JP2019075696A - 無線通信システムの評価装置 - Google Patents

無線通信システムの評価装置 Download PDF

Info

Publication number
JP2019075696A
JP2019075696A JP2017200515A JP2017200515A JP2019075696A JP 2019075696 A JP2019075696 A JP 2019075696A JP 2017200515 A JP2017200515 A JP 2017200515A JP 2017200515 A JP2017200515 A JP 2017200515A JP 2019075696 A JP2019075696 A JP 2019075696A
Authority
JP
Japan
Prior art keywords
area
evaluation
communication performance
unit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017200515A
Other languages
English (en)
Other versions
JP6998724B2 (ja
Inventor
アナス ベンジャブール
Benjebbour Anass
アナス ベンジャブール
祥久 岸山
Yoshihisa Kishiyama
祥久 岸山
今井 哲朗
Tetsuro Imai
哲朗 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2017200515A priority Critical patent/JP6998724B2/ja
Publication of JP2019075696A publication Critical patent/JP2019075696A/ja
Application granted granted Critical
Publication of JP6998724B2 publication Critical patent/JP6998724B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】5Gシステムのような次世代の無線通信システムの通信性能を適切又は的確に評価する。【解決手段】無線通信システムの評価装置10は、入力部1005と、処理部1001と、出力部1006と、を備えてよい。入力部1005には、無線通信システムを模擬したモデルの通信環境に動的な変化を与え得る複数のパラメータが入力される。処理部1001は、モデルの対象エリアを分割して得られる、端末が位置し得る複数の分割エリアのそれぞれについて、パラメータの少なくとも一部を変更しながら、パラメータに基づく通信性能指標の算出を複数回試行し、複数の通信性能指標に対して統計的な処理を行い、統計的な処理によって得られた値に基づく評価結果を取得する。出力部1006は、処理部1001によって取得された各分割エリアの評価結果を出力する。【選択図】図8

Description

本発明は、無線通信システムの評価装置に関する。
UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE−A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New−RAT(Radio Access Technology)などと呼ばれるものがある。
次世代移動通信システム(例えば、5Gシステム)では、信号伝送の更なる高速化及び干渉低減を図るために、高周波数帯(例えば、5GHz以上)において多数のアンテナ素子(例えば、100素子以上)を用いる大規模(Massive)MIMO(Multiple Input Multiple Output)技術を用いてBF(ビームフォーミング)を行うことが検討されている。
また、次世代移動通信システムでは、LTE及びLTE−Aのような前世代システムが利用する周波数帯よりも高い周波数帯の利用が検討されている。例えば、前世代システムが利用する周波数帯よりも高い周波数帯においてBF(以下、便宜的に、「高周波数帯BF」と称することがある。)を行うことも検討されている。
更に、次世代移動通信システムでは、ダイナミックTDD(dynamic Time Division Duplex)と称される技術の適用も検討されている。ダイナミックTDDでは、アップリンク(UL)のサブフレームと、ダウンリンク(DL)のサブフレームと、の構成(UL-DL configuration)が動的に変化し得る。
上述したように、5Gシステムのような次世代の無線通信システムに対して、Massive MIMO技術、高周波数帯BF、及び/又は、ダイナミックTDDなどの、新たな技術又は特徴を適用することが検討されている。しかし、このような新たに適用される特徴又は技術を考慮して、無線通信システムの通信性能を評価することは未だ検討されていない。
本発明の一態様は、5Gシステムのような次世代の無線通信システムに対して新たに適用される特徴又は技術を考慮して、当該システムの通信性能を適切に評価可能にすることを目的の1つとする。
本発明の一態様に係る、無線通信システムの評価装置は、無線通信システムを模擬したモデルの通信環境に、基地局に対する動作設定に応じて動的な変化を与え得る複数のパラメータが入力される入力部と、前記モデルの対象エリアを分割して得られる、端末が位置し得る複数の分割エリアのそれぞれについて、前記パラメータの少なくとも一部を変更しながら、前記パラメータに基づく通信性能指標の算出を複数回試行する算出部と、前記分割エリアのそれぞれについて、前記複数の通信性能指標に対して統計的な処理を行い、前記統計的な処理によって得られた値に基づく評価結果を取得するエリア評価部と、前記各分割エリアの評価結果を出力する出力部と、を備える。
本発明の一態様によれば、5Gシステムのような次世代の無線通信システムの通信性能を適切に評価できる。
実施の形態1に係る無線通信システム評価装置が評価又はシミュレーションの対象とする無線通信システムの構成例を模式的に示す図である。 実施の形態1に係る5Gシステムにおいてダイナミックなセル選択、並びに、ビームの選択及び切り替えが行われることを説明するための模式図である。 実施の形態1に係る5Gシステムに適用されるダイナミックTDDでのサブフレーム構成例を示す図である。 実施の形態1に係る5GシステムにおいてUL−DL通信間の干渉がダイナミックに変化し得ることを説明するための模式図である。 実施の形態1に係る5Gシステムに適用されるMassive MIMO技術のアレイアンテナの一例を示す模式図である。 図5に例示したMassive MIMO技術のアレイアンテナよりもアンテナ素子数が少ないアレイアンテナによって得られるビームフォーミング利得の一例を説明するための模式図である。 図6Aとの比較で、図5に例示したMassive MIMO技術のアレイアンテナによって得られるビームフォーミング利得の一例を説明するための模式図である。 実施の形態1に係る無線通信システム(5Gシステム)評価装置によって得られる通信性能エリアマップの表示例を示す模式図である。 実施の形態1に係る5Gシステム評価装置のハードウェア構成例を示すブロック図である。 実施の形態1に係る5Gシステム評価装置の機能的な構成例を示すブロック図である。 図9に例示したリンクバジェット算出部の機能的な構成例を示すブロック図である。 実施の形態1に係るビームフォーミングにおけるビームの水平方向及び垂直方向の定義を説明するための模式図である。 実施の形態1に係る5Gシステム評価装置に対するBFパラメータの入力に用いられるユーザインタフェース(UI)の表示例を示す図である。 実施の形態1に係る5Gシステム評価装置において設定されるビームパターンの一例を示す図である。 図10に例示したビームゲイン算出部の動作例を示すフローチャートである。 非特許文献5の5.3.3.3.1章に記載されたテーブルを示す図である。 非特許文献5の5.3.3.3.2章に記載されたテーブルを示す図である。 実施の形態2に係る5Gシステム評価装置のエリア評価部の機能的な構成例を示すブロック図である。 通信性能指標がスループットの場合のCDF(Cumulative Distribution Function)の一例を示す図である。 実施の形態2に係る5Gシステム評価装置の動作例を示すフローチャートである。
以下、本発明の各実施の形態について、図面を参照して詳細に説明する。
図1は、実施の形態1に係る無線通信システム評価装置が評価又はシミュレーションの対象とする無線通信システムの構成例を模式的に示す図である。図1に示す無線通信システム1は、無線通信システム評価装置による評価又はシミュレーションにおいて現実空間を模擬した仮想空間に再現されたシステムと捉えてもよい。
評価(又はシミュレーション)のために仮想空間に再現されたシステムは、便宜的に、「評価用システムモデル」と称してもよい。したがって、図1に例示した無線通信システム1は、評価用システムモデル1と表記されてよい。
評価用システムモデル1は、例示的に、5Gシステムのシステムモデル(以下「5Gシステムモデル」と略称する。)であってよく、1つ又は複数の基地局(BS)2が備えられてよい。図1には、非限定的な一例として、4つの基地局2が5Gシステムモデル1に配置されている。
なお、5Gのシステムモデル1を評価又はシミュレーションする装置は、便宜的に、「5Gシステム評価装置」、「5Gシステム評価ツール」、又は「5Gシステムシミュレータ」などと称されてもよい。
5Gシステムモデル1において、基地局2は、無線通信エリア200を形成又は提供する。「無線通信エリア」は、「セル」、「セルエリア」、「セクタ」、「セクタエリア」、「カバレッジエリア」、「カバーエリア」、「無線エリア」、「通信エリア」、「サービスエリア」、「クラスタエリア」などと称されてもよい。図1の例では、3つのセル200に着目している。
5Gシステムモデル1において、セル200は、図1に模式的に例示するように、複数のメッシュ(MS)エリアに区分されてよい。MSエリアに区分されるエリアは、セル200を含む5Gシステムモデル1の全体であってもよいし、5Gシステムモデル1において評価対象とする部分的なエリアに限られてもよい。
5Gシステムモデル1においては、例えば、複数のMSエリアのいずれか1つ以上に、基地局2が配置される。また、複数のMSエリアのうち基地局2が配置されない1つ又は複数のMSエリアに、MSエリアの単位で、ユーザ端末(UE:User Equipment)が位置してよい。別言すると、複数のMSエリアのいずれか1つに、基地局2が仮想的に配置されてよく、複数のMSエリアの別のいずれか1つに、UEが仮想的に配置されてよい。
基地局2の配置されたMSエリアは、5Gシステムモデル1における「第1の場所」の一例であり、UEの配置されたMSエリアは、5Gシステムモデル1における「第2の場所」の一例である。ただし、逆に、UEの配置されたMSエリアが「第1の場所」に対応し、基地局2の配置されたMSエリアが「第2の場所」に対応してもよい。
5Gシステム評価装置10(図8参照)は、5Gシステムモデル1において、いずれかの基地局2とUEとの間の通信性能に関する情報を、シミュレーションによって取得して評価に用いることができる。なお、5Gシステム評価装置10の構成例については、図8〜図10を用いて後述する。
通信性能に関する情報には、非限定的な一例として、受信電力、SINR(Signal-to-Interference Noise Ratio)、及び、スループットといった通信性能指標の少なくとも1つが含まれてよい。通信性能指標は、ダウンリンク(DL)及びアップリンク(UL)のいずれについての指標であってもよい。例えば、受信電力、SINR、及び、スループットは、いずれも、DLについての値でもよいし、ULについての値でもよい。
図1に例示した基地局2の全部又は一部は、例示的に、Massive MIMO技術のアレイアンテナを用いてビームフォーミング(BF)を行う構成を有していてよい。図1の例では、3つの基地局2がBFを行う様子を模式的に示している。
なお、5Gシステムモデル1において、基地局2及びUEが配置されないMSエリアには、建物、車両、又は、人などを模擬したオブジェクトが適宜に配置されてよい。建物、車両、又は、人などは、無線通信における電波の遮蔽物又は反射物になり得る。電波の遮蔽物又は反射物になり得るオブジェクトは、評価用システムモデル1において、現実の地図情報などに基づいて現実空間に則して配置されてもよいし、現実空間に依存せずに自由に設定されてもよい。
ところで、5Gシステムでは、既述のように、LTE及びLTE−Aのような前世代システムが利用する周波数帯よりも高い周波数帯の利用が検討されている。また、5Gシステムでは、Massive MIMO技術によるダイナミックBFのほか、ダイナミックTDDといった前世代システムには無い特徴又は技術の適用も検討されている。
例えば、5Gシステムにおいては、電波伝搬環境を示す情報に基づいた、UEによるダイナミックなセル選択、並びに、ダイナミックBS及び/又はMSのBFにおけるダイナミックなビームの選択及び切り替えが生じ得る(図2参照)。
ダイナミックなセル選択及びダイナミックなビーム切り替えに応じて、受信電力、SINR又はスループットといった通信性能(「通信品質」と称してもよい。)の指標が場所的に変化し得る。また、近傍セルにおけるBFのダイナミックなビーム切り替えに応じて、通信性能の指標が時間的及び場所的に変化し得る。
また、5Gシステムにおいては、例えば、ダイナミックTDDの適用によってDL及びULの通信が時間領域においてダイナミックに切り替えられ得る。ダイナミックTDDでは、例えば図3に示すように、ULサブフレームとDLサブフレームとの構成(UL-DL configuration)がダイナミックに変化する。
その結果、或るセルと近傍セル(neighbor cell)との間でUL及び/又はDLの通信に対する電波干渉の影響が時間的に変化し得る。例えば図4に模式的に示すように、或るセル#AのUL通信に近傍セル#BのDL通信が干渉し得る。また、セル#BのDL通信に近傍セル#AのUL通信が干渉し得る。
なお、図4には示していないが、セル#AのDL通信に近傍セル#BのUL通信が干渉する態様、及び、セル#BのUL通信に近傍セル#AのDL通信が干渉する態様も存在する。
ダイナミックTDDでは、これらのUL−DL通信間の干渉が時間的に動的に変化し得るため、或る着目セルにおける通信性能指標が時間的に変化し得る。なお、或るセルにおける電波干渉の時間変化は、例えば、当該セル及び/又は近傍セルにおいて、移動可能な電波の遮蔽物又は反射物が移動することによっても生じ得る。
また、5Gシステムでは、例えば、ホットスポットのトラフィックオフローディングを目的の1つとして、マクロセル内のホットスポットに、マクロセルよりもカバレッジの小さいスモールセルが配置され得る。スモールセルには、マクロセルよりも高い周波数帯(例えば、5GHz以上)を割り当てることが検討されている。
マクロセルよりも高い周波数帯のスモールセルにおいて、Massive MIMO技術のように多数のアンテナ素子(例えば、100素子以上)を有するアレイアンテナ(図5の模式図参照)用いたBFが行われることがある。
Massive MIMO技術のアレイアンテナを用いて高周波数帯でBFを行うと、低い周波数帯と比べて同じアンテナの長さ(又は面積)においてより多くのアンテナ素子数を配置できて、より少ないアンテナ素子数のアレイアンテナ(図6A参照)に比して、特定の方向に鋭い指向性及び高い利得を有するビームを形成できる(図6B参照)。
なお、図6A及び図6Bにおいて、Lはアンテナ素子の配列長、λは電波の波長、λ/2はアンテナ素子間隔、φminはビーム幅をそれぞれ表す。図6Aと図6Bとの比較例では、Massive MIMO技術のアレイアンテナを用いたBFによって、図6Bの例に比して、10倍程度のBF利得が得られる。
したがって、高周波数帯のBFによって、スモールセルのカバレッジを拡張できる。その反面、高周波数帯の電波特性である鋭い電波指向性に起因して、遮蔽物又は反射物の影響を受け易く、電波伝搬特性に変化(例えば、劣化)が生じ易い。よって、車両や人などの遮蔽物又は反射物の移動に応じて、或る着目セルにおける通信性能指標に時間的及び/又は場所的な変化が生じ易い。
以上のように、5Gシステムでは、LTEのような前世代システムには無い特徴又は技術を要因として、受信電力、SINR又はスループットといった通信性能指標に場所的及び/又は時間的な変化が生じ得る。別言すると、5Gシステムのサービスエリアにおける通信性能の高低分布を示すエリアマップ(便宜的に「通信性能エリアマップ」と称することがある。)が場所的及び/又は時間的に変化し得る。
そこで、本実施の形態では、5Gシステム評価装置10によって、5Gシステムに特有の1つ又は複数の特徴又は技術を要因とした通信性能エリアマップの場所的及び/又は時間的な変化を適切又は的確に評価することを可能にする。なお、当該評価には、変化のバタツキを評価することが含まれてもよい。
以下、5Gシステム評価装置10による処理の概要について説明する。
例えば、5Gシステム評価装置10は、5Gシステムモデル1において、1つ又は複数のBSの配置に応じて、1つ又は複数のBSがカバーし得るサービスエリア(「カバーエリア」と略称してよい。)を決定してよい。カバーエリアには、1つ以上のMSエリアが含まれる。カバーエリアの決定に際しては、BS毎のBFの有無に応じた利得の相違が用いられてよい。
カバーエリアが決定すると、5Gシステム評価装置10は、例えば、当該カバーエリアにおいて、どのMSエリアがどのBSに接続するか(別言すると、着目MSエリアの接続先BS)を決定してよい。例えば、MSエリア毎に、選択可能な候補ビームのうちベスト又は好適なビームが異なり得るため、MSエリア毎に接続先BSも異なり得る。
接続先BSが決まれば、5Gシステム評価装置10は、当該接続先BSをサービングBSとするMSエリアに対して、干渉源になり得るBS(「干渉BS」と略称してよい。)を決定できる。なお、便宜的に、サービングBSを「BS(s)」と表記し、干渉BSを「BS(i)」と表記することがある。
MSエリアに対するBS(s)とBS(i)とが決まると、5Gシステム評価装置10は、当該MSエリアとBS(s)とのペアについて、DL及びULの一方又は双方の通信性能に関する情報を算出してよい。
通信性能に関する情報の算出に際しては、例えば、或るセル内におけるビーム切り替え及び/又は他セル干渉の変化(ビーム切り替え、DL/UL/OFF切り替え等によるもの)が考慮されてよい。例えば、BS(s)に関してダイナミックBFの有無、BS(i)に関してBS側及び/又はMS側のダイナミックBFの有無が考慮されてよい。なお、BS(i)に関するMS側のBFの有無とは、BS(i)をBS(s)とする別のMSエリアに位置するUEでのダイナミックBFの有無と捉えてよい。また、通信性能に関する情報の算出に際しては、BS(i)が、DL送信を行う場合、UL受信を行う場合、無通信(OFF)の場合、ダイナミックTDDに応じてDL送信、UL受信、及び、無通信をダイナミック切り替える場合のそれぞれが考慮されてもよい。更に、通信性能に関する情報の算出に際しては、例えば、遮蔽物又は反射物の有無に応じた伝搬環境などの変化が考慮されてもよい。遮蔽物又は反射物の有無に応じた伝搬環境などに関するパラメータは、例えば所定値として5Gシステム評価装置10に入力されてよい。
通信性能に関する情報の算出に応じて、5Gシステム評価装置10は、例えば、5Gシステムの評価結果の一例である通信性能エリアマップを生成して外部機器及び/又は通信ネットワークに出力してよい。
通信性能エリアマップの出力先は、例示的に、5Gシステム評価装置10に備えられたディスプレイであってもよいし、通信ネットワークを介して5Gシステム評価装置10と接続された別の装置のディスプレイであってもよい。
また、通信性能エリアマップが表示されるディスプレイは、例示的に、5Gシステム評価装置10のユーザ(「オペレータ」と称してもよい。)が所持する携帯電話機(スマートフォンを含む。)又はタブレット端末などのディスプレイであってもよい。
図7に、通信性能エリアマップの表示例を模式的に示す。図7の例は、通信性能エリアマップにおいて、評価結果の一例である通信性能の高低がMSエリアの単位で色分けして表示された例である。なお、図7において、色分けは、ハッチングの相違によって表現されている。
ただし、通信性能の高低は、同一色の明度、彩度、又は、濃淡の変化によって表されてもよい。ただし、通信性能の高低は、5Gシステム評価装置10のオペレータが区別可能な態様で表示されればよい。例えば、通信性能の高低は、色分けの代替で又は追加で、数値によって表されてもよい。また、通信性能エリアマップは、2次元形式に限らず3次元形式で表象されてもよい。例えば、通信性能の高低が、色分けの代替で又は追加で、MSエリア毎の2次元又は3次元の棒グラフなどのグラフによって表されてもよい。
通信性能エリアマップの出力先は、ディスプレイに限らず、例えば、プロジェクタ又はプリンタであってもよい。通信性能エリアマップは、5Gシステム評価装置10のオペレータに視認可能な態様で出力及び提示されればよい。
(5Gシステム評価装置の構成例)
次に、上述した5Gシステム評価装置10の構成例について、図8〜図10を参照して説明する。図8は、実施の形態1に係る5Gシステム評価装置10のハードウェア構成例を示すブロック図であり、図9は、実施の形態1に係る5Gシステム評価装置10の機能ブロック図である。図10は、図9に例示したリンクバジェット算出部31の機能的な構成例を示すブロック図である。
5Gシステム評価装置10は、例えば、パーソナルコンピュータ(PC)又はサーバコンピュータといったコンピュータによって構成されてよい。コンピュータは、情報処理装置の一例である。
5Gシステム評価装置10は、1台のコンピュータによって構成されてもよいし、複数台のコンピュータによって構成されてもよい。複数台のコンピュータによって、評価装置10が実行する処理の負荷分散が図られてよい。
図8に示すように、5Gシステム評価装置10は、例示的に、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007を備えてよい。
なお、以下の説明において、「装置」という文言は、回路、デバイス、又は、ユニットなどに読み替えることができる。評価装置10のハードウェア構成は、図8に例示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、図8において、プロセッサ1001は1つだけ図示されているが、複数のプロセッサが5Gシステム評価装置10に備えられていてもよい。また、5Gシステム評価装置10における処理は、1つのプロセッサ1001によって実行されてもよいし、複数のプロセッサによって実行されてもよい。1つ又は複数のプロセッサにおいて、複数の処理は同時に、並列に、又は、逐次に実行されてもよいし、その他の手法によって実行されてもよい。なお、プロセッサ1001は、シングルコアプロセッサでもよいし、マルチコアプロセッサでもよい。プロセッサ1001は、1つ以上のチップを用いて実装されてよい。
5Gシステム評価装置10が有する1つ又は複数の機能は、例示的に、プロセッサ1001及びメモリ1002などのハードウェアに、所定のソフトウェアを読み込ませることで実現される。なお、「ソフトウェア」は、「プログラム」、「アプリケーション」、又は「ソフトウェアモジュール」と称されてもよい。
例えば、プロセッサ1001は、メモリ1002及びストレージ1003の一方又は双方に記憶されたデータの読み出し及び書き込みの一方又は双方を制御することで、プログラムを読み込んで実行する。なお、プログラムは、通信装置1004による電気通信回線を介した通信によってネットワークから送信されてもよい。
プログラムは、5Gシステム評価装置10における処理の全部又は一部をコンピュータに実行させるプログラムであってよい。プログラムに含まれるプログラムコードの実行に応じて、5Gシステム評価装置10の1つ以上の機能が実現される。プログラムコードの全部又は一部は、メモリ1002又はストレージ1003に記憶されてもよいし、オペレーティングシステム(OS)の一部として記述されてもよい。
例えば、プログラムは、図9及び図10により後述する機能ブロックを具現するプログラムコードを含んでよく、また、図14により後述するフローチャートを実行するプログラムコードを含んでもよい。そのようなプログラムコードを含んだプログラムは、「評価プログラム」と称されてもよい。
プロセッサ1001は、処理部の一例であり、例えば、OSを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
また、プロセッサ1001は、例えば、プログラム及びデータの一方又は双方を、ストレージ1003及び通信装置1004の一方又は双方からメモリ1002に読み出し、これらに従って各種の処理を実行する。
メモリ1002は、コンピュータ読み取り可能な記録媒体の一例であり、例えば、ROM、EPROM、EEPROM、RAM、SSDなどの少なくとも1つを用いて構成されてよい。なお、「ROM」は、「Read Only Memory」の略称であり、「EPROM」は、「Erasable Programmable ROM」の略称である。「EEPROM」は、「Electrically Erasable Programmable ROM」の略称であり、「RAM」は、「Random Access Memory」の略称であり、「SSD」は、「Solid State Drive」の略称である。
メモリ1002は、レジスタ、キャッシュ、メインメモリ、ワークメモリ、主記憶装置などと呼ばれてもよい。メモリ1002は、本発明の実施の形態1に係る評価装置を実施するために実行可能なプログラムを記憶する。
ストレージ1003は、コンピュータ読み取り可能な記録媒体の一例であり、CD−ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ(HDD)、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu−ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フレキシブルディスク、磁気ストリップなどの少なくとも1つを用いて構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の一方又は双方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの一方又は双方を介してコンピュータ間の通信を行うためのハードウェア(「送受信デバイス」と称してもよい。)の一例である。「通信装置」は、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどと称されてもよい。
入力装置1005は、5Gシステム評価装置10の外部からの入力を受け付ける入力デバイスの一例である。例示的に、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサの1つ以上が、入力装置1005に含まれてよい。
出力装置1006は、5Gシステム評価装置10の外部への出力を実施する出力デバイスの一例である。例示的に、ディスプレイ、スピーカー、LEDランプなどの1つ以上が、出力装置1006に含まれてよい。
なお、入力装置1005及び出力装置1006は、個別の構成でもよいし、例えばタッチパネルのように一体構成であってもよい。
また、プロセッサ1001及びメモリ1002などの各装置は、バス1007によって通信可能に接続されてよい。装置間は、単一のバス1007で接続されてもよいし、異なるバスを用いて接続されてもよい。
5Gシステム評価装置10は、マイクロプロセッサ、DSP、ASIC、PLD、FPGAなどのハードウェアを含んで構成されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてよい。当該ハードウェアにより、図9及び図10にて後述する各機能ブロックの一部又は全てが実現されてよい。
なお、「DSP」は、「Digital Signal Processor」の略称であり、「ASIC」は、「Application Specific Integrated Circuit」の略称である。「PLD」は、「Programmable Logic Device」の略称であり、「FPGA」は、「Field Programmable Gate Array」の略称である。
(5Gシステム評価装置の機能構成例)
次に、図9を参照して、5Gシステム評価装置10の機能構成例について説明する。図9に示すように、5Gシステム評価装置10は、例示的に、リンクバジェット算出部31、カバーエリア決定部32、MS計算部33、及び、エリア評価部34を備えてよい。
リンクバジェット算出部31は、例示的に、5Gシステムモデル1において、複数の候補ビームパターンの1つを選択的に適用し、対応するBFパラメータを基にビームゲインを算出する。また、リンクバジェット算出部31は、算出したビームゲインを基に、候補ビームパターンが適用されたMSエリアと接続先BSとの間の通信性能に関する情報(例えば、リンクバジェット)を算出する。なお、リンクバジェット算出部31の構成例については後述する。
候補ビームパターンの1つを選択的に適用してビームゲインを算出する処理と、算出したビームゲインを基に通信性能に関する情報を算出する処理とは、5Gシステムモデル1において異なるMSエリアのペアを単位に行われてよい。また、ダイナミックBFが適用される場合の通信性能は、複数の候補ビームパターンのうち通信性能が最大となる候補ビームにおけるビームゲインによって算出される。
例えば、異なるMSエリアのペアの一方にBSが配置され、他方にUEが配置される。したがって、5Gシステムモデル1に配置されたBS及びUEが取り得る複数のペア(別言すると、組み合わせ候補)毎に、上述したビームゲインの算出処理と通信性能に関する情報の算出処理とが行われてよい。
通信性能に関する情報の算出には、例示的に、ビームゲインに基づいて受信電力、SINR、及び、スループットの少なくとも1つを算出することが含まれてよい。ビームゲインは、後述するように、候補ビームパターン(以下「候補ビーム」と略称することがある。)の水平成分及び垂直成分の別に算出されて合成されてよい。
なお、複数の候補ビームパターンは、例えば、アレイアンテナモデルにおけるアンテナ素子数、アンテナ素子間隔、ビーム方向、ビーム範囲、及び、ビーム間隔などのパラメータ(「BFパラメータ」と称してよい。)によって設定されてよい。BFパラメータは、BSが配置されるMSエリアに対するパラメータ、及び、UEが位置するMSエリアに対するパラメータの一方又は双方であってよい。
BFパラメータは、例えば図8に例示した入力装置1005及び/又は通信装置1004を通じて、リンクバジェット算出部31が具現されるプロセッサ1001に入力されてよい。また、BFパラメータは、メモリ1002及び/又はストレージ1003に記憶されてよい。なお、メモリ1002及び/又はストレージ1003には、5Gシステムモデル1を生成する情報又はデータが記憶されてよい。
入力装置1005及び通信装置1004の少なくとも一方は、BFパラメータが入力される入力部の一例と捉えてよい。また、メモリ1002及び/又はストレージ1003に記憶されたBFパラメータがプロセッサ1001によって読み出される場合には、メモリ1002及び/又はストレージ1003が、BFパラメータが入力される入力部の一例と捉えてよい。なお、「入力部」は、BFパラメータを受信する「受信部」と言い換えられてもよい。
カバーエリア決定部32は、例示的に、MSエリアのそれぞれについて接続先BSを決定することによって、接続先BSがカバーするMSエリア(カバーエリアと称してよい。)を決定する。カバーエリアは、「ダイナミックBF有り」の場合と「ダイナミックBF無し」の場合との一方又は双方について決定されてよい。「ダイナミックBF有り」の場合には、リンクバジェット算出部31によって計算されたビームゲインを用いて複数BS(各BS及びMSエリアのペアに対して複数の候補ビームパターンを適用)との通信性能に関する情報(例えば、受信電力)を算出し、複数BS(各BS及びMSエリアのペアに対して複数の候補ビームパターンを適用)の内、通信性能が最大となるBSのカバーエリアにMSエリアが属すると決定してよい。
MS計算部33は、例示的に、5Gシステムモデル1において、或るBS(s)のカバーエリアに対する近傍の干渉BS(i)からの干渉を計算する。干渉の計算は、例示的に、BS(s)のDL通信及び/又はUL通信に対して、BS(i)の通信をDL通信、UL通信、及び、OFFのいずれかに切り替えて行われてよい。
BS(i)の通信の切り替えは、例えば図3に示したダイナミックTDDにおけるULサブフレームとDLサブフレームとの構成(UL-DL configuration)に基づいたパターンに従って行われてよい。なお、BS(i)におけるダイナミックBFによる通信の切り替えは、通信対象となるMS(i)の配置場所の切り替えによって行われてもよいし、BS(i)におけるMS(i)を指定せずにBS(i)における候補ビームをランダムに(例えば、乱数を用いて)切り替えることによって行われてもよい。BS(i)及びMS(i)はダイナミックBF有りの場合、複数の候補ビームパターンのうちBS(i)及びMS(i)間の通信性能が最大となる候補ビームのビームゲインが適用される。
エリア評価部34は、例示的に、通信性能エリアマップにおける個々のMSエリアの時間変化、場所変化、及び、バタツキ度合いを表す指標の少なくとも1つを評価し、評価結果を例えば出力装置1006を通じてディスプレイなどへ出力する。なお、出力装置1006は、情報又はデータを出力する出力部の一例である。
なお、上述した各部31〜34の機能は、既述のように、プロセッサ1001がメモリ1002及び/又はストレージ1003に記憶されたプログラムを読み取って当該プログラムを実行することで具現される、と捉えてよい。また、各部31〜34の機能は、全部が5Gシステム評価装置10に備えられなくてもよく、一部の機能はオプションであっても構わない。
以下、本実施の形態における5Gシステム評価装置10の特徴的な構成の1つである、リンクバジェット算出部31について、更に説明を加える。
(リンクバジェット算出部)
図10は、リンクバジェット算出部31の機能ブロック図である。図10に示すように、リンクバジェット算出部31は、例示的に、ビームゲイン算出部311、ビーム探索部312、及び、通信性能算出部313を備えてよい。
ビームゲイン算出部311は、第1算出部の一例であって、例示的に、複数の候補ビームのそれぞれについてビームゲインを算出する。ビームゲインの算出には、候補ビームの水平方向及び垂直方向の別にビームゲインを計算して合成(例えば、乗算)することが含まれてよい。
ここで、図11に模式的に例示するように、候補ビームの水平方向は、xyz座標系におけるx軸を基準とした角度φによって表すことができ、当該候補ビームの垂直方向は、xyz座標系におけるz軸を基準とした角度θによって表すことができる。なお、図11において、Δxは、水平方向のアンテナ素子間隔を表し、Δzは、垂直方向のアンテナ素子間隔を表す。
候補ビームは、例示的に、水平方向及び垂直方向のそれぞれについて表1に示すパラメータによって設定される。
Figure 2019075696
なお、BFに用いるアレイアンテナの総アンテナ素子数Nは、N=NTx×NTzである。BFパラメータは、非限定的な一例として、図12に示すようなユーザインタフェース(UI)を用いて、オペレータが5Gシステム評価装置10に対する入力操作を行うことによって設定可能である。
例えば、図12に例示したUIが出力装置1006(例えば、ディスプレイ)に出力された状態で、5Gシステム評価装置10のオペレータが当該UIの各設定項目に設定値を入力する。当該入力によって、入力装置1005を通じてBFパラメータの設定値がプロセッサ1001(例えば、ビームゲイン算出部311)に入力される。BFパラメータの設定値は、メモリ1002及び/又はストレージ1003に記憶されてよい。
BFパラメータの設定値は、複数のビームパターンに対応して複数パターン用意されてよい。BFパラメータの設定値は、例えば設定ファイルなどの形態で、メモリ1002及び/又はストレージ1003に記憶されてもよい。
プロセッサ1001は、BFパラメータの設定値を、UIを通じて逐次的に受け付けてもよいし、メモリ1002及び/又はストレージ1003から設定ファイルを読み込むことで、1つ又は複数のビームパターンに対応した設定値を一括して受け付けてもよい。
なお、表1及び図12のUIに例示するように、5Gシステムモデル1において設定されるビームの範囲(「ビーム設定範囲」と略称してもよい。)は、水平方向及び垂直方向の別に設定可能であってもよい。例えば、水平方向の設定範囲は、下限値φminと上限値φmaxとで定義されてよく、垂直方向の設定範囲は、下限値θminと上限値θmaxとで定義されてよい。
同様に、ビームのメインローブ(別言すると、主ビーム)の取り得る方向範囲が、水平方向及び垂直方向の別に設定可能であってもよい。例えば、主ビームの水平方向の範囲は、下限値φ0minと上限値φ0maxとで定義されてよく、垂直方向の範囲は、下限値θ0minと上限値θ0maxとで定義されてよい。
なお、候補ビーム#mの水平方向におけるビームゲイン算出対象方向は「mΔφ」によって表すことができ、候補ビーム#nの垂直方向におけるビームゲイン算出対象方向は「nΔθ」によって表すことができる。
また、候補ビーム#pの水平方向における主ビーム方向は「pΔφ」によって表すことができ、候補ビーム#qの垂直方向における主ビーム方向は「qΔθ」によって表すことができる。なお、m、n、p、及び、qは、複数の候補ビームの番号を表す整数であって変数である。
図13に、上述したBFパラメータの設定によって得られるビームパターンの一例を示す。図13に例示したビームパターンの一例は、垂直方向θ及びθを0に固定にした場合に得られるパターンである。BFパラメータの設定を変更することで、様々なビームパターンを設定することができる。図13には、BFパラメータの設定を変更することよって得られる、主ビームの指向性の異なる複数のビームパターンが重ねて示されている。
別言すると、ビームパターン数は、BFパラメータの設定パターン数に依存する。BFパラメータ(例えば、主ビームの指向性)の設定パターンを変更することで、ビームパターンが変化するので、例えば、時間によって指向性が動的に変化する動的ビームフォーミングを模擬できる。
次に、図10に例示したビーム探索部312について説明する。ビーム探索部312は、例えば、ビームゲイン算出部311において算出された、複数の候補ビームのビームゲインを探索して1つ(例えば、通信性能が最大の候補ビーム、受信電力が最大となる候補ビーム)を選択する。したがって、ビーム探索部312は、ダイナミックBFにおいて複数の候補ビームのうち、通信性能(受信電力等)が最大となる候補ビームの1つを選択する選択部の一例である。
通信性能算出部313は、第2算出部の一例であって、例示的に、ビーム探索部312において選択された候補ビームのビームゲインに基づいて、通信性能に関する情報(例えば、受信電力)を算出する。例えば、通信性能算出部313は、5Gシステムモデル1において、仮想的な送信機に対応するMSエリアから仮想的な受信機に対応するMSエリアに向けて出射されるビームの複数レイに対してビーム探索部312において選択されたビームゲインを乗算する。
また、通信性能算出部313は、例えば、仮想的な受信機に対応するMSエリアにおいて受信される複数レイの受信電力を算出して受信ビームの受信電力を算出する。このようにして、通信性能算出部313は、個々のMSエリアについて、送受信ビームゲインに応じた受信電力を算出できる。
(ビームゲイン算出例)
次に、上述したビームゲイン算出部311におけるビームゲインの算出例について数式を用いて説明する。
ビームゲイン算出部311は、例えば下記の式(1.1)を用いて、算出対象方向が(mΔφ,nΔθ)のビームゲインAA,Beami(mΔφ,nΔθ)を算出する(dB単位)。
Figure 2019075696
式(1.1)に示されるとおり、ビームゲインAA,Beamiは、水平方向のビームゲインGBF(真値)と、垂直方向のビームゲインGBF(真値)と、の合成によって算出できる。
ここで、下記の式(1.2)に例示するとおり、垂直方向がn番目かつ水平方向がm番目のビームゲインGBF,HV(n,m)は、水平方向のビームゲインGBF(n,m)と、垂直方向のビームゲインGBF(n,m)と、の積によって表すことができる。
Figure 2019075696
式(1.2)より、GBF(n,m)及びGBF(n,m)は、それぞれ、下記の式(1.3)及び式(1.4)によって表すことができる。
Figure 2019075696
Figure 2019075696
ここで、式(1.3)におけるγは下記の式(1.5)によって表すことができ、式(1.4)におけるγは下記の式(1.6)によって表すことができる。
Figure 2019075696
Figure 2019075696
ただし、γがゼロになる場合は式(1.3)に代えて下記の式(1.7)を用いてよく、γがゼロになる場合は式(1.4)に代えて下記の式(1.8)を用いてよい。
Figure 2019075696
Figure 2019075696
上記の式(1.1)〜式(1.8)を用いることによって、ビームゲイン算出部311は、算出対象方向が(mΔφ,nΔθ)のビームゲインAA,Beami(mΔφ,nΔθ)を、水平方向と垂直方向との別に計算して合成することで算出できる。
なお、ビームゲイン算出部311は、例示的に、式(1.1)の代わりに、下記の式(1.9)を用いてビームゲインAA,Beami(mΔφ,nΔθ)を算出してもよい。式(1.9)においては、式(1.1)に対して、エレメントゲインパターンA(mΔφ,nΔθ)が加えられている。γ及びγの具体的な式は、基準となる水平及び垂直の角度により異なるため、式(1.5)及び式(1.6)には限定されない。本変形例でもよい。
Figure 2019075696
エレメントゲインパターンA(mΔφ,nΔθ)を加算することで、各々エレメントゲインパターンを考慮したビームゲインの算出が可能となり、特定アレイアンテナのビームゲイン算出精度を向上できる。
(ビームゲイン算出の変形例)
なお、式(1.1)に代えて、下記の式(2.1)が用いられてもよい。
Figure 2019075696
式(2.1)は、式(1.1)の近似式に相当すると捉えてよく、ビームゲイン算出部311は、水平方向のビームゲインGBF(n,m)を、垂直方向のBFパラメータに依存せずに計算できる。同様に、ビームゲイン算出部311は、垂直方向のビームゲインGBF(n,m)を、水平方向のBFパラメータに依存せずに計算できる。別言すると、式(2.1)は、水平方向及び垂直方向のビームゲインを互いに独立して計算できることを表している。
式(2.1)を用いることで、式(1.1)を用いる場合に比して、ビームゲイン算出部311における演算量を軽減できる。一方、式(1.1)を用いれば、式(2.1)を用いる場合に比して、ビームゲイン算出部311における算出精度を向上できる。
なお、式(2.1)が用いられる場合、式(1.5)及び式(1.6)に代えて、それぞれ、下記の式(2.2)及び式(2.3)が、ビームゲイン算出部311において用いられてよい。なお、式(1.2)〜式(1.4)、並びに、式(1.7)及び式(1.8)については、本変形例においても同じでよい。
Figure 2019075696
Figure 2019075696
式(2.2)と式(1.5)とを比較してみれば、式(2.2)において、γの計算に、垂直方向のBFパラメータであるΔθ及びΔθは、不要であることが理解できる。
なお、本変形例においても、ビームゲイン算出部311は、例示的に、式(2.1)の代わりに、下記の式(2.4)を用いてビームゲインAA,Beami(mΔφ,nΔθ)を算出してもよい。式(2.4)においては、式(2.1)に対して、エレメントゲインパターンA(mΔφ,nΔθ)が加えられている。
Figure 2019075696
(ビームゲイン算出部311の動作例)
次に、図14に例示するフローチャートを参照して、ビームゲイン算出部311の動作例について説明する。
図14に例示するように、ビームゲイン算出部311は、S11〜S17で示される処理が繰り返される第1のループ処理と、S13〜S16で示される処理が繰り返される第2のループ処理と、を実行する。
例示的に、第1のループ処理は、水平方向のビームパターン数だけ繰り返され、第2のループ処理は、垂直方向のビームパターン数だけ繰り返される。
第1のループ処理において、ビームゲイン算出部311は、例えば、水平方向のビームゲインGBFを算出する(S12)。水平方向のビームゲインGBFの算出において、垂直方向の指向特性(別言すると、垂直方向のBFパラメータ)は固定されてよい。非限定的な一例として、垂直方向の指向特性は、アンテナアレイ(図11参照)の真正面(θ=90[deg]、φ=90[deg])に固定されてよい。
水平方向のビームゲインGBFが算出されると、ビームゲイン算出部311は、第2のループ処理により、垂直方向のビームゲインGBFを算出する(S14)。垂直方向のビームゲインGBFの算出において、水平方向の指向特性(別言すると、水平方向のBFパラメータ)は固定されてよい。非限定的な一例として、水平方向の指向特性は、アンテナアレイ(図11参照)の真正面(θ=90[deg]、φ=90[deg])に固定されてよい。
水平方向のビームゲインGBF及び垂直方向のビームゲインGBFが算出されると、ビームゲイン算出部311は、両ビームゲインGBF及びGBFを乗算して合成ビームゲインを算出する(S15)。
S14及びS15の処理が第2のループ処理において垂直方向のビームパターン数だけ繰り返される。S14及びS15の処理が水平方向及び垂直方向のビームパターン数だけ繰り返されると、ビームゲイン算出部311は、第2のループ処理を抜けて(S16)、第1のループ処理(S11)に戻る。
そして、ビームゲイン算出部311は、前回とは異なる水平方向のビームパターンについて、垂直方向の指向特性は固定した状態で、水平方向のビームゲインGBFを算出する。
水平方向のビームゲインGBFが算出されると、ビームゲイン算出部311は、第2のループ処理により、水平方向の指向特性を固定して、垂直方向のビームゲインGBFを算出する(S14)。
水平方向のビームゲインGBF及び垂直方向のビームゲインGBFが算出されると、ビームゲイン算出部311は、両ビームゲインGBF及びGBFを乗算して合成ビームゲインを算出する(S15)。
以上のようにして、第1のループ処理及び第2のループ処理がそれぞれのビームパターン数だけ繰り返される。第1のループ処理の繰り返し回数が、水平方向のビームパターン数に達すると、水平方向及び垂直方向それぞれの異なるビームパターンについてのビームゲインが網羅的に算出されたことになる。したがって、ビームゲイン算出部311は、第1のループ処理を抜けて(S17)、ビームゲインの算出処理を終了してよい。
なお、水平方向のビームゲインGBFと、垂直方向のビームゲインGBFと、の算出順序は、互いに入れ替え可能である。例えば、図14の例とは逆に、垂直方向のビームゲインGBFから算出が開始されてもよい。
また、ビームゲインの計算は、前記の各式に基づいてリアルタイムで行われてもよいし、前記の各式に基づいて事前に算出された値を例えばメモリ1002及び/又はストレージ1003に記憶しておき、ビームゲイン算出の際に参照することで行われてもよい。
ビーム探索部312(図10参照)は、以上のようにしてビームゲイン算出部311において複数の候補ビームパターンについて算出された合成ビームゲインを探索して、各候補ビームパターンのビームゲインを考慮し、通信性能が最大となる(例えば、受信電力)が最大となる候補ビームパターンを選択する。
通信性能算出部313は、ビーム探索部312において選択された候補ビームパターンのビームゲインを用いて、通信性能に関する情報(例えば、受信電力、SINR、及び、スループットのうちの少なくとも1つ)を算出する。
例えば、通信性能算出部313は、下記の式(3.1)によって受信電力(S)を算出できる。
受信電力(S)[dB]=送信パワー+パスゲイン+アンテナゲイン+
フェージングマージン+透過損失(penetration loss) (3.1)
ここで、「送信パワー」は、MS側の受信電力を求める場合はBS側の送信パワーであり、BS側の受信電力を求める場合はMS側の送信パワーである。レイトレーシング法によりBS又はMSから複数レイを出射して電波伝搬モデルを模擬する場合、複数レイを出射するため、受信電力Sは、各レイの受信電力を合計したものになる。各レイの出射角度及び/又は伝搬経路を考慮して、パスゲインが算出され、また、候補ビームにおけるアンテナゲインが決定され、各レイの受信電力が算出される。
また、「アンテナゲイン」は、BS側及びMS側の一方又は双方についての値(下記の式(3.2)〜式(3.4)のいずれか1つ)であってよい。
アンテナゲイン=通信性能が最大となるBSアンテナゲイン+固定MSアンテナゲイン (3.2)
アンテナゲイン=固定BSアンテナゲイン+通信性能が最大となるMSアンテナゲイン (3.3)
アンテナゲイン=通信性能が最大となるBSアンテナゲイン+通信性能が最大となるMSアンテナゲイン (3.4)
式(3.2)の場合は、BS側のみにダイナミックBFが適用され、MS側に固定のビームパターンが適用される。BS側のアンテナゲインは、例えば、通信性能が最大になるようなビームパターンに基づいて決定される。
式(3.3)の場合は、MS側のみにダイナミックBFが適用され、BS側に固定のビームパターンが適用される。MS側のアンテナゲインは、例えば、通信性能が最大になるようなビームパターンに基づいて決定される。
式(3.4)の場合は、BS側とMS側の両方に対してダイナミックBFが適用され、BSビームゲイン及びMSビームゲインは、例えば、通信性能が最大となるBSアンテナゲイン及びMSアンテナゲインのペアに基づいて算出される。
「アンテナゲイン」は、ビームゲイン算出部311において算出された合成ビームゲインを、「ダイナミックBF無し」の場合のアンテナゲインに乗じた値であってよい。また、「アンテナゲイン」は、固定のビームパターン、伝搬環境(例えば、シャドウイング損)、及び、遮蔽物(遮蔽損)の少なくとも1つに関するパラメータを含んで計算されてもよい。
「パスゲイン」は、例えば、レイトレーシングの結果に基づいて計算されてもよいし、パスロスモデルの計算式に基づいて計算されてもよい。
受信電力(S)が求まると、通信性能算出部313は、下記の式(3.5)によってSINR(「リンクバジェット」と称してもよい。)を算出できる。
SINR[dB]=S−IN[dB] (3.5)
ここで、式(3.5)における「IN」の真値は、例えば下記の式(3.6)に示すように、干渉成分(I)の真値とノイズ成分(N)の真値との加算によって算出できる。
IN(真値)=I+N (3.6)
また、「N」は、例えば下記の式(3.7)によって算出できる。
N[dB]=熱雑音密度(thermal noise density)[dBm/Hz]+
雑音指数(Noise figure, NF)+10Log10(BW) (3.7)
なお、「BW」は、例えば、5Gシステムモデル1において評価対象のBSとMSエリアと間に設定される周波数帯域幅(bandwidth)を表す。
SINRが求まると、通信性能算出部313は、例えば下記の式(3.8)によってスループット(R)を算出(「マッピング」と称してもよい。)できる(シャノン式によるスループット算出)。
R=a×BW×min{Log2(1+10^(SINR/10)/b),c}
(3.8)
なお、a、b、及び、cの値については、無線インタフェースにおけるオーバーヘッド、MIMO伝送のレイヤ数(レイヤ1又はレイヤ2など)、及び/又は、最大の変調方式に応じて異なる値が設定されてよい。
(実施の形態1における効果)
以上のようにして算出された通信性能に関する情報は、5Gシステムモデル1におけるMSエリアと関連付けられて、例えば図7に示したような通信性能エリアマップとして出力装置1006から外部機器(例えば、ディスプレイ)に出力されてよい。
関連付けは、例えば、プロセッサ1001において具現されるエリア評価部34(図9参照)によって行われてよい。関連付けは、5Gシステムモデル1に配置されたBS及びUEのペア(別言すると、MSエリアのペア)が取り得る複数の組み合わせ候補毎に行われてよい。
通信性能に関する情報がMSエリアと関連付けられて出力されることにより、5Gシステムモデル1において、ダイナミックBFによって場所的及び/又は時間的に変化し得る通信性能の変化を視覚化して提示できる。したがって、5Gシステムの通信性能を的確に評価でき、例えば、UEにとって通信性能を最大化できるBS配置設計などを容易に行うことができる。
また、BSとMSエリアとの組み合わせに対して複数の候補ビームパターンの1つを選択する例として、通信性能が最大の候補ビームパターンを選択することにより、通信性能が最大化する候補ビームパターンにおけるビームゲインを算出でき、あるエリアの通信性能をより正確に評価できる。
なお、候補ビームパターンを選択する基準は、ビームゲインが最大よりも小さい(例えば、最小の)候補ビームパターンであってもよい。この場合は、例えば、BFによって、UEにとって通信性能が良好でない場所及び/又は時間を視覚化できる。
また、ビームゲインの算出では、水平方向及び垂直方向の別にビームゲインを算出して合成することによって合成ビームゲインを算出するので、アンテナアレイを成す個々のアンテナ素子の別に対して乗算するビームフォーマー(プリコーダー・ビームウエイト)を生成し、ビームゲインを算出しなくてよい。したがって、ビームゲインの算出に費やす演算量を削減でき、また、ビームゲインの算出に用いるメモリ量も削減できる。
比較例として、図15及び図16に、前掲の非特許文献5に記載されたテーブル(数式)を示す。非特許文献5に記載されたテーブル(数式)においては、ビームゲインAA,Beamiを水平方向及び垂直方向の別に計算できないため、アンテナアレイを成す個々のアンテナ素子の別に対して乗算するビームフォーマー(プリコーダー・ビームウエイト)を生成し、ビームゲインを算出せざるを得ない。そのため、ビームゲインの算出に用いるメモリ量が増加する。
上述した実施の形態において、5Gシステムモデル1を区分するMSエリアのサイズは可変であってよい。例えば、区分するMSエリアのサイズが小さすぎると演算負荷が大きくなり、逆に、区分するMSエリアのサイズが大きすぎると評価精度が低下し得る。そのため、MSエリアのサイズは、5Gシステムモデル1のシミュレーションにおいて期待される評価精度と許容される演算負荷とのトレードオフの関係に応じて変更されてよい。
また、5Gシステムモデル1において、区分するMSエリアのサイズは場所に関わらず全部が同じサイズでもよいし場所によって一部が異なるサイズでもよい。例えば、高い評価精度が求められる場所についてはMSエリアのサイズを小さく設定し、低い評価精度でも構わない場所についてはMSエリアのサイズを大きく設定してよい。
(実施の形態2)
5G等の次世代移動通信システムでは、下記の通信環境の変化等を要因として、各MSエリア(分割エリア)の通信性能指標が時間的に変化する。
・干渉セルのビーム切り替え
・干渉セルのDL/UL/オフ切り替え
・遮蔽物存在場所(配置場所)の時間変化
・MSの指向方向のランダム性
したがって、次世代移動通信システムでは、時間変化を考慮して各MSエリアを評価することにより、多角的な性能評価を行うことができる。実施の形態2では、上記の点に鑑み、時間変化を考慮したMSエリアの評価方法について説明する。なお、実施の形態2において、5Gシステム評価装置10のハードウェア構成例及び機能ブロックは、実施の形態1で説明したもの(図8、図9および図10)と共通する。
実施の形態2では、5Gシステム評価装置10(リンクバジェット算出部31及びMS計算部33)が、カバーエリア決定部32にて決定されたカバーエリアにあるMSエリアの受信電力(S)及び干渉(I)の計算をN回試行する。Nは、複数であり、例えば、当該MSエリアにおける、遮蔽物の配置パターン数、BS及び又はMS候補ビームパターン数、及び、DL/UL切り替えパターン数を乗算した数である。なお、5Gシステム評価装置10は、試行回毎に、遮蔽物の配置、干渉セルにおける候補ビームの選択、干渉セルのDL/UL/オフの選択等を変更する。
各試行において計算されたMSエリアの受信電力(S)及び干渉(I)は、メモリ1002に記憶される。
MS計算部33は、N回の試行で得られた受信電力(S)及び干渉(I)を用いて、試行毎に当該MSエリアの通信性能指標(SINRあるいはスループット等)を計算する。
エリア評価部34は、各MSエリアについて、N個の通信性能指標に対して統計的な処理を行い、時間変化が考慮された1つの評価結果を得る。そして、エリア評価部34は、各MSエリアの評価結果を例えば出力装置1006を通じてディスプレイなどへ出力する。
(エリア評価部)
図17は、エリア評価部34の機能ブロック図である。図17に示すように、エリア評価部34は、統計的処理部341、評価値付与部342及び出力制御部343を備えてよい。
統計的処理部341は、N個の通信性能指標に対して統計的な処理を行う。以下、統計的処理部341が行う統計的な処理の例について説明する。
(例1:平均値)
統計的な処理の例1として、統計的処理部341は、通信性能指標の平均値を計算する。通信性能指標がSINRの場合、統計的処理部341は、SINRのdB(デシベル)値の平均値を計算する。また、通信性能指標がスループットの場合、統計的処理部341は、スループットの真値の平均値を計算する。
(例2:散布度)
統計的な処理の例2として、統計的処理部341は、通信性能指標の散布度を計算する。散布度は、ばらつき度合いを示す統計的な指標である。散布度の例として、分散、幾何平均(geometrical mean)/算術平均(arithmetic mean)およびJain indexが挙げられる。なお、以下の説明において、便宜的に、幾何平均を「GEO」と表記し、算術平均を「ARITH」と表記することがある。
散布度として分散が用いられ、通信性能指標がSINR(dB(デシベル)又は真値)の場合、統計的処理部341は、下記の式(4.1)によりSINRの分散(sSINR 2)を計算する。なお、式(4.1)において、SINRM,iは、時刻i(iは1からNの整数)、M番目のMSにおけるSINRである。
Figure 2019075696
散布度として分散が用いられ、通信性能指標がスループットの場合、統計的処理部341は、下記の式(4.2)によりスループットの分散(sThput 2)を計算する。なお、式(4.2)において、ThputM,iは、時刻i(iは1からNの整数)、M番目のMSにおけるスループットである。
Figure 2019075696
散布度としてGEO/ARITHが用いられ、通信性能指標がSINRの場合、統計的処理部341は、下記の式(4.3)によりSINRのGEO/ARITHを計算する。なお、式(4.3)において、SINRM,iは、時刻i(iは1からNの整数)、M番目のMSにおけるSINRである。
Figure 2019075696
散布度としてGEO/ARITHが用いられ、通信性能指標がスループットの場合、統計的処理部341は、下記の式(4.4)によりスループットのGEO/ARITHを計算する。なお、式(4.4)において、ThputM,iは、時刻i(iは1からNの整数)、M番目のMSにおけるスループットである。
Figure 2019075696
散布度としてJain indexが用いられ、通信性能指標がSINRの場合、統計的処理部341は、下記の式(4.5)によりJain index(J)を計算する。
Figure 2019075696
散布度としてJain indexが用いられ、通信性能指標がスループットの場合、統計的処理部341は、下記の式(4.6)によりJain index(J)を計算する。
Figure 2019075696
(例3:CDF)
統計的な処理の例3として、統計的処理部341は、通信性能指標のCDF(Cumulative Distribution Function:累積分布関数)をプロットする。図18は、通信性能指標がスループットの場合のCDFの一例を示す。図18において、横軸はスループット(Mbps)であり、縦軸は累積分布関数である。また、図18では、MSエリアAのCDFを実線で示し、MSエリアBのCDFを破線で示す。
統計的処理部341は、累積分布関数のXパーセンタイル値(図18では、X=10)(CDF X%値)の通信性能指標(図18ではスループット)を計算する。図18では、MSエリアAの累積分布関数の10パーセンタイル値(CDF 10%値)のスループットは、約95Mbpsであり、MSエリアBの累積分布関数10パーセンタイル値(CDF 10%値)のスループットは、約360Mbpsである。
次に、図17に例示した評価値付与部342について説明する。評価値付与部342は、統計的処理部341で計算された各MSエリアの統計的な値(平均値、散布度あるいはCDF等)に基づいて、各MSエリアに1つの評価値を付与する。
例えば、各MSエリアを5段階で評価する場合、評価値付与部342は、各MSエリアの統計的な値について、4つの閾値それぞれとの大小関係を比較し、比較結果に基づいて、各MSエリアに第1から第5の評価値のいずれかを付与する。
例えば、統計的な値が上記例1で説明した平均値である場合、評価値付与部342は、平均値が第1閾値以上のMSエリアに、最も高い評価である第1評価値を与える。以下、評価値付与部342は、平均値が第1閾値未満で第2閾値以上のMSエリアに第2評価値を与え、平均値が第2閾値未満で第3閾値以上のMSエリアに第3評価値を与え、平均値が第3閾値未満で第4閾値以上のMSエリアに第4評価値を与え、平均値が第4閾値未満のMSエリアに第5評価値を与える。
また、統計的な値が上記例2で説明した散布度(分散、幾何平均/算術平均あるいはJain index等)である場合、評価値付与部342は、散布度が第5閾値未満のMSエリアに、最も高い評価である第1評価値を与える。以下、評価値付与部342は、散布度が第5閾値以上で第6閾値未満のMSエリアに第2評価値を与え、散布度が第6閾値以上で第7閾値未満のMSエリアに第3評価値を与え、散布度が第7閾値以上で第8閾値未満のMSエリアに第4評価値を与え、散布度が第8閾値以上のMSエリアに第5評価値を与える。
また、統計的な値が上記例3で説明したCDFである場合、評価値付与部342は、累積分布関数X%値における通信性能指標(SINRあるいはスループット等)が第9閾値以上のMSエリアに、最も高い評価である第1評価値を与える。以下、評価値付与部342は、通信性能指標が第9閾値未満で第10閾値以上のMSエリアに第2評価値を与え、通信性能指標が第10閾値未満で第11閾値以上のMSエリアに第3評価値を与え、通信性能指標が第11閾値未満で第12閾値以上のMSエリアに第4評価値を与え、通信性能指標が第12閾値未満のMSエリアに第5評価値を与える。
図18において、第9閾値を500Mbps、第10閾値を400Mbps、第11閾値を300Mbps、第12閾値を200Mbpsとすると、評価値付与部342は、MSエリアAには第5評価値を付与し、MSエリアBには第3評価値を付与する。
次に、図17に例示した出力制御部343について説明する。出力制御部343は、評価値付与部342で付与された各MSエリアの評価値を、通信性能エリアマップにおいてユーザが区別できるように、出力装置1006から外部機器(例えば、ディスプレイ)に出力させる。
例えば、出力制御部343は、図7に示した通信性能エリアマップにおいて、第1評価値が付与されたMSエリアを青で、第2評価値が付与されたMSエリアを黄で、第3評価値が付与されたMSエリアを緑で、第4評価値が付与されたMSエリアを赤で、第5評価値が付与されたMSエリアをピンクで表示させる。
これにより、ユーザは、各MSエリアの表示色によって、カバーエリア(BS)に対するMSエリアとして用いるか否かを容易に評価することができる。例えば、ユーザは、青、黄、緑で表示されたMSエリアを、カバーエリアに対するMSエリアに設定し、赤、ピンクで表示されたMSエリアを、カバーエリアに対するMSエリアに設定しない。
(5Gシステム評価装置10の動作例)
次に、図19に例示するフローチャートを参照して、実施の形態2における5Gシステム評価装置10の動作について説明する。
まず、5Gシステム評価装置10は、評価対象のMSエリアを選択し、通信エリア上に、複数のBSを配置し、複数のMSを配置する(S21)。
次に、5Gシステム評価装置10は、カバーエリアを決定する(S22)。
次に、5Gシステム評価装置10は、決定されたカバーエリアにあるMSエリアの受信電力(S)及び干渉(I)の計算をN回試行する(S23)。
次に、5Gシステム評価装置10は、N回の試行で得られた受信電力(S)及び干渉(I)を用いて、試行毎に当該MSエリアの通信性能指標(SINRあるいはスループット等)を計算する(S24)。
次に、5Gシステム評価装置10は、各MSエリアについて、N個の通信性能指標に対して統計的な処理を行い、統計的な値(平均値、散布度あるいはCDF等)を計算する(S25)。
次に、5Gシステム評価装置10は、各MSエリアの統計的な値に基づいて、各MSエリアに1つの評価値を付与し、評価結果を得る(S26)。
次に、5Gシステム評価装置10は、各MSエリアの評価結果をディスプレイの画面などへ表示させる(S27)。
(実施の形態2における効果)
以上のように、本実施の形態では、各MSエリアについて、複数の時間における通信性能指標に対して統計的な処理を行い、統計的な値に基づいて1つの評価結果(評価値)を付与し、各MSエリアの評価結果をディスプレイの画面などへ表示させる。これにより、時間変化を考慮した各MSエリアの評価を視覚化して提示できる。したがって、ユーザは、5Gシステムの通信性能を的確かつ多面的に評価できる。
(バリエーション)
本実施の形態では、時間変化が考慮された評価結果の場所分布を得るために、エリア評価部34が、各MSエリアについて、通信性能指標の統計的な処理(平均値、散布度あるいはCDF等)によって得られた値(時間分布)に対してさらに統計的な処理を行ってもよい。
例1として、エリア評価部34が、カバーエリア内にあるすべてのMSエリアのそれぞれにおいて、N個の通信性能指標(SINRあるいはスループット等)の平均値を計算し、すべてのMSエリアの通信性能指標の平均値のCDFをプロットする。
また、例2として、エリア評価部34が、カバーエリア内にあるすべてのMSエリアのそれぞれにおいて、N個の通信性能指標の散布度を計算し、すべてのMSエリアの通信性能指標の散布度の散布度を計算する。なお、例2では、時間分布と場所分布に得られたすべてのサンプルに対して散布度を計算しても良い。
また、例3として、エリア評価部34が、カバーエリア内にあるすべてのMSエリアのそれぞれにおいて、累積分布関数X%値の通信性能指標を求め、すべてのMSエリアの累積分布関数X%値の通信性能指標のCDFをプロットする。本CDF(場所分布)により得られたすべてのサンプルに対して散布度を計算しても良い。
これらの処理により、時間変化が考慮された評価結果の場所分布を得ることができる。
以上、本発明の実施の形態について説明した。
(ハードウェア構成)
なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
(適応システム)
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、SUPER 3G、IMT−Advanced、4G、5G、FRA(Future Radio Access)、W−CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
(処理手順等)
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(入出力された情報等の扱い)
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
(判定方法)
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(ソフトウェア)
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
(情報、信号)
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
(「システム」、「ネットワーク」)
本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
(パラメータ、チャネルの名称)
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
(基地局)
基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「gNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、gNodeB、アクセスポイント(access point)、スモールセルなどの用語で呼ばれる場合もある。スモールセルは、マクロセルよりもカバレッジの小さいセルの一例である。スモールセルは、カバレッジエリアに応じて呼称が異なってよい。例えば、スモールセルは、「フェムトセル」、「ピコセル」、「マイクロセル」、「ナノセル」、「メトロセル」、「ホームセル」等と称されてもよい。「セル」または「セクタ」という用語は、基地局が無線サービスを提供する個々の地理的範囲を意味する他、その個々の地理的範囲において端末と通信を行なうために基地局が管理する通信機能の一部をも意味してよい。
(端末)
ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。端末は、その位置が変化しない固定端末であってもよいし、その位置が変化する移動端末であってもよい。非限定的な一例として、端末は、携帯電話やスマートフォン、タブレット端末等の移動可能な端末であってよい。また、端末は、IoT(Internet of Things)端末であってもよい。IoTによって、様々な「物」に通信機能が搭載され得る。通信機能を搭載した様々な「物」は、インターネットや無線アクセス網等に接続して通信を行なうことができる。例えば、IoT端末には、無線通信機能を具備したセンサデバイスやメータ(測定器)等が含まれてよい。センサデバイスやメータを搭載した監視カメラや火災報知器等の何らかの監視装置が端末に該当してもよい。監視装置等のIoT端末である端末と基地局との間の無線通信は、MTC(Machine Type Communications)と称されることがある。そのため、当該端末は「MTCデバイス」と称されることがある。
(用語の意味、解釈)
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、DMRSは、対応する別の呼び方、例えば、復調用RSまたはDM−RSなどであってもよい。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよいし、1ミニスロットをTTIと呼んでもよい。
リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、サブフレームに含まれるミニスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
(態様のバリエーション等)
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
本発明の一態様は、移動通信システムの評価に有用である。
1 無線通信システム(評価用システムモデル)
2 基地局
10 無線通信システム(5Gシステム)評価装置
31 リンクバジェット算出部
32 カバーエリア決定部
33 MS計算部
34 エリア評価部
200 無線通信エリア
311 ビームゲイン算出部
312 ビーム探索部
313 通信性能算出部
341 統計的処理部
342 評価値付与部
343 出力制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス

Claims (6)

  1. 無線通信システムを模擬したモデルの通信環境に、基地局に対する動作設定に応じて動的な変化を与え得る複数のパラメータが入力される入力部と、
    前記モデルの対象エリアを分割して得られる、端末が位置し得る複数の分割エリアのそれぞれについて、前記パラメータの少なくとも一部を変更しながら、前記パラメータに基づく通信性能指標の算出を複数回試行する算出部と、
    前記分割エリアのそれぞれについて、前記複数の通信性能指標に対して統計的な処理を行い、前記統計的な処理によって得られた値に基づく評価結果を取得するエリア評価部と、
    前記各分割エリアの評価結果を出力する出力部と、
    を備える、無線通信システムの評価装置。
  2. 前記算出部は、
    前記通信性能指標として、SINR(Signal-to-Interference Noise Ratio)及びスループットの少なくとも1つを算出する、
    請求項1に記載の無線通信システムの評価装置。
  3. 前記統計的な処理は、平均値の計算であり、
    前記エリア評価部は、
    前記各分割エリアについて、前記複数の通信性能指標の平均値を計算し、前記平均値に基づく評価結果を取得する、
    請求項1又は2に記載の無線通信システムの評価装置。
  4. 前記統計的な処理は、散布度の計算であり、
    前記エリア評価部は、
    前記各分割エリアについて、前記複数の通信性能指標の散布度を計算し、前記散布度に基づく評価結果を取得する、
    請求項1又は2に記載の無線通信システムの評価装置。
  5. 前記統計的な処理は、累積分布関数(CDF(Cumulative Distribution Function))の計算であり、
    前記エリア評価部は、
    前記各分割エリアについて、累積分布関数の所定パーセンタイル値における通信性能指標を計算し、前記累積分布関数の所定パーセンタイル値における通信性能指標に基づく評価結果を取得する、
    請求項1又は2に記載の無線通信システムの評価装置。
  6. 前記エリア評価部は、
    複数セルレイヤのそれぞれについて通信性能指標を計算し、
    前記複数レイヤの通信性能指標の最悪値又は最良値に基づく評価結果を取得し、
    前記複数レイヤの評価結果の合計値又は平均値を取得する、
    請求項1から5のいずれかに記載の無線通信システムの評価装置。
JP2017200515A 2017-10-16 2017-10-16 無線通信システムの評価装置 Active JP6998724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017200515A JP6998724B2 (ja) 2017-10-16 2017-10-16 無線通信システムの評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200515A JP6998724B2 (ja) 2017-10-16 2017-10-16 無線通信システムの評価装置

Publications (2)

Publication Number Publication Date
JP2019075696A true JP2019075696A (ja) 2019-05-16
JP6998724B2 JP6998724B2 (ja) 2022-01-18

Family

ID=66544368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200515A Active JP6998724B2 (ja) 2017-10-16 2017-10-16 無線通信システムの評価装置

Country Status (1)

Country Link
JP (1) JP6998724B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113672361A (zh) * 2021-07-13 2021-11-19 上海携宁计算机科技股份有限公司 分布式数据处理系统、方法、服务器和可读存储介质
CN114390534A (zh) * 2020-10-16 2022-04-22 中国移动通信集团设计院有限公司 波束模式确定方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078481A (ja) * 2001-08-10 2003-03-14 Soc Francaise Du Radiotelephone 無線カバレージマップを確立する方法
JP2009081486A (ja) * 2007-09-25 2009-04-16 Couei Corp セル設計最適化プログラム、記録媒体およびセル設計最適化方法
US20100178925A1 (en) * 2005-12-21 2010-07-15 Antonio Bernini Method for Estimating a Radio Coverage of a Geographic Area in a Cellular Mobile Radio Communication Network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078481A (ja) * 2001-08-10 2003-03-14 Soc Francaise Du Radiotelephone 無線カバレージマップを確立する方法
US20100178925A1 (en) * 2005-12-21 2010-07-15 Antonio Bernini Method for Estimating a Radio Coverage of a Geographic Area in a Cellular Mobile Radio Communication Network
JP2009081486A (ja) * 2007-09-25 2009-04-16 Couei Corp セル設計最適化プログラム、記録媒体およびセル設計最適化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
窪庭 純平 JUNPEI KUBONIWA: "異種無線融合システムにおける位置情報を用いたネットワーク選択手法のユーザスループット特性 User Throu", 電子情報通信学会論文誌B VOLUMEJ98−B NO.7 [ONLINE], vol. 第J98-B巻, JPN6021033574, 1 July 2015 (2015-07-01), JP, ISSN: 0004582219 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390534A (zh) * 2020-10-16 2022-04-22 中国移动通信集团设计院有限公司 波束模式确定方法、装置、电子设备及存储介质
CN114390534B (zh) * 2020-10-16 2024-03-12 中国移动通信集团设计院有限公司 波束模式确定方法、装置、电子设备及存储介质
CN113672361A (zh) * 2021-07-13 2021-11-19 上海携宁计算机科技股份有限公司 分布式数据处理系统、方法、服务器和可读存储介质

Also Published As

Publication number Publication date
JP6998724B2 (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
US11128353B2 (en) Radio base station
US10917160B2 (en) Wireless base station, and wireless communication method
WO2018084205A1 (ja) ユーザ端末及び無線通信方法
WO2018084118A1 (ja) ユーザ装置及び基地局
JPWO2018128181A1 (ja) ユーザ端末及び無線通信方法
US10742279B2 (en) User terminal and wireless communication method
JP6998724B2 (ja) 無線通信システムの評価装置
US11197305B2 (en) Wireless base station and scheduling method
JP2024500395A (ja) より高いランクの送信をサポートするためのタイプiiポート選択コードブックを拡張する方法
JP2017539110A (ja) 制御信号を伝送するための加重集約ベースの方法およびデバイス
JPWO2018128034A1 (ja) ユーザ装置、基地局及び復調用参照信号送信方法
US10848208B2 (en) Wireless base station and wireless communication method
US11917438B2 (en) User device and base station device
JP6998721B2 (ja) 無線通信システムの評価装置
US11387872B2 (en) Wireless base station and wireless communication method
JP7068807B2 (ja) 無線通信システムの評価装置
US11129111B2 (en) Wireless base station and transmission power control method
JP7017335B2 (ja) フロントホールマルチプレクサおよび無線通信システム
WO2018128038A1 (ja) ユーザ装置及び基地局
JP2019176270A (ja) 基地局及び基地局による通信制御方法
JP6998723B2 (ja) 無線通信システムの評価装置
JP6998722B2 (ja) 無線通信システムの評価装置
JP7467478B2 (ja) 端末及び通信方法
US10985810B2 (en) User terminal, wireless base station, and wireless communication method
JP6994304B2 (ja) 無線端末、送信電力制御方法、および無線基地局

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211221

R150 Certificate of patent or registration of utility model

Ref document number: 6998724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150