JP2019079867A - Gaseous phase deposition device - Google Patents

Gaseous phase deposition device Download PDF

Info

Publication number
JP2019079867A
JP2019079867A JP2017204052A JP2017204052A JP2019079867A JP 2019079867 A JP2019079867 A JP 2019079867A JP 2017204052 A JP2017204052 A JP 2017204052A JP 2017204052 A JP2017204052 A JP 2017204052A JP 2019079867 A JP2019079867 A JP 2019079867A
Authority
JP
Japan
Prior art keywords
substrate
opposing surface
susceptor
gas
deposition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017204052A
Other languages
Japanese (ja)
Inventor
昇 須田
Noboru Suda
昇 須田
隆宏 大石
Takahiro Oishi
隆宏 大石
純次 米野
Junji Komeno
純次 米野
陳哲霖
zhe lin Chen
劉奕宏
yi hong Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hermes Epitek Corp
Original Assignee
Hermes Epitek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hermes Epitek Corp filed Critical Hermes Epitek Corp
Priority to JP2017204052A priority Critical patent/JP2019079867A/en
Priority to TW107135823A priority patent/TWI682059B/en
Priority to CN201811231000.7A priority patent/CN109695027B/en
Publication of JP2019079867A publication Critical patent/JP2019079867A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a gaseous phase deposition device capable of controlling the opposing face temperature to a temperature appropriate for the process uniformly with good repeatability by a large-sized mass production device.SOLUTION: A gaseous phase deposition device is based on a horizontal type or self-revolution type chemical gaseous phase deposition device. In a water-cooled chamber having a process gas introduction part and an exhaust part, a board 220, a susceptor 222 for holding the board, means for heating the board 220 and the susceptor 222, and an opposing face member 20 forming a deposition space (flow channel) oppositely to the board 220 and the susceptor 222, are arranged appropriately. In principle, process gas flows in parallel with the board 220. An irregular shape 22 is formed on the back plane (chamber wall 202 side) of the opposing face member 20, and protrusions 24 thereof are installed to come into contact with the chamber wall 202. Mixed gas (opposing face temperature control gas) composed of two types of gas having different heat conductivity and subjected to flow control is distributed to the recess 26.SELECTED DRAWING: Figure 1

Description

本発明は、半導体もしくは酸化物基板上に半導体膜を形成する気相成膜装置に関し、更に具体的には、基板と対向する対向面の温度制御に関するものである。   The present invention relates to a vapor phase deposition apparatus for forming a semiconductor film on a semiconductor or oxide substrate, and more specifically to temperature control of an opposing surface facing the substrate.

一般に用いられる気相成膜装置の一形態として、プロセスガスを基板面と平行に導入するタイプがある。その例として、図16に自公転式気相成膜装置の断面の一例を、図17に前記自公転式気相成膜装置のサセプタの平面図の一例を示す。また、図18には横型気相成膜装置の断面の一例を、図19には前記横型気相成膜装置のサセプタの平面図の一例を示す。   One type of generally used vapor phase deposition apparatus is a type in which a process gas is introduced parallel to the substrate surface. As an example, FIG. 16 shows an example of a cross section of a self-revolution type vapor deposition apparatus, and FIG. 17 shows an example of a plan view of a susceptor of the self-revolution type vapor deposition apparatus. Also, FIG. 18 shows an example of a cross section of a horizontal vapor phase deposition apparatus, and FIG. 19 shows an example of a plan view of a susceptor of the horizontal vapor phase deposition apparatus.

まず、図16及び図17に示す自公転式気相成膜装置100では、チャンバ110は、チャンバ部材102を通る冷却水104により水冷されている。前記チャンバ110は、プロセスガス(ないし材料ガス)導入部106,対向面温度制御ガス導入部150,パージガス導入部160及び排気部108A,108Bを備えている。そして、チャンバ110内に、成膜用の基板120及び基板ホルダ122を載置するサセプタ124と、前記基板120に対向する対向面128を有する対向面部材126が適宜配置され、これらサセプタ124と対向面部材126の間に成膜空間(フローチャネル)130が形成されている。前記サセプタ124は、回転軸140を中心として回転し、前記基板ホルダ122は、基板120の中心を軸として回転する機構が設けられている。   First, in the self-revolution type vapor deposition apparatus 100 shown in FIGS. 16 and 17, the chamber 110 is water-cooled by the cooling water 104 passing through the chamber member 102. The chamber 110 includes a process gas (or material gas) introduction unit 106, a facing surface temperature control gas introduction unit 150, a purge gas introduction unit 160, and exhaust units 108A and 108B. Further, in the chamber 110, a susceptor 124 for mounting the substrate 120 for film formation and the substrate holder 122, and an opposing surface member 126 having an opposing surface 128 opposing the substrate 120 are appropriately disposed, and are opposed to the susceptor 124 A film forming space (flow channel) 130 is formed between the face members 126. The susceptor 124 is rotated about a rotational shaft 140, and the substrate holder 122 is provided with a mechanism that rotates about the center of the substrate 120.

一方、図18及び図19に示す横型気相成膜装置200では、チャンバ210は、チャンバ部材202を通る冷却水204により水冷されている。前記チャンバ210は、プロセスガス導入部206,対向面温度制御ガス導入部250,パージガス導入部260及び排気部208を備えている。そして、チャンバ210内に、成膜用の基板220とそれを載置するサセプタ222と、前記基板220に対向する対向面228を形成する対向面部材226が適宜配置され、これらサセプタ222と対向面部材226の間に成膜空間(フローチャネル)230が形成される。以上の構造の横型気相成膜装置200では、サセプタ222が回転軸240を中心として回転する機構のみが設けられている。   On the other hand, in the horizontal vapor phase deposition apparatus 200 shown in FIGS. 18 and 19, the chamber 210 is water-cooled by the cooling water 204 passing through the chamber member 202. The chamber 210 includes a process gas introduction unit 206, an opposing surface temperature control gas introduction unit 250, a purge gas introduction unit 260, and an exhaust unit 208. In the chamber 210, a substrate 220 for film formation, a susceptor 222 for mounting the substrate, and an opposing surface member 226 for forming an opposing surface 228 opposing the substrate 220 are appropriately disposed. A film forming space (flow channel) 230 is formed between the members 226. In the horizontal vapor phase deposition apparatus 200 having the above-described structure, only a mechanism in which the susceptor 222 rotates about the rotation shaft 240 is provided.

ところで、気相成膜においては、言うまでもなく基板温度が重要な要素であり、正確かつ再現性の高い基板温度制御が求められる。基板加熱は、通常、ヒータないしは高周波加熱などの加熱手段(図16のヒータ170,図18のヒータ270など)により行われる。水冷壁に囲まれた成膜装置(いわゆるコールドウォールタイプ)においては、加熱手段において発生した熱はサセプタ(あるいは基板ホルダ)、基板、対向面部材、チャンバ部材を順に経て冷却水に至り、ここで排熱される。図20には、横型気相成膜装置の場合の熱の流れが示されており、ヒータ270により発生した熱は、同図に矢印FAで示すように、サセプタ222,基板220,対向面部材226,チャンバ部材202を経て冷却水204に至り、ここで排熱される。基板220は、ヒータ270と対向面部材226の間に位置するため、対向面部材226の温度が安定しないと、基板温度も安定しないことになる。   Incidentally, in the vapor phase film formation, the substrate temperature is, of course, an important factor, and accurate and highly reproducible substrate temperature control is required. Substrate heating is usually performed by a heater or heating means such as high frequency heating (heater 170 in FIG. 16, heater 270 in FIG. 18, etc.). In a film forming apparatus (so-called cold wall type) surrounded by a water-cooled wall, the heat generated in the heating means passes through the susceptor (or substrate holder), the substrate, the facing member, and the chamber member in this order to reach the cooling water. Exhausted heat. FIG. 20 shows the flow of heat in the case of a horizontal vapor phase deposition apparatus, and as the heat generated by the heater 270 is indicated by an arrow FA in the figure, the susceptor 222, the substrate 220, and the facing member 226, it passes through the chamber member 202 to the cooling water 204 where it is exhausted. Since the substrate 220 is located between the heater 270 and the facing member 226, if the temperature of the facing member 226 is not stable, the substrate temperature will not be stable.

対向面温度はまた、膜中不純物濃度,堆積速度分布,材料効率といった、成膜工程において大変重要な特性にも影響する。化学気相成膜では、基板上のみならず、気相中,すなわち成膜空間においても様々な化学反応が生じている。すなわち、キャリアガスとともに成膜空間に導入された材料分子は、様々な中間反応を経た上で基板に至り、そこで膜として堆積する。そのため、膜中不純物濃度,堆積速度分布,材料効率などの成膜特性は、成膜空間における材料分子の化学反応履歴に依存し、したがって成膜空間の化学反応状態が安定していないと、これらの特性も安定しない。そして、当然ながら成膜空間の化学反応は、成膜空間温度分布の影響を多大に受けるが、成膜空間温度は、サセプタあるいは基板の温度及び対向面温度により決定される。   The opposing surface temperature also affects very important characteristics in the film forming process, such as the impurity concentration in the film, the deposition rate distribution, and the material efficiency. In chemical vapor deposition, various chemical reactions occur not only on the substrate but also in the vapor phase, that is, in the film formation space. That is, material molecules introduced into the film formation space together with the carrier gas reach various kinds of intermediate reactions and reach the substrate where they are deposited as a film. Therefore, film formation characteristics such as impurity concentration in the film, deposition rate distribution, material efficiency, etc. depend on the chemical reaction history of material molecules in the film formation space, and therefore, if the chemical reaction state in the film formation space is not stable, The characteristics of are also not stable. As a matter of course, the chemical reaction in the film formation space is greatly influenced by the temperature distribution in the film formation space, but the film formation space temperature is determined by the temperature of the susceptor or the substrate and the opposing surface temperature.

下記特許文献1の「エピタキシアル成長反応器」において、対向面の温度制御に関する一つの方法が提案され、現在は、この方法が一般的に採用されている。この方法は、対向面部材と水冷されたチャンバ壁の間に空隙を設け、そこに熱伝導率の高いガスと低いガスの混合ガス(対向面温度制御ガス)を流通し、その混合比により空隙の熱伝導率を調節することで、対向面の温度を制御するものである。化合物半導体のMOCVDでは、高熱伝導率のガスとして水素、低熱伝導率のガスとして窒素が一般的に採用されている。すなわち、対向面温度を制御するために、対向面温度制御ガスの水素と窒素の比率を調節する。前記空隙は、図16では空隙180,図18では空隙280が相当する。   In the "Epitaxial Growth Reactor" of Patent Document 1 below, one method for temperature control of the facing surface is proposed, and this method is generally adopted at present. In this method, an air gap is provided between the opposite surface member and the water-cooled chamber wall, and a mixed gas of a gas having high thermal conductivity and a low gas (opposite surface temperature control gas) is circulated there and the air gap is generated The temperature of the opposing surface is controlled by adjusting the thermal conductivity of In the MOCVD of compound semiconductors, hydrogen is generally employed as a high thermal conductivity gas, and nitrogen is generally employed as a low thermal conductivity gas. That is, in order to control the opposing surface temperature, the ratio of hydrogen and nitrogen of the opposing surface temperature control gas is adjusted. The air gap corresponds to the air gap 180 in FIG. 16 and the air gap 280 in FIG.

特開平1−278497号公報Unexamined-Japanese-Patent No. 1-278497

ところで、近年、工業的に重要度を増している窒化物系の成膜においては、1000℃を超える高い基板温度が必要とされる。そのために成膜空間の温度も高くならざるを得ない。ところが、成膜空間の温度が高いと気相中の化学反応が進みすぎ、様々な弊害を誘発する。例えば、ある場合では、行き過ぎた気相反応により材料分子が不活性化し、材料効率や膜厚分布の悪化を招く。またある別の場合では、気相中で材料分子の分解反応が進みすぎ、低分子化により拡散速度が速くなり、結果として材料分子が上流域で枯渇する問題を発生させる。このように、成膜空間の高温化は様々な弊害を引き起こすため、ある程度低温に保つ必要がある。   By the way, in the film formation of the nitride system which is increasing industrial importance recently, the high substrate temperature over 1000 ° C is required. Therefore, the temperature of the film forming space also has to be increased. However, if the temperature of the film formation space is high, the chemical reaction in the gas phase proceeds too much, leading to various adverse effects. For example, in some cases, excessive gas phase reaction inactivates material molecules, resulting in deterioration of material efficiency and film thickness distribution. In another case, the decomposition reaction of material molecules in the gas phase proceeds too much, and the molecular weight reduction accelerates the diffusion rate, resulting in the problem of exhaustion of the material molecules in the upstream region. As described above, since raising the temperature of the film formation space causes various adverse effects, it is necessary to keep the temperature low to some extent.

基板温度は成膜対象の膜種により最適な温度が決められるため、任意に設定することができない。そのため、成膜空間の温度を低くするためには、対向面温度を低くする必要がある。対向面温度の適切な値は、成膜対象によるものの、窒化物系の場合には、経験的には200〜250℃程度の対向面温度が適当である。1000℃以上の基板温度、かつ、200〜250℃程度という低温の対向面温度を実現するためには、対向面温度制御ガスを流通する空隙を狭くする必要がある。空隙が広いと、対向面温度制御ガスとして熱伝導率の高い水素のみを流通したとしても、対向面温度は、適切な温度範囲を超えてしまうからである。   The substrate temperature can not be set arbitrarily because the optimum temperature is determined according to the type of film to be formed. Therefore, in order to lower the temperature of the film formation space, it is necessary to lower the opposing surface temperature. Although an appropriate value of the facing surface temperature depends on the film forming object, in the case of a nitride based film, the facing surface temperature of about 200 to 250 ° C. is empirically appropriate. In order to achieve a substrate temperature of 1000 ° C. or more and a low opposing surface temperature of about 200 to 250 ° C., it is necessary to narrow the air gap through which the opposing surface temperature control gas flows. If the air gap is wide, even if only hydrogen having high thermal conductivity is circulated as the facing surface temperature control gas, the facing surface temperature exceeds the appropriate temperature range.

図21に、一般的な窒化物系化合物半導体の成膜条件下での、空隙とその空隙に対する制御温度の関係を示した。同図において、横軸は空隙幅(mm)、縦軸は対向面温度の下限値及び上限値(℃)である。なお、図中、実線部分が対向面温度の下限値を示すが、これは即ち、対向面温度制御ガスを水素100%としたときの対向面温度である。また、破線部分が対向面温度の上限値を示すが、これは、対向面温度制御ガスを窒素100%としたときの対向面温度である。図21からは、空隙幅を0.1〜0.2mmとして、ようやく対向面温度200〜250℃の適切な温度が得られることが分かる。   FIG. 21 shows the relationship between the gap and the control temperature with respect to the gap under film forming conditions of a general nitride-based compound semiconductor. In the figure, the horizontal axis is the gap width (mm), and the vertical axis is the lower limit value and the upper limit value (° C.) of the facing surface temperature. In the drawing, the solid line portion indicates the lower limit value of the opposing surface temperature, that is, the opposing surface temperature when the opposing surface temperature control gas is 100% hydrogen. The broken line portion indicates the upper limit value of the opposing surface temperature, which is the opposing surface temperature when the opposing surface temperature control gas is 100% nitrogen. From FIG. 21, it can be seen that an appropriate temperature having an opposing surface temperature of 200 to 250 ° C. is finally obtained with a gap width of 0.1 to 0.2 mm.

一方、窒化物系の成膜装置は、近年大型化への要望が強く、現在の量産装置においては、対向面部材のサイズは直径700mmから場合によって1mにも達するようになってきている。このような広範囲にわたり、0.1〜0.2mm程度という狭い空隙を均一に形成することは、部材の加工精度を考慮すると難易度が高い。また、いかなる場合でも、加熱による対向面部材の若干の熱変形は避けられず、もし空隙幅が狭ければ、わずかの熱変形でもその影響を大きく受けてしまう。これらの点から、従来方法により大型の量産装置で、均一かつ再現性良く対向面温度を制御するのは困難という課題がある。   On the other hand, in recent years, there has been a strong demand for enlargement of nitride-based film forming apparatuses, and in current mass production apparatuses, the size of the facing member has reached a diameter of 700 mm to 1 m depending on the case. It is very difficult to uniformly form a narrow gap of about 0.1 to 0.2 mm over such a wide range in consideration of the processing accuracy of the member. Also, in any case, slight thermal deformation of the facing member due to heating can not be avoided, and if the gap width is narrow, even slight thermal deformation is greatly affected. From these points, there is a problem that it is difficult to control the facing surface temperature uniformly and reproducibly in a large-scale mass-production apparatus by the conventional method.

本発明は、以上のような点に着目したもので、大型の量産装置で、均一かつ再現性良く、対向面温度をプロセスに適正した温度に制御できる気相成膜装置を提供することを、その目的とする。   The present invention focuses on the above points, and provides a vapor phase deposition apparatus capable of controlling the facing surface temperature to a temperature appropriate for the process, with large-scale mass-production apparatus, uniformly and with good reproducibility. Its purpose.

本発明は、材料ガス導入部と排気部を有し、水冷された壁面により囲まれたチャンバ内空間に、成膜用の基板を保持するためのサセプタと、該サセプタ及び成膜用基板に対して水平方向のフローチャネルを形成する対向面部材が配置された気相成膜装置であって、前記チャンバ内に、前記対向面部材の温度を制御するための対向面温度制御ガスを導入する対向面温度制御ガス導入部、を備えるとともに、前記対向面部材の、前記基板と対向しない面に凹凸形状を形成し、凸部が前記水冷された壁面に接触するように配置し、凹部を、流量制御された前記対向面温度制御ガスの流路としたことを特徴とする。   The present invention relates to a susceptor for holding a substrate for film formation in a chamber inner space having a source gas introduction portion and an exhaust portion and surrounded by a water-cooled wall, and the susceptor and the substrate for film formation. Gas phase film deposition apparatus in which an opposing surface member forming a horizontal flow channel is disposed, wherein the opposing surface temperature control gas for controlling the temperature of the opposing surface member is introduced into the chamber. A surface temperature control gas introduction unit, and an uneven shape is formed on the surface of the facing surface member not facing the substrate, and a convex portion is disposed to contact the water-cooled wall surface, and a concave portion is formed It is characterized in that it is a flow path of the controlled opposite surface temperature control gas.

主要な形態の一つは、前記対向面温度制御ガスが、熱伝導率が互いに異なる2種以上の気体からなる混合気体であることを特徴とする。他の形態の一つは、前記対向面温度制御ガスが、水素及び窒素からなることを特徴とする。更に他の形態の一つは、前記対向面部材における前記基板に対向する領域において、該領域の全面積に対する、前記領域内の前記凸部との接触部の面積比が、0.3〜0.6であることを特徴とする。   One of the main modes is characterized in that the opposed surface temperature control gas is a mixed gas composed of two or more kinds of gases having different thermal conductivities. One of the other modes is characterized in that the opposite surface temperature control gas comprises hydrogen and nitrogen. In still another mode, in a region of the facing surface member facing the substrate, an area ratio of a contact portion with the convex portion in the region to the entire area of the region is 0.3 to 0. It is characterized by being .6.

更に他の形態の一つは、前記凸部の高さが、2mm以下であることを特徴とする。更に他の形態の一つは、前記基板上に、有機金属気相成膜法により成膜対象を成膜することを特徴とする。更に他の形態の一つは、前記基板上に成膜する対象が、窒化物系の化合物半導体であることを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   Still another aspect is characterized in that the height of the convex portion is 2 mm or less. Still another aspect is characterized in that a film formation target is formed on the substrate by an organic metal vapor phase deposition method. Furthermore, one of the other modes is characterized in that an object to be deposited on the substrate is a nitride-based compound semiconductor. The above and other objects, features and advantages of the present invention will be apparent from the following detailed description and the accompanying drawings.

本発明によれば、材料ガス導入部と排気部を有し、水冷された壁面により囲まれたチャンバ内空間に、成膜用の基板を保持するためのサセプタと、該サセプタ及び成膜用基板に対して水平方向のフローチャネルを形成する対向面部材が配置された気相成膜装置であって、前記チャンバ内に、前記対向面部材の温度を制御するための対向面温度制御ガスを導入する対向面温度制御ガス導入部、を備えるとともに、前記対向面部材の、前記基板と対向しない面に凹凸形状を形成し、凸部が前記水冷された壁面に接触するように配置し、凹部を、流量制御された前記対向面温度制御ガスの流路とした。このため、大型の量産装置で、均一かつ再現性良く、対向面温度をプロセスに適正した温度に制御できる気相成膜装置を提供することが可能となる。   According to the present invention, there is provided a susceptor for holding a substrate for film formation in a chamber interior space having a source gas introduction portion and an exhaust portion and surrounded by a water cooled wall, the susceptor and the substrate for film formation A vapor deposition apparatus in which is disposed an opposing surface member that forms a flow channel in the horizontal direction with respect to the surface, and introducing an opposing surface temperature control gas for controlling the temperature of the opposing surface member into the chamber Forming a convex-concave shape on the surface of the counter-surface member not facing the substrate, and arranging the convex portion to be in contact with the water-cooled wall surface; The flow path of the opposite surface temperature control gas whose flow rate is controlled. Therefore, it is possible to provide a vapor phase deposition apparatus capable of controlling the facing surface temperature to a temperature suitable for the process uniformly and with high reproducibility in a large-scale mass production apparatus.

本発明の基本的な概念を示す断面図である。FIG. 1 is a cross-sectional view showing the basic concept of the present invention. 本発明の実施例1の自公転式気相成膜装置を示す断面図である。It is sectional drawing which shows the self-revolution type | mold vapor-phase film-forming apparatus of Example 1 of this invention. 前記実施例1の対向面部材の凹凸形状の一例を示す平面図である。It is a top view which shows an example of the uneven | corrugated shape of the opposing surface member of the said Example 1. FIG. 前記図3を#A−#A線に沿って切断し矢印方向に見た断面図である。FIG. 4 is a cross-sectional view of FIG. 3 taken along the # A- # A line and viewed in the arrow direction. 前記実施例1の対向面部材の凹凸形状の他の例を示す平面図である。It is a top view which shows the other example of the uneven | corrugated shape of the opposing surface member of the said Example 1. FIG. 本発明の実施例2の横型気相成膜装置を示す断面図である。It is sectional drawing which shows the horizontal-type vapor-phase film-forming apparatus of Example 2 of this invention. 前記実施例2の対向面部材の凹凸形状の一例を示す平面図である。It is a top view which shows an example of the uneven | corrugated shape of the opposing surface member of the said Example 2. FIG. 前記実施例2の対向面部材の凹凸形状の他の例を示す平面図である。It is a top view which shows the other example of the uneven | corrugated shape of the opposing surface member of the said Example 2. FIG. 本発明のシミュレーションを行う領域を決定するための説明図である。It is explanatory drawing for determining the area | region which performs simulation of this invention. 本発明のシミュレーションモデルを示す断面図である。It is sectional drawing which shows the simulation model of this invention. 前記シミュレーションモデルにおける二次元温度分布図の一例を示す図である。It is a figure which shows an example of the two-dimensional temperature distribution map in the said simulation model. 前記シミュレーションにおける全体面積に対する凸部(接触部)の面積比と対向面温度の関係を示す図である。It is a figure which shows the relationship between the area ratio of a convex part (contact part) with respect to the whole area in the said simulation, and opposing surface temperature. 前記シミュレーションにおける全体面積に対する凸部(接触部)の面積比と対向面温度制御幅の関係を示す図である。It is a figure which shows the relationship between the area ratio of a convex part (contact part) with respect to the whole area in the said simulation, and opposing surface temperature control width. 前記シミュレーションにおける全体面積に対する凸部(接触部)の面積比と対向面表面温度分布の大きさ(制御ガス:水素)の関係を示す図である。It is a figure which shows the relationship between the area ratio of the convex part (contact part) with respect to the whole area in the said simulation, and the magnitude | size (control gas: hydrogen) of opposing surface surface temperature distribution. 前記シミュレーションにおける全体面積に対する凸部(接触部)の面積比と対向面表面温度分布の大きさ(制御ガス:窒素)の関係を示す図である。It is a figure which shows the relationship between the area ratio of the convex part (contact part) with respect to the whole area in the said simulation, and the magnitude | size (control gas: nitrogen) of opposing surface surface temperature distribution. 一般的な自公転式気相成膜装置の断面図である。It is sectional drawing of a general self-revolution type | mold vapor-phase film-forming apparatus. 前記図16の自公転式気相成膜装置のサセプタの平面図である。It is a top view of the susceptor of the self-revolution type | mold vapor-phase film-forming apparatus of FIG. 一般的な横型気相成膜装置の断面図である。It is sectional drawing of a general horizontal vapor phase film-forming apparatus. 前記図18の横型気相成膜装置のサセプタの平面図である。FIG. 19 is a plan view of a susceptor of the horizontal vapor phase deposition apparatus of FIG. 18; 従来の気相成膜装置における熱の流れを示す断面図である。It is sectional drawing which shows the flow of the heat in the conventional gaseous-phase film-forming apparatus. 従来の気相成膜装置におけるチャンバ部材と対向面との空隙幅と、対向面温度の下限値及び上限値の関係を示すグラフである。It is a graph which shows the space | gap width of the chamber member and opposing surface in the conventional vapor phase film-forming apparatus, and the relationship of the lower limit and upper limit of opposing surface temperature.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

<基本概念>・・・最初に、図1を参照して、本発明の基本概念を説明する。図1は、本発明の基本的な概念を示す断面図である。本発明は、横型あるいは自公転式の化学気相成膜装置をベースとした成膜装置を基本構成とする(図1は、横型気相成膜装置の例を示す)。すなわち、プロセスガス導入部及び排気部を有する水冷されたチャンバ内に、基板220、基板を保持するサセプタ222、基板220及びサセプタ222を加熱する手段、そして基板220及びサセプタ222に対向して成膜空間を形成する対向面部材20を適宜配置した構成である。プロセスガスの流れ方向は、原則として基板と平行である。   <Basic Concept> First, the basic concept of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing the basic concept of the present invention. The present invention basically has a film forming apparatus based on a horizontal or self-revolving chemical vapor deposition apparatus (FIG. 1 shows an example of a horizontal vapor deposition apparatus). That is, in a water-cooled chamber having a process gas introduction part and an exhaust part, the substrate 220, the susceptor 222 for holding the substrate, a means for heating the substrate 220 and the susceptor 222, and film formation facing the substrate 220 and the susceptor 222 It is the structure which has arrange | positioned suitably the opposing surface member 20 which forms space. The flow direction of the process gas is in principle parallel to the substrate.

上述したように、従来技術においては、対向面部材の裏面とチャンバ部材の間に空隙(図16の空隙180,図18の空隙280)を設け、ここに対向面温度制御ガスを流通して温度制御を行うが、従来は、対向面部材の裏面は平坦であった。それに対し、本発明では、対向面部材20の背面(チャンバ部材202側)に凹凸形状22を形成し、その凸部24をチャンバ部材202に接触させるように設置する。そして、凹部26に熱伝導率の異なる2種類のガスよりなる混合ガス(対向面温度制御ガス)を流通させ、対向面温度を制御する。   As described above, in the prior art, an air gap (air gap 180 in FIG. 16 and air gap 280 in FIG. 18) is provided between the back surface of the facing member and the chamber member, and the temperature control gas is circulated there to obtain the temperature. Although control is performed, conventionally, the back surface of the facing member was flat. On the other hand, in the present invention, the concavo-convex shape 22 is formed on the back surface (the chamber member 202 side) of the facing surface member 20, and the convex portion 24 is placed in contact with the chamber member 202. Then, mixed gas (facing surface temperature control gas) composed of two kinds of gases having different thermal conductivities is caused to flow through the recess 26 to control the facing surface temperature.

対向面温度の制御下限値は、最も熱伝導率の良い水素のみ(即ち水素100%)を流したときに得られる。本発明では、対向面部材20が部分的に接触しており、この対向面部材20は固体であるため、ガスである水素よりもはるかに大きな熱伝導率を有する。つまり伝熱が良い。伝熱の良い対向面部材20が部分的にチャンバ部材202に接触するため、対向面部材20からチャンバ部材202への実効的な伝熱がよくなる。その分、非接触部である凹部26の高低差を大きくしても、従来方法において狭い空隙幅とした際の実効的な伝熱性と同等の伝熱性を実現できる。計算上、本発明において、窒化物系の成膜条件下で200〜250℃程度の対向面温度を得るには、1mmくらいの高低差を有する凹凸を形成すればよい。この点については、後述するシミュレーションの説明において詳述する。   The control lower limit value of the facing surface temperature is obtained when flowing only hydrogen (ie, 100% hydrogen) having the highest thermal conductivity. In the present invention, the facing member 20 is in partial contact, and since the facing member 20 is solid, it has a thermal conductivity much higher than that of hydrogen gas. That is, heat transfer is good. Since the heat transfer facing surface member 20 partially contacts the chamber member 202, the effective heat transfer from the facing surface member 20 to the chamber member 202 is improved. Accordingly, even if the height difference of the recess 26 which is the noncontact portion is increased, it is possible to realize the same heat conductivity as the effective heat conductivity when the gap width is made narrow in the conventional method. In terms of calculation, in the present invention, in order to obtain an opposing surface temperature of about 200 to 250 ° C. under nitride-based film forming conditions, it is sufficient to form an unevenness having a height difference of about 1 mm. This point will be described in detail in the description of the simulation described later.

<自公転式気相成膜装置への適用例>・・・まず、図2〜図5を参照して、自公転式気相成膜装置10について説明する。図2は、自公転式気相成膜装置を示す断面図である。図3は、対向面部材の凹凸形状の一例を示す平面図である。図4は、前記図3を#A−#A線に沿って切断し矢印方向に見た断面図である。図5は、対向面部材の凹凸形状の他の例を示す平面図である。   <Example of application to self-revolution type vapor phase film forming apparatus> First, the self-revolution type vapor phase film forming apparatus 10 will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing a self-revolution type vapor deposition apparatus. FIG. 3: is a top view which shows an example of the uneven | corrugated shape of an opposing surface member. FIG. 4 is a cross-sectional view of FIG. 3 taken along the # A- # A line and viewed in the arrow direction. FIG. 5 is a plan view showing another example of the concavo-convex shape of the facing surface member.

まず、本例の自公転式気相成膜装置10の基本的構成は、上述した従来技術(図16及び図17)と同様である。すなわち、図2に示すように、自公転式気相成膜装置10では、チャンバ110は、チャンバ部材102を通る冷却水104により水冷されている。前記チャンバ110は、プロセスガス(ないし材料ガス)導入部106,対向面温度制御ガス導入部150,パージガス導入部160及び排気部108A,108Bを備えている。そして、チャンバ110内に、成膜用の基板120及び基板ホルダ122を載置するサセプタ124と、前記基板120に対向する対向面21を有する対向面部材20が適宜配置され、これらサセプタ124と対向面部材126の間に成膜空間(フローチャネル)130が形成されている。前記サセプタ124は、回転軸140を中心として回転し、前記基板ホルダ122は、基板120の中心を軸として回転する機構が設けられている。   First, the basic configuration of the self-revolution type vapor deposition apparatus 10 of this embodiment is the same as that of the above-described prior art (FIGS. 16 and 17). That is, as shown in FIG. 2, in the self-revolution type vapor deposition apparatus 10, the chamber 110 is water-cooled by the cooling water 104 passing through the chamber member 102. The chamber 110 includes a process gas (or material gas) introduction unit 106, a facing surface temperature control gas introduction unit 150, a purge gas introduction unit 160, and exhaust units 108A and 108B. In the chamber 110, a susceptor 124 for mounting a substrate 120 for film formation and a substrate holder 122, and an opposing surface member 20 having an opposing surface 21 opposing the substrate 120 are appropriately disposed, and are opposed to the susceptor 124 A film forming space (flow channel) 130 is formed between the face members 126. The susceptor 124 is rotated about a rotational shaft 140, and the substrate holder 122 is provided with a mechanism that rotates about the center of the substrate 120.

本発明では、上記構成に加え、前記対向面部材20の上側(チャンバ部材102側)に凹凸形状22を設けている。前記対向面部材20は、凹凸形状22の凸部24が、水冷されたチャンバ部材102に接触するように設置し、凹部26には、対向面温度制御ガスを流通することとしている。   In the present invention, in addition to the above configuration, the uneven shape 22 is provided on the upper side (the chamber member 102 side) of the facing surface member 20. The facing surface member 20 is installed so that the convex portion 24 of the concavo-convex shape 22 contacts the water cooled chamber member 102, and the facing surface temperature control gas is circulated in the concave portion 26.

凹凸形状22の形態の一つの例としては、図3に示すように、島状(あるいはドット状)の凸部24を多数施した形態がある。前記図3を#A−#A線に沿って切断し矢印方向に見た断面が図4に示されており、凸部24と凹部26が規則的に配置されている。なお、図3では、凸部24の平面形状は円形であるが、例えば、四角形などにしても効果は同様であるので、任意の形状としてよい。また、凸部24の配置については、図3では、格子状の周期的な配置としているが、温度の均一性が担保される配置であれば、どのような配置としてもよい。また、島状の形状でなくても、図5に示す対向面部材20Aのように、中央の開口部28から、外縁に向けて、徐々に幅が広くなるような凹部26Aが、放射状に配置された形状としてもよい。この場合、凸部24Aも、放射状となる。   As one example of the form of the concavo-convex shape 22, as shown in FIG. 3, there is a form in which a large number of island-shaped (or dot-shaped) convex portions 24 are provided. The cross section of FIG. 3 cut along the # A- # A line and viewed in the direction of the arrow is shown in FIG. 4, and the projections 24 and the recesses 26 are regularly arranged. In addition, in FIG. 3, although the planar shape of the convex part 24 is circular, even if it is a quadrangle etc., for example, since an effect is the same, you may be set as arbitrary shapes. In addition, although the arrangement of the convex portions 24 is a lattice-like periodic arrangement in FIG. 3, any arrangement may be used as long as the uniformity of temperature is ensured. Further, even if the shape is not island-like, as in the facing surface member 20A shown in FIG. 5, concave portions 26A whose width gradually widens from the central opening 28 toward the outer edge are radially arranged. It may be in the shape of In this case, the protrusions 24A are also radial.

<横型気相成膜装置への適用例>・・・次に、図6〜図8を参照して、横型気相成膜装置50への適用例を説明する。図6は、横型気相成膜装置を示す断面図である。図7及び図8は、対向面部材の凹凸形状の一例を示す図である。本例の横型気相成膜装置50の基本的構成は、上述した従来技術(図18及び図19)と同様である。すなわち、図6に示すように、自公転式気相成膜装置50では、チャンバ210は、チャンバ部材202を通る冷却水204により水冷されている。前記チャンバ210は、プロセスガス導入部206,対向面温度制御ガス導入部250,パージガス導入部260及び排気部208を備えている。そして、チャンバ210内に、成膜用の基板220とそれを載置するサセプタ222と、前記基板220に対向する対向面61を形成する対向面部材60が適宜配置され、これらサセプタ222と対向面部材226の間に成膜空間(フローチャネル)230が形成される。以上の構造の横型気相成膜装置200では、サセプタ222が回転軸240を中心として回転する機構のみが設けられている。   <Example of Application to Horizontal-Type Vapor-Phase Film Forming Apparatus> Next, an example of application to the horizontal-type vapor-phase film forming apparatus 50 will be described with reference to FIGS. FIG. 6 is a cross-sectional view showing a horizontal vapor phase deposition apparatus. FIG.7 and FIG.8 is a figure which shows an example of the uneven | corrugated shape of an opposing surface member. The basic configuration of the horizontal vapor phase deposition apparatus 50 of this example is the same as that of the above-described prior art (FIGS. 18 and 19). That is, as shown in FIG. 6, in the self-revolution type vapor deposition apparatus 50, the chamber 210 is water-cooled by the cooling water 204 passing through the chamber member 202. The chamber 210 includes a process gas introduction unit 206, an opposing surface temperature control gas introduction unit 250, a purge gas introduction unit 260, and an exhaust unit 208. In the chamber 210, a substrate 220 for film formation, a susceptor 222 for mounting the substrate, and an opposing surface member 60 for forming an opposing surface 61 opposed to the substrate 220 are properly disposed. A film forming space (flow channel) 230 is formed between the members 226. In the horizontal vapor phase deposition apparatus 200 having the above-described structure, only a mechanism in which the susceptor 222 rotates about the rotation shaft 240 is provided.

本発明では、上記構成に加え、前記対向面部材60の上側(チャンバ部材202側)に凹凸形状62を設けている。前記対向面部材60は、凹凸形状62の凸部64が、水冷されたチャンバ部材202に接触するように設置し、凹部66には、対向面温度制御ガスを流通することとしている。前記凹凸形状62の具体的なパターンとしては、例えば、図7に示すように、格子状に周期的に凸部64を配置した形状がある。図7を#B−#B線に沿って切断し矢印方向に見た断面は、前記図4と同じである。また、図8に示す対向面部材60Aのように、プロセスガスの流れる方向に延長した複数の凸部64Aを、平行に設けるようにしてもよい。この場合、複数の凹部66Aも平行な配置となる。   In the present invention, in addition to the above configuration, the uneven shape 62 is provided on the upper side (the chamber member 202 side) of the facing surface member 60. The facing surface member 60 is installed so that the convex portion 64 of the concavo-convex shape 62 is in contact with the water-cooled chamber member 202, and the facing surface temperature control gas is circulated in the concave portion 66. As a specific pattern of the concavo-convex shape 62, for example, as shown in FIG. 7, there is a shape in which convex portions 64 are periodically arranged in a lattice shape. The cross section of FIG. 7 cut along the # B- # B line and viewed in the arrow direction is the same as FIG. Further, as in the facing surface member 60A shown in FIG. 8, a plurality of convex portions 64A extended in the flow direction of the process gas may be provided in parallel. In this case, the plurality of recesses 66A are also arranged in parallel.

<各部の素材>・・・次に、各部の材質について説明する。チャンバ材質の例としては、一般的によく使われるステンレスでもよいし、良好な熱伝導率が必要であれば、アルミニウムなどを用いてもよい。サセプタあるいは基板ホルダには、グラファイトなどのカーボン系の材料が好適である。仮に成膜対象が窒化物系であり、アンモニアをプロセスガスで用いる場合は、カーボン材を用いるとアンモニアにより腐食されるため、この場合は、炭化珪素、窒化ホウ素、タンタルカーバイドなどのアンモニア耐性のある物質により被覆されたカーボン材料を用いるのがよい。対向面部材としては、サセプタと同様にカーボン材料、あるいは上述したように他材料で被覆されたカーボン材料が好適であるが、他に石英、各種セラミック、各種金属材料なども、プロセス環境下での耐性があれば使用可能である。   <Material of Each Part>... Next, the material of each part will be described. As an example of the chamber material, generally used stainless steel may be used, or aluminum or the like may be used if good thermal conductivity is required. For the susceptor or the substrate holder, a carbon-based material such as graphite is suitable. If the film formation target is a nitride type, and ammonia is used as a process gas, it is corroded by ammonia if a carbon material is used. In this case, it is resistant to ammonia such as silicon carbide, boron nitride or tantalum carbide. It is preferable to use a carbon material coated with a substance. Similar to the susceptor, as the facing surface member, a carbon material or a carbon material coated with another material as described above is preferable, but other materials such as quartz, various ceramics, various metal materials, etc. may be used under the process environment. It can be used if it is resistant.

<シミュレーション>・・・本発明を実施するにあたり重要な設計要素となるのは、対向面部材における基板に対向する領域において、該領域の全体面積(以下単に「全体」とする)に対する凸部(接触部)の面積比と凸部の高さである。また、凹凸の周期は対向面表面の温度分布に関係するため、これも設計パラメータの一つである。これらの設計パラメータの性質は、以下のシミュレーション例の中で詳細に説明する。   <Simulation>... An important design element in practicing the present invention is a convex portion (hereinafter simply referred to as "whole") in the region facing the substrate in the facing surface member. It is an area ratio of a contact part and height of a convex part. Moreover, since the period of the unevenness is related to the temperature distribution on the facing surface, this is also one of the design parameters. The nature of these design parameters will be described in detail in the following simulation example.

先に述べたように、全体に対する凸部の面積比は、対向面温度の制御可能温度にとって重要である。凸部の面積比が大きくなるほど制御温度の下限は低くなり、制御可能範囲は小さくなるものと考えられる。また、凸部の高さについては、高さが低いほど対向面温度は低くなり、高ければ逆に高くなると考えられるので、所望の対向面温度を得るためのパラメータとして使える可能性がある。そこで本実施例では、あるシミュレーションモデルを設定し、凸部の面積比及び凸部高さを変化させて、これらのパラメータが対向面温度に及ぼす影響について検討した。また、対向面裏面の凹凸形状により対向面表面(サセプタ及び基板に対向する側)の温度分布が形成されると考えられるので、対向面表面の温度分布に関しても検討を行った。   As mentioned earlier, the area ratio of the ridge to the whole is important for the controllable temperature of the facing surface temperature. It is considered that the lower the control temperature lowers and the controllable range becomes smaller as the area ratio of the projections becomes larger. In addition, as the height of the convex portion, the lower the height, the lower the opposing surface temperature, and the higher the height, it is considered to become higher. Therefore, it may be used as a parameter for obtaining a desired opposing surface temperature. Therefore, in the present embodiment, a simulation model was set, the area ratio of the projections and the height of the projections were changed, and the influence of these parameters on the opposing surface temperature was examined. In addition, since the temperature distribution on the surface of the opposite surface (the side facing the susceptor and the substrate) is considered to be formed by the uneven shape on the back surface of the opposite surface, the temperature distribution on the surface of the opposite surface was also studied.

本シミュレーションでは、本発明の一形態である横型気相成膜装置に、溝タイプの凹凸を対向面裏面に施した形態(図8に類する形態)を想定することとする。図9(a)及び(b)は、本シミュレーションを行う領域を決定するための説明図である。一般的な自公転式気相成膜装置や横型気相成膜装置は、水平方向に広がった形状を有するため、実質的な水平方向の熱の移動はほぼ無視できる。すると凹凸形態の周期性を考慮すれば、溝の伸長方向に垂直な半周期分の二次元モデルを解けば十分と考えられる。更に付け加えれば、実質的な横方向の熱移動が無視できることを考慮すれば、該モデルによる結論は、他の実施形態にも適用可能であると推察される。なお、シミュレーションを適用した領域(シミュレーション領域68)は、図9(b)に太い破線で示された領域である。   In this simulation, it is assumed that an aspect (a form similar to FIG. 8) in which groove-type asperities are formed on the opposite surface is applied to a horizontal vapor phase deposition apparatus which is an embodiment of the present invention. FIGS. 9 (a) and 9 (b) are explanatory diagrams for determining an area to perform this simulation. Since a general self-revolution type vapor deposition apparatus and a horizontal vapor deposition apparatus have a shape which spreads in the horizontal direction, substantial horizontal heat transfer can be substantially ignored. Then, considering the periodicity of the concavo-convex shape, it is considered sufficient to solve a two-dimensional model for a half cycle perpendicular to the extension direction of the groove. In addition, the conclusions from the model are assumed to be applicable to other embodiments, given that substantial lateral heat transfer is negligible. In addition, the area | region (simulation area | region 68) to which simulation was applied is an area | region shown by the thick broken line in FIG.9 (b).

図10は、本シミュレーションモデルの詳細を示す断面図である。同図に示した各寸法は、実際のMOCVD法において用いられる一般的な寸法となっている。すなわち、サセプタないし基板220から対向面61までの距離(つまり成膜空間の高さ)は15mm、凹凸構造を含む対向面部材60Aの全体の厚みは10mm、チャンバ部材202の厚みは10mmであり、チャンバ部材202の片側は冷却水204に接している。対向面部材60Aとチャンバ部材202の表面に間には、必ず熱的接触抵抗が生じる。接触抵抗の起源は、接触する二つの物体間に必ず生じるミクロな空隙であるので、本シミュレーションでは、0.01mmの空隙が対向面部材60Aとチャンバ部材202の間に存在するものとしてこれを表現した。これは経験的に妥当な数値と考えられる。なお、接触抵抗は、現実には部材の表面粗さなどによりある程度調整が可能である。   FIG. 10 is a cross-sectional view showing the details of this simulation model. Each dimension shown in the same figure is a general dimension used in the actual MOCVD method. That is, the distance from the susceptor or substrate 220 to the opposing surface 61 (ie, the height of the film forming space) is 15 mm, the total thickness of the opposing surface member 60A including the concavo-convex structure is 10 mm, and the thickness of the chamber member 202 is 10 mm. One side of the chamber member 202 is in contact with the cooling water 204. A thermal contact resistance always occurs between the surface of the facing member 60A and the surface of the chamber member 202. Since the origin of the contact resistance is a micro air gap that inevitably occurs between two objects in contact, in this simulation, a 0.01 mm air gap is represented as existing between the facing member 60A and the chamber member 202. did. This is considered to be an empirically reasonable number. In addition, the contact resistance can be adjusted to some extent by the surface roughness of the member and the like.

モデル各部の物性値は、一般に開示されている各材料の物性を元に、以下のように設定した。
(1)サセプタ(基板220)からの放射率はカーボン系材料を想定し、0.85とした。
(2)成膜領域である空間の熱伝導率は、通常キャリアガスとして最もよく使われる水素を想定して、0.235W/m/sとした。
(3)対向面部材60Aはカーボン系材料を想定して、放射率0.85及び熱伝導率100W/m/sとした。
(4)対向面温度制御ガスが流通する領域(凹部66A)は、水素及び窒素の2パターンについて実施し、その際それぞれ0.235及び0.034の熱伝導率を設定した。
(5)チャンバ部材202は、ステンレスを想定して放射率0.4、熱伝導率17W/m/sとした。
(6)温度境界条件に関しては、高温側はサセプタ(基板220)表面であり、これを1050℃とし、低温側はチャンバ部材102と冷却水204の界面であり、これを40℃とした。
Physical property values of each part of the model were set as follows based on the physical properties of each material generally disclosed.
(1) The emissivity from the susceptor (substrate 220) is assumed to be 0.85, assuming a carbon-based material.
(2) The thermal conductivity of the space which is the film formation region is 0.235 W / m / s, assuming hydrogen which is most commonly used as a carrier gas.
(3) Assuming that the opposite surface member 60A is a carbon-based material, the emissivity is 0.85 and the thermal conductivity is 100 W / m / s.
(4) The region (concave portion 66A) in which the opposing surface temperature control gas flows is performed for two patterns of hydrogen and nitrogen, and at that time, the thermal conductivity of 0.235 and 0.034 is set.
(5) Assuming that the chamber member 202 is stainless steel, the emissivity is 0.4 and the thermal conductivity is 17 W / m / s.
(6) Regarding temperature boundary conditions, the high temperature side is the susceptor (substrate 220) surface, which is 1050 ° C., and the low temperature side is the interface of the chamber member 102 and the cooling water 204, which is 40 ° C.

上記の物性のうち、カーボン系部材の部分は、例えば、他材料により被覆されている場合でも、被覆の厚みは薄いため、熱伝導率はカーボン材のそれと変わらないとみなしてよい。また、放射率に関しては、炭化珪素被覆はカーボン材とほぼ同じであり、窒化ホウ素被覆も被覆厚みが小さければ、カーボンの放射率と大きく変わらない。つまり、これらの材料使用の下では、現実にもシミュレーションとほぼ同様の結果が得られるものと考えられる。   Among the above-mentioned physical properties, even when the carbon-based member is covered with another material, for example, since the thickness of the coating is thin, the thermal conductivity may be considered to be the same as that of the carbon material. With regard to emissivity, silicon carbide coatings are almost the same as carbon materials, and boron nitride coatings do not differ much from the emissivity of carbon if the coating thickness is small. In other words, it is considered that, under the use of these materials, substantially similar results to simulation can be obtained in reality.

上記モデル及び物性値を用い、様々な凹凸面積比、凹凸高さに対しシミュレーションを実施した。本シミュレーションは、不透明体である対向面部材60A及びチャンバ部材202内部は熱伝導のみを扱い、透明体である気体で満たされた成膜空間と、対向面部材60Aとチャンバ部材202の間の空隙は、気体を通じた熱伝導に加え、放射による熱移動も計算に入れた。   The simulation was carried out for various surface area ratios and heights using the above model and physical property values. In this simulation, only the heat conduction is handled in the facing surface member 60A and the chamber member 202 which are opaque bodies, and the space between the facing surface member 60A and the chamber member 202 is filled with a gas filled with a gas which is a transparent body. In addition to the heat conduction through the gas, the heat transfer by radiation was also taken into account.

図11に、シミュレーションの結果得られた、ヒータから冷却水に至る部分の温度分布の一例を示す。なお分かりやすいように異なる温度表示スケールで2通り図示した。この例は、凸部面積比は0.5、凸部高さは1mm、対向面温度制御ガスは水素100%の条件で計算した結果である。各条件に対して同様のシミュレーションを実行し、得られた結果から、凸部面積比及び凸部高さが、対向面表面温度に及ぼす影響を図12〜図15にまとめた。なお、これらの図において横軸はどれも全体面積に対する凸部(接触部)の面積比(以下「凸部面積比」とする)となっている。   FIG. 11 shows an example of the temperature distribution of the portion from the heater to the cooling water obtained as a result of the simulation. In order to make it easy to understand, two different temperature display scales are shown. In this example, the convex area ratio is 0.5, the convex height is 1 mm, and the temperature control gas for the facing surface is calculated under the condition of 100% hydrogen. The same simulation was performed for each condition, and from the obtained results, the effects of the convex area ratio and the convex height on the surface temperature of the facing surface are summarized in FIGS. 12 to 15. In each of these drawings, the horizontal axis is the area ratio of the convex portion (contact portion) to the entire area (hereinafter referred to as "the convex area ratio").

図12は、全体面積に対する凸部面積比と対向面温度(℃)(縦軸)の関係を示す図である。なお本図には、対向面温度制御ガスH及びN双方についての対向面温度が示されている。図12によれば、予想されるように接触部面積比が小さくなるほど対向面温度は高くなることが分かる。すなわち、面積比を適切に選択することで、任意の対向面温度の制御温度域を得ることができる。200〜250℃とするには凸部面積比0.3〜0.6が適当であることが分かる。 FIG. 12 is a diagram showing the relationship between the area ratio of the convex portion to the total area and the temperature (° C.) of the facing surface (vertical axis). Note that, in the drawing, the opposing surface temperatures of both the opposing surface temperature control gas H 2 and N 2 are shown. According to FIG. 12, it can be seen that the opposing surface temperature becomes higher as the contact area ratio becomes smaller as expected. That is, by appropriately selecting the area ratio, it is possible to obtain a control temperature range of any facing surface temperature. It is understood that a convex portion area ratio of 0.3 to 0.6 is appropriate to achieve 200 to 250 ° C.

図13は、凸部面積比と対向面温度制御幅(℃)(縦軸)の関係を示す図である。同図によると、面積比が小さいほうが制御幅は大きく、その点では好ましい。実際にどの面積比を用いるかは、温度域と制御幅の双方を考慮して、最低の面積比を決定することとなる。また、図13からは、制御幅は凸部の高さ依存性は小さいことも見て取れる。つまり、凸部の高さを大きくしても、制御幅にはそれほど有利に働かないことが分かる。   FIG. 13 is a diagram showing the relationship between the convex portion area ratio and the facing surface temperature control width (° C.) (vertical axis). According to the figure, the smaller the area ratio, the larger the control range, which is preferable in that respect. The area ratio to be used in practice is to determine the lowest area ratio in consideration of both the temperature range and the control range. Further, it can also be seen from FIG. 13 that the control width has a small height dependency of the convex portion. In other words, it can be seen that even if the height of the convex portion is increased, the control width does not work so advantageously.

図14及び図15は、凸部面積比と対向面表面温度分布の大きさ(℃)(縦軸)の関係を示す図である。図14は、対向面制御ガスが水素の場合の、図15は対向面制御ガスが窒素の場合の、対向面温度の最高温度と最低温度の差を示している。当然ながら凸部(接触部)近辺では温度が低く、凹部では温度が高くなる。これによれば、凸部高さが高いほど、対向面表面内の温度差が大きくなる。つまり、凸部高さが高いと、制御幅はさほど変わらず、対向面表面の温度分布が悪くなるということであり、凸部高さは、あまり高くしないほうがよいことが分かる。図14及び図15から判断すれば、凸部高さは2mm以下が適当と考えられる。加工精度の観点からは、凸部高さは大きいほど良いが、2mm以上では表面温度分布悪化の弊害が無視できないからである。   FIG. 14 and FIG. 15 are diagrams showing the relationship between the convex portion area ratio and the size (° C.) (vertical axis) of the temperature distribution on the facing surface. FIG. 14 shows the difference between the maximum temperature and the minimum temperature of the facing surface temperature when the facing surface control gas is hydrogen, and FIG. 15 shows the case where the facing surface control gas is nitrogen. Naturally, the temperature is low in the vicinity of the convex portion (contact portion), and the temperature is high in the concave portion. According to this, as the height of the convex portion is higher, the temperature difference in the surface of the facing surface is larger. That is, when the height of the convex portion is high, the control width does not change so much, which means that the temperature distribution on the surface of the facing surface is deteriorated, and it is understood that the height of the convex portion should not be too high. Judging from FIGS. 14 and 15, the height of the convex portion is considered to be 2 mm or less. From the viewpoint of processing accuracy, the larger the height of the convex portion, the better, but at 2 mm or more, the adverse effect of the deterioration of the surface temperature distribution can not be ignored.

先に述べたように、窒化物の成膜プロセスの場合、対向面温度は200〜250℃程度が適当である。その条件に合致するためには、図12〜図15から、接触部(凸部)の面積比は、0.3〜0.6、凸部の高さは2mm以下が適当であることが分かる。凸部の面積比及び凸部高さの最適値は、対象となる成膜種や対向面部材として用いる材料、あるいは成膜条件等により異なるものの、多くのケースにおいては前記範囲内で設定するのが適当と考えられる。   As described above, in the case of the nitride film forming process, the temperature of the opposing surface is preferably about 200 to 250 ° C. It is understood from FIGS. 12 to 15 that in order to meet the conditions, the area ratio of the contact portion (convex portion) is 0.3 to 0.6, and the height of the convex portion is 2 mm or less. . The optimum values of the area ratio of the projections and the height of the projections vary depending on the target film forming species, the material used as the facing surface member, or the film forming conditions, but in many cases, they are set within the above range Is considered appropriate.

このように、実施例1によれば、次のような効果がある。すなわち、従来方法では大面積にわたり、均一に0.1〜0.2mm程度という狭い空隙幅を実現しなければならないため、精密な加工精度が要求されるところである。それに対し、本発明は、2mm程度という比較的大きな高低差でよいため、加工の難易度が大幅に低減する。したがって、大面積にわたり対向面温度の良好な均一性が低コストで得られることになる。また、従来方法と異なり、チャンバ壁に接触する面積が大きいことから、設置の再現性、安定性が増す。以上のように、本実施例によれば、大面積の対向面であっても、200〜250℃程度の対向面温度が、良好な均一性及び良好な再現性をもって実現可能となる。   Thus, according to the first embodiment, the following effects can be obtained. That is, in the conventional method, a narrow gap width of about 0.1 to 0.2 mm must be realized uniformly over a large area, so that precise processing accuracy is required. On the other hand, according to the present invention, since a relatively large height difference of about 2 mm is sufficient, the degree of processing difficulty is greatly reduced. Therefore, good uniformity of the facing surface temperature over a large area can be obtained at low cost. Further, unlike the conventional method, the area in contact with the chamber wall is large, so that the reproducibility and the stability of the installation are increased. As described above, according to the present embodiment, even with a large-area facing surface, the facing surface temperature of about 200 to 250 ° C. can be realized with good uniformity and good reproducibility.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例で示した形状,寸法も一例であり、必要に応じて適宜変更してよい。
(2)前記実施例では、自公転式気相成膜装置及び横型気相成膜装置を例に挙げて説明したが、本発明は、水平方向の(成膜空間)フローチャネルが形成される反応炉全般に適用可能である。
(3)前記実施例で示した各部の材料や、プロセスガス、対向面温度制御ガス、パージガスも一例であり、同様の効果を奏する範囲内で、適宜変更可能である。
(4)前記実施例で示した凹凸形状も一例であり、同様の効果を奏する範囲内で適宜設計変更可能である。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present invention. For example, the following are also included.
(1) The shapes and dimensions shown in the above embodiments are also examples and may be changed as needed.
(2) In the above embodiments, the self-revolution type vapor deposition apparatus and the horizontal vapor deposition apparatus have been described as an example, but in the present invention, a (film deposition space) flow channel in the horizontal direction is formed. Applicable to all reactors.
(3) The materials of the respective parts, the process gas, the facing surface temperature control gas, and the purge gas shown in the above embodiments are merely examples, and can be appropriately changed within the range where the same effects can be obtained.
(4) The concavo-convex shape shown in the above embodiment is also an example, and design changes can be made as appropriate within the range where the same effect can be obtained.

本発明によれば、材料ガス導入部と排気部を有し、水冷された壁面により囲まれたチャンバ内空間に、成膜用の基板を保持するためのサセプタと、該サセプタ及び成膜用基板に対して水平方向のフローチャネルを形成する対向面部材が配置された気相成膜装置であって、前記チャンバ内に、前記対向面部材の温度を制御するための対向面温度制御ガスを導入する対向面温度制御ガス導入部、を備えるとともに、前記対向面部材の、前記基板と対向しない面に凹凸形状を形成し、凸部が前記水冷された壁面に接触するように配置し、凹部を、流量制御された前記対向面温度制御ガスの流路とした。このため、均一かつ再現性よく、対向面温度をプロセスに適した温度に制御できるため、気相成膜装置の用途に適用できる。特に、大型の量産装置の用途に好適である。   According to the present invention, there is provided a susceptor for holding a substrate for film formation in a chamber interior space having a source gas introduction portion and an exhaust portion and surrounded by a water cooled wall, the susceptor and the substrate for film formation A vapor deposition apparatus in which is disposed an opposing surface member that forms a flow channel in the horizontal direction with respect to the surface, and introducing an opposing surface temperature control gas for controlling the temperature of the opposing surface member into the chamber Forming a convex-concave shape on the surface of the counter-surface member not facing the substrate, and arranging the convex portion to be in contact with the water-cooled wall surface; The flow path of the opposite surface temperature control gas whose flow rate is controlled. For this reason, since it is possible to control the facing surface temperature to a temperature suitable for the process uniformly and reproducibly, it can be applied to the application of the vapor deposition apparatus. In particular, it is suitable for use in large-scale mass production equipment.

10:自公転式気相成膜装置
20,20A:対向面部材
21:対向面
22:凹凸形状
24,24A:凸部(接触部)
26,26A:凹部(温度制御ガス流路)
28:開口部
50:横型気相成膜装置
60,60A:対向面部材
61:対向面
62:凹凸形状
64,64A:凸部
66,66A:凹部
68:シミュレーション領域
100:自公転式気相成膜装置
102:チャンバ部材
104:冷却水
106:プロセスガス導入部
108A,108B:排気部
110:チャンバ
120:基板(成膜用基板)
122:基板ホルダ
124:サセプタ
126:対向面部材
128:対向面
130:成膜用空間(フローチャネル)
140:回転軸
150:対向面温度制御ガス導入部
160:パージガス導入部
170:ヒータ
180:空隙
200:横型気相成膜装置
202:チャンバ部材
204:冷却水
206:プロセスガス導入部
208:排気部
210:チャンバ
220:成膜用基板
222:サセプタ
226:対向面部材
228:対向面
230:成膜用空間(フローチャネル)
240:回転軸
250:対向面温度制御ガス導入部
260:パージガス導入部
270:ヒータ
280:空隙
10: self-revolution type gas phase film forming apparatus 20, 20A: opposing surface member 21: opposing surface 22: uneven shape 24, 24A: convex portion (contact portion)
26, 26A: Recess (Temperature control gas flow path)
28: Opening 50: Horizontal type vapor phase deposition apparatus 60, 60A: Opposite surface member 61: Opposite surface 62: Irregular shape 64, 64A: Convex portion 66, 66A: Recess 68: Simulation region 100: Self-revolution type vapor phase composition Film apparatus 102: Chamber member 104: Cooling water 106: Process gas introduction part 108A, 108B: Exhaust part 110: Chamber 120: Substrate (substrate for film formation)
122: substrate holder 124: susceptor 126: facing surface member 128: facing surface 130: space for film formation (flow channel)
140: rotating shaft 150: opposing surface temperature control gas introducing unit 160: purge gas introducing unit 170: heater 180: air gap 200: horizontal type vapor phase film forming apparatus 202: chamber member 204: cooling water 206: process gas introducing unit 208: exhaust unit 210: Chamber 220: Substrate for film formation 222: Susceptor 226: Opposite surface member 228: Opposite surface 230: Space for film formation (flow channel)
240: Rotating shaft 250: Opposite surface temperature control gas introduction unit 260: Purge gas introduction unit 270: Heater 280: Air gap

Claims (7)

材料ガス導入部と排気部を有し、水冷された壁面により囲まれたチャンバ内空間に、成膜用の基板を保持するためのサセプタと、該サセプタ及び成膜用基板に対して水平方向のフローチャネルを形成する対向面部材が配置された気相成膜装置であって、
前記チャンバ内に、前記対向面部材の温度を制御するための対向面温度制御ガスを導入する対向面温度制御ガス導入部、
を備えるとともに、
前記対向面部材の、前記基板と対向しない面に凹凸形状を形成し、凸部が前記水冷された壁面に接触するように配置し、凹部を、流量制御された前記対向面温度制御ガスの流路としたことを特徴とする気相成膜装置。
A susceptor for holding a substrate for film formation in a chamber space having a source gas introduction portion and an exhaust portion and surrounded by a water-cooled wall, and a direction horizontal to the susceptor and the substrate for film formation A vapor phase deposition apparatus in which opposing surface members forming a flow channel are disposed,
An opposing surface temperature control gas introduction unit for introducing an opposing surface temperature control gas for controlling the temperature of the opposing surface member into the chamber;
As well as
An uneven shape is formed on the surface of the opposing surface member not opposing the substrate, and a convex portion is disposed so as to contact the water-cooled wall surface, and a concave portion is controlled by the flow of the opposing surface temperature control gas. A vapor phase deposition apparatus characterized in that it has a channel.
前記対向面温度制御ガスが、
熱伝導率が互いに異なる2種以上の気体からなる混合気体であることを特徴とする請求項1記載の気相成膜装置。
The facing surface temperature control gas is
The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is a mixed gas composed of two or more kinds of gases having different thermal conductivities.
前記対向面温度制御ガスが、
水素及び窒素からなることを特徴とする請求項2記載の気相成膜装置。
The facing surface temperature control gas is
The vapor phase film forming apparatus according to claim 2, characterized in that it comprises hydrogen and nitrogen.
前記対向面部材における前記基板に対向する領域において、
該領域の全面積に対する、前記領域内の前記凸部との接触部の面積比が、0.3〜0.6であることを特徴とする請求項1〜3のいずれか一項に記載の気相成膜装置。
In a region facing the substrate in the facing surface member,
The area ratio of the contact part with the said convex part in the said area | region with respect to the total area of this area | region is 0.3-0.6, It is characterized by the above-mentioned. Gas phase film deposition system.
前記凸部の高さが、2mm以下であることを特徴とする請求項1〜4のいずれか一項に記載の気相成膜装置。   The vapor deposition apparatus according to any one of claims 1 to 4, wherein the height of the convex portion is 2 mm or less. 前記基板上に、有機金属気相成膜法により成膜対象を成膜することを特徴とする請求項1〜5のいずれか一項に記載の気相成膜装置。   The vapor phase film forming apparatus according to any one of claims 1 to 5, wherein a film forming target is formed on the substrate by a metal organic vapor phase film forming method. 前記基板上に成膜する対象が、窒化物系の化合物半導体であることを特徴とする請求項1〜6のいずれか一項に記載の気相成膜装置。   The vapor phase deposition apparatus according to any one of claims 1 to 6, wherein an object to be deposited on the substrate is a nitride compound semiconductor.
JP2017204052A 2017-10-20 2017-10-20 Gaseous phase deposition device Pending JP2019079867A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017204052A JP2019079867A (en) 2017-10-20 2017-10-20 Gaseous phase deposition device
TW107135823A TWI682059B (en) 2017-10-20 2018-10-11 Vapor phase film deposition apparatus
CN201811231000.7A CN109695027B (en) 2017-10-20 2018-10-22 Vapor phase film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204052A JP2019079867A (en) 2017-10-20 2017-10-20 Gaseous phase deposition device

Publications (1)

Publication Number Publication Date
JP2019079867A true JP2019079867A (en) 2019-05-23

Family

ID=66229761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204052A Pending JP2019079867A (en) 2017-10-20 2017-10-20 Gaseous phase deposition device

Country Status (3)

Country Link
JP (1) JP2019079867A (en)
CN (1) CN109695027B (en)
TW (1) TWI682059B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874166A (en) * 2022-11-28 2023-03-31 无锡先为科技有限公司 Film forming apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275976A (en) * 1990-12-27 1994-01-04 Texas Instruments Incorporated Process chamber purge module for semiconductor processing equipment
JP2007197302A (en) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Fabrication method and fabrication apparatus of group iii nitride crystal
JP4533926B2 (en) * 2007-12-26 2010-09-01 財団法人高知県産業振興センター Film forming apparatus and film forming method
JP5453768B2 (en) * 2008-11-05 2014-03-26 豊田合成株式会社 Compound semiconductor manufacturing apparatus, compound semiconductor manufacturing method, and compound semiconductor manufacturing jig
US8314371B2 (en) * 2008-11-06 2012-11-20 Applied Materials, Inc. Rapid thermal processing chamber with micro-positioning system
JP2010225743A (en) * 2009-03-23 2010-10-07 Taiyo Nippon Sanso Corp Vapor deposition apparatus
JP5599350B2 (en) * 2011-03-29 2014-10-01 東京エレクトロン株式会社 Film forming apparatus and film forming method
CN103255392A (en) * 2013-05-30 2013-08-21 光垒光电科技(上海)有限公司 Spray head and vapour deposition equipment
US10941490B2 (en) * 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
CN106811736B (en) * 2016-12-27 2019-03-05 南昌大学 A kind of chemical vapor deposition unit

Also Published As

Publication number Publication date
TWI682059B (en) 2020-01-11
CN109695027A (en) 2019-04-30
CN109695027B (en) 2020-12-25
TW201917234A (en) 2019-05-01

Similar Documents

Publication Publication Date Title
US11795545B2 (en) Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
RU2555018C2 (en) Controlled doping of synthetic diamond material
JP5358427B2 (en) Apparatus and method for controlling substrate surface temperature in process chamber
US20080220150A1 (en) Microbatch deposition chamber with radiant heating
KR101322217B1 (en) Epitaxially growing equipment
JP2008034780A (en) METHOD FOR MANUFACTURING SEMICONDUCTOR SiC SUBSTRATE WITH EPITAXIAL SiC FILM, AND ITS EPITAXIAL SiC FILM-FORMING DEVICE
KR101030422B1 (en) Susceptor
JP2010028056A (en) Film deposition apparatus, and film deposition method
JP2013030758A (en) Film formation device and film formation method
JP2019079867A (en) Gaseous phase deposition device
JP2641351B2 (en) Variable distribution gas flow reaction chamber
KR101306986B1 (en) Apparatus for forming thin films
US20190032244A1 (en) Chemical vapor deposition system
US20010052324A1 (en) Device for producing and processing semiconductor substrates
US20130074774A1 (en) Heating systems for thin film formation
CN214937796U (en) Silicon wafer epitaxial base with silicon carbide coating
JP6058491B2 (en) Vapor growth reactor
JP3968777B2 (en) Vapor growth apparatus and vapor growth method
KR20230053648A (en) Windows and Related Methods for Chemical Vapor Deposition Systems
US20130068164A1 (en) Heating unit and film-forming apparatus
CN217418861U (en) Epitaxial graphite base
JP5736291B2 (en) Film forming apparatus and film forming method
JP2012099756A (en) Heating apparatus and vapor deposition apparatus
JP2021034656A (en) Chemical vapor deposition device
JP2022129261A (en) Vapor-phase growth apparatus for high temperature and growth method for semiconductor crystal film