貯水槽の水を前記補給水系統および冷却水供給系統の流路を介して前記一次冷却器側に供給する流路を有する緊急冷却水供給系統と、前記貯水槽と接続される1個の入力端と、前記補給水槽と接続される開閉自在な第1の出力端と、前記一次冷却器の入力端と接続される開閉自在な第2の出力端とを含む複数個の出力端とを備え、前記貯水槽から導入される前記冷却用補給水の供給先を選択的に切り替える第1の流路切替手段と、前記一次冷却器の出力端と接続される1個の入力端と、前記二次冷却器の入力端と接続される開閉自在な第3の出力端と、前記第3の出力端とは異なる開閉自在な第4の出力端とを含む複数個の出力端とを備え、前記一次冷却器から導入される前記温水の供給先を選択的に切り替える第2の流路切替手段と、前記二次冷却器の出力端と開閉自在に接続される第1の入力端と、前記第1の入力端とは異なる開閉自在な第2の入力端と、前記冷却水ポンプの入力端と開閉自在に接続される出力端とを備え、前記第1の入力端、および前記第2の入力端の何れか一方から導入される流体を前記冷却水ポンプの入力端と開閉自在に接続される前記出力端へ案内する第3の流路切替手段と、をさらに設けて構成される冷却システムを用いた地下変電所の緊急時変圧器冷却方法であり、
前記二次冷却器の冷却機能が停止した状態となった場合に、前記冷却水ポンプと前記補給水ポンプとを停止させ、前記冷却水ポンプと前記補給水ポンプとが停止した状態で、前記第1の出力端と前記第3の出力端とを閉じ、一端から放出される流体が前記貯水槽へ流入するように配設される仮設管の他端を前記第4の出力端に取り付けてから前記第2の出力端と前記第4の出力端とを開いて、前記補給水ポンプを起動させることによって、前記貯水槽に貯水される前記冷却用補給水を、前記第2の出力端、前記一次冷却器、前記第4の出力端、および前記仮設管を経由させて前記貯水槽へ戻し、前記一次冷却器と前記貯水槽とを循環させながら前記冷却水として前記一次冷却器へ供給し、前記冷却用補給水を消費しながら前記一次冷却器を冷却する第1次段階のステップと、
前記冷却システムに対して、前記一次冷却器からの温水を熱交換した後に前記貯水槽へ戻す非常用冷却設備がさらに設けられた後に、前記第2の流路切替手段が前記貯水槽と前記一次冷却器と前記非常用冷却設備との間に前記冷却用補給水が循環する循環流路に切り替えることによって、前記非常用冷却設備が前記貯水槽と前記一次冷却器と前記非常用冷却設備との間で循環する前記冷却用補給水を冷却する第2次段階のステップと、を備えることを特徴とする地下変電所の緊急時変圧器冷却方法。
A primary cooler that cools the heat generated by a transformer installed in an underground substation with cooling water, and hot water that is installed at a position away from the primary cooler and that passes through the primary cooler. A secondary cooler that cools the primary cooler and the secondary cooler, and stores cooling makeup water that replenishes the cooling water that is partially lost due to evaporation or the like, and stores the cooling A replenishing water tank for replenishing the replenishing water, and a water storage tank for storing the replenishing water for replenishing the replenishing water tank and having a replenishing water pump, and connecting the replenishing water for cooling from the water storage tank to the replenishing water tank. As a flow path for supplying cooling water to the primary cooler and the secondary cooler during normal operation, and to the input end of the primary cooler and the input end of the primary cooler Connected to the output end of the cooling water pump that supplies cooling water. The output end of the primary cooler and the input end of the secondary cooler are connected, and the output end of the secondary cooler and the input end of the cooling water pump are connected, whereby the cooling water Is connected to a cooling water supply system having a flow path formed so as to be able to circulate, and the water in the water storage tank is supplied to the primary cooler side through the flow paths of the makeup water system and the cooling water supply system. An emergency cooling water supply system having a path, one input terminal connected to the water storage tank, a first openable / closable output terminal connected to the makeup water tank, and an input terminal of the primary cooler A plurality of output ends including a second output end that can be opened and closed, and a first flow path switching means that selectively switches the supply destination of the cooling makeup water introduced from the water storage tank; One input end connected to the output end of the primary cooler, and the secondary cooling A plurality of output terminals including a third output terminal that is openable and closable connected to the input terminal and a fourth output terminal that is openable and closable different from the third output terminal. Second flow path switching means for selectively switching a supply destination of the hot water introduced from the first input terminal, a first input terminal that is openably and closably connected to an output terminal of the secondary cooler, and the first input A second input end that is openable and closable different from the end, and an output end that is openably and closably connected to the input end of the cooling water pump, and any one of the first input end and the second input end And a third flow path switching means for guiding the fluid introduced from either one of the cooling water pumps to the output end connected to the input end of the cooling water pump so as to be openable and closable. Substation emergency transformer cooling method,
When the cooling function of the secondary cooler is stopped, the cooling water pump and the makeup water pump are stopped, and the cooling water pump and the makeup water pump are stopped, The first output end and the third output end are closed, and the other end of the temporary pipe disposed so that the fluid discharged from one end flows into the water storage tank is attached to the fourth output end. By opening the second output end and the fourth output end and starting the make-up water pump, the cooling make-up water stored in the water storage tank is changed to the second output end, Returning to the water storage tank via the primary cooler, the fourth output end, and the temporary pipe, supplying the cooling water as the cooling water to the primary cooler while circulating the primary cooler and the water storage tank, The primary cooler is cooled while consuming the cooling makeup water. A step of primary stage of,
After the cooling system is further provided with an emergency cooling facility for exchanging the hot water from the primary cooler and then returning to the water tank, the second flow path switching means is connected to the water tank and the primary. By switching to a circulation path through which the cooling make-up water circulates between a cooler and the emergency cooling facility, the emergency cooling facility is connected to the water storage tank, the primary cooler, and the emergency cooling facility. A secondary stage step of cooling the cooling make-up water circulating between the substation and the emergency transformer cooling method for an underground substation.
前記貯水槽が複数の水槽を直列に連通して構成され、前記非常用冷却設備が冷却塔である場合、
前記貯水槽の複数の水槽のうち、前記補給水ポンプが設置される水槽とは別の水槽に設置される非常用冷却水ポンプと、熱交換器が前記第4の出力端から前記冷却塔へ向かう温水と、前記非常用冷却水ポンプが汲み上げた水との間で熱交換し、前記温水と熱交換した後の水を前記非常用冷却水ポンプが設置される水槽から最も遠くに位置する水槽へ流入させる熱交換器とをさらに設けることによって、前記第4の出力端から前記非常用冷却設備へ向かう温水を、前記熱交換器と前記冷却塔とが冷却するステップをさらに備えることを特徴とする請求項8記載の地下変電所の緊急時変圧器冷却方法。
When the water tank is configured by communicating a plurality of water tanks in series, and the emergency cooling facility is a cooling tower,
Of the plurality of water tanks, an emergency cooling water pump installed in a water tank different from the water tank where the makeup water pump is installed, and a heat exchanger from the fourth output end to the cooling tower The water tank located farthest from the water tank in which the emergency cooling water pump is installed after exchanging heat between the hot water heading for and the water pumped up by the emergency cooling water pump A step of cooling the hot water from the fourth output end to the emergency cooling facility by the heat exchanger and the cooling tower. An emergency transformer cooling method for an underground substation according to claim 8.
前記貯水槽が連通する連通管を塞いで前記補給水ポンプが設置される水槽と連通する水槽群と前記非常用冷却水ポンプが設置される水槽と連通する水槽群とを隔離している場合、
前記第4の出力端から前記非常用冷却設備へ向かう温水を、前記熱交換器と前記冷却塔とが冷却するステップで、前記温水と熱交換した後の水が流入する前記水槽は、前記補給水ポンプが設置される水槽と連通する水槽群のうち、前記補給水ポンプが設置される水槽から最も遠くに位置する水槽であることを特徴とする請求項9記載の地下変電所の緊急時変圧器冷却方法。
When the water tank group communicating with the water tank where the replenishing water pump is installed and the water tank group communicating with the water tank where the emergency cooling water pump is installed are isolated by closing the communication pipe through which the water tank communicates,
In the step where the heat exchanger and the cooling tower cool the warm water from the fourth output end to the emergency cooling facility, the water tank into which the water after heat exchange with the warm water flows is replenished. The underground transformer substation emergency transformation according to claim 9, wherein the tank is located farthest from the tank in which the makeup water pump is installed among the tank group in communication with the tank in which the water pump is installed. Cooling method.
前記冷却システムが、前記第2の出力端と前記一次冷却器の入力端との間に設けられる第1の弁をさらに設けられており、前記第2の出力端と前記第1の弁とを接続する流路が前記第2の出力端と前記第1の弁とに着脱自在な仮設管で構成されている場合、
前記第2の入力端と前記非常用冷却設備を接続する配管を取り付け、前記非常用冷却設備に補給水を供給する補給水入力端と前記第2の出力端とを接続する仮設管を取り付け、前記第1の弁を閉じることによって、前記貯水槽から前記第2の出力端を経由して前記補給水を前記非常用冷却設備へ供給する系統と、前記冷却水ポンプの出力端から、前記一次冷却器、前記第4の出力端、前記非常用冷却設備、および前記第2の入力端を経由して前記冷却水ポンプの入力端へ戻る系統とを確保し、前記非常用冷却設備を前記貯水槽に貯水される前記補給水の供給無しで稼働させ、前記貯水槽に貯水される前記補給水を前記非常用冷却設備の前記補給水として使用する第3次段階へ移行するステップをさらに備えることを特徴とする請求項8から10の何れか1項に記載の地下変電所の緊急時変圧器冷却方法。
The cooling system is further provided with a first valve provided between the second output end and the input end of the primary cooler, and the second output end and the first valve are connected to each other. When the flow path to be connected is composed of a temporary tube that is detachable from the second output end and the first valve,
A pipe that connects the second input end and the emergency cooling facility is attached, and a temporary pipe that connects a makeup water input end that supplies makeup water to the emergency cooling facility and the second output end is attached, By closing the first valve, a system for supplying the makeup water from the water storage tank to the emergency cooling facility via the second output end, and an output end of the cooling water pump, the primary A cooler, a fourth output end, the emergency cooling facility, and a system returning to the input end of the cooling water pump via the second input end, and securing the emergency cooling facility to the water storage The method further includes the step of operating without supplying the makeup water stored in the tank and shifting to the third stage in which the makeup water stored in the water storage tank is used as the makeup water of the emergency cooling facility. The features of claims 8 to 1 Any emergency transformer cooling method underground substation according to one of.
前記第1の流路切替手段が、前記第1の出力端と、前記2の出力端と、第5の出力端との3個の出力端を備えて構成される場合、
前記第2の入力端と前記非常用冷却設備を接続する配管を取り付け、前記非常用冷却設備に補給水を供給する補給水入力端と前記第5の出力端とを接続する仮設管を取り付け、前記第2の出力端を閉じることによって、前記貯水槽から前記第5の出力端を経由して前記補給水を前記非常用冷却設備へ供給する系統と、前記冷却水ポンプの出力端から、前記一次冷却器、前記第4の出力端、前記非常用冷却設備、および前記第2の入力端を経由して前記冷却水ポンプの入力端へ戻る系統とを確保し、前記非常用冷却設備を前記貯水槽に貯水される前記補給水の供給無しで稼働させ、前記貯水槽に貯水される前記補給水を前記非常用冷却設備の前記補給水として使用する第3次段階へ移行するステップをさらに備えることを特徴とする請求項8から10の何れか1項に記載の地下変電所の緊急時変圧器冷却方法。
When the first flow path switching means comprises three output ends, the first output end, the second output end, and the fifth output end,
A pipe that connects the second input end and the emergency cooling facility is attached, and a temporary pipe that connects a makeup water input end that supplies makeup water to the emergency cooling facility and the fifth output end is attached. By closing the second output end, a system for supplying the makeup water from the water storage tank to the emergency cooling facility via the fifth output end, and an output end of the cooling water pump, A primary cooler, the fourth output end, the emergency cooling facility, and a system that returns to the input end of the cooling water pump via the second input end are secured, and the emergency cooling facility is The method further includes a step of operating without supplying the makeup water stored in the water storage tank and shifting to a third stage in which the makeup water stored in the water storage tank is used as the makeup water of the emergency cooling facility. Or claim 8 characterized in that Emergency transformer cooling method underground substation according to any one of 10.
JP2014015466A 2014-01-30 2014-01-30 Emergency transformer cooling system and emergency transformer cooling method for underground substation Active JP6420040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015466A JP6420040B2 (en) 2014-01-30 2014-01-30 Emergency transformer cooling system and emergency transformer cooling method for underground substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015466A JP6420040B2 (en) 2014-01-30 2014-01-30 Emergency transformer cooling system and emergency transformer cooling method for underground substation

Publications (2)

Publication Number Publication Date
JP2015142089A true JP2015142089A (en) 2015-08-03
JP6420040B2 JP6420040B2 (en) 2018-11-07

Family

ID=53772243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015466A Active JP6420040B2 (en) 2014-01-30 2014-01-30 Emergency transformer cooling system and emergency transformer cooling method for underground substation

Country Status (1)

Country Link
JP (1) JP6420040B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168287A (en) * 2017-05-26 2017-09-15 中国南方电网有限责任公司超高压输电公司贵阳局 A kind of PLC failures based on PLC transformer cooler control systems are met an urgent need module
KR20200008792A (en) * 2018-07-17 2020-01-29 현대제철 주식회사 Cooling device of blast furnace
KR20200008793A (en) * 2018-07-17 2020-01-29 현대제철 주식회사 Water quality maintenance device of water tank for blast furnace
CN111519709A (en) * 2020-04-28 2020-08-11 广东电网有限责任公司 Water supply system and method for transformer spraying cooling system
KR102350109B1 (en) * 2021-08-26 2022-01-11 주식회사 창대이앤씨 Non-outage cooling apparatus for heat exchange cooling of electric transformer and construction method thereof
CN114974856A (en) * 2022-05-27 2022-08-30 岭澳核电有限公司 Replacement method of oil flow indicator of transformer of nuclear power station

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611768Y1 (en) * 1967-12-15 1971-04-23
JPS56106425U (en) * 1980-01-16 1981-08-19
JPH0275898A (en) * 1988-09-12 1990-03-15 Toshiba Corp Waste heat recovering apparatus
JPH08298215A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Exhaust heat utilization system for stationary induction unit
JP2010258204A (en) * 2009-04-24 2010-11-11 Toshiba Plant Systems & Services Corp Emergency transformer cooling system of underground substation
JP2012002482A (en) * 2010-06-21 2012-01-05 Toshiba Plant Systems & Services Corp Method for replacement of cooling system for electrical substation equipment of underground substation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611768Y1 (en) * 1967-12-15 1971-04-23
JPS56106425U (en) * 1980-01-16 1981-08-19
JPH0275898A (en) * 1988-09-12 1990-03-15 Toshiba Corp Waste heat recovering apparatus
JPH08298215A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Exhaust heat utilization system for stationary induction unit
US5669228A (en) * 1995-04-26 1997-09-23 Hitachi, Ltd. System for utilizing exhaust heat of stationary induction apparatus
JP2010258204A (en) * 2009-04-24 2010-11-11 Toshiba Plant Systems & Services Corp Emergency transformer cooling system of underground substation
JP2012002482A (en) * 2010-06-21 2012-01-05 Toshiba Plant Systems & Services Corp Method for replacement of cooling system for electrical substation equipment of underground substation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168287A (en) * 2017-05-26 2017-09-15 中国南方电网有限责任公司超高压输电公司贵阳局 A kind of PLC failures based on PLC transformer cooler control systems are met an urgent need module
KR20200008792A (en) * 2018-07-17 2020-01-29 현대제철 주식회사 Cooling device of blast furnace
KR20200008793A (en) * 2018-07-17 2020-01-29 현대제철 주식회사 Water quality maintenance device of water tank for blast furnace
KR102089162B1 (en) * 2018-07-17 2020-03-16 현대제철 주식회사 Cooling device of blast furnace
KR102089163B1 (en) 2018-07-17 2020-03-16 현대제철 주식회사 Water quality maintenance device of water tank for blast furnace
CN111519709A (en) * 2020-04-28 2020-08-11 广东电网有限责任公司 Water supply system and method for transformer spraying cooling system
CN111519709B (en) * 2020-04-28 2021-04-20 广东电网有限责任公司 Water supply system for transformer spraying cooling system
KR102350109B1 (en) * 2021-08-26 2022-01-11 주식회사 창대이앤씨 Non-outage cooling apparatus for heat exchange cooling of electric transformer and construction method thereof
CN114974856A (en) * 2022-05-27 2022-08-30 岭澳核电有限公司 Replacement method of oil flow indicator of transformer of nuclear power station
CN114974856B (en) * 2022-05-27 2023-09-22 岭澳核电有限公司 Method for replacing transformer oil flow indicator of nuclear power station

Also Published As

Publication number Publication date
JP6420040B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6420040B2 (en) Emergency transformer cooling system and emergency transformer cooling method for underground substation
JP6983770B2 (en) Regional thermal energy distribution system
US9312035B2 (en) Semi-portable emergency cooling system for removing decay heat from a nuclear reactor
CN1773632B (en) Backup cryogenic refrigeration system
EP3394517B1 (en) A thermal server plant and a method for controlling the same
KR101519340B1 (en) Regenerative heat pump system comprising geothermal exchanger
CN110087437A (en) A kind of converter valve cooling system and its method
JP5320147B2 (en) Emergency transformer cooling system for underground substation and cooling method therefor
JP6569096B2 (en) Open circulation cooling system and tube anticorrosion method of heat exchanger during operation stop
JP6118065B2 (en) Water-cooled air conditioning system and operation control method thereof
JP4970072B2 (en) Water-cooled piping system and unit replacement method in water-cooled piping system
KR20080046334A (en) Air-conditioning apparatus
KR20190068876A (en) Offshore HVAC Refrigerant Circulation System using Regas Energy of Liquefied Gas From FSPP
KR101796010B1 (en) Cooling system for thruster
JP2012002482A (en) Method for replacement of cooling system for electrical substation equipment of underground substation
JP2009216346A (en) Hot water storage type hot water supply system
EP4090889A1 (en) Thermal energy extraction assembly
JP4260787B2 (en) District heat supply system and heat supply plant switching method of district heat supply system
KR20140005087U (en) House of facilities with open ground yeolyeol exchangers heating and cooling systems
JP7119499B2 (en) LOCAL COOLING SYSTEM AND RECONSTRUCTION METHOD OF LOCAL COOLING SYSTEM
KR20150029444A (en) Distributed heat storage tank and heat storage system
JP2001082770A (en) Cooling faciltity system
JP2001074874A (en) Cooling equipment for nuclear reactor or the like
JP6083023B2 (en) Bathtub water temperature maintenance system for bathing facilities, etc.
JP2018076553A (en) Method of forming corrosion resistant coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181011

R150 Certificate of patent or registration of utility model

Ref document number: 6420040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250