JP2019081311A - Method for producing hydraulic composition - Google Patents

Method for producing hydraulic composition Download PDF

Info

Publication number
JP2019081311A
JP2019081311A JP2017210151A JP2017210151A JP2019081311A JP 2019081311 A JP2019081311 A JP 2019081311A JP 2017210151 A JP2017210151 A JP 2017210151A JP 2017210151 A JP2017210151 A JP 2017210151A JP 2019081311 A JP2019081311 A JP 2019081311A
Authority
JP
Japan
Prior art keywords
binder
mass
kneading
hydraulic composition
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017210151A
Other languages
Japanese (ja)
Other versions
JP7046563B2 (en
Inventor
豪士 中崎
Goshi Nakazaki
豪士 中崎
森 寛晃
Hiroaki Mori
寛晃 森
洋児 面来
Yoji Menrai
洋児 面来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017210151A priority Critical patent/JP7046563B2/en
Publication of JP2019081311A publication Critical patent/JP2019081311A/en
Application granted granted Critical
Publication of JP7046563B2 publication Critical patent/JP7046563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

To provide a method for producing a hydraulic composition capable of reducing the kneading time of a hydraulic composition containing condensed silica fume or the like.SOLUTION: Provided is a method for producing a hydraulic composition at least containing the following (A) step, (B) step, (C) step and (D) step: (A) a step of splitting a raw binder at least containing one or more kinds selected from condensed silica fume or the like and cement into a first splitting binder including 40 to 60 mass% of the raw binder, a second splitting binder including 20 to 30 mass% of the raw binder and a third splitting binder including 20 to 30 mass% of the raw binder; (B) a first kneading step where the fist splitting binder, a fine aggregate, a polycarboxylic acid based high performance water-reducing agent and water are kneaded to obtain a first kneaded matter; (C) a second kneading step where the second splitting binder is added to the first kneaded matter, and kneading is performed to obtain a second kneaded matter; and (D) a third kneading step where a third splitting binder is added to the second kneaded matter, and kneading is performed to obtain a third kneaded matter (hydraulic composition).SELECTED DRAWING: None

Description

本発明は、粒体シリカフューム(JIS A 6207「コンクリート用シリカフューム」に規定するシリカフュームをいう。)や、一部または全部が凝集したシリカフューム(以下「凝集シリカフューム」という。)を用いたモルタルやコンクリート(以下「水硬性組成物」という。)の製造方法に関する。   The present invention is mortar or concrete using granular silica fume (refers to the silica fume defined in JIS A 6207 "Silica fume for concrete"), or silica fume partially or wholly aggregated (hereinafter referred to as "aggregated silica fume"). The present invention relates to a method for producing "a hydraulic composition" hereinafter.

最近、高強度モルタルや高強度コンクリート用の混和材として、粉体シリカフュームが多用されている。しかし、粉体シリカフュームは、通常、BET比表面積が15〜25m/gの微粒子で、嵩高くハンドリング性に劣り、保管中に一部が凝集して不均質な凝集物を含む凝集シリカフュームになり易い。そこで、粉体シリカフュームを混和材として用いる場合、保管性や運搬時の作業性の改善を目的に、粉体シリカフュームを粒体状に加工して、粒体シリカフュームとして出荷することが多い。
しかし、凝集シリカヒュームや粒体シリカフュームを含む水硬性組成物の混練では、凝集シリカフュームや粒体シリカフュームを解砕するのに時間がかかるため、粉体シリカフュームを含む水硬性組成物と比べ混練時間が長くなり、その分、水硬性組成物の製造効率が低下する。
Recently, powdered silica fume is frequently used as an additive for high strength mortar and high strength concrete. However, powdery silica fume is usually fine particles with a BET specific surface area of 15 to 25 m 2 / g, which is bulky and inferior in handling property, and partially agglomerates during storage to form agglomerated silica fume including heterogeneous aggregates. easy. Therefore, when powder silica fume is used as an admixture, the powder silica fume is often processed into particles and shipped as particle silica fume for the purpose of improving the storage performance and the workability at the time of transportation.
However, in kneading of hydraulic compositions containing agglomerated silica fume and granular silica fume, it takes time to crush agglomerated silica fume and granular silica fume, so the kneading time is shorter than hydraulic compositions containing powdered silica fume. It becomes longer, and the production efficiency of hydraulic composition falls by that much.

かつては、BET比表面積が10m/g程度の比較的大きな粒径を有し凝集しにくく、前記ハンドリング性等の問題が少ないシリカフュームが容易に入手できたが、最近では入手が困難になりつつある。したがって、現在、BET比表面積が12〜25m/gのシリカフュームの微粒子を加工した前記粒体シリカフュームや、該微粒子の一部または全部が凝集した前記凝集シリカフュームを使わざるを得ない状況にあり、前記のように、水硬性組成物の混練時間が長くなるという問題がある。 In the past, silica fume with a relatively large particle size with a BET specific surface area of about 10 m 2 / g was difficult to aggregate, and there were few problems such as handling, but silica fume was readily available, but recently it has become difficult to obtain. is there. Therefore, at present, it is necessary to use the above-mentioned granular silica fume obtained by processing fine particles of silica fume having a BET specific surface area of 12 to 25 m 2 / g, or the above-mentioned aggregated silica fume obtained by aggregating a part or all of the fine particles. As described above, there is a problem that the kneading time of the hydraulic composition becomes long.

このような状況に対処する方法として、特許文献1には、セメントやポゾラン質微粉末(シリカフュームなど)を含む水硬性組成物の混練を2回に分けて、モルタルの混練時間を短縮する方法が提案されている。しかし、この方法では、後述する本願の比較例1〜3に示すように、凝集シリカフューム等を含むモルタルの混練時間は、短縮できるものの未だ不十分であり、さらに短縮できる水硬性組成物の製造方法が望まれている。   As a method of coping with such a situation, Patent Document 1 discloses a method of shortening the mixing time of mortar by dividing the mixing of the hydraulic composition containing cement and pozzolanic fine powder (such as silica fume) in two steps. Proposed. However, according to this method, as shown in Comparative Examples 1 to 3 of the present application described later, the kneading time of mortar containing aggregated silica fume and the like can be shortened but is still insufficient, and the method of producing a hydraulic composition can be further shortened. Is desired.

特開2003−276019号公報Unexamined-Japanese-Patent No. 2003-276019

そこで、本発明は、凝集シリカフュームや粒体シリカフュームを含む水硬性組成物の混練時間を短縮できる、水硬性組成物の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of a hydraulic composition which can shorten the kneading | mixing time of the hydraulic composition containing aggregated silica fume and granular silica fume.

本発明者は、前記目的にかなう製造方法について鋭意検討したところ、凝集シリカフュームおよび粒体シリカフュームから選ばれる1種以上と、セメントを少なくとも含む結合材を3分割して水硬性組成物を混練すれば、前記目的を達成できることを見い出し、本発明を完成させた。すなわち、本発明は下記の構成を有する水硬性組成物の製造方法である。   The inventors of the present invention have intensively studied the manufacturing method to meet the above objects, and if the binder containing at least one cement selected from aggregated silica fume and granular silica fume is divided into three parts, the hydraulic composition is kneaded. The present invention has been accomplished by finding that the above objects can be achieved. That is, the present invention is a method for producing a hydraulic composition having the following constitution.

[1]少なくとも、下記の(A)原結合材の分割工程、(B)第1の混練工程、(C)第2の混練工程、および(D)第3の混練工程を含む水硬性組成物の製造方法。
(A)凝集シリカフュームおよび粒体シリカフュームから選ばれる1種以上と、セメントとを少なくとも含む原結合材から、原結合材の40〜60質量%を含む第1分割結合材、原結合材の20〜30質量%を含む第2分割結合材、および、原結合材の20〜30質量%を含む第3分割結合材を分割する、原結合材の分割工程(だだし、第1〜第3分割結合材の分割割合の合計は100質量%である。)
(B)第1分割結合材、細骨材、ポリカルボン酸系高性能減水剤、および水を混練して第1混練物を得る、第1の混練工程
(C)第1混練物に第2分割結合材を添加して混練し、第2混練物を得る、第2の混練工程
(D)第2混練物に第3分割結合材を添加して混練し、第3混練物(水硬性組成物)を得る、第3の混練工程
[2]第1の混練工程において、細骨材の配合割合は、原結合材100質量部に対し20〜40質量部、ポリカルボン酸系高性能減水剤の配合割合は、原結合材100質量部に対し固形分換算で0.1〜3質量部、および水の配合割合は、原結合材100質量部に対し10〜20質量部である、前記[1]に記載の水硬性組成物の製造方法。
[3]第1の混練工程において、15回の落下運動を省いた以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して測定した第1混練物のフロー値が250mm以上になるまで混練する、前記[1]または[2]に記載の水硬性組成物の製造方法。
[4]第2の混練工程において、15回の落下運動を省いた以外はJIS R 5201に準拠して測定した第2混練物のフロー値が、180mm以上になるまで混練する、前記[1]〜[3]のいずれかに記載の水硬性組成物の製造方法。
[5]第3の混練工程において、15回の落下運動を省いた以外はJIS R 5201に準拠して測定した第3混練物のフロー値が250mm以上になるまで混練する、前記[1]〜[4]のいずれかに記載の水硬性組成物の製造方法。
[6]第3混練物に、さらに粗骨材を添加して30秒以上混練する、前記[1]〜[5]のいずれかに記載の水硬性組成物の製造方法。
[1] A hydraulic composition comprising at least the following (A) dividing step of raw binder, (B) first kneading step, (C) second kneading step, and (D) third kneading step Manufacturing method.
(A) From the original binder comprising at least one selected from agglomerated silica fume and granular silica fume and cement, a first divided binder comprising 40 to 60% by mass of the original binder, 20 to 20 of the original binder A step of dividing the raw bonding material, wherein the second divided bonding material containing 30% by mass, and the third divided bonding material containing 20 to 30% by mass of the raw bonding material (extraction, first to third divided bonds The total of the division ratio of the material is 100% by mass.)
(B) The first kneading step (C) the first kneaded product, the first kneaded product is obtained by kneading the first divided binder, the fine aggregate, the polycarboxylic acid-based high performance water reducing agent, and the water to obtain the first kneaded product. A second binder is added to the second binder, and the second binder is added to the second binder, and the third binder is added and kneaded, to obtain a third binder (hydraulic composition). In the third kneading step [2] in the first kneading step, the blending ratio of the fine aggregate is 20 to 40 parts by mass with respect to 100 parts by mass of the raw binder, and the polycarboxylic acid-based high performance water reducing agent The mixing ratio of 0.1 to 3 parts by mass in terms of solid content with respect to 100 parts by mass of the raw binder, and the mixing ratio of water is 10 to 20 parts by mass with respect to 100 parts by mass of the raw binder. The manufacturing method of the hydraulic composition as described in 1].
[3] In the first kneading step, the flow value of the first kneaded product measured according to JIS R 5201 "Physical test method for cement 11. Flow test" is 250 mm or more except that 15 falling movements are omitted The manufacturing method of the hydraulic composition as described in said [1] or [2] which knead | mixes until it becomes.
[4] In the second kneading step, kneading is performed until the flow value of the second kneaded product measured according to JIS R 5201 becomes 180 mm or more, except that 15 falling movements are omitted. The manufacturing method of the hydraulic composition in any one of-[3].
[5] In the third kneading step, kneading is performed until the flow value of the third kneaded material measured according to JIS R 5201 becomes 250 mm or more except that 15 times of falling motion is omitted, The manufacturing method of the hydraulic composition in any one of [4].
[6] The method for producing a hydraulic composition according to any one of the above [1] to [5], wherein a coarse aggregate is further added to the third kneaded product and the mixture is kneaded for 30 seconds or more.

本発明の水硬性組成物の製造方法は、凝集シリカフュームや粒体シリカフュームを含む水硬性組成物の混練時間を短縮できる。   The method for producing a hydraulic composition of the present invention can shorten the kneading time of the hydraulic composition containing aggregated silica fume and granular silica fume.

本発明は、前記のとおり、少なくとも(A)原結合材の分割工程、(B)第1の混練工程、(C)第2の混練工程、および(D)第3の混練工程を含む水硬性組成物の製造方法である。以下、本発明について、(A)原結合材の分割工程、(B)第1の混練工程、(C)第2の混練工程、および(D)第3の混練工程に分けて詳細に説明する。   As described above, the present invention comprises at least (A) a dividing step of the raw binder, (B) a first kneading step, (C) a second kneading step, and (D) a third kneading step. It is a method of producing a composition. Hereinafter, the present invention will be described in detail by dividing it into (A) raw binder dividing step, (B) first kneading step, (C) second kneading step, and (D) third kneading step. .

(A)原結合材の分割工程
凝集シリカフュームおよび粒体シリカフュームから選ばれる1種以上と、セメントとを少なくとも含む原結合材から、原結合材の40〜60質量%を含む第1分割結合材、原結合材の20〜30質量%を含む第2分割結合材、および、原結合材の20〜30質量%を含む第3分割結合材を分割する工程である。だだし、第1〜3分割結合材の分割割合の合計は100質量%である。
(A) Dividing step of raw binder First split binder containing 40 to 60% by mass of raw binder from raw binder containing at least one selected from agglomerated silica fume and granular silica fume and cement It is a process of dividing the second divided binder containing 20 to 30% by mass of the original binder, and the third divided binder containing 20 to 30% by mass of the original binder. However, the total of the division | segmentation ratio of a 1st-3rd division | segmentation binder is 100 mass%.

次に、凝集シリカフューム、粒体シリカフューム、セメント、および原結合材の組成割合、および各分割結合材の分割割合について説明する。
(1)凝集シリカフュームと粒体シリカフューム
凝集シリカフュームまたは粒体シリカフュームのBET比表面積は、通常、12〜25m/gである。該値がこの範囲を外れる前記シリカフュームは入手が困難である。なお、該BET比表面積は、好ましくは13〜20m/gである。ここで凝集シリカフュームとは、例えば、レーザー回折・散乱型粒度分布測定装置で測定した1μm以上の粒径の粒子の含有率が20質量%以上のシリカフュームをいう。なお、原結合材の原料に、凝集していない粉体シリカフュームを用いたとしても、製造後、半年以上経過すると、原結合材中のシリカフュームは凝集する場合がある。
また、粒体シリカフュームとは、JIS A 6207に記載されているシリカフュームをいう。粒体シリカフュームの嵩密度は、好ましくは0.4〜0.8g/cmである。嵩密度がこの範囲を外れると入手は困難になる。
Next, the composition ratio of agglomerated silica fume, granular silica fume, cement, and raw binder, and the division ratio of each divided binder will be described.
(1) Aggregated silica fume and granular silica fume The BET specific surface area of the aggregated silica fume or granular silica fume is usually 12 to 25 m 2 / g. The silica fume whose value falls outside this range is difficult to obtain. The BET specific surface area is preferably 13 to 20 m 2 / g. Here, the aggregated silica fume refers to, for example, silica fume having a content of particles having a particle diameter of 1 μm or more measured by a laser diffraction / scattering type particle size distribution analyzer of 20% by mass or more. In addition, even if powder silica fume which is not aggregated is used as a raw material of the raw bonding material, the silica fume in the raw bonding material may sometimes coagulate when half a year or more has passed after production.
Further, granular silica fume refers to silica fume described in JIS A 6207. The bulk density of the granular silica fume is preferably 0.4 to 0.8 g / cm 3 . If the bulk density is out of this range, it will be difficult to obtain.

(2)セメント
セメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、および低熱ポルトランドセメントから選ばれる1種以上が挙げられる。これらのセメントの中でも、水硬性組成物の流動性や作業性が高いため、好ましくは中庸熱ポルトランドセメント、または低熱ポルトランドセメントである。
(2) Cement The cement may be one or more selected from ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, and low-heat Portland cement. Among these cements, medium heat portland cement or low heat portland cement is preferable because the fluidity and workability of the hydraulic composition are high.

(3)原結合材の組成割合
原結合材の組成割合は、セメント100質量部に対し、凝集シリカフュームおよび粒体シリカフュームから選ばれる1種以上が、好ましくは10〜30質量部、より好ましくは12〜25質量部である。該値が該範囲にあれば、水硬性組成物の流動性、作業性、および強度発現性は高くなる。
原結合材は、その他に、ブレーン比表面積が2500〜10000cm/gの石灰石粉末、石英粉末、石膏粉末、フライアッシュ、石炭灰、高炉スラグ粉末、および膨張材等の混和材を含むことができる。これらの混和材の組成割合は、強度発現性を確保する観点から、セメント100質量部に対し、好ましくは50質量部以下、より好ましくは40質量部以下である。
(3) Composition ratio of raw binder One or more kinds selected from aggregated silica fume and granular silica fume are preferably 10 to 30 parts by mass, more preferably 12 with respect to 100 parts by mass of cement. 25 parts by mass. When the value is in the above range, the fluidity, workability and strength development of the hydraulic composition will be high.
The raw bonding material may additionally contain an admixture such as limestone powder having a specific surface area of 2500 to 10000 cm 2 / g, quartz powder, gypsum powder, fly ash, coal ash, blast furnace slag powder, and expansive agent, etc. . The composition ratio of these admixtures is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, with respect to 100 parts by mass of cement from the viewpoint of securing strength development.

(4)各分割結合材の分割割合
該分割割合は、第1分割結合材では原結合材の40〜60質量%であり、第2分割結合材では原結合材の20〜30質量%であり、第3分割結合材では原結合材の20〜30質量%である。だだし、第1〜第3分割結合材の分割割合の合計は100質量%である。
前記の各分割割合が、前記のそれぞれの範囲を外れると、水硬性組成物の混練時間の短縮が困難になる場合がある。
(4) Division ratio of each divided binder The division ratio is 40 to 60% by mass of the original binder in the first divided binder, and 20 to 30% by mass of the original binder in the second divided binder. The third divided binder is 20 to 30% by mass of the original binder. However, the sum of the division ratios of the first to third divided binders is 100% by mass.
When each of the division ratios is out of the respective ranges, it may be difficult to shorten the kneading time of the hydraulic composition.

(B)第1の混練工程
第1の混練工程は、第1分割結合材、細骨材、ポリカルボン酸系高性能減水剤、および水を混練して第1混練物を得る工程である。
また、本発明で用いる細骨材は、川砂、山砂、海砂、珪砂、砕砂、高炉スラグ細骨材、再生細骨材、およびこれらの混合物が挙げられる。また、細骨材の配合割合は、水硬性組成物の流動性、作業性、強度発現性、および耐久性の向上の観点から、原結合材100質量部に対して、好ましくは20〜40質量部、より好ましくは25〜35質量部である。
本発明で用いるポリカルボン酸系高性能減水剤は、アクリル酸、メタクリル酸、または無水マレイン酸等の不飽和カルボン酸モノマーを1成分として含む重合体、共重合体、またはその塩であり、ポリアルキレングリコールアクリル酸エステル、またはポリアルキレングリコールメタクリル酸エステル等が挙げられる。ポリカルボン酸系高性能減水剤の配合割合は、水硬性組成物の流動性、作業性、および強度発現性の向上の観点から、原結合材100質量部に対して固形分換算で、好ましくは0.1〜3質量部、より好ましくは0.2〜2質量部である。
さらに、本発明では、アルキルエーテルサルフェート系、ロジン系、およびアルキルホスフェート系等の空気量調整剤が使用できる。空気量調整剤の配合割合は、水硬性組成物の流動性や耐凍結融解抵抗性の向上の観点から、原結合材100質量部に対して製品の質量で、好ましくは0.1〜0.5質量部、より好ましくは0.1〜0.3質量部である。
また、本発明で用いる水は、水道水、下水処理水、および生コンの上澄水等の、水硬性組成物の強度発現性や流動性等に影響を与えないものであれば用いることができる。水の配合割合は、水硬性組成物の流動性や強度発現性の向上の観点から、原結合材100質量部に対して、好ましくは10〜20質量部、より好ましくは12〜17質量部である。
また、第1の混練工程では、全体の混練時間の短縮の観点から、15回の落下運動を省いた以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して測定した第1混練物のフロー値が、好ましくは250mm以上、より好ましくは270mm以上になるまで混練する。
(B) First kneading step The first kneading step is a step of kneading a first divided binder, a fine aggregate, a polycarboxylic acid-based high performance water reducing agent, and water to obtain a first kneaded product.
The fine aggregate used in the present invention includes river sand, mountain sand, sea sand, silica sand, crushed sand, blast furnace slag fine aggregate, regenerated fine aggregate, and mixtures thereof. In addition, the blending ratio of the fine aggregate is preferably 20 to 40 parts by mass with respect to 100 parts by mass of the raw binder from the viewpoint of improving the flowability, the workability, the strength developing property, and the durability of the hydraulic composition. Part, more preferably 25 to 35 parts by mass.
The polycarboxylic acid-based high-performance water reducing agent used in the present invention is a polymer, copolymer, or salt thereof containing, as one component, an unsaturated carboxylic acid monomer such as acrylic acid, methacrylic acid, or maleic anhydride, Alkylene glycol acrylic acid ester or polyalkylene glycol methacrylic acid ester etc. are mentioned. The blending ratio of the polycarboxylic acid-based high-performance water-reducing agent is preferably in terms of solid content with respect to 100 parts by mass of the raw binder, from the viewpoint of improvement in fluidity, workability and strength development of the hydraulic composition. 0.1 to 3 parts by mass, more preferably 0.2 to 2 parts by mass.
Furthermore, in the present invention, air amount regulators such as alkyl ether sulfate type, rosin type and alkyl phosphate type can be used. The blend ratio of the air amount modifier is preferably 0.1 to 0.2 by mass of the product with respect to 100 parts by mass of the raw binder from the viewpoint of improving the flowability and resistance to freezing and thawing of the hydraulic composition. It is 5 parts by mass, more preferably 0.1 to 0.3 parts by mass.
The water used in the present invention may be any water such as tap water, treated sewage water, and supernatant water of fresh concrete which does not affect the strength development and fluidity of the hydraulic composition. The compounding ratio of water is preferably 10 to 20 parts by mass, more preferably 12 to 17 parts by mass, with respect to 100 parts by mass of the raw binder, from the viewpoint of improving the flowability and strength development of the hydraulic composition. is there.
In addition, in the first kneading step, from the viewpoint of shortening the entire kneading time, the first measurement was performed according to JIS R 5201 “Physical test method of cement 11. flow test” except that 15 falling movements were omitted. It knead | mixes until the flow value of 1 kneaded material becomes preferably 250 mm or more, more preferably 270 mm or more.

(C)第2の混練工程
第2の混練工程は、第1混練物に第2分割結合材を添加して混練し、第2混練物を得る工程である。
また、第2の混練工程では、全体の混練時間を短縮する観点から、15回の落下運動を省いた以外はJIS R 5201に準拠して測定した第2混練物のフロー値が、好ましくは180mm以上、より好ましくは200mm以上になるまで混練する。
(C) Second kneading step The second kneading step is a step of adding a second divided binder to the first kneaded material and kneading to obtain a second kneaded material.
Further, in the second kneading step, from the viewpoint of shortening the entire kneading time, the flow value of the second kneaded material measured according to JIS R 5201 is preferably 180 mm except that 15 falling movements are omitted. The kneading is performed until the above, more preferably 200 mm or more.

(D)第3の混練工程
第3の混練工程は、第2混練物に第3分割結合材を添加して混練し、第3混練物(水硬性組成物)を得る工程である。
また、第3の混練工程では、全体の混練時間の短縮、および水硬性組成物の流動性や作業性の向上の観点から、15回の落下運動を省いた以外はJIS R 5201に準拠して測定した第3混練物のフロー値が、好ましくは250mm以上、より好ましくは260mm以上になるまで混練する。
(D) Third kneading step The third kneading step is a step of adding a third divided binder to the second kneaded product and kneading to obtain a third kneaded product (hydraulic composition).
In addition, in the third kneading step, from the viewpoint of shortening the whole kneading time, and improving the fluidity and workability of the hydraulic composition, the omission of 15 falling movements is carried out in accordance with JIS R 5201. It knead | mixes until the flow value of the measured 3rd kneaded material becomes preferably 250 mm or more, more preferably 260 mm or more.

(E)粗骨材の添加・混練工程
また、本発明は、任意の工程として、第3混練物にさらに粗骨材を添加して30秒以上混練する工程を追加することができる。この混練は、均質なコンクリートを得るためや全体の混練時間を短縮するためであり、より好ましくは40〜60秒である。ここで用いる粗骨材は、砂利、砕石、再生粗骨材、およびこれらの混合物等が挙げられる。
なお、前記の各混練工程において用いる混練機は、ホバートミキサ、オムニミキサ、パン型ミキサ、および二軸ミキサ等が挙げられる。
(E) Addition and Kneading Step of Coarse Aggregate In the present invention, as an optional step, a step of adding the coarse aggregate to the third kneaded material and kneading it for 30 seconds or more can be added. This kneading is for obtaining homogeneous concrete and for shortening the whole kneading time, and more preferably 40 to 60 seconds. The coarse aggregate used here includes gravel, crushed stone, regenerated coarse aggregate, and a mixture thereof.
Examples of kneaders used in each of the above-described kneading steps include a Hobart mixer, an omnimixer, a pan mixer, and a biaxial mixer.

以下、本発明を実施例により説明するが、本発明は当該実施例に限定されない。
1.使用材料
下記(1)〜(6)の材料を使用した。
(1)中庸熱ポルトランドセメント
密度は3.05g/cm、太平洋セメント社製である。
(2)シリカフューム
(i)凝集シリカフューム1(表1中では凝集1と略す。)
金属シリコン系シリカフューム(密度は2.25g/cm、BET比表面積は18.5m/g、1μm以上の粒子の含有率は12質量%)を、倉庫内で12月保管して凝集したシリカフュームであり、粒径が1μm以上の粒子の含有率は27質量%である。
(ii)凝集シリカフューム2(表1中では凝集2と略す。)
金属シリコン系シリカフューム(密度は2.25g/cm、BET比表面積は18.5m/g、1μm以上の粒子の含有率は12質量%)を、倉庫内で6月保管して凝集したシリカフュームであり、粒径が1μm以上の粒子の含有率は23質量%である。
(3)細骨材
静岡県掛川市産の山砂である。
(4)ポリカルボン酸系高性能減水剤
商品名はマスターグレニウムSP8HU X[登録商標]で、BASFジャパン社製である。固形分は30質量%である。
(5)空気量調整剤
商品名はマスターエア404[登録商標]で、BASFジャパン社製である。
(6)水道水
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to the examples.
1. Materials Used The following materials (1) to (6) were used.
(1) Moderate heat Portland cement density: 3.05 g / cm 3 , manufactured by Pacific Cement Co., Ltd.
(2) Silica fume (i) Aggregated silica fume 1 (abbreviated as aggregation 1 in Table 1)
Silica fume obtained by storing and collecting metal silicon silica fume (density: 2.25 g / cm 3 , BET specific surface area: 18.5 m 2 / g, content of particles 1 μm or more: 12% by mass) in a warehouse for 12 months The content of particles having a particle diameter of 1 μm or more is 27% by mass.
(Ii) Aggregated silica fume 2 (abbreviated as aggregate 2 in Table 1)
Silica fume obtained by storing and collecting metallic silicon silica fume (density: 2.25 g / cm 3 , BET specific surface area: 18.5 m 2 / g, content of particles 1 μm or more: 12% by mass) in a warehouse in June The content of particles having a particle diameter of 1 μm or more is 23% by mass.
(3) Fine aggregate It is a mountain sand from Kakegawa City, Shizuoka Prefecture.
(4) Polycarboxylic acid-based high-performance water reducing agent The trade name is Master Glenium SP8 HU X 2 (registered trademark), manufactured by BASF Japan Ltd. The solid content is 30% by mass.
(5) Air amount regulator The trade name is Master Air 404 (registered trademark) manufactured by BASF Japan Ltd.
(6) Tap water

2.水硬性組成物の製造
セメント1426g(100質量部)と、表1に示す凝集シリカフューム1(凝集1)、および凝集シリカフューム2(凝集2)のそれぞれ213g(15質量部)を混合して、原結合材1639gを作製した後、表1に示す第1〜第3の分割割合に従い前記原結合材を分割して、第1〜第3分割結合材を調製した。
2. Production of hydraulic composition 1426 g (100 parts by mass) of cement and 213 g (15 parts by mass) of aggregated silica fume 1 (aggregated 1) and aggregated silica fume 2 (aggregated 2) shown in Table 1 are mixed to obtain an original bond After producing 1639 g of the material, the raw binder was divided according to the first to third division ratios shown in Table 1 to prepare first to third divided binders.

Figure 2019081311
Figure 2019081311

(1)実施例1〜3の水硬性組成物の製造
ポリカルボン酸系高性能減水剤(固形分換算)6.9g、および空気量調節剤(製品の質量)1.64gを水道水229gに溶かして得た混練水と、表1に示す実施例1〜3の第1分割結合材と、細骨材554gとを、ホバートミキサに投入して、表1に示す第1の混練時間混練し、第1混練物(15回の落下運動を省いた以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して測定したフロー値が320〜325mm)を得た。ちなみに、前記各材料の配合割合は、原結合材100質量部に対し、細骨材が34質量部、ポリカルボン酸系高性能減水剤(固形分換算)が0.4質量部、空気量調節剤(製品の質量)が0.1質量部、水が14質量部である。
次に、ホバートミキサ中の第1混練物に、第2分割結合材を加えて、表1に示す第2の混練時間混練し、第2混練物(15回の落下運動を省いた以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して測定したフロー値が220〜230mm)を得た。
さらに、ホバートミキサ中の第2混練物に、第3分割結合材を加えて、表1に示す第3の混練時間混練し、第3混練物(実施例1〜3の水硬性組成物)を製造した。
(1) Production of hydraulic compositions of Examples 1 to 3 6.9 g of a polycarboxylic acid-based high-performance water reducing agent (in terms of solid content) and 1.64 g of an air regulator (mass of product) to 229 g of tap water The kneaded water obtained by melting, the first divided binders of Examples 1 to 3 shown in Table 1, and 554 g of fine aggregate are introduced into a Hobart mixer and kneaded for a first kneading time shown in Table 1 First mixed product (a flow value of 320 to 325 mm was measured according to JIS R 5201 "Physical test method for cement 11. flow test" except that 15 times of falling motion was omitted). Incidentally, the blending ratio of each material is 34 parts by mass of fine aggregate, 0.4 parts by mass of polycarboxylic acid-based high performance water reducing agent (in terms of solid content) with respect to 100 parts by mass of the original binder, and the air amount adjustment The agent (the mass of the product) is 0.1 parts by mass, and the water is 14 parts by mass.
Next, a second divided binder is added to the first kneaded material in the Hobart mixer, and kneading is performed for a second kneading time shown in Table 1, and the second kneaded material (JIS except that 15 drop movements are omitted) The flow value measured according to R 5201 "Physical test method of cement 11. flow test" is 220 to 230 mm).
Furthermore, a third divided binder is added to the second kneaded material in the Hobart mixer, and kneading is performed for a third kneading time shown in Table 1 to obtain a third kneaded material (hydraulic compositions of Examples 1 to 3). Manufactured.

(2)比較例1〜4の水硬性組成物の製造
ポリカルボン酸系高性能減水剤(固形分換算)6.9g、および空気量調節剤(製品の質量)1.64gを前記水229gに溶かして得た混練水と、表1に示す比較例1〜4の第1分割結合材と、細骨材554gとを、ホバートミキサに投入して、表1に示す第1の混練時間混練し、第1混練物(15回の落下運動を省いた以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して測定したフロー値が320〜330mm)を得た。ちなみに、前記各材料の配合割合は、実施例1と同じである。
次に、ホバートミキサ中の第1混練物に、第2分割結合材を加えて、表1に示す第2の混練時間混練し、第2混練物(比較例1〜4の水硬性組成物)を製造した。なお、この比較例の方法は、特許文献1に記載の水硬性組成物の調製方法と同じである。
(2) Production of hydraulic compositions of Comparative Examples 1 to 4 6.9 g of a polycarboxylic acid-based high-performance water reducing agent (in terms of solid content) and 1.64 g of an air regulator (mass of the product) The kneaded water obtained by melting, the first divided binders of Comparative Examples 1 to 4 shown in Table 1, and 554 g of fine aggregate are put into a Hobart mixer and kneaded for a first kneading time shown in Table 1 First mixed product (a flow value of 320 to 330 mm was measured in accordance with JIS R 5201 "Physical test method for cement 11. Flow test" except that 15 times of dropping motions were omitted). Incidentally, the blend ratio of each material is the same as that of the first embodiment.
Next, a second divided binder is added to the first kneaded material in the Hobart mixer, and kneading is performed for a second kneading time shown in Table 1 to obtain a second kneaded material (hydraulic compositions of Comparative Examples 1 to 4). Manufactured. In addition, the method of this comparative example is the same as the preparation method of the hydraulic composition of patent document 1.

(3)参考例の水硬性組成物の製造
ポリカルボン酸系高性能減水剤(固形分換算)6.9g、および空気量調節剤(製品の質量)1.64gを前記水229gに溶かして得た混練水と、原結合材1639gと、細骨材554gとを、ホバートミキサに投入して、表1に示す第1の混練時間混練し、参考例の水硬性組成物を製造した。ちなみに、前記各材料の配合割合は、実施例1と同じである。なお、参考例の方法は、水硬性組成物の従来の製造方法(一括混練)である。
(3) Production of hydraulic composition of Reference Example Obtained by dissolving 6.9 g of a polycarboxylic acid-based high-performance water reducing agent (in terms of solid content) and 1.64 g of an air regulator (mass of product) in 229 g of the water. The kneaded water, 1639 g of the original binder, and 554 g of the fine aggregate were charged into a Hobart mixer and kneaded for a first kneading time shown in Table 1 to produce a hydraulic composition of Reference Example. Incidentally, the blend ratio of each material is the same as that of the first embodiment. In addition, the method of a reference example is the conventional manufacturing method (batch kneading | mixing) of a hydraulic composition.

3.モルタルの流動性の測定
モルタルの15回の落下運動を略した以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して、実施例1〜3、比較例1〜4、および参考例の水硬性組成物の流動性(200mmフロー到達時間、およびフロー値)を測定した。これらの結果を表2に示す。
3. Measurement of fluidity of mortar According to JIS R 5201 "Physical test method of cement 11. flow test" except that the drop movement of mortar is abbreviated, Examples 1 to 3, Comparative Examples 1 to 4, and The fluidity (200 mm flow arrival time, and flow value) of the hydraulic composition of Reference Example was measured. The results are shown in Table 2.

Figure 2019081311
Figure 2019081311

4.測定結果
(1)全混練時間について
表1に示すように、凝集シリカフューム1を含む水硬性組成物の全混練時間は、比較例1〜3では900〜1360秒であるのに対し、実施例1、2ではそれぞれ660秒、600秒であり、比較例の約1/2〜2/3に短縮している。また、凝集シリカフューム2を含む水硬性組成物の全混練時間は、比較例4では600秒であるのに対し、実施例3では420秒であり、比較例の約2/3に短縮している。
(2)フロー到達時間について
また、表2に示すように、凝集シリカフューム1を含む水硬性組成物のフロー到達時間は、比較例1〜3では3.0〜6.6秒であるのに対し、実施例1、2ではそれぞれ3.2秒、3.1秒と比較例より短い傾向がある。また、凝集シリカフューム2を含む水硬性組成物のフロー到達時間は、比較例4では6.1秒であるのに対し、実施例3では5.4秒に短縮している。
(3)フロー値について
また、表2に示すように、凝集シリカフューム1を含む水硬性組成物のフロー値は、比較例1〜3では275〜325mmであるのに対し、実施例1、2ではそれぞれ323mm、318mmと、比較例より流動性が高い傾向にある。また、また、凝集シリカフューム2を含む水硬性組成物のフロー値は、比較例4では281mmあるのに対し、実施例3では310mmと流動性が向上している。
以上のことから、本発明の水硬性組成物の製造方法は、凝集シリカフューム等を含む水硬性組成物の混練時間を短縮することができる。

4. Measurement results (1) Total kneading time As shown in Table 1, while the total kneading time of the hydraulic composition containing the aggregated silica fume 1 is 900 to 1360 seconds in Comparative Examples 1 to 3, Example 1 And 2 for 660 seconds and 600 seconds, respectively, which is reduced to about 1/2 to 2/3 of the comparative example. Further, while the total kneading time of the hydraulic composition containing the aggregated silica fume 2 is 600 seconds in Comparative Example 4, it is 420 seconds in Example 3 and is shortened to about 2/3 of the Comparative example. .
(2) Flow reaching time Also, as shown in Table 2, while the flow reaching time of the hydraulic composition containing the aggregated silica fume 1 is 3.0 to 6.6 seconds in Comparative Examples 1 to 3. In Examples 1 and 2, there are tendencies of 3.2 seconds and 3.1 seconds, respectively, which are shorter than in the comparative example. In addition, the flow reaching time of the hydraulic composition containing the aggregated silica fume 2 is reduced to 5.4 seconds in Example 3 as compared with 6.1 seconds in Comparative Example 4.
(3) Regarding the flow value Also, as shown in Table 2, the flow value of the hydraulic composition containing the aggregated silica fume 1 is 275 to 325 mm in Comparative Examples 1 to 3, while in Examples 1 and 2 The flowability tends to be higher than that of the comparative example, which is 323 mm and 318 mm, respectively. Moreover, while the flow value of the hydraulic composition containing the aggregated silica fume 2 is 281 mm in Comparative Example 4, the flowability is improved to 310 mm in Example 3.
As mentioned above, the manufacturing method of the hydraulic composition of this invention can shorten the kneading | mixing time of the hydraulic composition containing aggregated silica fume etc.

Claims (6)

少なくとも、下記の(A)原結合材の分割工程、(B)第1の混練工程、(C)第2の混練工程、および(D)第3の混練工程を含む水硬性組成物の製造方法。
(A)凝集シリカフュームおよび粒体シリカフュームから選ばれる1種以上と、セメントとを少なくとも含む原結合材から、原結合材の40〜60質量%を含む第1分割結合材、原結合材の20〜30質量%を含む第2分割結合材、および、原結合材の20〜30質量%を含む第3分割結合材を分割する、原結合材の分割工程(だだし、第1〜第3分割結合材の分割割合の合計は100質量%である。)
(B)第1分割結合材、細骨材、ポリカルボン酸系高性能減水剤、および水を混練して第1混練物を得る、第1の混練工程
(C)第1混練物に第2分割結合材を添加して混練し、第2混練物を得る、第2の混練工程
(D)第2混練物に第3分割結合材を添加して混練し、第3混練物(水硬性組成物)を得る、第3の混練工程
A method for producing a hydraulic composition comprising at least the following steps: (A) dividing the raw binder, (B) first kneading step, (C) second kneading step, and (D) third kneading step .
(A) From the original binder comprising at least one selected from agglomerated silica fume and granular silica fume and cement, a first divided binder comprising 40 to 60% by mass of the original binder, 20 to 20 of the original binder A step of dividing the raw bonding material, wherein the second divided bonding material containing 30% by mass, and the third divided bonding material containing 20 to 30% by mass of the raw bonding material (extraction, first to third divided bonds The total of the division ratio of the material is 100% by mass.)
(B) The first kneading step (C) the first kneaded product, the first kneaded product is obtained by kneading the first divided binder, the fine aggregate, the polycarboxylic acid-based high performance water reducing agent, and the water to obtain the first kneaded product. A second binder is added to the second binder, and the second binder is added to the second binder, and the third binder is added and kneaded, to obtain a third binder (hydraulic composition). Kneading process to obtain
第1の混練工程において、細骨材の配合割合は、原結合材100質量部に対し20〜40質量部、ポリカルボン酸系高性能減水剤の配合割合は、原結合材100質量部に対し固形分換算で0.1〜3質量部、および水の配合割合は、原結合材100質量部に対し10〜20質量部である、請求項1に記載の水硬性組成物の製造方法。   In the first kneading step, the blending ratio of the fine aggregate is 20 to 40 parts by mass with respect to 100 parts by mass of the raw binder, and the blending ratio of the polycarboxylic acid-based high performance water reducing agent is 100 parts by mass with respect to the raw binder The manufacturing method of the hydraulic composition of Claim 1 which is 0.1-3 mass parts in conversion of solid content, and the compounding ratio of water is 10-20 mass parts with respect to 100 mass parts of raw bonding materials. 第1の混練工程において、15回の落下運動を省いた以外はJIS R 5201「セメントの物理試験方法 11.フロー試験」に準拠して測定した第1混練物のフロー値が250mm以上になるまで混練する、請求項1または2に記載の水硬性組成物の製造方法。   In the first kneading step, until the flow value of the first kneaded material measured according to JIS R 5201 “Physical test method for cement 11. Flow test” becomes 250 mm or more except that 15 falling movements are omitted. The manufacturing method of the hydraulic composition of Claim 1 or 2 to knead | mix. 第2の混練工程において、15回の落下運動を省いた以外はJIS R 5201に準拠して測定した第2混練物のフロー値が、180mm以上になるまで混練する、請求項1〜3のいずれか1項に記載の水硬性組成物の製造方法。   The method according to any one of claims 1 to 3, wherein, in the second kneading step, the flow value of the second kneaded material measured according to JIS R 5201 is 180 mm or more, except that 15 falling movements are omitted. The manufacturing method of the hydraulic composition of any one of-. 第3の混練工程において、15回の落下運動を省いた以外はJIS R 5201に準拠して測定した第3混練物のフロー値が250mm以上になるまで混練する、請求項1〜4のいずれか1項に記載の水硬性組成物の製造方法。   The method according to any one of claims 1 to 4, wherein, in the third kneading step, kneading is performed until the flow value of the third kneaded material measured according to JIS R 5201 becomes 250 mm or more except that 15 times of falling motion is omitted. The manufacturing method of the hydraulic composition of 1 item. 第3混練物に、さらに粗骨材を添加して30秒以上混練する、請求項1〜5のいずれか1項に記載の水硬性組成物の製造方法。   The method for producing a hydraulic composition according to any one of claims 1 to 5, wherein a coarse aggregate is further added to the third kneaded product and the mixture is kneaded for 30 seconds or more.
JP2017210151A 2017-10-31 2017-10-31 Method for producing hydraulic composition Active JP7046563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210151A JP7046563B2 (en) 2017-10-31 2017-10-31 Method for producing hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210151A JP7046563B2 (en) 2017-10-31 2017-10-31 Method for producing hydraulic composition

Publications (2)

Publication Number Publication Date
JP2019081311A true JP2019081311A (en) 2019-05-30
JP7046563B2 JP7046563B2 (en) 2022-04-04

Family

ID=66669960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210151A Active JP7046563B2 (en) 2017-10-31 2017-10-31 Method for producing hydraulic composition

Country Status (1)

Country Link
JP (1) JP7046563B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189808A (en) * 1984-10-11 1986-05-08 日工株式会社 Manufacture of cured-body kneading
JPH03146448A (en) * 1989-10-31 1991-06-21 Nippon Cement Co Ltd Production of hydraulic hardened body
JPH0891885A (en) * 1994-09-26 1996-04-09 Mitsubishi Materials Corp Production of cement composition
JP2002248615A (en) * 2001-02-23 2002-09-03 Yoshitaka Ikeda Method for manufacture of concrete wherein ratio of entrained air is raised
JP2003191224A (en) * 2001-12-25 2003-07-08 Ohbayashi Corp Method and apparatus for producing ready-mixed concrete
JP2003276019A (en) * 2002-03-25 2003-09-30 Taiheiyo Cement Corp Method for preparing hydraulic composition
JP2009149475A (en) * 2007-12-21 2009-07-09 Taiheiyo Cement Corp Method for producing cement premix composition
JP2010149402A (en) * 2008-12-25 2010-07-08 Takenaka Komuten Co Ltd Manufacturing method of concrete composition and concrete molding
JP2015226985A (en) * 2014-05-30 2015-12-17 太平洋セメント株式会社 Cement composition processing method
JP2017087485A (en) * 2015-11-05 2017-05-25 鹿島建設株式会社 Manufacturing method for fiber-reinforced cement material
JP2018087107A (en) * 2016-11-29 2018-06-07 太平洋セメント株式会社 Manufacturing method of premix cement composition
JP2018087108A (en) * 2016-11-29 2018-06-07 太平洋セメント株式会社 Manufacturing method of premix cement composition
JP2018165021A (en) * 2017-03-28 2018-10-25 太平洋セメント株式会社 Method for producing concrete

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189808A (en) * 1984-10-11 1986-05-08 日工株式会社 Manufacture of cured-body kneading
JPH03146448A (en) * 1989-10-31 1991-06-21 Nippon Cement Co Ltd Production of hydraulic hardened body
JPH0891885A (en) * 1994-09-26 1996-04-09 Mitsubishi Materials Corp Production of cement composition
JP2002248615A (en) * 2001-02-23 2002-09-03 Yoshitaka Ikeda Method for manufacture of concrete wherein ratio of entrained air is raised
JP2003191224A (en) * 2001-12-25 2003-07-08 Ohbayashi Corp Method and apparatus for producing ready-mixed concrete
JP2003276019A (en) * 2002-03-25 2003-09-30 Taiheiyo Cement Corp Method for preparing hydraulic composition
JP2009149475A (en) * 2007-12-21 2009-07-09 Taiheiyo Cement Corp Method for producing cement premix composition
JP2010149402A (en) * 2008-12-25 2010-07-08 Takenaka Komuten Co Ltd Manufacturing method of concrete composition and concrete molding
JP2015226985A (en) * 2014-05-30 2015-12-17 太平洋セメント株式会社 Cement composition processing method
JP2017087485A (en) * 2015-11-05 2017-05-25 鹿島建設株式会社 Manufacturing method for fiber-reinforced cement material
JP2018087107A (en) * 2016-11-29 2018-06-07 太平洋セメント株式会社 Manufacturing method of premix cement composition
JP2018087108A (en) * 2016-11-29 2018-06-07 太平洋セメント株式会社 Manufacturing method of premix cement composition
JP2018165021A (en) * 2017-03-28 2018-10-25 太平洋セメント株式会社 Method for producing concrete

Also Published As

Publication number Publication date
JP7046563B2 (en) 2022-04-04

Similar Documents

Publication Publication Date Title
TWI409240B (en) Reinforcing Bar for Reinforcement and Construction Method for Reinforcing Bar with Reinforcement
JP2006298679A (en) Ultra-high strength fiber-reinforced cement composition, ultra-high strength fiber-reinforced mortar or concrete, and ultra-high strength cement admixture
JP7341366B2 (en) Cement composition and its manufacturing method
WO2008138170A1 (en) Dry powder mortar made from steel slag and a method for producing it
JP5588613B2 (en) Cement mortar
JP2010149402A (en) Manufacturing method of concrete composition and concrete molding
JP6826789B2 (en) Manufacturing method of premix cement composition
TW201934518A (en) High strength grout composition and high strength grout mortar using same
JP6916509B2 (en) Manufacturing method of premix cement composition
JP2009149475A (en) Method for producing cement premix composition
JP7369849B2 (en) cement composition
JP5650925B2 (en) High-strength cement composition and hardened cementitious hardened body
JP2007326728A (en) Concrete production method and concrete
JP2005350337A (en) Cement composition
JP2008156168A (en) Ultrahigh-strength concrete product
JP3558973B2 (en) Long-term preservable concrete compounding composition having thixotropic properties, method for producing the same, and method for producing concrete using the same
JP2000128616A (en) Production of cement composition
JP2019081311A (en) Method for producing hydraulic composition
JP2002037651A (en) Admixture and cement composition for heavy weight grout mortar and heavy weight grout mortar
JP2015124097A (en) Concrete composition and method for production thereof
JP2020001943A (en) Blast furnace slag powder, cement composition and mortar composition comprising blast furnace slag powder, and method of estimating fluidity of cement composition
JP5605235B2 (en) Concrete composition and concrete molded article using the composition
JP5284820B2 (en) Cement admixture and cement binder
JP4994080B2 (en) Cement composition and method for producing the same
JP2007031215A (en) Fine powder for concrete composition and fresh concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220225

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7046563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150