JP2019080362A - 受信装置、受信方法、送信装置および送信方法 - Google Patents

受信装置、受信方法、送信装置および送信方法 Download PDF

Info

Publication number
JP2019080362A
JP2019080362A JP2019031417A JP2019031417A JP2019080362A JP 2019080362 A JP2019080362 A JP 2019080362A JP 2019031417 A JP2019031417 A JP 2019031417A JP 2019031417 A JP2019031417 A JP 2019031417A JP 2019080362 A JP2019080362 A JP 2019080362A
Authority
JP
Japan
Prior art keywords
image data
picture
decoding
encoded image
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019031417A
Other languages
English (en)
Other versions
JP6617845B2 (ja
Inventor
塚越 郁夫
Ikuo Tsukagoshi
郁夫 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2019080362A publication Critical patent/JP2019080362A/ja
Application granted granted Critical
Publication of JP6617845B2 publication Critical patent/JP6617845B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/31Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the temporal domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/36Scalability techniques involving formatting the layers as a function of picture distortion after decoding, e.g. signal-to-noise [SNR] scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234327Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into layers, e.g. base layer and one or more enhancement layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234381Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by altering the temporal resolution, e.g. decreasing the frame rate by frame skipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/633Control signals issued by server directed to the network components or client
    • H04N21/6332Control signals issued by server directed to the network components or client directed to client
    • H04N21/6336Control signals issued by server directed to the network components or client directed to client directed to decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/845Structuring of content, e.g. decomposing content into time segments
    • H04N21/8451Structuring of content, e.g. decomposing content into time segments using Advanced Video Coding [AVC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • H04N21/854Content authoring
    • H04N21/85406Content authoring involving a specific file format, e.g. MP4 format

Abstract

【課題】受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能とする。【解決手段】動画像データを構成する各ピクチャの画像データを複数の階層に分類し、この分類された各階層のピクチャの画像データを符号化し、この符号化された各階層のピクチャの画像データを持つビデオストリームを生成する。このように生成されたビデオストリームを含む所定フォーマットのコンテナを送信する。所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、この符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報を挿入する。【選択図】図8

Description

本技術は、受信装置、受信方法、送信装置および送信方法に関する。
圧縮動画を、放送、ネット等でサービスする際、受信機のデコード能力によって再生可能なフレーム周波数の上限が制限される。従って、サービス側は普及している受信機の再生能力を考慮して、低フレーム周波数のサービスのみに制限したり、高低複数のフレーム周波数のサービスを同時提供したりする必要がある。
受信機は、高フレーム周波数のサービスに対応するには、高コストとなり、早期普及の阻害要因となる。初期に低フレーム周波数のサービス専用の安価な受信機のみ普及していて、将来サービス側が高フレーム周波数のサービスを開始する場合、新たな受信機が無いと全く視聴不可能であり、新規サービスの普及の阻害要因となる。
例えば、H.265/HEVC(High Efficiency Video Coding)において、動画像データを構成する各ピクチャの画像データを階層符号化することによる時間方向スケーラビリティが提案されている(非特許文献1参照)。受信側では、NAL(Network Abstraction Layer)ユニットのヘッダに挿入されているテンポラルID(temporal_id)に基づき、各ピクチャの階層を識別でき、デコード能力に対応した階層までの選択的なデコードが可能となる。
Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand, "Overview of the High Efficiency Video Coding (HEVC) Standard" IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECNOROGY, VOL. 22, NO. 12, pp. 1649-1668, DECEMBER 2012
本技術の目的は、受信側がハイフレームレート(HFR:High flame rate)に非対応、対応のいずれであっても良好に再生可能とすることにある。
本技術の概念は、
動画像データを構成する各ピクチャの画像データを複数の階層に分類し、該分類された各階層のピクチャの画像データを符号化し、該符号化された各階層のピクチャの画像データを持つビデオストリームを生成する画像符号化部と、
上記ビデオストリームを含む所定フォーマットのコンテナを送信する送信部と、
所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報を挿入する補正情報挿入部を備える
送信装置にある。
本技術において、画像符号化部により、動画像データを構成する各ピクチャの画像データが符号化されてビデオストリームが生成される。この場合、動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化される。送信部により、このように生成されたビデオストリームを含む所定フォーマットのコンテナが送信される。例えば、コンテナは、デジタル放送規格で採用されているトランスポートストリーム(MPEG−2 TS)であってもよい。また、例えば、コンテナは、インターネットの配信などで用いられるMP4、あるいはそれ以外のフォーマットのコンテナであってもよい。
補正情報挿入部により、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、この符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入される。例えば、コンテナは、トランスポートストリームであり、補正情報挿入部は、時刻補正情報をPESパケットのエクステンションフィールドに挿入する、ようにされてもよい。
例えば、画像符号化部は、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化し、時刻補正情報は、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である、ようにされてもよい。
また、例えば、画像符号化部は、所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化し、時刻補正情報は、所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である、ようにされてもよい。
このように本技術においては、符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されて送信されるものである。そのため、受信側では、所定階層以下の階層の各ピクチャの符号化画像データのみをデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、この時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正できる。したがって、受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。
なお、本技術において、例えば、動画像データを構成する各ピクチャによるフレームレートを第1のフレームレートとし、所定階層以下の階層の各ピクチャによるフレームレートを第2のフレームレートとするとき、第2のフレームレートは第1のフレームレートの1/2倍である、ようにされてもよい。この場合、例えば、第1のフレームレートが120Hzであるとき、第2のフレームレートは60Hzとなる。
また、本技術において、例えば、画像符号化部は、複数の階層を2以上の所定数の階層組に分割し、分割された各階層組のピクチャの符号化画像データを持つ所定数のビデオストリームを生成し、所定階層以下の階層と、この所定階層より上の階層とは、互いに異なる階層組に属する、ようにされてもよい。この場合、受信側では、所定階層以下の階層の各ピクチャの符号化画像データの抽出をビデオストリームのフィルタリングで行うことが可能となる。
また、本技術において、例えば、時刻補正情報には、この時刻補正情報が第1のタイプであるか第2のタイプであるかを識別するためのタイプ情報が付加されており、第1のタイプは、ビデオストリームが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報が、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報であることを示し、第2のタイプは、ビデオストリームが、所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報が、所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報であることを示す、ようにされてもよい。
このように時刻補正情報にタイプ情報が付加されていることで、受信側では、時刻補正情報のタイプが第1のタイプであるか第2のタイプであるかを正確に把握可能となり、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正を適切に行うことが可能となる。
例えば、第1のタイプであれば、受信側では、所定階層以下の階層の各ピクチャの符号化画像データのみをデコードする際に、時刻補正情報を用いて所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正が行われる。これにより、この所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる。
また、第2のタイプであれば、受信側では、全ての階層の各ピクチャの符号化画像データをデコードする際に、時刻補正情報を用いて所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正が行われる。これにより、この全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる。
また、本技術において、例えば、コンテナのレイヤに、符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに、時刻補正情報が挿入されていることを識別するための識別情報を挿入する識別情報挿入部をさらに備える、ようにされてもよい。例えば、コンテナはトランスポートストリームであり、識別情報挿入部は、識別情報を、プログラムマップテーブルの配下にビデオストリームに対応して配置されたビデオエレメンタリストリームループの中にデスクリプタとして挿入する、ようにされてもよい。この場合、受信側においては、符号化画像データ、あるいはこの符号化画像データをコンテナするパケットを処理することなく、この識別情報に基づいて、時刻補正情報が挿入されていることを識別可能となる。
また、本技術の他の概念は、
動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化されることで得られた各階層のピクチャの符号化画像データを持つビデオストリームを受信する受信部と、
上記ビデオストリームを処理する処理部を備え、
上記ビデオストリームが持つ上記各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されている
受信装置にある。
本技術において、受信部により、ビデオストリームが受信される。このビデオストリームは、動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化されることで得られた各ピクチャの符号化画像データを持つビデオストリームを持っている。このビデオストリームが持つ各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、この符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されている。そして、処理部により、このビデオストリームが処理される。
例えば、ビデオストリームは、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報は、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である、ようにされていてもよい。
また、例えば、ビデオストリームは、所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報は、所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である、ようにされてもよい。
また、本技術の他の概念は、
動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化され、該符号化されて得られた各階層のピクチャの符号化画像データを持つビデオストリームを含む所定フォーマットのコンテナを受信する受信部と、
上記ビデオストリームからデコード能力に応じた階層のピクチャの符号化画像データを選択的にバッファに取り込み、該バッファに取り込まれた各ピクチャの符号化画像データをデコードして画像データを得る画像復号処理部を備え、
上記ビデオストリームが持つ上記各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されており、
上記画像復号処理部は、
上記所定階層以下の階層の各ピクチャの符号化画像データのみデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、上記時刻補正情報を用いて、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する
受信装置である。
本技術において、受信部により、所定フォーマットのコンテナが受信される。このコンテナには、動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化されることで得られた各ピクチャの符号化画像データを持つビデオストリームが含まれている。画像復号処理部により、ビデオストリームからデコード能力に応じた階層のピクチャの符号化画像データが選択的にバッファに取り込まれ、このバッファに取り込まれた各ピクチャの符号化画像データがデコードされて画像データが得られる。
例えば、画像復号処理部は、バッファに取り込む所定階層以下の階層あるいは全ての階層の各ピクチャの符号化画像データが複数のビデオストリームに含まれている場合、各ピクチャの符号化画像データをデコードタイミング情報に基づいてデコード時刻の順に1つのストリームに結合してバッファに取り込む、ようにされてもよい。
ビデオストリームが持つ各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、この符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されている。画像復号処理部では、所定階層以下の階層の各ピクチャの符号化画像データのみデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻が補正される。
例えば、ビデオストリームが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報が、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報であり、画像復号処理部は、所定階層以下の階層の各ピクチャの符号化画像データのみデコードする場合に、時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する、ようにされてもよい。
また、例えば、ビデオストリームが、所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報が、所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報であり、画像復号処理部は、全ての階層の各ピクチャの符号化画像データをデコードする場合に、時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する、ようにされてもよい。
このように本技術においては、所定階層以下の階層の各ピクチャの符号化画像データのみデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、符号化画像データおよび/またはこの符号化画像データをコンテナするパケットに挿入されている時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正するものである。そのため、ハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。
なお、本技術において、例えば、時刻補正情報には、この時刻補正情報が第1のタイプであるか第2のタイプであるかを識別するタイプ情報が付加されており、第1のタイプは、ビデオストリームが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報が、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報であることを示し、第2のタイプは、ビデオストリームが、所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、時刻補正情報が、所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報であることを示し、画像復号処理部は、時刻補正情報に付加されているタイプ情報に基づき、所定階層以下の階層の各ピクチャの符号化画像データのみデコードする場合に時刻補正情報を用いたデコード時刻の補正を行うか、全ての階層の各ピクチャの符号化画像データをデコードする場合に時刻補正情報を用いたデコード時刻の補正を行うかを切り替える、ようにされてもよい。
本技術によれば、受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
実施の形態としての送受信システムの構成例を示すブロック図である。 送信装置の構成例を示すブロック図である。 エンコーダで行われる階層符号化の一例を示す図である。 NALユニットヘッダの構造例およびその構造例における主要なパラメータの内容を示す図である。 HEVCによる各ピクチャの符号化画像データの構成を説明するための図である。 ベースストリーム(Stream_0)と、エンハンスストリーム(Stream_1)の2つのビデオストリームを生成する場合における、各ピクチャのデコードタイミングの一例を示す図である。 ベースストリーム(Stream_0)の1つのビデオストリームを生成する場合における、各ピクチャのデコードタイミングの一例を示す図である。 「第1の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される第1のタイプの補正情報S(i)を示す図である。 ベースストリーム(Stream_0)と、エンハンスストリーム(Stream_1)の2つのビデオストリームを生成する場合における、各ピクチャのデコードタイミングの一例を示す図である。 「第2の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される第2のタイプの補正情報S(i)を示す図である。 タイミング・アジャストメント SEIを挿入するためのインタフェースの構造例およびタイミング・アジャストメント・インフォメーションの構造例を示す図である。 タイミング・アジャストメント・インフォメーションの構造例における主要な情報の内容を示す図である。 エンコーダの構成例を示すブロック図である。 エンコーダの処理フローの一例を示す図である。 PESエクステンション・フィールド・データの構造例を示す図である。 PESエクステンション・フィールド・データの構造例における主要な情報の内容を示す図である。 テンポラル・エクステンション・デスクリプタの構造例を示す図である。 テンポラル・エクステンション・デスクリプタの構造例における主要な情報の内容を示す図である。 HEVCデスクリプタの構造例を示す図である。 マルチプレクサの構成例を示すブロック図である。 マルチプレクサの処理フローの一例を示す図である。 2ストリーム配信におけるトランスポートストリームTSの構成例を示す図である。 1ストリーム配信におけるトランスポートストリームTSの構成例を示す図である。 受信装置の構成例を示すブロック図である。 ビデオストリームに「第1の符号化」が施されている場合における、デマルチプレクサ(システム解析部)の機能構成の一例を示す図である。 ビデオストリームに「第2の符号化」が施されている場合における、デマルチプレクサ(システム解析部)の機能構成の一例を示す図である。 デマルチプレクサの処理フローの一例を示す図である。 デコーダの構成例を示すブロック図である。 ポスト処理部の構成例を示す図である。 デコーダ、ポスト処理部の処理フローの一例を示す図である。 エンコーダで行われる階層符号化の他の一例を示す図である。 「第1の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される第1のタイプの補正情報S(i)を示す図である。 「第2の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される第2のタイプの補正情報S(i)を示す図である。
以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.変形例
<1.実施の形態>
[送受信システム]
図1は、実施の形態としての送受信システム10の構成例を示している。この送受信システム10は、送信装置100と、受信装置200とを有する構成となっている。
送信装置100は、コンテナとしてのトランスポートストリームTSを放送波に載せて送信する。このトランスポートストリームTSには、動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化されることで得られた各ピクチャの符号化画像データを持つビデオストリームが含まれる。この場合、例えば、H.264/AVC、H.265/HEVCなどの符号化が施され、被参照ピクチャが自己階層および/または自己階層よりも低い階層に所属するように符号化される。
ここで、トランスポートストリームTSには、単数あるいは複数のビデオストリームが含まれる。複数のビデオストリームが含まれる場合、複数の階層が2以上の所定数の階層組に分割され、分割された各階層組のピクチャの符号化画像データを持つ所定数のビデオストリームが生成される。この場合、例えば、複数の階層を所定数の階層組に分割する際、最下位の階層組に複数の階層を含み、この最下位の階層組より上位に位置する階層組には1つの階層を含むようにされる。このような分割により、受信側では、例えば、最下位の階層組に含まる複数の階層のピクチャの符号化画像データを処理可能なデコード能力がある場合、この最下位の階層組のピクチャの符号化画像データを持つビデオストリームだけを選択してバッファに取り込んでデコード処理を行うことが可能となる。
各階層のピクチャの符号化画像データに、ピクチャ毎に、所属階層を識別するための階層識別情報が付加される。この実施の形態においては、各ピクチャのNALユニット(nal_unit)のヘッダ部分に、階層識別情報(temporal_id)を意味する“nuh_temporal_id_plus1”)が配置される。このように階層識別情報が付加されることで、受信側では、NALユニットのレイヤにおいて各ピクチャの階層識別が可能となり、所定階層以下の階層の符号化画像データを選択的に取り出してデコード処理を行うことができる。
この実施の形態において、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、この符号化画像データと、この符号化画像データをコンテナするPESパケットに、デコード時刻を補正するための時刻補正情報が挿入される。この時刻補正情報により、受信側では、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正でき、受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。なお、この時刻補正情報を、符号化画像データにのみ、あるいはPESパケットにのみ挿入することも考えられる。
この時刻補正情報には、第1のタイプと、第2のタイプがある。第1のタイプの時刻補正情報は、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合に、適用される。この場合、所定階層以下の階層の各ピクチャの符号化画像データと、この所定階層より上の階層の各ピクチャの符号化画像データは、互いに異なるビデオストリームに含まれていてもよく、あるいは、同一のビデオストリームに含まれていてもよい。つまり、この場合には、複数のビデオストリーム構成だけでなく、単一のビデオストリーム構成でも可能である。この第1のタイプの時刻補正情報は、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である。
第2のタイプの時刻補正情報は、所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合に、適用される。この場合、所定階層以下の階層の各ピクチャの符号化画像データと、この所定階層より上の階層の各ピクチャの符号化画像データは、互いに異なるビデオストリームに含まれている必要がある。つまり、この場合は、複数のビデオストリーム構成でのみ可能である。この第1のタイプの時刻補正情報は、所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である。
この実施の形態において、上述の時刻補正情報には、その時刻補正情報が、第1のタイプであるか第2のタイプであるかを識別するタイプ識別情報が付加される。この識別情報により、受信側では、時刻補正情報のタイプが第1のタイプであるか第2のタイプであるかを正確に把握可能となり、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正を適切に行うことが可能となる。なお、このタイプ識別情報の付加は、時刻補正情報のタイプが何らかの別の手段で与えられる場合には、必ずしも必要なものではない。
また、この実施の形態において、トランスポートストリームTSのレイヤに、符号化画像データやPESパケットに、上述の時刻補正情報が挿入されているか否かを識別するための識別情報が挿入される。この構成情報は、例えば、プログラムマップテーブルの配下にビデオストリームにそれぞれ対応して配置されたビデオエレメンタリストリームループの中にデスクリプタとして挿入される。この識別情報により、受信側では、符号化画像データをデコード処理することなく、符号化画像データやPESパケットに時刻補正情報が付加されているか否かを容易に識別可能となる。
受信装置200は、送信装置100から放送波に載せて送られてくる上述のトランスポートストリームTSを受信する。受信装置200は、このトランスポートストリームTSに含まれるビデオストリームからデコード能力に応じて選択された所定階層以下の階層のピクチャの符号化画像データを選択的にデコードし、デコードされて得られた各ピクチャの画像データをバッファ(非圧縮データバッファ)に取り込む。そして、受信装置200は、このバッファから各ピクチャの画像データを所定のタイミングで読み出して出力し、画像再生を行う。
上述したように、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、この符号化画像データと、この符号化画像データをコンテナするPESパケットに、デコード時刻を補正するための時刻補正情報が挿入されている。この時刻補正情報により、所定階層以下の階層の各ピクチャの符号化画像データのみをデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、この時刻補正情報が用いられ、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻が補正される。そのため、受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。
上述したように、時刻補正情報にはタイプ情報が付加されている。そのため、時刻補正情報のタイプが第1のタイプであるか第2のタイプであるかが正確に把握され、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正が適切に行われる。すなわち、第1のタイプであるときは、所定階層以下の階層の各ピクチャの符号化画像データのみをデコードする際に、時刻補正情報を用いて所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正が行われ、所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる。また、例えば、第2のタイプであるときは、全ての階層の各ピクチャの符号化画像データをデコードする際に、時刻補正情報を用いて所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻の補正が行われ、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる。
「送信装置の構成」
図2は、送信装置100の構成例を示している。この送信装置100は、CPU(Central Processing Unit)101と、エンコーダ102と、圧縮データバッファ(cpb:coded picture buffer)103と、マルチプレクサ104と、送信部105を有している。CPU101は、制御部であり、送信装置100の各部の動作を制御する。
エンコーダ102は、非圧縮の動画像データを入力して、階層符号化を行う。エンコーダ102は、この動画像データを構成する各ピクチャの画像データを複数の階層に分類する。そして、エンコーダ102は、この分類された各階層のピクチャの画像データを符号化し、各階層のピクチャの符号化画像データを持つビデオストリームを生成する。エンコーダ102は、例えば、H.264/AVC、H.265/HEVCなどの符号化を行う。この際、エンコーダ102は、参照するピクチャ(被参照ピクチャ)が、自己階層および/または自己階層よりも下位の階層に所属するように、符号化する。
図3は、エンコーダ102で行われる階層符号化の一例を示している。この例は、0から3までの4階層に分類され、各階層のピクチャの画像データに対して符号化が施された例である。縦軸は階層を示している。階層0から3のピクチャの符号化画像データを構成するNALユニット(nal_unit)のヘッダ部分に配置されるtemporal_id(階層識別情報)として、それぞれ、0から3が設定される。一方、横軸は表示順(POC:picture order of composition)を示し、左側は表示時刻が前で、右側は表示時刻が後になる。
図4(a)は、NALユニットヘッダの構造例(Syntax)を示し、図4(b)は、その構造例における主要なパラメータの内容(Semantics)を示している。「Forbidden_zero_bit」の1ビットフィールドは、0が必須である。「Nal_unit_type」の6ビットフィールドは、NALユニットタイプを示す。「Nuh_layer_id」の6ビットフィールドは、本記載中は0を前提とする。「Nuh_temporal_id_plus1」の3ビットフィールドは、temporal_idを示し、1を加えた値(1〜7)をとる。
図3に戻って、矩形枠のそれぞれがピクチャを示し、数字は、符号化されているピクチャの順、つまりエンコード順(受信側ではデコード順)を示している。図3の例の場合、「2」から「9」の8個のピクチャによりサブ・ピクチャグループ(Sub group of pictures)が構成されており、「2」はそのサブ・ピクチャグループの先頭のピクチャとなる。「1」は前のサブ・ピクチャグループのピクチャである。このサブ・ピクチャグループがいくつか集まってGOP(Group Of Pictures)となる。
GOPの先頭ピクチャの符号化画像データは、図5に示すように、AUD、VPS、SPS、PPS、PSEI、SLICE、SSEI、EOSのNALユニットにより構成される。一方、GOPの先頭ピクチャ以外のピクチャは、AUD、PPS、PSEI、SLICE、SSEI、EOSのNALユニットにより構成される。VPSはSPSと共に、シーケンス(GOP)に一度、PPSは毎ピクチャで伝送可能とされている。
図3に戻って、実線矢印は、符号化におけるピクチャの参照関係を示している。例えば、「2」のピクチャは、Pピクチャであり、「1」のピクチャを参照して符号化される。また、「3」のピクチャは、Bピクチャであり、「1」、「2」のピクチャを参照して符号化される。同様に、その他のピクチャは、表示順で近くのピクチャを参照して符号化される。なお、最上位の階層のピクチャは、他のピクチャからの参照がない。
エンコーダ102は、単数あるいは複数のビデオストリームを生成する。単数のビデオストリームを生成する場合、エンコーダ102は、この単数のビデオストリームに、全ての階層の各ピクチャの符号化画像データを含める。一方、複数のビデオストリームを生成する場合、エンコーダ102は、複数の階層を2以上の所定数の階層組に分割し、各階層組のピクチャの符号化画像データをそれぞれ持つ所定数のビデオストリームを生成する。
例えば、図3の階層符号化の例において、エンコーダ102は、破線で区切るように、階層0から2を最下位の階層組とし、階層3をその上位に位置する階層組として、2つの階層組に分割する。この場合、エンコーダ102は、各階層組のピクチャの符号化画像データをそれぞれ持つ2つのビデオストリーム(符号化ストリーム)を生成する。例えば、図3の階層符号化の例において、全ての階層、つまり階層0から3の各ピクチャによるフレームレートは120Hzであり、階層0から2の各ピクチャによるフレームレートは60Hzである。
この場合、最下位の階層組のピクチャの符号化画像データを持つビデオストリームはベースストリームとされ、そのストリームタイプは“0x24”とされる。また、この最下位の階層組より上位に位置する階層組のピクチャの符号化画像データを含むビデオストリームはエンハンスストリームとされ、そのストリームタイプは、新規定義する“0x25”とされる。
なお、エンハンスストリームが複数存在する場合、全てのエンハンスストリームのストリームタイプを“0x25”とするのではなく、各エンハンスストリームの識別が可能となるように、ストリームタイプを新規定義することも考えられる。例えば、エンハンスストリームが2つある場合、第1のエンハンスストリームのストリームタイプは“0x25”とされ、第2のエンハンスストリームのストリームタイプは“0x26”とされる。
このストリームタイプは、所定数のビデオストリームのそれぞれが、ベースストリームであるかエンハンスストリームであるかを識別するための識別情報を構成する。このストリームタイプは、トランスポートストリームTSのレイヤに挿入される。すなわち、このストリームタイプは、プログラムマップテーブル(PMT:Program Map Table)の配下に所定数のビデオストリームにそれぞれ対応して配置されたビデオエレメンタリストリームループ(Video ES loop)の中に挿入される。
エンコーダ102は、各ピクチャの符号化画像データのデコードタイミングに関係して、「第1の符号化」あるいは「第2の符号化」を行う。以下、それぞれの符号化について説明する。
「第1の符号化」
エンコーダ102は、「第1の符号化」では、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化する。そして、この場合、エンコーダ102は、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、デコード時刻を補正するための時刻補正情報を挿入する。
この時刻補正情報は、第1のタイプの時刻補正情報であり、この所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である。この「第1の符号化」は、エンコーダ102が、単数のビデオストリームを生成する場合にも、複数のビデオストリームを生成する場合のいずれにも適用可能である。
図6は、図3の階層符号化の例において、ベースストリーム(Stream_0)と、エンハンスストリーム(Stream_1)の2つのビデオストリームを生成する場合における、各ピクチャのデコードタイミングの一例を示している。ここで、ベースストリーム(Stream_0)には、所定階層以下の階層、ここでは階層0から2の各ピクチャの符号化画像データが含まれている。また、エンハンスストリーム(Stream_1)には、所定階層の上の階層、ここでは階層3の各ピクチャの符号化画像データが含まれている。
この場合、図示のように、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されている。そして、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データのそれぞれに対応して、デコード時刻を補正するための時刻補正情報S(i)が挿入されている。ここで、「i」は、1/120秒単位のデコード時刻の補正値を示している。この時刻補正情報S(i)は、例えば、新規定義するタイミング・アジャストメント SEI(Timing_adjustment SEI)に挿入される。
この場合、受信側では、例えば、HFR非対応の60Pデコーダ(HFR対応の120Pデコーダで60Pモードの場合も含む)で表示する場合、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データが選択的にバッファに取り込まれ、時刻補正情報S(i)により等間隔(1/60秒)となるように補正されたデコード間隔(破線枠のアクセスユニット(AU)参照)で順次デコードされる。
また、この場合、受信側では、例えば、HFR対応の120Pデコーダで表示する場合、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャと、エンハンスストリーム(Stream_1)に含まれる階層3の各ピクチャとがデコード順で1つのストリームに結合されてバッファに取り込まれ、等間隔(1/120秒)のデコード間隔で順次デコードされる。
図7は、図3の階層符号化の例において、ベースストリーム(Stream_0)の1つのビデオストリームを生成する場合における、各ピクチャのデコードタイミングの一例を示している。ここで、ベースストリーム(Stream_0)には、全ての階層、ここでは階層0から3の各ピクチャの符号化画像データが含まれている。
この場合、図示のように、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されている。そして、図6の例と同様に、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データのそれぞれに対応して、デコード時刻を補正するための時刻補正情報S(i)が挿入されている。
この場合、受信側では、例えば、HFR非対応の60Pデコーダ(HFR対応の120Pデコーダで60Pモードの場合も含む)で表示する場合、ベースストリーム(Stream_0)に含まれる階層0から3のうち、階層0から2の各ピクチャの符号化画像データが選択的にバッファに取り込まれ、時刻補正情報S(i)により等間隔(1/60秒)となるように補正されたデコード間隔(破線枠のアクセスユニット(AU)参照)で順次デコードされる。
また、この場合、受信側では、例えば、HFR対応の120Pデコーダで表示する場合、ベースストリーム(Stream_0)に含まれる階層0から3の各ピクチャがバッファに取り込まれ、等間隔(1/120秒)のデコード間隔で順次デコードされる。
図8は、図3の階層符号化の例において、「第1の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される補正情報S(i)を示している。
フル時間解像度の階層0から3のうち、60pデコード向けに、1/2時間解像度部分である階層0から2の各ピクチャの符号化画像データのそれぞれに対応して時刻補正情報S(i)が挿入される。この場合、「2」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「3」のアクセスユニット(ピクチャ)に対する補正値iは“1”とされ、「4」のアクセスユニット(ピクチャ)に対する補正値iは“2”とされ、さらに「7」のアクセスユニット(ピクチャ)に対する補正値iは“1”とされる。以降の各sub GOP(Group Of Pictures)では、同様の繰り返しとなる。
そして、受信側では、60pデコーダでの表示にあっては、1/2時間解像度部分である階層0から2の各ピクチャの符号化画像データがバッファに取り込まれてデコードされる。その際に、破線枠のアクセスユニット(AU)で示すように、各ピクチャの符号化画像データのデコード時刻が、時刻補正情報S(i)に基づいて、等間隔(1/60秒)となるように補正される。また、受信側では、120pデコーダでの表示にあっては、フル時間解像度の0から3の各ピクチャの符号化画像データがバッファに取り込まれて、当初のデコード時刻により等間隔(1/120秒)でデコードされる。
「第2の符号化」
エンコーダ102は、「第2の符号化」では、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化する。また、エンコーダ102は、「第2の符号化」では、この所定階層の上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合と同じタイミングとなるように符号化する。
そして、この場合、「第1の符号化」と同様に、エンコーダ102は、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、デコード時刻を補正するための時刻補正情報を挿入する。この時刻補正情報は、第2のタイプの時刻補正情報であり、この所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である。この「第2の符号化」は、エンコーダ102が、複数のビデオストリームを生成する場合にのみ適用可能である。
図9は、図3の階層符号化の例において、ベースストリーム(Stream_0)と、エンハンスストリーム(Stream_1)の2つのビデオストリームを生成する場合における、各ピクチャのデコードタイミングの一例を示している。ここで、ベースストリーム(Stream_0)には、所定階層以下の階層、ここでは階層0から2の各ピクチャの符号化画像データが含まれている。また、エンハンスストリーム(Stream_1)には、所定階層の上の階層、ここでは階層3の各ピクチャの符号化画像データが含まれている。
この場合、図示のように、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されている。一方、エンハンスストリーム(Stream_1)に含まれる階層3の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されている。
そして、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データのそれぞれに対応して、デコード時刻を補正するための時刻補正情報S(i)が挿入されている。ここで、「i」は、1/120秒単位のデコード時刻の補正値(補正フレーム数)を示している。この時刻補正情報S(i)は、例えば、新規定義するタイミング・アジャストメント SEI(Timing_adjustment SEI)に挿入される。
この場合、受信側では、例えば、HFR非対応の60Pデコーダ(HFR対応の120Pデコーダで60Pモードの場合も含む)で表示する場合、ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データが選択的にバッファに取り込まれ、等間隔(1/60秒)のデコード間隔で順次デコードされる。
また、この場合、受信側では、例えば、HFR対応の120Pデコーダで表示する場合、エンハンスストリーム(Stream_1)に含まれる階層3の各ピクチャの符号化画像データと、時刻補正情報S(i)により、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合と同じタイミングとなるように補正された(破線枠のアクセスユニット(AU)参照)ベースストリーム(Stream_0)に含まれる階層0から2の各ピクチャの符号化画像データがデコード順で1つのストリームに結合されてバッファに取り込まれ、等間隔(1/120秒)のデコード間隔で順次デコードされる。
図10は、図3の階層符号化の例において、「第2の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される補正情報S(i)を示している。
時間解像度の階層0から3のうち、1/2時間解像度部分である階層0から2の各ピクチャの符号化画像データのそれぞれに対応して時刻補正情報S(i)が挿入される。この場合、「2」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「3」のアクセスユニット(ピクチャ)に対する補正値iは“−1”とされ、「4」のアクセスユニット(ピクチャ)に対する補正値iは“−2”とされ、さらに「7」のアクセスユニット(ピクチャ)に対する補正値iは“−1”とされる。以降の各sub GOP(Group Of Pictures)では、同様の繰り返しとなる。
そして、受信側では、60pデコーダでの表示にあっては、1/2時間解像度部分である階層0から2の各ピクチャの符号化画像データがバッファに取り込まれて、当初のデコード時刻により等間隔(1/60秒)でデコードされる。また、受信側では、120pデコーダでの表示にあっては、フル時間解像度の0から3の各ピクチャの符号化画像データがバッファに取り込まれてデコードされる。その際に、破線枠のアクセスユニット(AU)で示すように、階層0から2の各ピクチャの符号化画像データのデコード時刻が、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔(1/120秒)となるように符号化される場合と同じタイミングとなるように補正される。
エンコーダ102は、上述したように、時刻補正情報を含む、新たに定義する、タイミング・アジャストメント SEI(Timing_adjustment SEI)を、プリフィックスSEI(Prefix_SEI)の一つとして挿入する。
図11(a)は、タイミング・アジャストメント SEIを挿入するためのインタフェース(I/F)の構造例(Syntax)を示している。「uuid_iso_iec_11578」のフィールドは、“ISO/IEC 11578:1996 Annex A.”で示されるUUID値を持つ。「user_data_payload_byte」のフィールドに、「Timing_adjustment information()」が挿入される。
図11(b)は、「Timing_adjustment information()」の構造例(Syntax)を示している。図12は、その構造例における主要な情報の内容(Semantics)を示している。「userdata_id」の16ビットフィールドには、所定のユーザデータのIDを付す。「Timing_adjustment information_length」の8ビットフィールドは、“Timing_adjustment information”のバイト数(本要素の次の要素からカウント)を示す。
「adjustment_type」の2ビットフィールドは、時刻補正情報のタイプ、従って、デコード時刻の補正のタイプを示す。“01”は、第1のタイプを示す。この場合、例えば、エンコードは120p単位で、受信側での補正は、ハイレート(High rate)の120pから、ローレート(Low rate)の60pの時間間隔へ補正することを示す。“10”は、第2のタイプを示す。この場合、例えば、エンコードは60p単位で、受信側での補正は、ローレート(Low rate)の60pから、ハイレート(High rate)の120pの時間間隔へ補正することを示す。
「au_cpb_removal_delay_offset」の24ビットフィールドは、時刻補正情報を示す。この時刻補正情報は、対象アクセスユニット(AU)の「cpb_removal_delay」との差分値(90KHz精度)である。「num_units_in_tick」で該当するスライス(slice)あるいはピクチャの表示期間を示すクロックベースが示され、「time_scale」で示される時間情報のスケーリング値によって、例えば120Hzのフレーム間隔であることがわかり、この単位でのデコード時刻の補正フレーム数(符号付き)が90KHz精度で表現されたものとなる。
図13は、エンコーダ102の構成例を示している。このエンコーダ102は、テンポラルID発生部121と、バッファ遅延制御部122と、HRD(Hypothetical Reference Decoder)設定部123と、パラメータセット/SEIエンコード部124と、スライスエンコード部125と、NALパケット化部126を有している。
テンポラルID発生部121には、CPU101から、階層数(Number of layers)の情報が供給される。テンポラルID発生部121は、この階層数の情報に基づいて、階層数に応じた“temporal_id”を発生する。例えば、図3の階層符号例においては、”temporal_id”=0〜3が発生される。
バッファ遅延制御部122には、CPU101から、ミニマムデコード能力(Target minimum decoder capability)の情報が供給されると共に、テンポラルID発生部121で発生されるtemporal_idが供給される。バッファ遅延制御部122は、ビデオストリーム毎に、cpbバッファリング(buffering)初期値である、“initial_cpb_removal_delay ”と、ピクチャ毎の「cpb_removal_delay」、「dpb_output_delay」を計算する。
バッファ遅延制御部122は、サブストリーム(Sub-stream)毎のcpbバッファにおいて、「cpb_removal_delay」を制御する。バッファ遅延制御部122は、dpbバッファにおいて、デコーダのデコードタイミングと表示タイミングの間でバッファ破綻がないよう制御する。
この場合、「第1の符号化」においては、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように、「cpb_removal_delay」を制御する。また、「第2の符号化」においては、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となり、かつ、この所定階層の上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合と同じタイミングとなるように、「cpb_removal_delay」を制御する。
HRD(Hypothetical Reference Decoder)設定部123には、バッファ遅延制御部122で計算された各ビデオストリームのピクチャの「cpb_removal_delay」、「dpb_output_delay」が供給されると共に、CPU101からストリーム数(Number of streams)の情報が供給される。HRD設定部123は、これらの情報に基づいてHRD設定を行う。
パラメータセット/SEIエンコード部124には、HRD設定情報が供給される。パラメータセット/SEIエンコード部124は、符号化するストリーム数に応じて、各階層のピクチャのVPS、SPS、PPSなどのパラメータセットと、各種のSEIを生成する。
例えば、上述のタイミング・アジャストメント SEI(Timing_adjustment SEI)が生成される。また、例えば、「cpb_removal_delay」と「dpb_output_delay」を含むピクチャ・タイミング・SEI(Picture timing SEI)が生成される。また、例えば、「initial_cpb_removal_time」を含むバッファリング・ピリオド・SEI(Buffereing Perifod SEI)が生成される。バッファリング・ピリオド・SEIは、GOPの先頭のピクチャ(アクセスユニット)に対応して生成される。
「initial cpb removal time」は、圧縮データバッファ(cpb)からGOP(Group Of Picture)の先頭のピクチャの符号化画像データをデコードする際に取り出す時刻(初期時刻)を示す。「cpb_removal_delay」は、各ピクチャの符号化画像データを圧縮データバッファ(cpb)から取り出す時間であり、「initial_cpb_removal_time」と合わせて時刻が決まる。また、「dpb_output_delay」は、デコードして非圧縮データバッファ(dpb)に入ってから取り出す時間を示す。
スライスエンコード部125は、各階層のピクチャの画像データをエンコードしてスライスデータ(slice segment header, slice segment data)を得る。スライスエンコード部125は、フレームバッファにより、時間方向の予測の状態を表す情報として、「Prediction Unit」の予測先ピクチャのインデックスを示す「ref_idx_l0_active(ref_idx_l1_active)を、「slice segment header」に挿入する。これにより、デコード時には、temporal_idで示される階層レベルと共に、被参照ピクチャが決定される。また、スライスエンコード部125は、現在のスライス(slice)のインデックスを、「short_term_ref_pic_set_idx」、 あるいは「it_idx_sps」として、「slice segment header」に挿入する。
NALパケット化部126は、パラメータセット/SEIエンコード部124で生成されたパラメータセットおよびSEIと、スライスエンコード部125で生成されるスライスデータに基づき、各階層のピクチャの符号化画像データを生成し、ストリーム数に応じた数のビデオストリーム(符号化ストリーム)を出力する。
その際、ピクチャ毎に、その階層を示す“temporal_id”がNALユニットヘッダに付される(図4参照)。また、“temporal_id”で示される階層に属するピクチャは、サブレイヤ(sub_layer)として括られ、サブレイヤごとのビットレートのレベル指定値「Level_idc」が「sublayer_level_idc」とされて、VPSやSPSに挿入される。
図14は、エンコーダ102の処理フローの一例を示している。エンコーダ102は、ステップST1において、処理を開始し、その後に、ステップST2の処理に移る。このステップST2において、エンコーダ102は、符号化する動画シーケンス(動画像データ)のフレーム周波数FRをチェックする。
次に、エンコーダ102は、ステップST3において、低周波数LF(LF<LR)のデコーダ(非HFR対応の受信機)向けに互換性をもつエンコードを行うか否かを判断する。つまり、上述の「第2の符号化」を行うか否かを判断する。このエンコードを行う場合、エンコーダ102は、ステップST4の処理に進む。
このステップST4において、エンコーダ102は、フレーム周波数FRの動画シーケンスを階層的に符号化し、低周波数LFに対応する階層が下位のピクチャ(picture)の「cpb_removal_delay」を、一定時間間隔となるようにエンコードする。
次に、エンコーダ102は、ステップST5において、フレーム周波数FRの時間間隔でエンコードする場合の「cpb_removal_delay」との差分時間「au_cpb_removal_delay_offset」を時刻補正情報として、補正タイプ「adjustment_type」と共に、SEIに符号化する。エンコーダ102は、ステップST5の処理の後、ステップST6において、処理を終了する。
また、ステップST3で低周波数LFのデコーダ向けに互換性をもつエンコードを行わない場合、エンコーダ102は、ステップST7の処理に進む。このステップST7において、エンコーダ102は、低周波数LF(LF<LR)のデコーダ(非HFR対応の受信機)が補正するための時刻補正情報を符号化するか否かを判断する。つまり、上述の「第1の符号化」を行うか否かを判断する。
時刻補正情報を符号化するとき、エンコーダ102は、ステップST8の処理に進む。このステップST8において、エンコーダ102は、フレーム周波数FRの動画シーケンスを階層的に符号化し、フレーム周波数FRの時間間隔で「cpb_removal_delay」を決定し、エンコードする。
次に、エンコーダ102は、ステップST9において、低周波数LFの時間間隔でエンコードする場合の「cpb_removal_delay」との差分時間「au_cpb_removal_delay_offset」を時刻補正情報として、補正タイプ「adjustment_type」と共に、SEIに符号化する。エンコーダ102は、ステップST9の処理の後、ステップST6において、処理を終了する。
また、ステップST7で低周波数LFのデコーダが補正するための時刻補正情報を符号化しないとき、エンコーダ102は、ステップST10の処理に進む。このステップST10において、エンコーダ102は、フレーム周波数FRの動画シーケンスを階層的に符号化し、フレーム周波数FRの時間間隔で「cpb_removal_delay」を決定し、エンコードする。エンコーダ102は、ステップST10の処理の後、ステップST6において、処理を終了する。
図2に戻って、圧縮データバッファ(cpb)103は、エンコーダ102で生成された、各階層のピクチャの符号化データを含むビデオストリームを、一時的に蓄積する。マルチプレクサ104は、圧縮データバッファ103に蓄積されているビデオストリームを読み出し、PESパケット化し、さらにトランスポートパケット化して多重し、多重化ストリームとしてのトランスポートストリームTSを得る。このトランスポートストリームTSには、上述したように、単数あるいは複数のビデオストリームが含まれる。
マルチプレクサ104は、上述のタイミング・アジャストメント SEI(Timing_adjustment SEI)が挿入されている、所定階層以下の階層の各ピクチャの符号化画像データをコンテナするパケット、例えば、PESパケットに、デコード時刻を補正するための時刻補正情報を挿入する。この時刻補正情報は、上述したようにエンコーダ102で符号化画像データに挿入される時刻補正情報と同様のものである。この実施の形態においては、PESパケットのPESエクステンション(PES extension)のフィールドに、この時刻補正情報が挿入される。
図15は、PESエクステンション・フィールド・データ(pes_extension_field_data)の構造例(Syntax)を示している。図16は、その構造例における主要な情報の内容(Semantics)を示している。なお、「PES_extension field length」は、このシンタクス構造の外部で与えられるものとする。「start_sync_byte」の8ビットフィールドは、エクステンション・フィールド(extension field)の開始を表す符号値を示す。「extension_field_type」の8ビットフィールドは、エクステンションフィールドのタイプを示す。“0x03”は、デコードタイミングに関する補正情報を供給することを示す。
「adjustment_type」の2ビットフィールドは、時刻補正情報のタイプ、従って、デコード時刻の補正のタイプを示す。“01”は、第1のタイプを示す。この場合、例えば、エンコードは120p単位で、受信側での補正は、ハイレート(High rate)の120pから、ローレート(Low rate)の60pの時間間隔へ補正することを示す。“10”は、第2のタイプを示す。この場合、例えば、エンコードは60p単位で、受信側での補正は、ローレート(Low rate)の60pから、ハイレート(High rate)の120pの時間間隔へ補正することを示す。
「offset_to_DTS」の24ビットフィールドは、PESヘッダ(PES header)に付すDTS(Decoding Time Stamp)、あるいはDTSが無いアクセスユニット(AU)はPTS(Presentation Time Stamp)からのオフセット差分値(90KHz単位符号付き)を示す。
また、マルチプレクサ104は、トランスポートストリームTSのレイヤに、符号化画像データやPESエクステンションに、時刻補正情報が挿入されていることを示す識別情報を挿入する。この識別情報は、プログラムマップテーブルの配下にビデオストリームにそれぞれ対応して配置されたビデオエレメンタリストリームループの中にデスクリプタとして挿入される。
マルチプレクサ104は、HEVCデスクリプタ(HEVC_descriptor)と共に、新規定義するテンポラル・エクステンション・デスクリプタ(Temporal_extension_descriptor)を挿入する。図17は、テンポラル・コントロール・デスクリプタの構造例(Syntax)を示している。図18は、その構造例における主要な情報の内容(Semantics)を示している。
「Temporal_extension_descriptor_tag」の8ビットフィールドは、デスクリプタタイプを示す。ここでは、テンポラル・エクステンション・デスクリプタであることを示す。「Temporal_ extension_descriptor_length」の8ビットフィールドは、デスクリプタの長さ(サイズ)を示し、デスクリプタの長さとして、以降のバイト数を示す。ここでは、1バイトを示す。
「Temporal_extension_existed」の1ビットフィールドは、符号化画像データやPESエクステンションに、時刻補正情報が挿入されているか否かを示す。“1”は、PESエクステンションに「offset_to_DTS」が付されており、また、符号化画像データ(ビデオストリーム)にタイミング・アジャストメント SEI(Timing_adjustment SEI)が存在することを示す。“0”は、PESエクステンションに「offset_to_DTS」が付されているとは限らないことを示し、また、符号化画像データ(ビデオストリーム)にタイミング・アジャストメント SEI(Timing_adjustment SEI)が存在することは保証されないことを示す。
「adjustment_type」の2ビットフィールドは、時刻補正情報のタイプ、従って、デコード時刻の補正のタイプを示す。“01”は、第1のタイプを示す。この場合、例えば、エンコードは120p単位で、受信側での補正は、ハイレート(High rate)の120pから、ローレート(Low rate)の60pの時間間隔へ補正することを示す。“10”は、第2のタイプを示す。この場合、例えば、エンコードは60p単位で、受信側での補正は、ローレート(Low rate)の60pから、ハイレート(High rate)の120pの時間間隔へ補正することを示す。
図19は、HEVCデスクリプタ(HEVC_descriptor)の構造例(Syntax)を示している。「descriptor_tag」の8ビットフィールドは、デスクリプタタイプを示し、ここでは、HEVCデスクリプタであることを示す。「descriptor_length」の8ビットフィールドは、デスクリプタの長さ(サイズ)を示し、デスクリプタの長さとして、以降のバイト数を示す。
「level_idc」の8ビットフィールドは、ビットレートのレベル指定値を示す。また、「temporal_layer_subset_flag = 1」であるとき、「temporal_id_min」の5ビットフィールドと、「temporal_id_max」の5ビットフィールドが存在する。「temporal_id_min」は、対応するビデオストリームに含まれる階層符号化データの最も低い階層のtemporal_idの値を示す。「temporal_id_max」は、対応するビデオストリームが持つ階層符号化データの最も高い階層のtemporal_idの値を示す。
図20は、マルチプレクサ104の構成例を示している。マルチプレクサ104は、セクションコーディング部142と、PESパケット化部143-1〜143-Nと、スイッチ部144と、トランスポートパケット化部145を有している。
PESパケット化部143-1〜143-Nは、それぞれ、圧縮データバッファ103に蓄積されているビデオストリーム(Elementary Stream)1〜Nを読み込み、PESパケットを生成する。ここで、ビデオストリーム1〜Nには、少なくとも1つのベースストリームが含まれている。Nが2以上である場合には、1つのベースストリームと、一つ以上のエンハンスストリームが含まれている。
この際、PESパケット化部143-1〜143-Nは、ビデオストリーム1〜NのHRD情報を元にDTS(Decoding Time Stamp)、PTS(Presentation Time Stamp)のタイムスタンプをPESヘッダに付与する。この場合、各ピクチャの「cpu_removal_delay」、「dpb_output_delay」が参照されて、STC(System Time Clock)時刻に同期した精度で、各々DTS、PTSが生成され、PESヘッダの所定位置に配置される。
また、PESパケット化部143-1〜143-Nのうち、タイミング・アジャストメント SEI(Timing_adjustment SEI)が存在する符号化画像データを含むビデオストリームを取り扱うPESパケット化部は、このタイミング・アジャストメント SEIから、時刻補正情報である「au_cpb_removal_delay_offset」と、タイプ情報である「adjustment_type」を入手する。そして、このPESパケット化部は、PESヘッダのPESエクステンションに、時刻補正情報である「offset_to_DTS」と、タイプ情報である「adjustment_type」を付す。
スイッチ部144は、PESパケット化部143-1〜143-Nで生成されたPESパケットを、パケット識別子(PID)に基づいて選択的に取り出し、トランスポートパケット化部145に送る。トランスポートパケット化部145は、PESパケットをペイロードに含むTSパケットを生成し、トランスポートストリームTSを得る。
セクションコーディング部142は、トランスポートストリームTSに挿入すべき各種のセクションデータを生成する。セクションコーディング部142には、CPU101から、階層数(Number of layers)と、ストリーム数(Number of streams)などの情報が供給される。セクションコーディング部142は、これら情報に基づいて、上述したHEVCデスクリプタ(HEVC_descriptor)を生成する。
また、セクションコーディング部142には、CPU101から、PESパケット化部143-1〜143-Nで生成されたPESパケット毎の、タイミング・アジャストメント SEI(Timing_adjustment SEI)の存在情報、あるいはPESエクステンションへの「offset_to_DTS」の挿入情報などが供給される。セクションコーディング部142は、これら情報に基づいて、上述したテンポラル・エクステンション・デスクリプタ(Temporal_extension_descriptor)を生成する。
セクションコーディング部142は、各種セクションデータを、トランスポートパケット化部145に送る。トランスポートパケット化部145は、このセクションデータを含むTSパケットを生成し、トランスポートストリームTSに挿入する。なお、この際、各ビデオストリームにそれぞれ対応して配置されたビデオエレメンタリストリームループ(Video ES loop)の中に、ストリームタイプも挿入される。この場合、ベースストリームのストリームタイプは“0x24”とされ、エンハンスストリームのストリームタイプは、例えば新規定義する“0x25”とされる。
図21は、マルチプレクサ104の処理フローを示す。マルチプレクサ104は、ステップST11において、処理を開始し、その後に、ステップST12の処理に移る。このステップST12において、マルチプレクサ104は、ビデオストリーム(Elementary Stream)のピクチャ・タイミング・SEI、バッファリング・ピリオド・SEI、タイミング・アジャストメントSEI、あるいはHRD情報からタイムスタンプを計算する。
次に、マルチプレクサ104は、ステップST13において、PESヘッダにDTS,PTSを配置すると共に、所定階層以下の階層の各ピクチャの符号化画像データにそれぞれ対応して、PESエクステンションに時刻補正情報である「offset_to_DTS」とタイプ情報である「adjustment_type」を配置する。次に、マルチプレクサ104は、ステップST14において、PESペイロードにビデオストリーム(Elementary Stream)を挿入する。
次に、マルチプレクサ104は、ステップST15において、テンポラル・エクステンション・デスクリプタ(Temporal_extension_descriptor)を、セクション領域にエンコードする。そして、マルチプレクサ104は、ステップST16において、TSパケットにして出力する。マルチプレクサ104は、このステップST16の処理の後、ステップST17において、処理を終了する。
図22は、あるHFRサービスを2ストリームで配信する場合のトランスポートストリームTSの構成例を示している。このトランスポートストリームTSには、ベースストリームとエンハンスストリームの2つのビデオストリームが含まれている。すなわち、この構成例では、ベースストリームのPESパケット「video PES1」が存在すると共に、エンハンスストリームのPESパケット「video PES2」が存在する。
所定階層以下の階層の各ピクチャの符号化画像データをコンテナするPESパケット「video PES1」におけるPESヘッダ(PES header)のPESエクステンションのフィールドに、上述した時刻補正情報である「offset_to_DTS」と、タイプ情報である「adjustment_type」が配置される。なお、PESヘッダには、DTS、PTSも配置されている。また、各ピクチャの符号化画像データには、バッファリング・ピリオドSEI、ピクチャ・タイミングSEIなどが挿入される。また、PESパケット「video PES1」でコンテナされる各ピクチャの符号化画像データには、タイミング・アジャストメントSEIが挿入される。
また、トランスポートストリームTSには、PSI(Program Specific Information)の一つとして、PMT(Program Map Table)が含まれている。このPSIは、トランスポートストリームに含まれる各エレメンタリストリームがどのプログラムに属しているかを記した情報である。
PMTには、プログラム全体に関連する情報を記述するプログラム・ループ(Program loop)が存在する。また、PMTには、各ビデオストリームに関連した情報を持つエレメンタリストリーム・ループが存在する。この構成例では、ベースストリームに対応したビデオエレメンタリストリームループ「video ES1 loop」が存在すると共に、エンハンスストリームに対応したビデオエレメンタリストリームループ「video ES2 loop」が存在する。
「video ES1 loop」には、ベースストリーム(video PES1)に対応して、ストリームタイプ、パケット識別子(PID)等の情報が配置されると共に、そのビデオストリームに関連する情報を記述するデスクリプタも配置される。このストリームタイプは、ベースストリームを示す“0x24”とされる。また、デスクリプタの一つとして、上述したHEVCデスクリプタ、テンポラル・エクステンション・デスクリプタが挿入される。
また、「video ES2 loop」には、エンハンスストリーム(video PES2)に対応して、ストリームタイプ、パケット識別子(PID)等の情報が配置されると共に、そのビデオストリームに関連する情報を記述するデスクリプタも配置される。このストリームタイプは、エンハンスストリームを示す、例えば新規定義する“0x25”とされる。また、デスクリプタの一つとして、上述したHEVCデスクリプタが挿入される。
図23は、あるHFRサービスを1ストリームで配信する場合のトランスポートストリームTSの構成例を示している。このトランスポートストリームTSには、ベースストリームのみが含まれている。すなわち、この構成例では、ベースストリームのPESパケット「video PES1」が存在する。
PESパケット「video PES1」のうち、所定階層以下の階層の各ピクチャの符号化画像データをコンテナするPESパケットにおけるPESヘッダ(PES header)のPESエクステンションのフィールドに、上述した時刻補正情報である「offset_to_DTS」と、タイプ情報である「adjustment_type」が配置される。なお、PESヘッダには、DTS、PTSも配置されている。また、各ピクチャの符号化画像データには、バッファリング・ピリオドSEI、ピクチャ・タイミングSEIなどが挿入される。また、PESパケット「video PES1」でコンテナされる各ピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データには、タイミング・アジャストメントSEIが挿入される。
また、トランスポートストリームTSには、PSI(Program Specific Information)の一つとして、PMT(Program Map Table)が含まれている。このPSIは、トランスポートストリームに含まれる各エレメンタリストリームがどのプログラムに属しているかを記した情報である。
PMTには、プログラム全体に関連する情報を記述するプログラム・ループ(Program loop)が存在する。また、PMTには、各ビデオストリームに関連した情報を持つエレメンタリストリーム・ループが存在する。この構成例では、ベースストリームに対応したビデオエレメンタリストリームループ「video ES1 loop」が存在する。
「video ES1 loop」には、ベースストリーム(video PES1)に対応して、ストリームタイプ、パケット識別子(PID)等の情報が配置されると共に、そのビデオストリームに関連する情報を記述するデスクリプタも配置される。このストリームタイプは、ベースストリームを示す“0x24”とされる。また、デスクリプタの一つとして、上述したHEVCデスクリプタ、テンポラル・エクステンション・デスクリプタが挿入される。
図2に戻って、送信部105は、トランスポートストリームTSを、例えば、QPSK/OFDM等の放送に適した変調方式で変調し、RF変調信号を送信アンテナから送信する。
図2に示す送信装置100の動作を簡単に説明する。エンコーダ102には、非圧縮の動画像データが入力される。エンコーダ102では、この動画像データに対して、階層符号化が行われる。すなわち、エンコーダ102では、この動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化され、各階層のピクチャの符号化画像データを持つビデオストリームが生成される。この際、参照するピクチャが、自己階層および/または自己階層よりも下位の階層に所属するように、符号化される。
エンコーダ102では、単数あるいは複数のビデオストリームが生成される。単数のビデオストリームが生成される場合、そのビデオストリームには、全ての階層の各ピクチャの符号化画像データが含められる。一方、複数のビデオストリームが生成される場合、エンコーダ102では、複数の階層が2以上の所定数の階層組に分割され、各階層組のピクチャの符号化画像データをそれぞれ持つ所定数のビデオストリームが生成される。
エンコーダ102では、各ピクチャの符号化画像データのデコードタイミングに関係して、「第1の符号化」あるいは「第2の符号化」が行われる。「第1の符号化」は、生成されるビデオストリームが単数でも複数でも適用可能である。一方、「第2の符号化」は、生成されるビデオストリームが複数でのみ適用可能である。
「第1の符号化」では、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される。「第2の符号化」では、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される。また、この「第2の符号化」では、この所定階層の上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合と同じタイミングとなるように符号化される。
エンコーダ102では、いずれの符号化の場合であっても、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、デコード時刻を補正するための時刻補正情報が挿入される。この時刻補正情報には、「第1の符号化」に対応した第1のタイプの時刻補正情報であるか「第2の符号化」に対応した第2のタイプの時刻補正情報であるか識別するためのタイプ情報が付加される。
第1のタイプの時刻補正情報は、上述の所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である。一方、第2のタイプの時刻補正情報は、上述の所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である。
具体的には、エンコーダ102において、上述の所定階層以下の階層の各ピクチャの符号化画像データに、新規定義するタイミング・アジャストメント SEI(Timing_adjustment SEI)が挿入される。このSEIには、時刻補正情報である「au_cpb_removal_delay_offset」と、タイプ情報である「adjustment_type」が含まれている(図11(b)参照)。
エンコーダ102で生成されたビデオストリームは、圧縮データバッファ(cpb)103に供給され、一時的に蓄積される。マルチプレクサ104では、圧縮データバッファ103に蓄積されているビデオストリームが読み出され、PESパケット化され、さらにトランスポートパケット化されて多重され、多重化ストリームとしてのトランスポートストリームTSが得られる。
マルチプレクサ104では、上述のタイミング・アジャストメント SEI(Timing_adjustment SEI)が挿入されている、所定階層以下の階層の各ピクチャの符号化画像データをコンテナするパケット、例えば、PESパケットに、デコード時刻を補正するための時刻補正情報が挿入される。この時刻補正情報は、上述したようにエンコーダ102で符号化画像データに挿入される時刻補正情報と同様のものであり、タイプ情報も付加されている。具体的には、マルチプレクサ104において、PESパケットのPESエクステンション(PES extension)のフィールドに、時刻補正情報である「offset_to_DTS」と、タイプ情報である「adjustment_type」を付される(図15参照)。
また、このマルチプレクサ104では、トランスポートストリームTSのレイヤに、符号化画像データやPESエクステンションに、時刻補正情報が挿入されていることを示す識別情報が挿入される。具体的には、マルチプレクサ104において、プログラムマップテーブルの配下にビデオストリームに対応して配置されたビデオエレメンタリストリームループの中に、新規定義するテンポラル・エクステンション・デスクリプタ(Temporal_extension_descriptor)が挿入される(図17参照)。
マルチプレクサ104で生成されるトランスポートストリームTSは、送信部105に送られる。送信部105では、このトランスポートストリームTSが、例えば、QPSK/OFDM等の放送に適した変調方式で変調され、RF変調信号が送信アンテナから送信される。
「受信装置の構成」
図24は、受信装置200の構成例を示している。この受信装置200は、CPU(Central Processing Unit)201と、受信部202と、デマルチプレクサ203と、圧縮データバッファ(cpb:coded picture buffer)204を有している。また、この受信装置200は、デコーダ205と、非圧縮データバッファ(dpb:decoded picture buffer)206と、ポスト処理部207を有している。
CPU201は、制御部を構成し、受信装置200の各部の動作を制御する。CPU201は、タイミング・コントロール・プロセッサ(TCP:Timing Control Processer)を備えており、アクセスユニット(ピクチャ)毎に、デコードタイミング、表示タイミングを制御する。
受信部202は、受信アンテナで受信されたRF変調信号を復調し、トランスポートストリームTSを取得する。デマルチプレクサ203は、トランスポートストリームTSから、デコード能力(Decoder temporal layer capability)に応じた階層の各ピクチャの符号化画像データを選択的に取り出し、圧縮データバッファ(cpb:coded picture buffer)204に送る。
デマルチプレクサ203は、トランスポートストリームTSに含まれるビデオストリームに施されている「第1の符号化」あるいは「第2の符号化」に応じた処理を行う。デマルチプレクサ203は、例えば、テンポラル・エクステンション・デスクリプタに存在する時刻補正情報のタイプ情報から、「第1の符号化」であるか「第2の符号化」であるかを判断する。すなわち、デマルチプレクサ203は、時刻補正情報が第1のタイプであるときは「第1の符号化」であると判断し、時刻補正情報が第2のタイプであるときは「第2の符号化」であると判断する。
図25は、ビデオストリームに「第1の符号化」が施されている場合における、デマルチプレクサ(システム解析部)203の機能構成の一例を示している。デマルチプレクサ203は、PIDフィルタ部231と、セクション・パース部232と、PESパケット・パース部233と、DTS変換処理部234と、アクセスユニット・プロセッサ235,236を有している。
PIDフィルタ部231は、デコード能力により、パケット識別子(PID)に基づくフィルタリングを行って、必要とするビデオストリームを抽出する。例えば、図3の階層符号化の例において、ベースストリーム(Stream_0)と、エンハンスストリーム(Stream_1)の2つのビデオストリームが存在する場合(図6参照)を考える。この場合、HFR非対応の60pデコーダを持つときは、この60pデコーダが処理可能な階層0から2の各ピクチャの符号化画像データを含むベースストリーム(Stream_0)のみが抽出される。また、例えば、HFR対応の120pデコーダを持つときは、このベースストリーム(Stream_0)と共に、階層3の各ピクチャの符号化画像データを含むエンハンスストリーム(Stream_1)も抽出される。
また、例えば、図3の階層符号化の例において、ベースストリーム(Stream_0)のビデオストリームのみが存在する場合(図7参照)を考える。この場合、HFR非対応の60pデコーダを持つときも、HFR対応の120pデコーダを持つときも、ベースストリーム(Stream_0)を抽出する。
セクション・パース部232は、PIDフィルタ部231で抽出されたビデオストリーム(対象ビデオストリーム)のセクションデータを解析する。そして、セクション・パース部232は、例えば、テンポラル・エクステンション・デスクリプタに基づいて、タイミング・アジャストメント SEIの存在情報を取得してCPU201に送ると共に、時刻補正情報のタイプ情報「adjustment_type」もCPU201に送る。
PESパケット・パース部233は、PESパケットを解析する。PESパケット・パース部233は、PESヘッダに挿入されているPTS,DTSと、さらにはPESエクステンションに挿入されている時刻補正情報「offset_to_DTS」を取得してCPU201に送る。
DTS変換処理部234は、デコーダ205が60pデコーダであって、このデコーダ205に60pデコーダが処理可能な所定階層以下の階層の各ピクチャの符号化画像データを含むビデオストリームを送る場合に、DTS変換処理を行う。DTS変換処理部234は、ベースストリーム(Stream_0)に含まれる各ピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データをコンテナするPESパケットのヘッダに挿入されているDTSを、時刻補正情報「offset_to_DTS」を用いて補正された補正後のDTS(=New DTS)で置き換える。
DTS変換処理部234は、補正後のDTS(=New DTS)を自身で算出して用いることもできるが、図示のように、CPU201で算出された補正後のDTS(=New DTS)を用いることもできる。
アクセスユニット・プロセッサ235は、デコーダ205が60pデコーダである場合、60pデコーダが処理可能な所定階層以下の階層の各ピクチャの符号化画像データを含むビデオストリームを、圧縮データバッファ(cpb)204を通じて、デコーダ205に送る。
ここで、ベースストリーム(Stream_0)に所定階層以下の階層の各ピクチャの符号化画像データのみが含まれている場合、アクセスユニット・プロセッサ235は、DTS変換処理部234の出力をそのまま圧縮データバッファ(cpb)204に送って蓄積する。一方、ベースストリーム(Stream_0)に動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データが含まれている場合、アクセスユニット・プロセッサ235は、DTS変換処理部234の出力から、例えばPESエクステンションの有無を参照して、所定階層以下の階層の各ピクチャの符号化画像データに対応した部分のみを抽出し、圧縮データバッファ(cpb)204に送って蓄積する。
アクセスユニット・プロセッサ236は、デコーダ205が120pデコーダである場合、全ての階層の各ピクチャの符号化画像データを含むビデオストリームを、圧縮データバッファ(cpb)204を通じて、デコーダ205に送る。
ここで、ベースストリーム(Stream_0)に動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データが含まれている場合、アクセスユニット・プロセッサ236は、ベースストリーム(Stream_0)をそのまま圧縮データバッファ(cpb)204に送って蓄積する。一方、ベースストリーム(Stream_0)に所定階層以下の階層の各ピクチャの符号化画像データが含まれ、エンハンスストリーム(Stream_1)に所定階層より上の階層の各ピクチャの符号化画像データが含まれている場合、アクセスユニット・プロセッサ236は、双方のストリームの符号化画像データをDTS順に結合して1つのビデオストリームを生成し、圧縮データバッファ(cpb)204に送って蓄積する。
図26は、ビデオストリームに「第2の符号化」が施されている場合における、デマルチプレクサ(システム解析部)203の機能構成の一例を示している。デマルチプレクサ203は、PIDフィルタ部241と、セクション・パース部242と、PESパケット・パース部243と、DTS変換処理部244と、アクセスユニット・プロセッサ245を有している。
PIDフィルタ部241は、デコード能力により、パケット識別子(PID)に基づくフィルタリングを行って、必要とするビデオストリームを抽出する。例えば、図3の階層符号化の例において、ベースストリーム(Stream_0)と、エンハンスストリーム(Stream_1)の2つのビデオストリームが存在する場合(図9参照)を考える。この場合、HFR非対応の60pデコーダを持つときは、この60pデコーダが処理可能な階層0から2の各ピクチャの符号化画像データを含むベースストリーム(Stream_0)のみが抽出される。また、例えば、HFR対応の120pデコーダを持つときは、このベースストリーム(Stream_0)と共に、階層3の各ピクチャの符号化画像データを含むエンハンスストリーム(Stream_1)も抽出される。
セクション・パース部242は、PIDフィルタ部241で抽出されたビデオストリーム(対象ビデオストリーム)のセクションデータを解析する。そして、セクション・パース部242は、例えば、テンポラル・エクステンション・デスクリプタに基づいて、タイミング・アジャストメント SEIの存在情報を取得してCPU201に送ると共に、時刻補正情報のタイプ情報「adjustment_type」もCPU201に送る。
PESパケット・パース部243は、PESパケットを解析する。PESパケット・パース部243は、PESヘッダに挿入されているPTS,DTSと、さらにはPESエクステンションに挿入されている時刻補正情報「offset_to_DTS」を取得してCPU201に送る。
DTS変換処理部244は、デコーダ205が120pデコーダである場合に、DTS変換処理を行う。DTS変換処理部234は、ベースストリーム(Stream_0)に含まれる各ピクチャの符号化画像データをコンテナするPESパケットのヘッダに挿入されているDTSを、時刻補正情報「offset_to_DTS」を用いて補正された補正後のDTS(=New DTS)で置き換える。DTS変換処理部244は、補正後のDTS(=New DTS)を自身で算出して用いることもできるが、図示のように、CPU201で算出された補正後のDTS(=New DTS)を用いることもできる。
アクセスユニット・プロセッサ245は、デコーダ205が120pデコーダである場合、全ての階層の各ピクチャの符号化画像データを含むビデオストリームを、圧縮データバッファ(cpb)204を通じて、デコーダ205に送る。この場合、アクセスユニット・プロセッサ245は、DTS変換処理部244の出力と、PIDフィルタ部241で抽出されたエンハンスストリーム(Stream_1)の双方のストリームの符号化画像データをDTS順に結合して1つのビデオストリームを生成し、圧縮データバッファ(cpb)204に送って蓄積する。
なお、デコーダ205が60pデコーダである場合、デマルチプレクサ203は、PIDフィルタ部241で抽出されたベースストリーム(Stream_0)をそのまま圧縮データバッファ(cpb)204に送って蓄積する。
図27は、デマルチプレクサ203の処理フローの一例を示している。デマルチプレクサ203は、ステップST31において、処理を開始し、その後に、ステップST32において、テンポラル・エクステンション・デスクリプタ(Temporal_extension_descriptor)の補正タイプ「adjustment_type」をチェックする。
次に、デマルチプレクサ203は、ステップST33において、補正タイプが“01”であるか否か、つまり時刻補正情報のタイプが第1のタイプであるか否かを判断する。補正タイプが“01”であるとき、デマルチプレクサ203は、ステップST34において、全階層をデコードするか否かを判断する。例えば、デコーダ205がHFR対応の120pデコーダであるときは全階層をデコードすると判断し、デコーダ205がHFR非対応の60pデコーダであるときは全階層をデコードしないと判断する。
全階層をデコードするとき、デマルチプレクサ203は、ステップST35の処理に進む。このステップST35において、デマルチプレクサ203は、PIDの対象となるビデオストリーム(符号化ストリーム)を圧縮データバッファ(cpb)204に供給する。なお、PIDの対象となるビデオストリームが複数ある場合は、DTS順に結合して、圧縮データバッファ(cpb)204に供給する。デマルチプレクサ203は、ステップST35の処理の後、ステップST36において、処理を終了する。
ステップST34で全階層をデコードしないとき、デマルチプレクサ203は、ステップST37の処理に進む。このステップST37において、デマルチプレクサ203は、60pデコーダで処理可能な低階層(所定階層以下の階層)のストリームが供給されるPESパケットのヘッダにあるDTSに、PESエクステンションにある時刻補正情報「offset_to_DTS」を加算し、補正DTS(New DTS)を得る。
なお、CPU201に、補正DTSを得る処理をさせてもよい。その場合、デマルチプレクサ203は、CPU201にタイムスタンプ情報を通知し、補正DTS(New DTS)をCPU201から受け取ることになる。
次に、デマルチプレクサ203は、ステップST38において、補正後のDTS値で、低階層(所定階層以下の階層)のストリームを、圧縮データバッファ(cpb)204に供給する。デマルチプレクサ203は、ステップST38の処理の後、ステップST36において、処理を終了する。
また、ステップST33で補正タイプが“01”でないとき、つまり補正タイプが“10”であるとき、デマルチプレクサ203は、ステップST39において、全階層をデコードするか否かを判断する。例えば、デコーダ205がHFR対応の120pデコーダであるときは全階層をデコードすると判断し、デコーダ205がHFR非対応の60pデコーダであるときは全階層をデコードしないと判断する。
全階層をデコードするとき、デマルチプレクサ203は、ステップST37の処理に進む。このステップST37において、デマルチプレクサ203は、60pデコーダで処理可能な低階層(所定階層以下の階層)のストリームが供給されるPESパケットのヘッダにあるDTSに、PESエクステンションにある時刻補正情報「offset_to_DTS」を加算し、補正DTS(New DTS)を得る。
次に、デマルチプレクサ203は、ステップST40において、複数のストリームを補正後のDTS順に結合して、圧縮データバッファ(cpb)204に供給する。デマルチプレクサ203は、ステップST40の処理の後、ステップST36において、処理を終了する。
また、ステップST39で全階層をデコードしないとき、デマルチプレクサ203は、ステップST41の処理に進む。このステップST41において、デマルチプレクサ203は、60pデコーダで処理可能な低階層(所定階層以下の階層)のストリームをそのままのDTS値で、圧縮データバッファ(cpb)204に供給する。デマルチプレクサ203は、ステップST41の処理の後、ステップST36において、処理を終了する。
図24に戻って、圧縮データバッファ(cpb)204は、デマルチプレクサ203で取り出されるビデオストリーム(符号化ストリーム)を、一時的に蓄積する。デコーダ205は、圧縮データバッファ204に蓄積されているビデオストリームから、デコードすべき階層として指定された階層のピクチャの符号化画像データを取り出す。そして、デコーダ205は、取り出された各ピクチャの符号化画像データを、それぞれ、そのピクチャのデコードタイミングでデコードし、非圧縮データバッファ(dpb)206に送る。
ここで、デコーダ205には、CPU201からデコードすべき階層がtemporal_idで指定される。この指定階層は、デマルチプレクサ203で取り出されるビデオストリーム(符号化ストリーム)に含まれる全階層、あるいは低階層側の一部の階層とされ、CPU201により自動的に、あるいはユーザ操作に応じて設定される。また、デコーダ205には、CPU201から、DTS(Decoding Time stamp)に基づいて、デコードタイミングが与えられる。なお、デコーダ205は、各ピクチャの符号化画像データをデコードする際に、必要に応じて、非圧縮データバッファ206から被参照ピクチャの画像データを読み出して利用する。
図28は、デコーダ205の構成例を示している。このデコーダ205は、テンポラルID解析部251と、対象階層選択部252と、デコード部254を有している。テンポラルID解析部251は、圧縮データバッファ204に蓄積されているビデオストリーム(符号化ストリーム)を読み出し、各ピクチャの符号化画像データのNALユニットヘッダに挿入されているtemporal_idを解析する。
対象階層選択部252は、圧縮データバッファ204から読み出されたビデオストリームから、テンポラルID解析部251の解析結果に基づいて、デコードすべき階層として指定された階層のピクチャの符号化画像データを取り出す。対象階層選択部252で取り出された各ピクチャの符号化画像データはデコード部254に送られる。デコード部254は、各ピクチャの符号化画像データを、順次デコードタイミングでデコードし、非圧縮データバッファ(dpb)206に送る。
この場合、デコード部254は、VPS、SPSの解析を行って、例えば、サブレイヤごとのビットレートのレベル指定値「sublayer_level_idc」を把握し、デコード能力内でデコードし得るものかどうかを確認する。また、この場合、デコード部254は、SEIの解析を行って、例えば、「initial_cpb_removal_time」、「cpb_removal_delay」を把握し、また、タイミング・アジャストメントSEIからデコードタイミングに関する補正情報を取得し、CPU201からのデコードタイミングが適切か確認する。
また、デコード部254は、スライス(Slice)のデコードを行う際に、スライスヘッダ(Slice header)から、時間方向の予測先を表す情報として、「ref_idx_l0_active(ref_idx_l1_active)を取得し、時間方向の予測を行う。なお、デコード後のピクチャは、スライスヘッダ(slice header)から得られる「short_term_ref_pic_set_idx」、あるいは「it_idx_sps」が指標とされて、他のピクチャによる被参照として処理される。
図24に戻って、非圧縮データバッファ(dpb)206は、デコーダ205でデコードされた各ピクチャの画像データを、一時的に蓄積する。ポスト処理部207は、非圧縮データバッファ(dpb)206から表示タイミングで順次読み出された各ピクチャの画像データに対して、そのフレームレートを、表示能力に合わせる処理を行う。この場合、CPU201から、PTS(Presentation Time stamp)に基づいて、表示タイミングが与えられる。
例えば、デコード後の各ピクチャの画像データのフレームレートが120fpsであって、表示能力が120fpsであるとき、ポスト処理部207は、デコード後の各ピクチャの画像データをそのままディスプレイに送る。また、例えば、デコード後の各ピクチャの画像データのフレームレートが120fpsであって、表示能力が60fpsであるとき、ポスト処理部207は、デコード後の各ピクチャの画像データに対して時間方向解像度が1/2倍となるようにサブサンプル処理を施し、60fpsの画像データとしてディスプレイに送る。
また、例えば、デコード後の各ピクチャの画像データのフレームレートが60fpsであって、表示能力が120fpsであるとき、ポスト処理部207は、デコード後の各ピクチャの画像データに対して時間方向解像度が2倍となるように補間処理を施し、120fpsの画像データとしてディスプレイに送る。また、例えば、デコード後の各ピクチャの画像データのフレームレートが60fpsであって、表示能力が60fpsであるとき、ポスト処理部207は、デコード後の各ピクチャの画像データをそのままディスプレイに送る。
図29は、ポスト処理部207の構成例を示している。この例は、上述したようにデコード後の各ピクチャの画像データのフレームレートが120fpsあるいは60fpsであって、表示能力が120fpsあるいは60fpsである場合に対処可能とした例である。
ポスト処理部207は、補間部271と、サブサンプル部272と、スイッチ部273を有している。非圧縮データバッファ206からのデコード後の各ピクチャの画像データは、直接スイッチ部273に入力され、あるいは補間部271で2倍のフレームレートとされた後にスイッチ部273に入力され、あるいはサブサンプル部272で1/2倍のフレームレートとされた後にスイッチ部273に入力される。
スイッチ部273には、CPU201から、選択情報が供給される。この選択情報は、CPU201が、表示能力を参照して自動的に、あるいは、ユーザ操作に応じて発生する。スイッチ部273は、選択情報に基づいて、入力のいずれかを選択的に出力とする。これにより、非圧縮データバッファ(dpb)206から表示タイミングで順次読み出された各ピクチャの画像データのフレームレートは、表示能力に合ったものとされる。
図30は、デコーダ205、ポスト処理部207の処理フローの一例を示している。デコーダ205、ポスト処理部207は、ステップST51において、処理を開始し、その後に、ステップST52の処理に移る。このステップST52において、デコーダ205は、圧縮データバッファ(cpb)204に蓄積されているデコード対象のビデオストリームを読み出し、temporal_idに基づいて、CPU201からデコード対象として指定される階層のピクチャを選択する。
次に、デコーダ205は、ステップST53において、選択された各ピクチャの符号化画像データをデコードタイミングで順次デコードし、デコード後の各ピクチャの画像データを非圧縮データバッファ(dpb)206に転送して、一時的に蓄積する。次に、ポスト処理部207は、ステップST54において、非圧縮データバッファ(dpb)206から、表示タイミングで各ピクチャの画像データを読み出す。
次に、ポスト処理部207は、読み出された各ピクチャの画像データのフレームレートが表示能力にあっているか否かを判断する。フレームレートが表示能力に合っていないとき、ポスト処理部207は、ステップST56において、フレームレートを表示能力に合わせて、ディスプレイに送り、その後、ステップST57において、処理を終了する。一方、フレームレートが表示能力に合っているとき、ポスト処理部207は、ステップST58において、フレームレートそのままでディスプレイに送り、その後、ステップST57において、処理を終了する。
図24に示す受信装置200の動作を簡単に説明する。受信部202では、受信アンテナで受信されたRF変調信号が復調され、トランスポートストリームTSが取得される。このトランスポートストリームTSは、デマルチプレクサ203に送られる。デマルチプレクサ203では、トランスポートストリームTSから、デコード能力(Decoder temporal layer capability)に応じて、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データ、あるいは所定階層以下の階層(低階層)の各ピクチャの符号化画像データが抽出される。
デマルチプレクサ203では、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応してPESエクステンションに挿入されている時刻補正情報に基づいて、そのPESヘッダに挿入されているDTSが補正される。この場合、トランスポートストリームTSに含まれるビデオストリームに施されている「第1の符号化」あるいは「第2の符号化」に応じた処理が行われる。
「第1の符号化」では、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されている。また、「第2の符号化」では、HFR非対応の従来の受信機で再生可能な所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されている。また、この「第2の符号化」では、この所定階層の上の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化される場合と同じタイミングとなるように符号化されている。
そして、「第1の符号化」であるとき、時刻補正情報は、第1のタイプであり、上述の所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である。また、「第2の符号化」であるとき、時刻補正情報は、第2のタイプであり、上述の所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
そのため、デマルチプレクサ203では、「第1の符号化」が施されている場合には、所定階層以下の階層の各ピクチャの符号化画像データのみのストリームを出力するとき、時刻補正情報に基づいて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻(DTS)が補正される。これにより、この所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる。
また、デマルチプレクサ203では、「第2の符号化」が施されている場合には、動画像データを構成する各ピクチャ、つまり全ての階層の各ピクチャの符号化画像データのストリームを出力するとき、時刻補正情報に基づいて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻(DTS)が補正される。これにより、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる。
デマルチプレクサ203で取り出されるビデオストリーム(符号化ストリーム)は、圧縮データバッファ(cpb)204に送られ、一時的に蓄積される。デコーダ205では、圧縮データバッファ204に蓄積されているビデオストリームから、デコードすべき階層として指定された階層のピクチャの符号化画像データが取り出される。そして、デコーダ205では、取り出された各ピクチャの符号化画像データが、それぞれ、そのピクチャのデコードタイミングでデコードされ、非圧縮データバッファ(dpb)206に送られ、一時的に蓄積される。この場合、各ピクチャの符号化画像データがデコードされる際に、必要に応じて、非圧縮データバッファ206から被参照ピクチャの画像データが読み出されて利用される。
非圧縮データバッファ(dpb)206から表示タイミングで順次読み出された各ピクチャの画像データは、ポスト処理部207に送られる。ポスト処理部207では、各ピクチャの画像データに対して、そのフレームレートを、表示能力に合わせるための補間あるいはサブサンプルが行われる。このポスト処理部207で処理された各ピクチャの画像データは、ディスプレイに供給され、その各ピクチャの画像データによる動画像の表示が行われる。
以上説明したように、図1に示す送受信システム10においては、送信側において、HFR非対応の受信機が処理可能な所定階層以下の階層の各ピクチャの符号化画像データにそれぞれ対応して符号化画像データやPESエクステンションに、デコード時刻を補正するための時刻補正情報が挿入されて送信されるものである。そのため、例えば、受信側において、所定階層以下の階層の各ピクチャの符号化画像データのみをデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、この時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正できる。したがって、受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。
また、図1に示す送受信システム10においては、受信側において、HFR非対応の受信機が処理可能な所定階層以下の階層の各ピクチャの符号化画像データのみデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、符号化画像データやPESエクステンションに挿入されている時刻補正情報を用いて、所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正するものである。そのため、例えば、ハイフレームレートに非対応、対応のいずれであっても良好に再生可能となる。
<2.変形例>
なお、上述実施の形態においては、4階層の階層符号化の例を示し、また、複数のビデオストリームの場合のストリーム数が2の例を示している。しかし、本技術の適用は、これらの例に限定されるものでないことは勿論である。
例えば、図31は、5階層の階層符号化の例を示している。この例は、0から4までの5階層に分類され、各階層のピクチャの画像データに対して符号化が施された例である。縦軸は階層を示している。階層0から4のピクチャの符号化画像データを構成するNALユニット(nal_unit)のヘッダ部分に配置されるtemporal_id(階層識別情報)として、それぞれ、0から4が設定される。一方、横軸は表示順(POC:picture order of composition)を示し、左側は表示時刻が前で、右側は表示時刻が後になる。
矩形枠のそれぞれがピクチャを示し、数字は、符号化されているピクチャの順、つまりエンコード順(受信側ではデコード順)を示している。この例の場合、「2」から「17」の16個のピクチャによりサブ・ピクチャグループ(Sub group of pictures)が構成されており、「2」はそのサブ・ピクチャグループの先頭のピクチャとなる。「1」は前のサブ・ピクチャグループのピクチャである。このサブ・ピクチャグループがいくつか集まってGOP(Group Of Pictures)となる。
実線矢印は、符号化におけるピクチャの参照関係を示している。例えば、「2」のピクチャは、Pピクチャであり、「1」のピクチャを参照して符号化される。また、「3」のピクチャは、Bピクチャであり、「1」、「2」のピクチャを参照して符号化される。同様に、その他のピクチャは、表示順で近くのピクチャを参照して符号化される。なお、最上位の階層のピクチャは、他のピクチャからの参照がない。
図31の階層符号化の例においては、複数のビデオストリームが生成される場合、例えば、3つのビデオストリームが生成される。この場合、例えば、一点鎖線および2点鎖線で区切るように、階層0から2は最下位の階層組とされ、階層3はその上位に位置する階層組とされ、さらに階層4はその上位に位置する階層組とされて、3つの階層組に分割される。そして、各階層組のピクチャの符号化画像データをそれぞれ持つ3つのビデオストリーム(符号化ストリーム)が生成される。
この場合、最下位の階層組のピクチャの符号化画像データを持つビデオストリームはベースストリームとされ、そのストリームタイプは“0x24”とされる。また、この最下位の階層組より上位に位置する階層組のピクチャの符号化画像データを含むビデオストリームはエンハンスストリームとされ、そのストリームタイプは、新規定義する“0x25”とされる。
図32は、図31の階層符号化の例において、「第1の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される補正情報S(i)を示している。例えば、図31の階層符号化の例において、全ての階層、つまり階層0から4の階層の各ピクチャによるフレームレートは120Hzであり、階層0から3の階層の各ピクチャによるフレームレートは60Hzである。
フル時間解像度の階層0から4のうち、60pデコード向けに、1/2時間解像度部分である階層0から3の各ピクチャの符号化画像データのそれぞれに対応して時刻補正情報S(i)が挿入される。この場合、「2」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「3」のアクセスユニット(ピクチャ)に対する補正値iは“3”とされ、「4」のアクセスユニット(ピクチャ)に対する補正値iは“6”とされ、「11」のアクセスユニット(ピクチャ)に対する補正値iは“3”とされる。さらに、「5」のアクセスユニット(ピクチャ)に対する補正値iは“−1”とされ、「8」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「12」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「15」のアクセスユニット(ピクチャ)に対する補正値iは“1”とされる。以降の各sub GOP(Group Of Pictures)では、同様の繰り返しとなる。
そして、受信側では、60pデコーダでの表示にあっては、1/2時間解像度部分である階層0から3の各ピクチャの符号化画像データがバッファに取り込まれてデコードされる。その際に、破線枠のアクセスユニット(AU)で示すように、各ピクチャの符号化画像データのデコード時刻が、時刻補正情報S(i)に基づいて、等間隔(1/60秒)となるように補正される。また、受信側では、120pデコーダでの表示にあっては、フル時間解像度の0から4の各ピクチャの符号化画像データがバッファに取り込まれて、当初のデコード時刻により等間隔(1/120秒)でデコードされる。
図33は、図31の階層符号化の例において、「第2の符号化」が施される場合の、所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して挿入される補正情報S(i)を示している。
時間解像度の階層0から4のうち、1/2時間解像度部分である階層0から3の各ピクチャの符号化画像データのそれぞれに対応して時刻補正情報S(i)が挿入される。この場合、「2」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「3」のアクセスユニット(ピクチャ)に対する補正値iは“−3”とされ、「4」のアクセスユニット(ピクチャ)に対する補正値iは“−6”とされ、「11」のアクセスユニット(ピクチャ)に対する補正値iは“−3”とされる。さらに、「5」のアクセスユニット(ピクチャ)に対する補正値iは“1”とされ、「8」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「12」のアクセスユニット(ピクチャ)に対する補正値iは“0”とされ、「15」のアクセスユニット(ピクチャ)に対する補正値iは“−1”とされる。以降の各sub GOP(Group Of Pictures)では、同様の繰り返しとなる。
そして、受信側では、60pデコーダでの表示にあっては、1/2時間解像度部分である階層0から3の各ピクチャの符号化画像データがバッファに取り込まれて、当初のデコード時刻により等間隔(1/60秒)でデコードされる。また、受信側では、120pデコーダでの表示にあっては、フル時間解像度の0から4の各ピクチャの符号化画像データがバッファに取り込まれてデコードされる。その際に、破線枠のアクセスユニット(AU)で示すように、階層0から3の各ピクチャの符号化画像データのデコード時刻が、全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔(1/120秒)となるように符号化される場合と同じタイミングとなるように補正される。
また、上述実施の形態においては、60p(60Hz)と120p(120Hz)の組み合わせを例にとって説明したが、フレームレートの組み合わせは、これに限定されるものではない。例えば、50p(50Hz)と100p(100Hz)の組み合わせでも同様である。
また、上述実施の形態においては、送信装置100と受信装置200からなる送受信システム10を示したが、本技術を適用し得る送受信システムの構成は、これに限定されるものではない。例えば、受信装置200の部分が、例えば、(HDMI(High-Definition Multimedia Interface)などのデジタルインタフェースで接続されたセットトップボックスおよびモニタの構成などであってもよい。なお、「HDMI」は、登録商標である。
また、上述実施の形態においては、コンテナがトランスポートストリーム(MPEG−2 TS)である例を示した。しかし、本技術は、インターネット等のネットワークを利用して受信端末に配信される構成のシステムにも同様に適用できる。インターネットの配信では、MP4やそれ以外のフォーマットのコンテナで配信されることが多い。つまり、コンテナとしては、デジタル放送規格で採用されているトランスポートストリーム(MPEG−2 TS)、インターネット配信で使用されているMP4などの種々のフォーマットのコンテナが該当する。
また、本技術は、以下のような構成を取ることもできる。
(1)動画像データを構成する各ピクチャの画像データを複数の階層に分類し、該分類された各階層のピクチャの画像データを符号化し、該符号化された各階層のピクチャの画像データを持つビデオストリームを生成する画像符号化部と、
上記ビデオストリームを含む所定フォーマットのコンテナを送信する送信部と、
上記所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報を挿入する補正情報挿入部を備える
送信装置。
(2)上記画像符号化部は、
上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化し、
上記時刻補正情報は、
所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である
前記(1)に記載の送信装置。
(3)上記画像符号化部は、
上記所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、
上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化し、
上記時刻補正情報は、
上記所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
前記(1)に記載の送信装置。
(4)上記時刻補正情報には、該時刻補正情報が第1のタイプであるか第2のタイプであるかを識別するためのタイプ情報が付加されており、
上記第1のタイプは、
上記ビデオストリームが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報が、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報であることを示し、
上記第2のタイプは、
上記ビデオストリームが、上記所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報が、上記所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報であることを示す
前記(1)から(3)のいずれかに記載の送信装置。
(5)動画像データを構成する各ピクチャによるフレームレートを第1のフレームレートとし、上記所定階層以下の階層の各ピクチャによるフレームレートを第2のフレームレートとするとき、上記第2のフレームレートは上記第1のフレームレートの1/2倍である
前記(1)から(4)のいずれかに記載の送信装置。
(6)上記画像符号化部は、
上記複数の階層を2以上の所定数の階層組に分割し、分割された各階層組のピクチャの符号化画像データを持つ上記所定数のビデオストリームを生成し、
上記所定階層以下の階層と、該所定階層より上の階層とは、互いに異なる階層組に属する
前記(1)から(5)のいずれかに記載の送信装置。
(7)上記コンテナはトランスポートストリームであり、
上記補正情報挿入部は、
上記時刻補正情報をPESパケットのエクステンションフィールドに挿入する
前記(1)から(6)のいずれかに記載の送信装置。
(8)上記コンテナのレイヤに、上記符号化画像データおよび/または該符号化画像データをコンテナするパケットに、上記時刻補正情報が挿入されていることを識別するための識別情報を挿入する識別情報挿入部をさらに備える
前記(1)から(7)のいずれかに記載の送信装置。
(9)動画像データを構成する各ピクチャの画像データを複数の階層に分類し、該分類された各階層のピクチャの画像データを符号化し、該符号化された各階層のピクチャの画像データを持つビデオストリームを生成するステップと、
送信部により、上記生成されたビデオストリームを含む所定フォーマットのコンテナを送信するステップと、
上記所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報を挿入するステップを有する
送信方法。
(10)動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化されることで得られた各階層のピクチャの符号化画像データを持つビデオストリームを受信する受信部と、
上記ビデオストリームを処理する処理部を備え、
上記ビデオストリームが持つ上記各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されている
受信装置。
(11)上記ビデオストリームは、
上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報は、
上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報である
前記(10)に記載の受信装置。
(12)上記ビデオストリームは、
上記所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、
上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報は、
上記所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
前記(10)に記載の受信装置。
(13)動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化され、該符号化されて得られた各階層のピクチャの符号化画像データを持つビデオストリームを含む所定フォーマットのコンテナを受信する受信部と、
上記ビデオストリームからデコード能力に応じた階層のピクチャの符号化画像データを選択的にバッファに取り込み、該バッファに取り込まれた各ピクチャの符号化画像データをデコードして画像データを得る画像復号処理部を備え、
上記ビデオストリームが持つ上記各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されており、
上記画像復号処理部は、
上記所定階層以下の階層の各ピクチャの符号化画像データのみデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、上記時刻補正情報を用いて、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する
受信装置。
(14)上記時刻補正情報には、該時刻補正情報が第1のタイプであるか第2のタイプであるかを識別するタイプ情報が付加されており、
上記第1のタイプは、
上記ビデオストリームが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報が、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報であることを示し、
上記第2のタイプは、
上記ビデオストリームが、上記所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報が、上記所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報であることを示し、
上記画像復号処理部は、上記時刻補正情報に付加されている上記タイプ情報に基づき、上記所定階層以下の階層の各ピクチャの符号化画像データのみデコードする場合に上記時刻補正情報を用いたデコード時刻の補正を行うか、上記全ての階層の各ピクチャの符号化画像データをデコードする場合に上記時刻補正情報を用いたデコード時刻の補正を行うかを切り替える
前記(13)に記載の受信装置。
(15)上記ビデオストリームが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報が、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるようにデコード時刻を補正するための情報であり、
上記画像復号処理部は、上記所定階層以下の階層の各ピクチャの符号化画像データのみデコードする場合に、上記時刻補正情報を用いて、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する
前記(13)または(14)に記載の受信装置。
(16)上記ビデオストリームが、上記所定階層より上の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合と同じデコードタイミングとなり、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード間隔が等間隔となるように符号化されており、
上記時刻補正情報が、上記所定階層以下の階層の各ピクチャの符号化画像データのデコードタイミングが、上記動画像データを構成する各ピクチャの符号化画像データが等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報であり、
上記画像復号処理部は、上記全ての階層の各ピクチャの符号化画像データをデコードする場合に、上記時刻補正情報を用いて、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する
前記(13)または(14)に記載の受信装置。
(17)上記画像復号処理部は、
上記バッファに取り込む所定階層以下の階層あるいは全ての階層の各ピクチャの符号化画像データが複数のビデオストリームに含まれている場合、各ピクチャの符号化画像データをデコードタイミング情報に基づいてデコード時刻の順に1つのストリームに結合して上記バッファに取り込む
前記(13)から(16)のいずれかに記載の受信装置。
(18)受信部により、動画像データを構成する各ピクチャの画像データが複数の階層に分類されて符号化され、該符号化されて得られた各階層のピクチャの符号化画像データを持つビデオストリームを含む所定フォーマットのコンテナを受信する受信ステップと、
上記ビデオストリームからデコード能力に応じた階層のピクチャの符号化画像データを選択的にバッファに取り込み、該バッファに取り込まれた各ピクチャの符号化画像データをデコードして画像データを得る画像復号処理ステップとを有し、
上記ビデオストリームが持つ上記各階層のピクチャの符号化画像データのうち、所定階層以下の階層の各ピクチャの符号化画像データのそれぞれに対応して、該符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されており、
上記画像復号処理ステップでは、
上記所定階層以下の階層の各ピクチャの符号化画像データのみデコードするか全ての階層の各ピクチャの符号化画像データをデコードするかに応じて、上記時刻補正情報を用いて、上記所定階層以下の階層の各ピクチャの符号化画像データのデコード時刻を補正する
受信方法。
本技術の主な特徴は、HFR非対応の受信機が処理可能な所定階層以下の階層(低階層)の各ピクチャの符号化画像データにそれぞれ対応して符号化画像データやPESエクステンションにデコード時刻を補正するための時刻補正情報を挿入して送信することで、
受信側がハイフレームレートに非対応、対応のいずれであっても良好に再生可能としたことである(図8,図10参照)。
10・・・送受信システム
100・・・送信装置
101・・・CPU
102・・・エンコーダ
103・・・圧縮データバッファ(cpb)
104・・・マルチプレクサ
105・・・送信部
121・・・テンポラルID発生部
122・・・バッファ遅延制御部
123・・・HRD設定部
124・・・パラメータセット/SEIエンコード部
125・・・スライスエンコード部
126・・・NALパケット化部
142・・・セクションコーディング部
143-1〜143-N・・・PESパケット化部
144・・・スイッチ部
145・・・トランスポートパケット化部
200・・・受信装置
201・・・CPU
202・・・受信部
203・・・デマルチプレクサ
204・・・圧縮データバッファ(cpb)
205・・・デコーダ
206・・・非圧縮データバッファ(dpb)
207・・・ポスト処理部
231,241・・・PIDフィルタ部
232,242・・・セクション・パース部
233,243・・・PESパケット・パース部
234,244・・・DTS変換処理部
235,236,245・・・アクセスユニット・プロセッサ
251・・・テンポラルID解析部
252・・・対象階層選択部
254・・・デコード部
271・・・補間部
272・・・サブサンプル部
273・・・スイッチ部

Claims (5)

  1. 動画像データを構成する各ピクチャの画像データが複数の階層に分類されてデコード順番と表示順番が異なるように符号化されると共に、上記複数の階層を2以上の所定数の階層組に分割し、分割された各階層組のピクチャの符号化画像データを持つ上記所定数のビデオストリームを受信する受信部と、
    上記所定数のビデオストリームを処理する処理部を備え、
    最下位の階層組の各ピクチャの符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されており、
    上記時刻補正情報は、上記最下位の階層組の各ピクチャの符号化画像データのデコードタイミングが上記動画像データを構成する全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
    受信装置。
  2. 上記動画像データを構成する各ピクチャによるフレームレートを第1のフレームレートとし、上記最下位の階層組の各ピクチャによるフレームレートを第2のフレームレートとするとき、上記第2のフレームレートは上記第1のフレームレートの1/2倍である
    請求項1に記載の受信装置。
  3. 受信部が、動画像データを構成する各ピクチャの画像データが複数の階層に分類されてデコード順番と表示順番が異なるように符号化されると共に、上記複数の階層を2以上の所定数の階層組に分割し、分割された各階層組のピクチャの符号化画像データを持つ上記所定数のビデオストリームを受信する受信ステップと、
    処理部が、上記所定数のビデオストリームを処理する処理ステップを有し、
    最下位の階層組の各ピクチャの符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報が挿入されており、
    上記時刻補正情報は、上記最下位の階層組の各ピクチャの符号化画像データのデコードタイミングが上記動画像データを構成する全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
    受信方法。
  4. 動画像データを構成する各ピクチャの画像データが複数の階層に分類されてデコード順番と表示順番が異なるように符号化されると共に、上記複数の階層を2以上の所定数の階層組に分割し、分割された各階層組のピクチャの符号化画像データを持つ上記所定数のビデオストリームを送信する送信部と、
    最下位の階層組の各ピクチャの符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報を挿入する補正情報挿入部を備え、
    上記時刻補正情報は、上記最下位の階層組の各ピクチャの符号化画像データのデコードタイミングが上記動画像データを構成する全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
    送信装置。
  5. 送信部が、動画像データを構成する各ピクチャの画像データが複数の階層に分類されてデコード順番と表示順番が異なるように符号化されると共に、上記複数の階層を2以上の所定数の階層組に分割し、分割された各階層組のピクチャの符号化画像データを持つ上記所定数のビデオストリームを送信する送信ステップと、
    補正情報挿入部が、最下位の階層組の各ピクチャの符号化画像データおよび/または該符号化画像データをコンテナするパケットに、デコード時刻を補正するための時刻補正情報を挿入する補正情報挿入ステップを有し、
    上記時刻補正情報は、上記最下位の階層組の各ピクチャの符号化画像データのデコードタイミングが上記動画像データを構成する全ての階層の各ピクチャの符号化画像データのデコード間隔が等間隔とされる場合のデコードタイミングと同じくなるようにデコード時刻を補正するための情報である
    送信方法。
JP2019031417A 2013-11-01 2019-02-25 受信装置、受信方法、送信装置および送信方法 Active JP6617845B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013228825 2013-11-01
JP2013228825 2013-11-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015544888A Division JP6493214B2 (ja) 2013-11-01 2014-10-01 送信装置、送信方法、受信装置および受信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019195116A Division JP6795076B2 (ja) 2013-11-01 2019-10-28 送受信システムおよび送受信方法

Publications (2)

Publication Number Publication Date
JP2019080362A true JP2019080362A (ja) 2019-05-23
JP6617845B2 JP6617845B2 (ja) 2019-12-11

Family

ID=53003900

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015544888A Active JP6493214B2 (ja) 2013-11-01 2014-10-01 送信装置、送信方法、受信装置および受信方法
JP2019031417A Active JP6617845B2 (ja) 2013-11-01 2019-02-25 受信装置、受信方法、送信装置および送信方法
JP2019195116A Active JP6795076B2 (ja) 2013-11-01 2019-10-28 送受信システムおよび送受信方法
JP2020188116A Active JP7070639B2 (ja) 2013-11-01 2020-11-11 送信方法および送信装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015544888A Active JP6493214B2 (ja) 2013-11-01 2014-10-01 送信装置、送信方法、受信装置および受信方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019195116A Active JP6795076B2 (ja) 2013-11-01 2019-10-28 送受信システムおよび送受信方法
JP2020188116A Active JP7070639B2 (ja) 2013-11-01 2020-11-11 送信方法および送信装置

Country Status (6)

Country Link
US (1) US10225566B2 (ja)
EP (1) EP3065410B1 (ja)
JP (4) JP6493214B2 (ja)
BR (1) BR112016008992B1 (ja)
RU (1) RU2662222C2 (ja)
WO (1) WO2015064287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093770A (ja) * 2013-10-18 2021-06-17 パナソニック株式会社 送信方法および送信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3065410B1 (en) * 2013-11-01 2019-02-06 Sony Corporation Transmission apparatus, transmission method, reception apparatus, and reception method
WO2021176904A1 (ja) * 2020-03-05 2021-09-10 ソニーグループ株式会社 ビットストリーム生成方法、符号化装置、復号装置
CN112333448B (zh) * 2020-11-04 2022-08-16 北京金山云网络技术有限公司 视频编码、解码方法和装置、电子设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258997A (ja) * 2009-04-28 2010-11-11 Sharp Corp 番組データ記録再生装置及び番組データ記録再生方法
WO2012023281A1 (ja) * 2010-08-17 2012-02-23 パナソニック株式会社 動画像復号方法、動画像符号化方法、動画像復号装置、及び、動画像符号化装置
JP2012182672A (ja) * 2011-03-01 2012-09-20 Toshiba Corp エンコーダ、映像伝送装置及びエンコード方法
JP2015080203A (ja) * 2013-10-18 2015-04-23 パナソニック株式会社 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232052B2 (ja) * 1997-10-31 2001-11-26 松下電器産業株式会社 画像復号化方法
US6633339B1 (en) 1999-03-31 2003-10-14 Matsushita Electric Industrial Co., Ltd. Method and device for seamless-decoding video stream including streams having different frame rates
JP4064036B2 (ja) * 1999-03-31 2008-03-19 松下電器産業株式会社 インターレース方式とプログレッシブ方式が混在する映像ストリームのシームレス復号装置
MX2009007272A (es) 2007-01-05 2009-10-08 Thomson Licensing Decodificador de referencia hipotetica para codificacion escalable de video.
CA2722204C (en) * 2008-04-25 2016-08-09 Thomas Schierl Flexible sub-stream referencing within a transport data stream
US8768984B2 (en) * 2009-04-09 2014-07-01 Telefonaktiebolaget L M Ericsson (Publ) Media container file management
JP4889836B1 (ja) * 2010-08-18 2012-03-07 パナソニック株式会社 3d符号化装置
US9124895B2 (en) * 2011-11-04 2015-09-01 Qualcomm Incorporated Video coding with network abstraction layer units that include multiple encoded picture partitions
JP2013126048A (ja) 2011-12-13 2013-06-24 Sony Corp 送信装置、送信方法、受信装置および受信方法
EP3065410B1 (en) * 2013-11-01 2019-02-06 Sony Corporation Transmission apparatus, transmission method, reception apparatus, and reception method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258997A (ja) * 2009-04-28 2010-11-11 Sharp Corp 番組データ記録再生装置及び番組データ記録再生方法
WO2012023281A1 (ja) * 2010-08-17 2012-02-23 パナソニック株式会社 動画像復号方法、動画像符号化方法、動画像復号装置、及び、動画像符号化装置
JP2012182672A (ja) * 2011-03-01 2012-09-20 Toshiba Corp エンコーダ、映像伝送装置及びエンコード方法
JP2015080203A (ja) * 2013-10-18 2015-04-23 パナソニック株式会社 画像符号化方法、画像復号方法、画像符号化装置および画像復号装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUSHI SATO: "On inter-layer prediction enabling/disabling for HEVC scalable extensions[online]", JCTVC-K0175R1, JPN6018044985, 12 January 2013 (2013-01-12), ISSN: 0004132545 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093770A (ja) * 2013-10-18 2021-06-17 パナソニック株式会社 送信方法および送信装置

Also Published As

Publication number Publication date
EP3065410B1 (en) 2019-02-06
JP2020014260A (ja) 2020-01-23
RU2016115957A (ru) 2017-10-23
EP3065410A1 (en) 2016-09-07
JP6493214B2 (ja) 2019-04-03
US10225566B2 (en) 2019-03-05
JP6795076B2 (ja) 2020-12-02
US20160212435A1 (en) 2016-07-21
EP3065410A4 (en) 2017-05-17
BR112016008992A2 (ja) 2017-08-01
BR112016008992B1 (pt) 2023-04-18
WO2015064287A1 (ja) 2015-05-07
JP2021036709A (ja) 2021-03-04
JP6617845B2 (ja) 2019-12-11
JPWO2015064287A1 (ja) 2017-03-09
JP7070639B2 (ja) 2022-05-18
RU2662222C2 (ru) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6699790B2 (ja) 送信装置および送信方法
JP7070639B2 (ja) 送信方法および送信装置
WO2015029754A1 (ja) 送信装置、送信方法、受信装置および受信方法
JP2015057875A (ja) 送信装置、送信方法、受信装置、受信方法、符号化装置および符号化方法
WO2015037373A1 (ja) 符号化装置、送信装置および受信装置
JP5947269B2 (ja) 符号化装置、符号化方法、送信装置および受信装置
JP2022126774A (ja) 受信装置
JP6508270B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP7230981B2 (ja) 受信装置および受信方法
JP6341228B2 (ja) 符号化装置、符号化方法、送信装置、送信方法、受信装置および受信方法
JP5954508B2 (ja) 符号化装置、符号化方法、送信装置および受信装置
JP5954509B2 (ja) 符号化装置、符号化方法、送信装置および受信装置
JP2019062566A (ja) 送信装置、送信方法、受信装置および受信方法
JP2018139443A (ja) 受信装置、受信方法、送信装置および送信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R151 Written notification of patent or utility model registration

Ref document number: 6617845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151