JP2019078283A - Slidable selector valve and refrigeration cycle system - Google Patents

Slidable selector valve and refrigeration cycle system Download PDF

Info

Publication number
JP2019078283A
JP2019078283A JP2017203442A JP2017203442A JP2019078283A JP 2019078283 A JP2019078283 A JP 2019078283A JP 2017203442 A JP2017203442 A JP 2017203442A JP 2017203442 A JP2017203442 A JP 2017203442A JP 2019078283 A JP2019078283 A JP 2019078283A
Authority
JP
Japan
Prior art keywords
valve
press
valve body
valve seat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017203442A
Other languages
Japanese (ja)
Other versions
JP6832266B2 (en
Inventor
知之 上野
Tomoyuki Ueno
知之 上野
宏光 木村
Hiromitsu Kimura
宏光 木村
大典 谷本
Daisuke Tanimoto
大典 谷本
陵 三留
Ryo Mitome
陵 三留
岡田 聡
Satoshi Okada
岡田  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2017203442A priority Critical patent/JP6832266B2/en
Priority to CN201811130930.3A priority patent/CN109695738B/en
Publication of JP2019078283A publication Critical patent/JP2019078283A/en
Application granted granted Critical
Publication of JP6832266B2 publication Critical patent/JP6832266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)

Abstract

To provide a slidable selector valve capable suppressing damage of a valve body having a reinforcement pin, and a refrigeration cycle system comprising the slidable selector valve.SOLUTION: A press-fit groove part 251 into which a discoid end part 271 of a reinforcement pin 27 is press-fitted, has connection curve surfaces 251D, 251E for connecting side planes 251A, 251B and an upper plane 251C, and the connection curve surfaces 251D, 251E are formed into an arc shape with the side planes 251A, 251B and the upper plane 251C as tangent lines, so that these surfaces are smoothly connected to each other. Since there is no corner part conventional arts have, it is possible to reduce possibility that when a bowl part 25 deforms, a crack occurs due to concentration of stress, and even in a case where abnormal high differential pressure is applied due to abnormality of a system, etc., a valve member 24 of a valve body can be prevented from damaging.SELECTED DRAWING: Figure 6

Description

本発明は、スライド式切換弁および冷凍サイクルシステムに関する。   The present invention relates to a slide switch valve and a refrigeration cycle system.

従来、冷凍サイクルシステムに用いられるスライド式切換弁として、弁座面に摺接する弁体に補強ピンを設けたものが提案されている(例えば、特許文献1参照)。特許文献1に記載された弁体では、摺動部の4箇所に凹形状部を形成することにより、補強ピンを設けた場合であっても、弁座との接触面に発生する応力が均一となるようにしている。   Heretofore, as a slide type switching valve used in a refrigeration cycle system, one in which a reinforcing pin is provided on a valve body in sliding contact with a valve seat surface has been proposed (see, for example, Patent Document 1). In the valve body described in Patent Document 1, the concave portion is formed at four places of the sliding portion, so that the stress generated on the contact surface with the valve seat is uniform even when the reinforcing pin is provided. It is supposed to be

特開2012−82883号公報JP 2012-82883 A

特許文献1に記載されたように弁体に補強ピンを設ける構成では、弁体に形成された溝に対して補強ピンが圧入されるようになっており、溝には角部が形成されている。弁体に補強ピンを設けることで弁体の変形を抑制することはできるものの、弁体のうち補強ピンが圧入される溝およびその周辺が変形の起点となるため、システムの異常等により異常な高差圧がかかった場合に、溝の角部に応力が集中し、亀裂等の損傷が発生する可能性があった。   As described in Patent Document 1, in the configuration in which the reinforcing pin is provided on the valve body, the reinforcing pin is pressed into the groove formed on the valve body, and the corner portion is formed in the groove. There is. Although it is possible to suppress the deformation of the valve body by providing the reinforcing pin on the valve body, the groove in which the reinforcing pin is pressed into the valve body and the periphery thereof become the starting point of the deformation. When a high differential pressure is applied, stress is concentrated at the corner of the groove, and damage such as cracking may occur.

本発明の目的は、補強ピンを有する弁体の損傷を抑制することができるスライド式切換弁、及び、該スライド式切換弁を備えた冷凍サイクルシステムを提供することにある。   An object of the present invention is to provide a slide type switching valve capable of suppressing damage to a valve body having a reinforcing pin, and a refrigeration cycle system provided with the slide type switching valve.

本発明のスライド式切換弁は、筒状の弁本体と、弁座開口部が弁座面に形成された弁座と、前記弁本体に収容されて前記弁座面に摺接する弁体と、を備えたスライド式切換弁であって、前記弁体は、前記弁座に向かって凹状に開口する椀部と、該椀部内でスライド方向との直交方向に延びる補強ピンと、を含み、前記椀部の内面における前記直交方向に対向する位置のそれぞれには、前記補強ピンの端部が前記弁座側から圧入される圧入溝部が形成され、前記圧入溝部は、圧入方向および前記直交方向の両方に沿って延びる一対の側平面と、前記スライド方向および前記直交方向の両方に沿って延びる上平面と、前記側平面と前記上平面とを接続する接続曲面と、を有し、前記接続曲面は、前記直交方向から見て前記側平面および前記上平面を接線とする円弧状に形成されていることを特徴とする。   The slide type switching valve according to the present invention comprises a cylindrical valve body, a valve seat having a valve seat opening formed on a valve seat surface, and a valve body housed in the valve body and in sliding contact with the valve seat surface. The valve body includes a flange portion concavely opening toward the valve seat, and a reinforcing pin extending in the flange portion in a direction orthogonal to the sliding direction, In each of the positions on the inner surface of the portion facing each other in the orthogonal direction, press-fit groove portions are formed, into which the end portions of the reinforcing pins are press-fit from the valve seat side. A connecting curved surface connecting the side flat and the upper flat, the upper curved flat extending along both the sliding direction and the orthogonal direction, and the connecting curved surface , Said side plane and said upper plane viewed from said orthogonal direction Characterized in that it is formed in a circular arc shape with the tangent.

このような本発明によれば、補強ピンの端部が圧入される圧入溝部が、側平面と上平面とを接続する接続曲面を有しており、この接続曲面が側平面および上平面を接線とする円弧状に形成されていることで、これらの面同士が滑らかに接続される。従来のような角部が形成されないので、システムの異常等により異常な高差圧がかかった場合であっても、椀部が変形した際に応力が集中して亀裂が生じる可能性を低くすることができ、弁体の損傷を抑制することができる。尚、「上平面」とは、弁体における弁座面側を下側とした場合の上下を意味したものであり、鉛直方向における上下とは必ずしも一致しない。   According to the present invention, the press-fit groove portion into which the end portion of the reinforcing pin is press-fit has a connection curved surface connecting the side flat and the upper flat, and the connection curved line is a tangent to the side flat and the upper flat. These surfaces are connected smoothly by being formed in the shape of a circular arc. Since the conventional corner is not formed, even if an abnormal high differential pressure is applied due to an abnormality of the system, etc., the stress is concentrated when the buttocks are deformed to reduce the possibility of the occurrence of a crack. And can prevent damage to the valve body. In addition, an "upper plane" means the upper and lower sides when the valve-seat surface side in a valve body is made into the lower side, and the upper and lower sides in a perpendicular direction do not necessarily correspond.

さらに、圧入溝部が上平面を有することから、接続曲面の円弧の半径は補強ピンの端部の半径よりも小さく、補強ピンの端部は、圧入溝部に対して一対の側平面と上平面との3点において当接し、補強ピンの端部と接続曲面との間に隙間が形成される。これにより、補強ピンの端部と圧入溝部との接触位置を特定することができ、圧入された補強ピンを正規位置に位置づけやすくすることができる。従って、補強ピンによる弁体の変形抑制効果が安定して発揮されるとともに、補強ピンの位置が安定することで流量のばらつきも抑制される。   Furthermore, since the press-in groove has an upper flat surface, the radius of the arc of the connecting curved surface is smaller than the radius of the end of the reinforcing pin, and the end of the reinforcing pin is a pair of side flats and an upper flat with respect to the press-in groove. Abuts at three points, and a gap is formed between the end of the reinforcing pin and the connecting curved surface. As a result, the contact position between the end of the reinforcing pin and the press-fitting groove can be specified, and the pressed-in reinforcing pin can be easily positioned at the regular position. Therefore, while the deformation | transformation suppression effect of the valve body by a reinforcement pin is exhibited stably, the dispersion | variation in a flow volume is also suppressed by the position of a reinforcement pin being stable.

この際、本発明のスライド式切換弁では、前記接続曲面の円弧の半径は、前記補強ピンの端部の半径の0.5倍以上であることが好ましい。このような構成によれば、接続曲面の半径を大きく(曲率を小さく)することにより、椀部が変形した際に接続曲面に応力が集中することを抑制することができる。即ち、接続曲面の円弧の半径が小さすぎると、角部に近い形状となり、応力集中の抑制効果が低下してしまう。   Under the present circumstances, in the slide type switching valve of this invention, it is preferable that the radius of the circular arc of the said connection curved surface is 0.5 times or more of the radius of the edge part of the said reinforcement pin. According to such a configuration, by making the radius of the connecting curved surface large (reducing the curvature), it is possible to suppress concentration of stress on the connecting curved surface when the ridge portion is deformed. That is, if the radius of the arc of the connecting curved surface is too small, the shape becomes close to the corner, and the effect of suppressing stress concentration is reduced.

さらに、本発明のスライド式切換弁では、前記上平面の前記スライド方向における寸法は、前記一対の側平面同士の間隔の0.05倍以上であることが好ましい。このような構成によれば、上平面のスライド方向寸法を確保し、補強ピンの端部と接触させやすくすることができるとともに、補強ピンの端部と接続曲面との間に隙間を確保しやすい。一方、上平面のスライド方向寸法が小さすぎる場合や、上平面が形成されない場合、寸法誤差等が生じることにより、補強ピンの端部と接続曲面とが接触してしまう(隙間が形成されない)ことがある。この場合、補強ピンの端部と圧入溝部との接触位置が特定されにくくなってしまい、圧入された補強ピンが正規位置からずれることがあり、補強ピンによる弁体の変形抑制効果が安定して発揮されにくくなり、補強ピンの位置がばらつくことで流量がばらつくことがある。   Furthermore, in the slide type switching valve according to the present invention, it is preferable that the dimension in the slide direction of the upper plane is 0.05 times or more of the distance between the pair of side planes. According to such a configuration, it is possible to ensure the sliding direction dimension of the upper plane and to make it easy to make contact with the end of the reinforcing pin, and to easily secure the gap between the end of the reinforcing pin and the connection curved surface . On the other hand, when the dimension in the sliding direction of the upper surface is too small or when the upper surface is not formed, the end of the reinforcing pin and the connection curved surface come into contact (a gap is not formed) due to dimensional error or the like. There is. In this case, the contact position between the end of the reinforcing pin and the press-fitting groove becomes difficult to identify, and the pressed-in reinforcing pin may deviate from the normal position, and the deformation suppressing effect of the valve pin by the reinforcing pin is stable It becomes difficult to be exhibited, and the flow rate may vary due to the variation of the position of the reinforcing pin.

本発明の冷凍サイクルシステムは、流体である冷媒を圧縮する圧縮機と、冷却モード時に凝縮器として機能する第一熱交換器と、冷却モード時に蒸発器として機能する第二熱交換器と、前記第一熱交換器と前記第二熱交換器との間にて冷媒を膨張させて減圧する膨張手段と、上記いずれかに記載のスライド式切換弁と、を備えたことを特徴とする。このような本発明によれば、上記のようにシステムの異常等により異常な高差圧がかかった場合であっても弁体の損傷を抑制することができ、損傷した部分からの流体の漏れを抑制し、冷凍サイクルシステムの運転効率の低下を抑制することができる。   The refrigeration cycle system of the present invention comprises a compressor for compressing a refrigerant that is a fluid, a first heat exchanger that functions as a condenser in the cooling mode, and a second heat exchanger that functions as an evaporator in the cooling mode. An expansion means for expanding and reducing the pressure by expanding the refrigerant between the first heat exchanger and the second heat exchanger, and the slide type switching valve according to any one of the above. According to the present invention as described above, even if an abnormal high differential pressure is applied due to a system abnormality or the like, damage to the valve body can be suppressed, and fluid leakage from the damaged part can be prevented. Can be suppressed, and a decrease in the operating efficiency of the refrigeration cycle system can be suppressed.

本発明のスライド式切換弁および冷凍サイクルシステムによれば、圧入溝部の側平面と上平面とが円弧状の接続曲面によって接続されていることで、システムの異常等により異常な高差圧がかかった場合であっても、圧入した補強ピンの端部の周辺における応力集中を緩和して弁体の損傷を抑制することができる。   According to the slide type switching valve and the refrigeration cycle system of the present invention, the side flat surface of the press-in groove and the upper flat surface are connected by the arc-shaped connection curved surface, so an abnormal high differential pressure is applied due to an abnormality of the system. Even in this case, stress concentration around the end portion of the press-fit reinforcing pin can be alleviated to suppress damage to the valve body.

本発明の一実施形態に係るスライド式切換弁が設けられた冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle provided with the slide type switching valve concerning one embodiment of the present invention. 前記スライド式切換弁を示す断面図である。It is a sectional view showing the slide type switching valve. 前記スライド式切換弁の弁体の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the valve body of the said slide type switching valve. 前記弁体の要部を示す下面図である。It is a bottom view which shows the principal part of the said valve body. 前記弁体の要部を示す断面図である。It is sectional drawing which shows the principal part of the said valve body. 前記弁体の圧入溝部の好ましい形態の一例を示す側面図である。It is a side view which shows an example of the preferable form of the pressing-in groove part of the said valve body. 前記弁体の圧入溝部の好ましい形態の他の一例を示す側面図である。It is a side view which shows another example of the preferable form of the pressing-in groove part of the said valve body. 前記弁体の圧入溝部の好ましい形態の他の一例を示す側面図である。It is a side view which shows another example of the preferable form of the pressing-in groove part of the said valve body.

以下、本発明の各実施形態を図面に基づいて説明する。本実施形態の四方切換弁(スライド式切換弁)10は、図1に示すように、例えば冷凍サイクル1に設けられるものである。冷凍サイクル1は、ルームエアコン等の空気調和機に利用されるものであって、流体としての冷媒を圧縮する圧縮機2と、冷却モード時に凝縮器として機能する第一熱交換器としての室外熱交換器3と、冷却モード時に蒸発器として機能する第二熱交換器としての室内熱交換器4と、室外熱交換器3と室内熱交換器4との間にて冷媒を膨張させて減圧する膨張手段としての膨張弁5と、四方切換弁10と、四方切換弁10の流路を切換え制御するパイロット電磁弁6と、を備え、これらが冷媒配管によって連結されている。なお、膨張手段としては、膨張弁5に限らず、キャピラリでもよい。   Hereinafter, embodiments of the present invention will be described based on the drawings. The four-way switching valve (slide type switching valve) 10 of the present embodiment is provided, for example, in the refrigeration cycle 1 as shown in FIG. The refrigeration cycle 1 is used for an air conditioner such as a room air conditioner, and is a compressor 2 that compresses a refrigerant as a fluid, and outdoor heat as a first heat exchanger that functions as a condenser in a cooling mode. The refrigerant is expanded and decompressed between the exchanger 3, the indoor heat exchanger 4 as a second heat exchanger functioning as an evaporator in the cooling mode, and the outdoor heat exchanger 3 and the indoor heat exchanger 4. An expansion valve 5 as expansion means, a four-way switching valve 10, and a pilot solenoid valve 6 for switching control of the flow path of the four-way switching valve 10 are connected, and they are connected by a refrigerant pipe. The expansion means is not limited to the expansion valve 5 but may be a capillary.

この冷凍サイクル1は、図1に示す冷却モード(冷房運転)において、圧縮機2、四方切換弁10、室外熱交換器3、膨張弁5、室内熱交換器4、四方切換弁10及び圧縮機2の順に冷媒が流れる冷房サイクルを構成する。一方、加温モード(暖房運転)において、圧縮機2、四方切換弁10、室内熱交換器4、膨張弁5、室外熱交換器3、四方切換弁10及び圧縮機2の順に冷媒が流れる暖房サイクルを構成する。この暖房サイクルと冷房サイクルとの切換えは、パイロット電磁弁6による四方切換弁10の切換え動作によって行われる。   The refrigeration cycle 1 has a compressor 2, a four-way switching valve 10, an outdoor heat exchanger 3, an expansion valve 5, an indoor heat exchanger 4, a four-way switching valve 10, and a compressor in the cooling mode (cooling operation) shown in FIG. A cooling cycle in which the refrigerant flows in the order of 2 is configured. On the other hand, in the heating mode (heating operation), the heating in which the refrigerant flows in the order of the compressor 2, the four-way switching valve 10, the indoor heat exchanger 4, the expansion valve 5, the outdoor heat exchanger 3, the four-way switching valve 10 and the compressor 2. Configure the cycle. The switching between the heating cycle and the cooling cycle is performed by the switching operation of the four-way switching valve 10 by the pilot solenoid valve 6.

本発明の実施形態に係る四方切換弁10は、図2にも示すように、円筒状の弁本体11と、この弁本体11の内部にスライド自在に設けられた弁体12と、圧縮機2の吐出口に連通する継手部材としての高圧側導管(D継手)13と、圧縮機2の吸込口に連通する低圧側導管(S継手)14と、室内熱交換器4に連通する室内側導管(E継手)15と、室外熱交換器3に連通する室外側導管(C継手)16と、を備えて構成されている。尚、本実施形態では、弁体12のスライド方向をX方向とし、導管13〜16の延びる方向をZ方向とし、X方向およびZ方向に直交する方向をY方向とする。   The four-way switching valve 10 according to the embodiment of the present invention includes a cylindrical valve body 11, a valve body 12 slidably provided inside the valve body 11, and a compressor 2 as shown in FIG. 2. The high pressure side conduit (D joint) 13 as a joint member in communication with the discharge port of the second embodiment, the low pressure side conduit (S joint) 14 in communication with the suction port of the compressor 2, and the indoor side conduit in communication with the indoor heat exchanger 4 (E joint) 15 and an outdoor side conduit (C joint) 16 communicating with the outdoor heat exchanger 3 are configured. In the present embodiment, the sliding direction of the valve body 12 is the X direction, the extending direction of the conduits 13 to 16 is the Z direction, and the direction orthogonal to the X direction and the Z direction is the Y direction.

円筒状の弁本体11は、その軸方向両端部を塞ぐ栓体17,18と、弁本体11の内部に固定された弁座19と、を有し、全体に密閉されたシリンダーとして構成されている。栓体17,18には、それぞれパイロット電磁弁6に連通された導管17A,18Aが接続されている。弁座19には、低圧側導管14、室内側導管15、及び室外側導管16のそれぞれの先端が挿入されるとともに、後述する第一ポート11C、第二ポート11D及び流出ポート11Bを構成する開口が設けられている。弁座19の上面19Aは、弁体12をスライド案内する案内面(弁座面)となっている。   The cylindrical valve body 11 has a plug body 17, 18 for closing both axial end portions thereof, and a valve seat 19 fixed inside the valve body 11, and is configured as a cylinder sealed in its entirety. There is. Conduits 17A and 18A communicated with the pilot solenoid valve 6 are connected to the plugs 17 and 18, respectively. The respective ends of the low pressure side conduit 14, the indoor side conduit 15, and the outdoor side conduit 16 are inserted into the valve seat 19, and openings forming the first port 11C, the second port 11D, and the outflow port 11B described later. Is provided. The upper surface 19A of the valve seat 19 serves as a guide surface (valve seat surface) for slidingly guiding the valve body 12.

弁本体11には、その側面部111に開口した複数のポート11A,11B,11C,11Dが形成されている。すなわち、高圧側導管13が接続されて弁本体11の内部に冷媒を流入させる開口部としての流入ポート11Aと、流入ポート11Aに対して弁本体11の側面部111の径方向反対側にて弁座19の上面19Aに形成された弁座開口部としての第一ポート11C、第二ポート11D及び流出ポート11Bと、が設けられている。流出ポート11Bは、弁本体11の軸方向略中央に設けられ、第一ポート11Cは、弁本体11の軸方向に沿って流出ポート11Bの一方側(図2の左側)に隣り合って設けられ、第二ポート11Dは、弁本体11の軸方向に沿って流出ポート11Bの他方側(図2の右側)に設けられている。即ち、3つのポート11B〜11Dは、直線状に並ぶように設けられている。   The valve body 11 is formed with a plurality of ports 11A, 11B, 11C, 11D opened in the side surface portion 111 thereof. That is, the inflow port 11A as an opening to which the high pressure side conduit 13 is connected to allow the refrigerant to flow into the valve main body 11, and the valve on the side opposite to the inflow port 11A in the radial direction of the side surface portion 111 of the valve main body 11. A first port 11C, a second port 11D and an outflow port 11B as valve seat openings formed on the upper surface 19A of the seat 19 are provided. The outflow port 11B is provided substantially at the center in the axial direction of the valve body 11, and the first port 11C is provided adjacent to one side (left side in FIG. 2) of the outflow port 11B along the axial direction of the valve body 11. The second port 11D is provided on the other side (right side in FIG. 2) of the outflow port 11B along the axial direction of the valve body 11. That is, the three ports 11B to 11D are provided to be aligned in a straight line.

流出ポート11Bには、低圧側導管14が接続され、第一ポート11Cに室内側導管15が接続されることで、当該第一ポート11Cが室内側ポートを構成し、第二ポート11Dに室外側導管16が接続されることで、当該第二ポート11Dが室外側ポートを構成している。低圧側導管14、室内側導管15及び室外側導管16は、それぞれ流出ポート11B、第一、二ポート11C,11D周辺の弁本体11及び弁座19にろう付け固定されている。   The low pressure side conduit 14 is connected to the outflow port 11B, and the indoor side conduit 15 is connected to the first port 11C, so that the first port 11C constitutes an indoor side port, and the second port 11D is outdoor side. By the conduit 16 being connected, the second port 11D constitutes an outdoor side port. The low pressure side conduit 14, the indoor side conduit 15 and the outdoor side conduit 16 are fixed by brazing to the valve body 11 and the valve seat 19 around the outlet port 11B and the first and second ports 11C and 11D, respectively.

弁体12は、弁本体11の内周面に摺接する左右一対のピストン体21,22と、一対のピストン体21,22を連結して弁本体11の軸方向に沿って延びる連結部材23と、連結部材23に支持される椀状の弁部材24と、弁部材24を補強する補強ピン27と、を有して構成されている。弁本体11の内部空間は、一対のピストン体21,22間に形成される高圧室R1と、一方のピストン体21と栓体17との間に形成される第一作動室R2と、他方のピストン体22と栓体18との間に形成される第二作動室R3と、に仕切られている。   The valve body 12 includes a pair of left and right pistons 21 and 22 in sliding contact with the inner peripheral surface of the valve main body 11, and a connecting member 23 which connects the pair of pistons 21 and 22 and extends along the axial direction of the valve main body 11. The valve member 24 has a hook-shaped valve member 24 supported by the connecting member 23 and a reinforcing pin 27 for reinforcing the valve member 24. The internal space of the valve body 11 includes a high pressure chamber R1 formed between the pair of pistons 21 and 22, a first working chamber R2 formed between one of the pistons 21 and the plug 17, and the other. A second working chamber R3 formed between the piston body 22 and the plug 18 is partitioned.

連結部材23は、金属板材からなり、弁本体11の軸方向に沿って延び弁座19の上面19Aと平行に設けられる連結板部23Aと、連結板部23Aの一方側端部が折り曲げられてピストン体21に固定される固定片部23Bと、連結板部23Aの他方側端部が折り曲げられてピストン体22に固定される固定片部23Cと、を有して形成されている。連結板部23Aには、弁部材24を保持する保持孔23Dと、冷媒を流通させる2箇所の貫通孔23Eと、が形成されている。   The connection member 23 is made of a metal plate material, extends along the axial direction of the valve main body 11, extends in parallel to the upper surface 19A of the valve seat 19, and one end of the connection plate 23A is bent. It is formed to have a fixed piece portion 23B fixed to the piston body 21 and a fixed piece portion 23C bent at the other end of the connecting plate portion 23A and fixed to the piston body 22. In the connecting plate portion 23A, a holding hole 23D for holding the valve member 24 and two through holes 23E for circulating the refrigerant are formed.

弁部材24は、合成樹脂製の一体成形部材であって、弁座19に向かって凹状に開口した椀部25と、この椀部25の開口縁から外方に延びるフランジ部26と、を有して形成されている。椀部25は、平面視で長円形状を有したドーム状に形成され、連結部材23の保持孔23Dに挿入されている。椀部25の内部には、流出ポート11Bと第一ポート11Cとを連通させて第二ポート11Dを連通させないか、又は、流出ポート11Bと第二ポート11Dとを連通させて第一ポート11Cを連通させないような連通空間R4が形成されている。   The valve member 24 is an integrally formed member made of synthetic resin, and has a flange portion 25 which opens in a concave shape toward the valve seat 19 and a flange portion 26 extending outward from the opening edge of the flange portion 25. It is formed. The collar portion 25 is formed in a dome shape having an oval shape in a plan view, and is inserted into the holding hole 23D of the connecting member 23. In the inside of the collar portion 25, the outflow port 11B and the first port 11C are communicated and the second port 11D is not communicated, or the outflow port 11B and the second port 11D are communicated and the first port 11C is communicated. A communication space R4 is formed to prevent communication.

フランジ部26は、その下面(弁座19の上面19Aと対向する面)260に、上面19Aに摺接する摺接面26Aと、椀部25の内部に連通する弁開口部25Aと、を有する。このフランジ部26は、弁座19と連結部材23との間に配置される。そして、弁部材24に作用する高圧と低圧の圧力差により摺接面26Aが弁座19の上面19Aに密接され、椀部25の連通空間R4が弁座19に対して閉じられるようになっている。   The flange portion 26 has, on its lower surface (surface facing the upper surface 19A of the valve seat 19) 260, a sliding contact surface 26A in sliding contact with the upper surface 19A and a valve opening 25A communicating with the inside of the collar 25. The flange portion 26 is disposed between the valve seat 19 and the connecting member 23. Then, the sliding contact surface 26A is brought into close contact with the upper surface 19A of the valve seat 19 by the pressure difference between the high pressure and the low pressure acting on the valve member 24, and the communication space R4 of the flange 25 is closed to the valve seat 19. There is.

補強ピン27は、図3〜5に示すように、ステンレス等の金属材料によって形成されるとともに、椀部25内に配置されてY方向に沿って延びる。補強ピン27は、その両端に設けられた一対の円板状端部271と、一対の円板状端部271の間で棒状に延びるピン本体272と、を一体に有しており、円板状端部271がピン本体272よりも大径に形成されている。尚、補強ピンの形状は任意であり、例えば、全体が円柱状に形成された(端部と中央部とが等しい外径を有する)ものを用いてもよい。   As shown in FIGS. 3 to 5, the reinforcing pin 27 is formed of a metal material such as stainless steel, and is disposed in the collar 25 and extends along the Y direction. The reinforcing pin 27 integrally includes a pair of disc-shaped end portions 271 provided at both ends thereof and a pin main body 272 extending in a rod shape between the pair of disc-shaped end portions 271. The end portion 271 is formed larger in diameter than the pin main body 272. In addition, the shape of a reinforcement pin is arbitrary, for example, you may use that by which the whole was formed in cylindrical shape (The end part and a center part have an equal outer diameter).

椀部25には、円板状端部271を圧入するための一対の圧入溝部251が形成されている。一対の圧入溝部251は、それぞれ、椀部25の内面(ZX平面に沿った面)250のうちY方向に対向する位置に形成されるとともに、X方向における略中央部かつZ方向における下面260近傍に配置されている。圧入溝部251は、Z方向において下面260側が開口するとともに、椀部25の内側から見て凹状に形成されている。このような構成により、円板状端部271がZ方向を圧入方向として下面260側から圧入溝部251に圧入されるようになっている。補強ピン27が椀部25に取り付けられることにより、円板状端部271が椀部25の内面250に当接し、椀部25が、Y方向において圧縮しようとする外力(内外の圧力差により生じる外力)によって変形することが抑制される。本実施形態では、補強ピン27の長さは、一対の内面250における圧入溝部251の内面251F同士の間隔よりも若干長いものとするが、一対の内面250のうち内面251Fよりも上側(下面260と反対側)の部分同士の間隔よりも長ければよく、内面251F同士の間隔より短くてもよい。   The flange portion 25 is formed with a pair of press-fit grooves 251 for press-fitting the disc-like end 271. The pair of press-fit grooves 251 are formed at positions opposite to each other in the Y direction in the inner surface (the surface along the ZX plane) 250 of the collar 25 and near the lower surface 260 in the substantially central portion in the X direction and the Z direction. Is located in The press-in groove portion 251 is formed in a concave shape as viewed from the inside of the collar portion 25 while the lower surface 260 side is opened in the Z direction. With such a configuration, the disc-like end 271 is press-fit into the press-fit groove 251 from the lower surface 260 side with the Z direction as the press-fit direction. When the reinforcing pin 27 is attached to the collar 25, the disk-like end 271 abuts against the inner surface 250 of the collar 25 and the collar 25 is compressed by the external force in the Y direction (caused by the pressure difference between the inside and the outside It is suppressed that it is deformed by external force). In the present embodiment, the length of the reinforcing pin 27 is slightly longer than the distance between the inner surfaces 251F of the press-fit groove 251 in the pair of inner surfaces 250, but the upper side of the pair of inner surfaces 250 (lower surface 260 And the distance between the inner surfaces 251 F may be shorter than the distance between the portions on the opposite side of

以上の四方切換弁10では、パイロット電磁弁6及び導管18Aを介して第二作動室R3に高圧冷媒が導入されると、図1、2に示すように、ピストン体22が押圧されて弁体12が弁本体11の軸方向(ポート11B〜11Dの並設方向)の一方側(図1、2の左側)にスライドされ、第一位置に移動される。また、パイロット電磁弁6及び導管17Aを介して第一作動室R2に圧縮機2から吐出された高圧冷媒が導入されると、ピストン体21が押圧されて弁体12が弁本体11の軸方向他方側(図1、2の右側)にスライドされ、第二位置に移動される。   In the four-way switching valve 10 described above, when high-pressure refrigerant is introduced into the second working chamber R3 via the pilot solenoid valve 6 and the conduit 18A, as shown in FIGS. 12 is slid to one side (left side in FIGS. 1 and 2) of the valve body 11 in the axial direction (the parallel direction of the ports 11B to 11D) and moved to the first position. Further, when the high pressure refrigerant discharged from the compressor 2 is introduced into the first working chamber R2 via the pilot solenoid valve 6 and the conduit 17A, the piston body 21 is pressed and the valve body 12 is in the axial direction of the valve body 11 It is slid to the other side (right side in FIGS. 1 and 2) and moved to the second position.

弁体12が第二位置にある状態において、弁部材24の椀部25は、その連通空間R4によって流出ポート11Bと第二ポート11Dとを連通させる。また、椀部25が第一ポート11Cよりも他方側に位置することから、この第一ポート11Cは、弁本体11の内部(高圧室R1)を介して流入ポート11Aと連通される。すなわち、弁体12が第二位置にある状態は、流入ポート11Aと第一ポート11Cとが連通され、流出ポート11Bと第二ポート11Dとが連通された加温モード(暖房運転)となる。   When the valve body 12 is in the second position, the flange portion 25 of the valve member 24 brings the outflow port 11B into communication with the second port 11D by the communication space R4. Further, since the flange portion 25 is positioned on the other side of the first port 11C, the first port 11C is in communication with the inflow port 11A via the inside (high pressure chamber R1) of the valve main body 11. That is, when the valve body 12 is in the second position, the heating mode (heating operation) is established in which the inflow port 11A and the first port 11C are in communication and the outflow port 11B and the second port 11D are in communication.

この加温モードでは、圧縮機2から吐出された高圧冷媒Hが高圧側導管13及び流入ポート11Aを介して高圧室R1に導入され、この高圧室R1を通過した高圧冷媒Hが第一ポート11C及び室内側導管15を介して室内熱交換器4に供給される。また、室外熱交換器3から室外側導管16及び第二ポート11Dを介して低圧冷媒Lが椀部25の連通空間R4に導入され、この連通空間R4を通過した低圧冷媒Lが流出ポート11B及び低圧側導管14を介して圧縮機2に還流される。   In this heating mode, the high pressure refrigerant H discharged from the compressor 2 is introduced into the high pressure chamber R1 via the high pressure side conduit 13 and the inflow port 11A, and the high pressure refrigerant H passing through the high pressure chamber R1 is the first port 11C. And the indoor heat exchanger 4 via the indoor side conduit 15. Further, the low pressure refrigerant L is introduced from the outdoor heat exchanger 3 into the communication space R4 of the brim portion 25 through the outdoor side conduit 16 and the second port 11D, and the low pressure refrigerant L passing through the communication space R4 is the outflow port 11B and It is returned to the compressor 2 via the low pressure side conduit 14.

一方、弁体12が第一位置にある状態において、弁部材24の椀部25は、その連通空間R4によって流出ポート11Bと第一ポート11Cとを連通させる。また、椀部25が第二ポート11Dよりも一方側に位置することから、この第二ポート11Dは、弁本体11の内部(高圧室R1)を介して流入ポート11Aと連通される。すなわち、弁体12が第一位置にある状態は、流入ポート11Aと第二ポート11Dとが連通され、流出ポート11Bと第一ポート11Cとが連通された冷却モード(冷房運転)となる。   On the other hand, when the valve body 12 is in the first position, the flange portion 25 of the valve member 24 causes the communication port R4 to communicate the outflow port 11B with the first port 11C. Further, since the flange portion 25 is located on one side of the second port 11D, the second port 11D is in communication with the inflow port 11A via the inside (high pressure chamber R1) of the valve main body 11. That is, when the valve body 12 is at the first position, the cooling mode (cooling operation) is established in which the inflow port 11A and the second port 11D are in communication and the outflow port 11B and the first port 11C are in communication.

ここで、圧入溝部251の形状および寸法の詳細について、図6を参照して説明する。尚、図6は、椀部25の圧入溝部25周辺を内側から見た図である。圧入溝部251は、Y方向およびZ方向に沿って延びる一対の側平面251A、251Bと、X方向およびY方向に沿って延びる上平面251Cと、側平面251Aと上平面251Cとを接続する接続曲面251Dと、側平面251Bと上平面251Cとを接続する接続曲面251Eと、内面251Fと、を有する。側平面251A、251BがYZ平面に沿って延び、上平面251CがXY平面に沿って延びているが、多少の傾きを有していてもよい。   Here, details of the shape and dimensions of the press-fit groove portion 251 will be described with reference to FIG. FIG. 6 is a view of the periphery of the press-fit groove 25 of the collar 25 as viewed from the inside. The press-fit groove portion 251 is a connection curved surface connecting a pair of side flat surfaces 251A, 251B extending along the Y direction and the Z direction, an upper flat surface 251C extending along the X direction and the Y direction, the side flat surface 251A and the upper flat surface 251C. A connection curved surface 251E connecting the side flat surface 251B and the upper flat surface 251C, and an inner surface 251F. The side planes 251A, 251B extend along the YZ plane, and the upper plane 251C extends along the XY plane, but may have some inclination.

接続曲面251Dは、Y方向から見て側平面251Aおよび上平面251Cを接線とする円弧状に形成されている。同様に、接続曲面251Eは、Y方向から見て側平面251Bおよび上平面251Cを接線とする円弧状に形成されている。尚、圧入溝部251は、そのX方向中央部付近を通過するとともにYZ平面に平行な面を対称面として面対称に形成されており、以下では主に側平面251Aおよび接続曲面251Dについて説明するが、側平面251Bおよび接続曲面251Eも同様の形状および寸法を有しているものとする。   The connection curved surface 251D is formed in an arc shape having a side flat surface 251A and an upper flat surface 251C as tangent lines when viewed from the Y direction. Similarly, the connection curved surface 251E is formed in an arc shape having a side flat surface 251B and an upper flat surface 251C as tangent lines when viewed from the Y direction. The press-in groove portion 251 passes near the central portion in the X direction and is formed plane-symmetrically with a plane parallel to the YZ plane as a symmetrical plane, and the following mainly describes the side plane 251A and the connecting curved surface 251D. The side plane 251B and the connecting curved surface 251E also have similar shapes and dimensions.

円板状端部271は、圧入溝部251に圧入されるため、その直径2Rが一対の側平面251A、251B同士の間隔(溝幅)Hと同等または若干大きく形成されているが、以下では2R=Hであるものとする。尚、圧入溝部251の深さ(Z方向寸法)は、直径2R以上であればよい。   The disc-like end 271 is press-fit into the press-fit groove 251, so that its diameter 2R is formed equal to or slightly larger than the distance (groove width) H between the pair of side planes 251A and 251B. It is assumed that = H. The depth (dimension in the Z direction) of the press-in groove portion 251 may be 2R or more in diameter.

接続曲面251Dの円弧の半径rは、円板状端部271の半径Rの0.5倍以上かつ1倍未満である。これにより、円板状端部271は、側平面251Aおよび上平面251Cと接触するとともに、接続曲面251Dと離隔して隙間28が形成されている。また、上平面251CのX方向寸法hは、溝幅Hの0.05倍以上となっている。即ち、接続曲面251Dの円弧の半径rが、円板状端部271の半径Rの0.95倍以下となっている。このような寸法を満たす圧入溝部251について、3つの例を図6〜8に示す。   The radius r of the arc of the connecting curved surface 251D is 0.5 times or more and less than 1 time the radius R of the disc-like end 271. Thus, the disc-like end 271 contacts the side flat surface 251A and the upper flat surface 251C, and is separated from the connection curved surface 251D to form the gap. Further, the dimension h in the X direction of the upper flat surface 251C is 0.05 times or more of the groove width H. That is, the radius r of the arc of the connecting curved surface 251D is 0.95 times or less the radius R of the disc-like end 271. Three examples are shown in FIGS. 6-8 about the press-fit groove part 251 which satisfy | fills such a dimension.

図6に示す例では、接続曲面251Dの円弧の半径rは、円板状端部271の半径Rの0.7倍となっている。即ち、半径rは、溝幅Hの0.35倍となっている。また、上平面251CのX方向寸法hは、円板状端部271の直径2Rの0.3倍となっている。   In the example shown in FIG. 6, the radius r of the arc of the connecting curved surface 251D is 0.7 times the radius R of the disc-like end 271. That is, the radius r is 0.35 times the groove width H. Further, the dimension h in the X direction of the upper flat surface 251C is 0.3 times the diameter 2R of the disk-shaped end 271.

図7に示す例では、接続曲面251Dの円弧の半径rが円板状端部271の半径Rの0.5倍となっており、半径rが溝幅Hの0.25倍となっており、上平面251CのX方向寸法hが円板状端部271の直径2Rの0.5倍となっている。   In the example shown in FIG. 7, the radius r of the arc of the connecting curved surface 251 D is 0.5 times the radius R of the disc-like end 271, and the radius r is 0.25 times the groove width H. The dimension h of the upper flat surface 251C in the X direction is 0.5 times the diameter 2R of the disc-like end 271.

図8に示す例では、接続曲面251Dの円弧の半径rが円板状端部271の半径Rの0.95倍となっており、半径rが溝幅Hの0.475倍となっており、上平面251CのX方向寸法hが円板状端部271の直径2Rの0.05倍となっている。   In the example shown in FIG. 8, the radius r of the arc of the connecting curved surface 251 D is 0.95 times the radius R of the disc-like end 271, and the radius r is 0.475 times the groove width H. The dimension h of the upper flat surface 251C in the X direction is 0.05 times the diameter 2R of the disc-like end 271.

このような本実施形態によれば、以下のような効果がある。即ち、補強ピン27の円板状端部271が圧入される圧入溝部251が、側平面251A、251Bと上平面251Cとを接続する接続曲面251D、251Eを有しており、接続曲面251D、251Eが側平面251A、251Bおよび上平面251Cを接線とする円弧状に形成されていることで、これらの面同士が滑らかに接続される。従来のような角部(図6に二点鎖線で図示)が形成されないので、システムの異常等により異常な高差圧がかかった場合であっても、椀部25が変形した際に応力が集中して亀裂が生じる可能性を低くすることができ、弁体12のうち弁部材24の損傷を抑制することができる。   According to such an embodiment, the following effects can be obtained. That is, the press-in groove portion 251 into which the disc-like end 271 of the reinforcing pin 27 is press-fitted has connecting curved surfaces 251D and 251E connecting the side flats 251A and 251B and the upper flat 251C, and the connecting curved surfaces 251D and 251E. Are formed in an arc shape tangent to the side flat surfaces 251A, 251B and the upper flat surface 251C, these surfaces are connected smoothly. As the conventional corner portion (shown by a two-dot chain line in FIG. 6) is not formed, even when an abnormal high differential pressure is applied due to a system abnormality or the like, the stress The possibility of concentration and cracking can be reduced, and damage to the valve member 24 of the valve body 12 can be suppressed.

さらに、圧入溝部251が上平面251Cを有することから、接続曲面251D、251Eの円弧の半径rは円板状端部271の半径Rよりも小さく、円板状端部271は、圧入溝部251に対して一対の側平面251A、251Bと上平面251Cとの3点において当接し、円板状端部271と接続曲面251D、251Eとの間に隙間28が形成される。これにより、円板状端部271と圧入溝部251との接触位置を特定することができ、圧入された補強ピン27を正規位置に位置づけやすくすることができる。従って、補強ピン27による弁体12における弁部材24の変形抑制効果が安定して発揮されるとともに、補強ピン27の位置も安定することで流量のばらつきも抑制される。   Furthermore, since the press-fit groove 251 has the upper flat surface 251C, the radius r of the arc of the connection curved surfaces 251D, 251E is smaller than the radius R of the disc-like end 271, and the disc-like end 271 On the other hand, it abuts at three points of the pair of side flat surfaces 251A, 251B and the upper flat surface 251C, and a gap 28 is formed between the disk-like end 271 and the connection curved surface 251D, 251E. Thereby, the contact position of the disk-shaped end 271 and the press-fit groove portion 251 can be specified, and the press-fitted reinforcing pin 27 can be easily positioned at the regular position. Accordingly, the effect of suppressing the deformation of the valve member 24 in the valve body 12 by the reinforcing pin 27 is stably exhibited, and the position of the reinforcing pin 27 is also stabilized, so that the variation in the flow rate is also suppressed.

さらに、接続曲面251D、251Eの円弧の半径rが円板状端部271の半径Rの0.5倍以上であり、半径rを大きく(曲率を小さく)することにより、椀部25が変形した際に接続曲面251D、251Eに応力が集中することを抑制することができる。即ち、接続曲面251D、251Eの円弧の半径rが小さすぎると、角部に近い形状となり、応力集中の抑制効果が低下してしまう。   Furthermore, the radius r of the arc of the connection curved surfaces 251D, 251E is 0.5 times or more the radius R of the disk-like end 271 and the ridge 25 is deformed by increasing the radius r (reducing the curvature) It is possible to suppress concentration of stress on the connection curved surfaces 251D and 251E. That is, if the radius r of the arc of the connection curved surfaces 251D and 251E is too small, the shape becomes close to the corner, and the effect of suppressing stress concentration is reduced.

また、上平面251CのX方向寸法が溝幅Hの0.05倍以上であり、上平面251CのX方向寸法を確保することにより、円板状端部271と接触させやすくすることができるとともに、円板状端部271と接続曲面251D、251Eとの間に隙間28を確保しやすい。一方、上平面251CのX方向寸法が小さすぎる場合や、上平面251Cが形成されない場合、寸法誤差等が生じることにより、円板状端部271と接続曲面251D、251Eとが接触してしまう(隙間28が形成されない)ことがある。この場合、円板状端部と圧入溝部との接触位置が特定されにくくなってしまい、圧入された補強ピンが正規位置からずれることがあり、補強ピンによる弁体における弁部材の変形抑制効果が安定して発揮されにくくなり、補強ピンの位置がばらつくことで流量がばらつくことがある。   In addition, the dimension in the X direction of the upper flat surface 251C is 0.05 times or more of the groove width H, and by ensuring the dimension in the X direction of the upper flat surface 251C, the disc-shaped end 271 can be easily contacted. The gap 28 can be easily secured between the disk-shaped end 271 and the connection curved surfaces 251D and 251E. On the other hand, when the dimension of the upper flat surface 251C in the X direction is too small or when the upper flat surface 251C is not formed, the disk-like end 271 and the connection curved surfaces 251D and 251E contact with each other. The gap 28 may not be formed. In this case, the contact position between the disc-like end and the press-fit groove becomes difficult to identify, and the press-fit reinforcing pin may be deviated from the normal position. It becomes difficult to be stably exhibited, and the flow rate may vary due to the variation of the position of the reinforcing pin.

また、冷凍サイクル1が、上記のようにシステムの異常等により異常な高差圧がかかった場合であっても弁体12のうち弁部材24の損傷を抑制することができる四方切換弁10を備えることで、損傷した部分からの流体の漏れを抑制し、冷凍サイクル1の運転効率の低下を抑制することができる。   In addition, even if the refrigeration cycle 1 is subjected to an abnormal high differential pressure due to a system abnormality or the like as described above, the four-way switching valve 10 capable of suppressing damage to the valve member 24 of the valve body 12 By providing, the leak of the fluid from the damaged part can be suppressed, and the fall of the operating efficiency of the refrigeration cycle 1 can be suppressed.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。   In addition, this invention is not limited to the said embodiment, The other modification etc. which can achieve the objective of this invention are included, and the modification as shown below is also included in this invention.

例えば、前記実施形態では、接続曲面251Dの円弧の半径rが円板状端部271の半径Rの0.5倍以上であり、上平面251CのX方向寸法hが溝幅Hの0.05倍以上であるものとしたが、椀部や補強ピンの寸法、形状等によっては、接続曲面の円弧の半径が円板状端部の半径の0.5倍未満であってもよいし、上平面のX方向寸法が溝幅の0.05倍未満であってもよい。例えば、補強ピンが充分に大きく円板状端部の半径も大きい場合には、接続曲面の円弧の半径を円板状端部の半径の0.5倍未満としても、接続曲面の円弧の半径の絶対値を確保することができ、応力集中を抑制することができる。また、円板状端部の半径が充分に大きく溝幅も広い場合には、上平面のX方向寸法を溝幅の0.05倍未満としても、接続曲面と円板状端部との間に充分な大きさの隙間を形成することができる。   For example, in the embodiment, the radius r of the arc of the connection curved surface 251D is 0.5 times or more the radius R of the disk-like end 271 and the dimension h in the X direction of the upper flat surface 251C is 0.05 of the groove width H The radius of the arc of the connecting curved surface may be less than 0.5 times the radius of the disc-like end depending on the size, shape, etc. of the ridges and reinforcing pins. The X-direction dimension of the plane may be less than 0.05 times the groove width. For example, if the reinforcing pin is large enough and the radius of the discoid end is also large, the radius of the arc of the connecting curved face is less than 0.5 times the radius of the discoid end. The absolute value of can be secured, and stress concentration can be suppressed. In addition, when the radius of the disc-like end is sufficiently large and the groove width is also wide, even if the dimension in the X direction of the upper plane is less than 0.05 times the groove width, between the connection curved surface and the disc-like end Can form a gap of sufficient size.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   Besides, the best configuration, method and the like for carrying out the present invention are disclosed in the above description, but the present invention is not limited to this. That is, although the present invention has been particularly illustrated and described primarily with respect to particular embodiments, it should be understood that the present invention may be configured relative to the above-described embodiments without departing from the scope of the inventive concept and object. Those skilled in the art can make various modifications in materials, quantities, and other detailed configurations. Therefore, the description with the above-described disclosure of the shape, the material, etc. is exemplarily described for facilitating the understanding of the present invention, and is not intended to limit the present invention. The description in the name of a member from which some or all of the limitations such as the limitation have been removed is included in the present invention.

1 冷凍サイクル
2 圧縮機
3 室外熱交換器(第一熱交換器)
4 室内熱交換器(第二熱交換器)
5 膨張弁(膨張手段)
10 四方切換弁(スライド式切換弁)
11 弁本体
12 弁体
24 弁部材
25 椀部
250 内面
251 圧入溝部
251A、251B 側平面
251C 上平面
251D、251E 接続曲面
27 補強ピン
271 円板状端部
1 refrigeration cycle 2 compressor 3 outdoor heat exchanger (first heat exchanger)
4 Indoor heat exchanger (second heat exchanger)
5 Expansion valve (expansion means)
10 Four-way switching valve (slide type switching valve)
11 valve body 12 valve body 24 valve member 25 flange 250 inner surface 251 press-fit groove 251A, 251B side flat surface 251C upper flat surface 251D, 251E connection curved surface 27 reinforcing pin 271 disk-shaped end

Claims (4)

筒状の弁本体と、弁座開口部が弁座面に形成された弁座と、前記弁本体に収容されて前記弁座面に摺接する弁体と、を備えたスライド式切換弁であって、
前記弁体は、前記弁座に向かって凹状に開口する椀部と、該椀部内でスライド方向との直交方向に延びる補強ピンと、を含み、
前記椀部の内面における前記直交方向に対向する位置のそれぞれには、前記補強ピンの端部が前記弁座側から圧入される圧入溝部が形成され、
前記圧入溝部は、圧入方向および前記直交方向の両方に沿って延びる一対の側平面と、前記スライド方向および前記直交方向の両方に沿って延びる上平面と、前記側平面と前記上平面とを接続する接続曲面と、を有し、
前記接続曲面は、前記直交方向から見て前記側平面および前記上平面を接線とする円弧状に形成されていることを特徴とするスライド式切換弁。
A slide type switching valve comprising a cylindrical valve body, a valve seat having a valve seat opening formed on a valve seat surface, and a valve body housed in the valve body and in sliding contact with the valve seat surface. ,
The valve body includes a hook portion concavely opening toward the valve seat, and a reinforcing pin extending in a direction orthogonal to the sliding direction in the hook portion,
At each of the positions on the inner surface of the flange facing in the orthogonal direction, press-fit groove portions are formed in which the end portions of the reinforcing pins are press-fit from the valve seat side,
The press-fit groove portion connects a pair of side planes extending along both the press-in direction and the orthogonal direction, an upper plane extending along both the sliding direction and the orthogonal direction, the side plane and the upper plane Connection surface, and
The sliding switching valve according to claim 1, wherein the connection curved surface is formed in an arc shape tangent to the side plane and the upper plane when viewed from the orthogonal direction.
前記接続曲面の円弧の半径は、前記補強ピンの端部の半径の0.5倍以上であることを特徴とする請求項1に記載のスライド式切換弁。   The slide switching valve according to claim 1, wherein the radius of the arc of the connection curved surface is 0.5 times or more of the radius of the end of the reinforcing pin. 前記上平面の前記スライド方向における寸法は、前記一対の側平面同士の間隔の0.05倍以上であることを特徴とする請求項1又は2に記載のスライド式切換弁。   The slide type switching valve according to claim 1 or 2, wherein the dimension of the upper plane in the slide direction is 0.05 times or more of the distance between the pair of side planes. 流体である冷媒を圧縮する圧縮機と、冷却モード時に凝縮器として機能する第一熱交換器と、冷却モード時に蒸発器として機能する第二熱交換器と、前記第一熱交換器と前記第二熱交換器との間にて冷媒を膨張させて減圧する膨張手段と、請求項1〜3のいずれかに記載のスライド式切換弁と、を備えたことを特徴とする冷凍サイクルシステム。   A compressor that compresses a refrigerant that is a fluid, a first heat exchanger that functions as a condenser in the cooling mode, a second heat exchanger that functions as an evaporator in the cooling mode, the first heat exchanger, and the first heat exchanger A refrigeration cycle system comprising expansion means for expanding a refrigerant between two heat exchangers and reducing the pressure, and the slide type switching valve according to any one of claims 1 to 3.
JP2017203442A 2017-10-20 2017-10-20 Sliding switching valve and refrigeration cycle system Active JP6832266B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017203442A JP6832266B2 (en) 2017-10-20 2017-10-20 Sliding switching valve and refrigeration cycle system
CN201811130930.3A CN109695738B (en) 2017-10-20 2018-09-27 Sliding type switching valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203442A JP6832266B2 (en) 2017-10-20 2017-10-20 Sliding switching valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2019078283A true JP2019078283A (en) 2019-05-23
JP6832266B2 JP6832266B2 (en) 2021-02-24

Family

ID=66230023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203442A Active JP6832266B2 (en) 2017-10-20 2017-10-20 Sliding switching valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6832266B2 (en)
CN (1) CN109695738B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089023A (en) * 2019-12-04 2021-06-10 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117006261A (en) * 2022-04-28 2023-11-07 浙江盾安禾田金属有限公司 Sliding block assembly, die, four-way valve and processing method of sliding block assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287707A (en) * 2008-05-30 2009-12-10 Fuji Koki Corp Valve element for four-way selector valve
JP2010038320A (en) * 2008-08-07 2010-02-18 Fuji Koki Corp Valve element for four-way switching valve
JP2012082883A (en) * 2010-10-08 2012-04-26 Saginomiya Seisakusho Inc Valve element for channel switching valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304438A (en) * 2000-04-21 2001-10-31 Daikin Ind Ltd Four way selector valve
CN201007369Y (en) * 2007-01-23 2008-01-16 浙江三花制冷集团有限公司 Four-way to two-way electromagnetic direction changing valve sliding block component
JP5172276B2 (en) * 2007-10-29 2013-03-27 日立アプライアンス株式会社 Four-way switching valve and refrigeration cycle apparatus using the same
CN101988595A (en) * 2009-07-30 2011-03-23 浙江三花制冷集团有限公司 Four-way switching valve
CN202215792U (en) * 2011-08-31 2012-05-09 浙江盾安禾田金属有限公司 Slide valve type self-operated three-way change valve
CN104421459A (en) * 2013-09-03 2015-03-18 浙江盾安禾田金属有限公司 Three-way valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287707A (en) * 2008-05-30 2009-12-10 Fuji Koki Corp Valve element for four-way selector valve
JP2010038320A (en) * 2008-08-07 2010-02-18 Fuji Koki Corp Valve element for four-way switching valve
JP2012082883A (en) * 2010-10-08 2012-04-26 Saginomiya Seisakusho Inc Valve element for channel switching valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089023A (en) * 2019-12-04 2021-06-10 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
JP7373379B2 (en) 2019-12-04 2023-11-02 株式会社鷺宮製作所 Slide type switching valve and refrigeration cycle system

Also Published As

Publication number Publication date
CN109695738A (en) 2019-04-30
CN109695738B (en) 2020-06-05
JP6832266B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6476152B2 (en) Sliding switching valve and refrigeration cycle system
JP6261008B2 (en) Sliding switching valve and refrigeration cycle system
JP5175144B2 (en) Four-way switching valve disc
JP2017075675A (en) Slide type selector valve and refrigeration cycle system
WO2017168882A1 (en) Slide switching valve, slide switching valve manufacturing method, and refrigeration cycle system
JP2019078283A (en) Slidable selector valve and refrigeration cycle system
JP5275948B2 (en) Four-way selector valve
JP2017223273A (en) Slide type changeover valve and refrigeration cycle system
JP2019090541A (en) Slide type changing-over valve and refrigeration cycle system
JP2017155887A (en) Slide type selector valve and refrigeration cycle system
JP6687561B2 (en) Slide type switching valve and refrigeration cycle system
JP6254980B2 (en) Sliding switching valve and refrigeration cycle system
JP6215802B2 (en) Slide valve and refrigeration cycle
JP6426644B2 (en) Sliding type switching valve and refrigeration cycle system
EP3754234B1 (en) Channel switching valve
JP6670208B2 (en) Slide valve and refrigeration cycle system
JP6832299B2 (en) Sliding switching valve and refrigeration cycle system equipped with it
JP2020046031A (en) Spool valve
JP6471124B2 (en) Sliding switching valve and refrigeration cycle system
JP7469258B2 (en) Check valve and refrigeration cycle system
CN109990113B (en) Electromagnetic switching valve and piston
CN109990115B (en) Electromagnetic switching valve
EP3889479A1 (en) Flow path switching valve
JP2024010289A (en) Slide type switching valve and refrigeration cycle system
JP2017150670A (en) Slide valve and refrigeration cycle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6832266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150